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Abstract 

 Statistical learning theory (SLT) is the statistical formulation of machine learning theory, 

a body of analytic methods common in “big data” problems. Regression-based SLT algorithms 

seek to maximize predictive accuracy for some outcome, given a large pool of potential 

predictors, without overfitting the sample. Research goals in psychology may sometimes call for 

high dimensional regression. One example is criterion-keyed scale construction, where a scale 

with maximal predictive validity must be built from a large item pool. Using this as a working 

example, we first introduce a core principle of SLT methods: minimization of expected 

prediction error (EPE). Minimizing EPE is fundamentally different than maximizing the within-

sample likelihood, and hinges on building a predictive model of sufficient complexity to predict 

the outcome well, without undue complexity leading to overfitting. We describe how such 

models are built and refined via cross-validation. We then illustrate how three common SLT 

algorithms--Supervised Principal Components, Regularization, and Boosting—can be used to 

construct a criterion-keyed scale predicting all-cause mortality, using a large personality item 

pool within a population cohort. Each algorithm illustrates a different approach to minimizing 

EPE. Finally, we consider broader applications of SLT predictive algorithms, both as supportive 

analytic tools for conventional methods, and as primary analytic tools in discovery phase 

research. We conclude that despite their differences from the classic null-hypothesis testing 

approach—or perhaps because of them--SLT methods may hold value as a statistically rigorous 

approach to exploratory regression. 

Key words: Statistical Learning Theory; Exploratory Data Analysis; Prediction; Generalizability; 

Psychometrics; Criterion-Keyed Scales
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Statistical Learning Theory for High Dimensional Prediction:  

Application to Criterion-Keyed Scale Development 

 

Machine learning is an area of computer science focused on detecting patterns in data 

(Kodratoff, 2014). Machine learning has now become firmly ensconced within an underlying 

foundation of statistical principles, broadly referred to as statistical learning theory (SLT) 

(Hastie, Tibshirani, & Friedman, 2009). These principles give rise to a rich and extensive range 

of models and methods. SLT methods are gaining increasing popularity with the advent of “big 

data”, which is now immigrating into psychology in several forms. These include, but are not 

limited to: internet-based data collection tools capable of rapidly generating large samples with 

many variables (Buhrmester, Kwang, & Gosling, 2011); large national studies assessing 

numerous psychological factors (Brim & Kessler, 2004); and the movement toward integrated 

data analysis—that is, either pooling or coordinating analysis across several data sets (Curran & 

Hussong, 2009; Hofer & Piccinin, 2009).  

Laney (2001) suggested that three primary characteristics of “Big Data” are volume, 

variety, and velocity. Volume refers to the sheer amount of data--in a research setting, the 

number of participants and the number of variables collected for each participant. Variety 

reflects different types or kinds of variables, and velocity indicates the speed with which data can 

be collected (Laney, 2001). To some extent, what appears “big” to a given researcher is a matter 

of perspective. In comparison to a clinical or convenience sample of a few hundred, involving a 

few dozen variables, a multi-site or population study involving thousands of persons and a few 

hundred variables might seem to be “Big Data”. Yet many (particularly those in computer 

science and genomics) are accustomed to far larger datasets, and increases in computing power 
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over time have continually demoted one period’s “Big Data” to the next period’s “unremarkably-

sized” data. The methods we describe are useful in “Big Data” as well as data of a more standard 

size.  

Big data carry the curse of dimensionality—the challenge of dealing with large numbers 

of variables in an analysis. In some instances, cases, the number of variables may even exceed 

the number of cases. Traditionally, the curse of dimensionality has been solved in through 

dimension reduction methods (i.e., factor or principal component analysis, multidimensional 

scaling). The result is a form of multivariate structure defined by a lower number of dimensions. 

Within SLT, such methods are called “unsupervised learning” techniques because there is no 

dependent variable—the goal is simply to ascertain patterns of aggregation within a set of 

variables (see Hastie et al., 2009, Chapter 14, for an overview). Any problem in which there is a 

dependent variable is called “supervised learning”. We use the term “SLT” here to refer to 

supervised learning, with the caveat that it also encompasses unsupervised techniques. 

Supervised learning algorithms are essentially high-dimensional regression models designed to 

maximize out-of-sample predictive accuracy.  

Such models are a marked departure from the use of regression in psychology. Most 

studies employ a regression model (usually linear) as a vehicle for testing a null hypothesis about 

a single parameter of interest. There may be covariates in the model, but they are limited in 

number and usually serve as “controls”. Assuming reasonable power and model specification, 

this approach is a fruitful way to test statistical null hypotheses about a focal predictor variable.  

Of course this is not the only approach to scientific inquiry, and not all scientific hypotheses 

translate into statistical null hypotheses about a particular parameter. Situations often require 

exploration of a large pool of potential predictors, the development of a model with generalizable 
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predictive power, or both. At least three distinct varieties of research problems pose such 

challenges.  

In the first case, the research question cannot be addressed without a statistical “fix” to 

methodological problems like selection effects, missing data, or sample weighting. The “fix” 

involves potentially high dimensional regression to correct or ameliorate the problem with the 

data, so that analysis of the substantive question can proceed. A poor model will yield a poor 

correction, jeopardizing the validity of the subsequent analysis. Second, the substantive research 

question may directly call for high dimensional regression. For instance, a researcher may be 

interested in anything related to a single outcome variable, rather than any specific predictor. The 

outcome is of such importance that a thorough understanding of everything predicting it is 

needed. A third case is when a “general” hypothesis exists about a broad kind or type of 

predictor. The class of predictors, however, involves numerous specific variables, and the state 

of knowledge is such that specific hypotheses cannot be credibly forwarded. We return to these 

kinds of research problems later, and now turn to a specific example combining elements of the 

latter two cases: criterion-keyed scale development. 

Criterion-keyed scales are meant to predict a particular outcome, or criterion (Anastasi & 

Urbina, 1997). Developing such a scale presupposes a particular outcome of importance, and a 

“general hypothesis” about the kind or type of items to which it might be linked. Such scales are 

fundamentally different than those intended to measure a latent trait. Examples include the well-

known Minnesota Multiphasic Personality Inventory basic scales, developed to predict 

psychiatric diagnosis (Butcher, Dahlstrom, Grahamn, Tellegen, & Kraemmer, 1989); adaptations 

of “Big Five” personality scales to predict job performance (Ones, Chockalingham, & Dilchert, 
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2005) and scales to predict health outcomes like cardiovascular disease, such as the Cook-

Medley Hostility Scale short form (Barefoot, Dodge, Peterson, Dahlstrom, & Williams, 1989).  

This paper is divided into three sections. First, we provide an overview of a core 

statistical principle underlying most SLT methods for high dimensional regression: the 

minimization of expected prediction error (EPE). Second, we discuss three common SLT 

algorithms: Supervised Principal Components (SPCA), regression regularization, and regression 

boosting. Each pursues the minimization of EPE in a different way. We illustrate each method by 

constructing a scale from the Eysenck Personality Inventory (EPI; Eysenck & Eysenck, 1964) 

item pool to predict 25-year all-cause mortality. Third, we consider the general use of SLT 

algorithms in psychology, including their contrasts with conventional methods and their potential 

applications. 

 

The Foundational Principle of Predictive Generalizability 

Mean Square Error and the Bias-Variance Trade-Off 

SLT regression methods differ from classical statistical approaches in a number of ways, 

summarized in Table 1 (Breiman, 2001). Most, if not all of these differences arise from the SLT 

priority of maximizing out-of-sample predictive accuracy. Optimizing out-of-sample prediction 

is often  neither the focus nor outcome of traditional null-hypothesis testing methods. To 

motivate discussion of SLT methods, consider the following general modeling framework. Let m 

be an arbitrary statistical model in a sample of n observations, relating a group of p predictors 

(X1, X2, … Xp) in an n × p design matrix X to an n × 1 outcome vector y.1 The model m maps the 

sample values in X to y, through some function fm(X). Usually, the function involves a p × 1 

vector of parameters β which are estimated, yielding a corresponding vector of parameter 
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estimates 𝛃̂. Often, β and 𝛃̂ are (p+1) x 1, since there is an additional parameter for the intercept 

in most models. Each person i’s predicted value is computed by summing i’s values on the p 

predictor variables, multiplied by the corresponding parameter estimates in 𝛃̂. The resulting 

quantity is simply the weighted linear combination one would find in any regression context. In 

the generalized linear model literature this weighted linear combination is called the linear 

predictor for i (Hardin, Hilbe, & Hilbe, 2007),  and denoted 𝜂𝑖 = 𝐱𝒊
𝐓𝛃̂. Note that an individual i’s 

observed scores on some scale can be written as 𝐱𝒊
𝐓𝛃̂, where 𝐱𝐢 is the vector of item scores and 𝛃̂ 

a vector of 1s. 

In a likelihood framework, a probability distribution is chosen for the dependent variable, 

and (usually) its mean is parameterized as conditional on the predictors via β. A set of estimating 

equations is then used to estimate the parameter values that maximize the log likelihood of the 

sample data. These Maximum Likelihood Estimates (MLEs) are often (but not always) unbiased 

(Cassella & Berger, 2002). While there are a variety of criteria for evaluating estimators, perhaps 

the most commonly utilized one is accuracy. An estimator’s accuracy is defined as the inverse of 

its Mean Square Error (MSE). The MSE is the squared expectation of the difference between the 

estimator and the population parameter it seeks to estimate (Cassella & Berger, 2002). Formally, 

consider an estimator θ̂ of a population parameter θ (θ could be any kind of parameter, but in the 

present context consider a regression parameter β). The MSE of θ̂ has the following canonical 

decomposition (Cassella & Berger, 2002):  

MSE(θ̂) = E(θ̂ − θ)
2

= E(θ̂ − 𝐸(θ̂) + 𝐸(θ̂) − θ)
2

= E (θ̂ − E(θ̂))
2

+ (E(θ̂) − θ)
2
 

= Var(θ̂) + (Bias(θ̂))2                                                   (1) 

The importance of (1) lies in the fact that an estimator’s bias and variance are 

independent contributors to its overall accuracy. Unbiasedness simply refers to whether the 
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estimator produces an estimate equal to the parameter in probability theory expectation, or on 

average. The estimator may or may not show great variability around this average. Thus, 

unbiased estimators are not always the most accurate, because they may have large variance (see 

Cassella & Berger 2002, Chapter 7). As a result, accuracy in an estimator can be improved even 

when bias increases, if declines in variance occur at a rate greater than increases in the square of 

its bias.  

Figure 1 depicts this idea graphically, displaying the sampling distributions of two 

estimators for a given parameter. The true value of the parameter is 3, represented by a vertical 

line. The sampling distribution of estimator A at the top has an expectation of 3, or takes that 

value on average—so it is unbiased. However, its sampling distribution has a standard deviation 

of 7, so its MSE is (0 bias + 49 variance) = 49. Estimator B on the bottom trades a small upward 

bias for reduced variance: its expectation is 5, but also it has a standard deviation of 5. Hence, its 

MSE is (3-5)2 + 25 = 29. Thus, estimator B is more accurate despite its bias.  

The independence of an estimator’s bias and variance has an important implication when 

one strives to maximize a model’s predictive power (Cassella & Berger, 2002). Maximizing 

prediction is equivalent to increasing variance explained. If one naively wants to increase R2 or 

similar likelihood-based measures of model fit, one can do so by adding more and more 

predictors. The only technical restriction on the number of p (independent) parameters usually 

estimable is p < n-1 (or p < n for models like Cox regression which have no intercept). In this 

context, interactions, polynomial terms, and other transformations of X variables count as 

separate predictors, so a relatively small number of conceptually distinct variables can quickly 

grow into a high dimensional regression scenario when one moves beyond linear main effects.  
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The reason that adding more and more predictors of even negligible importance can 

increase “variance explained” in the outcome lies in the fact that maximizing R2–like measures is 

equivalent to minimizing Var[Y|X1, X2, … Xp]. As long as X is sufficient statistic (a random 

variable is a sufficient statistic for itself), an important result known as the Rao-Blackwell 

theorem guarantees that Var[Y|X] < Var[Y] (see Cassella & Berger, 2002, Chapter 7). This 

means that conditioning on more and more X’s almost always drives down the conditional 

variance of the outcome, driving up variance explained by fm(X). With an unbiased estimator and 

the ability to so easily enhance the model’s apparent predictive power, why not simply “force 

feed” more and more independent variables into a model?   

Such a strategy risks overfitting fm(X) to the sample. Such a model has become 

erroneously complex, and will not predict the outcome very well in other samples. This is 

commonly understood at an intuitive level, and discouraged in practice by the use of adjusted R2 

or information criteria penalizing fit for model complexity (Vrieze, 2012). Overfitting happens 

because the more predictors that are added, the greater the chance that one or more parameter 

estimates may lie far away from the true value of the population parameter. Recall that 

unbiasedness means that the estimator yields estimates equal to the population parameter on 

average. Within any given sample, an unbiased estimator may produce an estimate that lies far 

from the true value of the parameter, or out at the tails of the sampling distributions in (1). The 

more predictors added to fm(X), the more estimates within its 𝛃̂ are subject to this risk. And the 

more estimates in a model that deviate substantially from the corresponding population 

parameters, the more error is transmitted into the model’s predicted values of the outcome. 

Developing an fm(X) that explains as much outcome variance as possible without overfitting the 
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sample is thus a difficult task. SLT approaches this problem by strategically trading bias for 

variance reductions, through estimation procedures that minimize Expected Prediction Error. 

Expected Prediction Error  

A model fm(X) acts as an estimator of the outcome Y. In a criterion-keyed scale context, 

fm(X) is a scale score based on items relevant to the outcome or criterion Y, arranged in a 

weighted linear combination. The weights are determined by regression, and depending on the 

type of model employed, fm(X) may involve a final transformation, such as exponentiation from 

a logit to an odds ratio if a logistic regression has been used. In any context, since fm(X) acts as 

an estimator of Y, its accuracy can be evaluated by expected prediction error (EPE; Hastie et al., 

2009, Chapter 7). Denote the model estimate of Y at a particular set of inputs x0 as fm(x0). 

Expected Prediction Error (EPE) of the model at the particular set of values of X variables 

defined by x0 is:  

 

EPE[𝑓𝑚(x0)] =  𝜎𝜀
2 + [E[𝑓𝑚(x0)] − y0]2 + E[E[𝑓𝑚(x0)] − 𝑓𝑚(x0)]2            (2) 

 

Where the first term on the right hand side of (2), 𝜎𝜀
2, is “irreducible error” that cannot be 

eliminated. Statistically, this reflects variation of the outcome about its average value that can 

never be explained. One might consider it an inherent property of the sample that cannot be 

eliminated by a model. The second term, [E[𝑓𝑚(x0)] − y0]2, is the squared bias of the model-

based estimate, or the extent to which the model systematically over- or under-estimates the 

outcome at the particular set of inputs x0. The third term is the variance of the model-based 

estimate, or the degree of random variation about its average prediction at the set of inputs 
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E[fm(X0)]. These two sources of error are analogous to those of an estimator above, and in this 

case are tied to a particular model.  

Note that in a scale-score context, fm(x0) is merely a particular score on the scale 

corresponding to a pattern of responses on the scale’s items. More than one individual 

observation may share a particular set of inputs, or have identical values of the X variables. Of 

course, the more numerous the X variables and/or smaller the sample, the less likely this will 

occur. Taken across the entire possible range of inputs on all X variables, EPE is conceptually 

akin to outcome variation unexplained by the model. In linear models, this is sometimes called 

the coefficient of alienation, 1 - R2.  

Minimization of EPE via Cross-Validation  

EPE may not be minimized by the parameter estimates that maximize the likelihood of 

the sample data. This is most likely to be the case when the ratio of predictors p to observations n 

is large, although “rules of thumb” about p/n are at best tentative since every situation is 

different. At small p/n ratios, MLEs may perform reasonably well in out-of-sample predictions; 

we remark on this issue later. SLT methods represent a reaction to the “over-optimism” of 

MLEs, or their tendency to overfit samples in cases of larger p/n. Hastie and colleagues (2009; 

Chapter 7) provide a good overview of a variety of model selection strategies based on the 

minimization of EPE. A classic article-length introduction to cross-validation from a traditional 

statistical standpoint is (Harrell, Lee, & Mark, 1996), and a technical SLT-oriented overview can 

be found in (Arlot & Celisse, 2010). Here we focus on k-fold cross-validation, one of the most 

popular cross-validation strategies used to minimize EPE.  

In k-fold cross-validation, a sample is split into k different segments, usually of equal 

size, with k commonly equal to five or ten. The parameters in fm(X) are estimated from the data 
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in k-1 folds, and then the model predictions are computed in the left-out fold and compared to the 

actual outcome value in that fold. The average residual in the left-out fold is the out-of-sample 

prediction error for that fold. This is repeated over all possible combinations of k-1 folds, and the 

out-of-sample prediction error from the left-out folds are averaged to yield an estimate of 

Generalized Cross Validation (GCV) error, or 𝜀GCV (discussed below). Table 2 schematizes this 

process for k = five.  

In a large dataset, random allocation to folds will tend to produce similar folds, just as 

random assignment in experiments is presumed to create “equivalent” groups. If the split is 

repeated (without the same seed for the random number generator), the actual observations 

comprising each fold will be different, but randomization will still tend to create equivalent 

folds. GCV error is also an average across the folds, and will be more reliable from split to split 

than the error estimate of any particular fold. Thus, in a large sample, repeated k-fold cross 

validation will show relatively tight variation around a central tendency in the estimate of GCV 

error. Depending on the size of the sample, it may be difficult to have confidence that such a 

result obtains without some investigation. Since samples have finite size, there are a finite 

number of k-fold splits, and in theory each k-fold split could be examined and the exact 

distribution of the GCV error determined. At maximal k, where k=n, the well-known “jack knife” 

or leave-one-out cross-validation procedure results and the distribution of each observation’s 

error (when left out of estimation) can be directly determined. With k in standard ranges (e.g., 3, 

5, 10), obtaining the exact distribution of GCV error from every possibly split would be 

computationally prohibitive unless the sample is very small. Thus, an empirical sampling 

distribution of the GCV error could be estimated through repeating the procedure a large number 

of times. Analysis of this distribution reveals the extent to which the GCV error estimate 
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fluctuates strongly across splits, and may suggest focusing on the model producing the lowest 

mean GCV error across repeated splits, or reducing k—perhaps even to two—to obtain less 

variability from split to split. Arlot and Celisse (2010) consider these and other issues in detail.  

While Hastie and colleagues tend to rely heavily on cross-validation in their work, others 

have been critical of it (Breiman, Friedman, Stone, & Olshen, 1984; Kuhn & Johnson, 2013). 

Breiman et al. (1984) has argued that GCV error may still yield models with less-than-optimal 

out-of sample performance, and has advocated a rule of thumb based on parsimony. His 

approach involves first identifying the key model parameters (called “tuning parameters”, 

discussed below) that minimize GCV error. Then, the simplest model that lies within one 

standard error of the GCV error estimate is used. 

When cross-validation methods are used in tandem with “training/test” sample splits, as 

is common in the SLT literature, confusion can easily arise over what part of the data is being 

used for what purpose. We thank an anonymous reviewer for suggesting the following 

description to clarify this issue. First, an overall data set is divided into two subsets of data - a 

training sample and test sample. The test sample is set aside to provide an independent estimate 

of model performance. We also refer to this as the hold-out sample, another term seen in the 

literature to emphasize the fact that this data is held apart from model development. The training 

sample is then used for model fitting, with the goal of producing the “best possible” model. 

Often, the training sample itself is partitioned into multiple parts or “folds” to conduct k-fold 

cross-validation estimation of GCV error. Bootstrap and other cross-validation methods are also 

conducted within the training sample. These strategies attempt to mimic model performance in 

independent data, in order to identify the values of tuning parameters most likely to lead to the 

best performance in actual independent data. Once cross-validation work has been conducted and 
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an optimal set of model parameters determined, assessment of the model’s real performance in 

independent data is the final step. That assessment is conducted in the test sample. 

We turn now to a more detailed discussion of GCV error. 

Generalized Cross-Validation Error 

EPE is a theoretical quantity that must be is estimated by generalized cross-validation 

(GCV) error (Hastie et al., 2009). GCV error can be defined generically as: 

 

𝜀GCV = 𝑔(𝐲c𝑣, 𝑓fit(𝐗𝐜𝐯))                          (3) 

 

where 𝐲c𝑣 is an n × 1 vector of values of the outcome in the test data, and 𝐗𝐜𝐯 is an n × p matrix 

of predictor variables in the test data. The function 𝑓fit(∙) is a model fit in the training data, and 

𝑔( · ) is a loss function reflecting misfit between model-based predictions and actual values of 

the outcome in the cross-validation data. The form of the loss function depends on the 

distribution of the outcome. Three frequently used loss functions are: 

 

𝑔𝑠𝑠(𝐲, 𝑓m(𝐗)) = ∑ (y𝑖 − 𝐱𝒊
𝐓𝛃)2𝑛

𝑖                            (4) 

𝑔𝑎𝑏𝑠(𝐲, 𝑓m(𝐗)) = ∑ |y𝑖 − 𝐱𝒊
𝐓𝛃|𝑛

𝑖                                                    (5) 

𝑔𝑔𝑖𝑛𝑖(𝐲, 𝑓m(𝐗)) = p̂v(1 − p̂v)                                                    (6) 

 

where (4) is sum-of-squares error, (5) is sum of absolute deviation errors, and (6) is the Gini 

Index for binary outcomes. These are general functions that can be used for any estimation 

problem, so they are not specifically subscripted CV. For (6), the fit model yields some 

probability of membership for individual i in a particular class v. Person i is assigned a predicted 
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class if the probability exceeds a certain threshold, and the proportion of correctly classified 

observations in class v is p̂v. Thus the Gini Index is simply the proportion of observations 

correctly classified, multiplied by the proportion of incorrectly classified. Other loss functions 

may be used in computing GCV error, such information criteria, the (log) Likelihood of the test 

data, or some derivation of it like the Deviance or an information criterion. As mentioned above 

in the context of k-fold cross-validation, loss functions are usually averaged across different 

folds to estimate average 𝜀GCV.  

 Once a training/testing strategy has been selected and a loss function determined to 

compute 𝜀GCV, an SLT algorithm can be used to estimate a model. Cross-validation strategies 

find values for model “tuning parameters” by minimizing 𝜀GCV, and these tuning parameters in 

turn structure other aspects of the model, such as the number of predictors selected or the extent 

to which their coefficients are altered. Tuning parameters are algorithm specific, and discussed 

below. The term “learning” in SLT comes from the “feedback” process about cross-validation 

prediction on which estimation is based.  

 

Example SLT Algorithms 

An extremely large number of SLT algorithms exist, with new variations continually 

emerging and journals such as the Journal of Machine Learning Research dedicated to the field. 

We illustrate three “basic” algorithms that are relatively common in the literature, each taking a 

different approach to minimizing EPE. Each also involves an element of potential familiarity to 

psychology: Supervised principal components, as its name suggests, incorporates principal 

components analysis (PCA); regularized regression has a connection to ridge regression; and 

boosted regression involves “residualization” of an outcome, a common technique used to 
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“regress out” or “partial” one variable from another (Cohen, Cohen, West, & Aiken, 2003). Most 

techniques extend from linear models to generalized linear models and other types, as shown in 

illustrations using the Cox proportional hazard model.  

The example we present focuses on constructing a subscale embedded within the 

Eysenck Personality Inventory (EPI) (Eysenck & Eysenck, 1964). The EPI contains 57 items 

measuring the broad traits of Neuroticism and Extraversion, as well as a lie scale. The goal of 

our example is to create a scale from these items that predicts 25-year all-cause mortality, a 

pursuit of interest in health and personality psychology (Chapman, Roberts, & Duberstein, 

2011). A general hypothesis motivating the effort is that some items on the EPI scales (even the 

lie scale) will  predict mortality. However it is not clear which items will do so best, placing the 

project well within the realm of exploratory, rather than confirmatory, research. The data comes 

from the Health and Lifestyle Survey (HALS), a UK-wide study in which participants were 

interviewed and completed a number of questionnaire instruments in 1984. Survival status was 

assessed via the UK Registrar General’s office in 2009 (Blaxter, 1987). The data set consists of 

HALS participants 40 and over, with EPI data: 3709 people (54% female, age M= 58 years, SD = 

11.6, 49% deceased by 2009). We partitioned the dataset into a sample of 2472 that could be 

used for training and cross-validating the model. The remaining 1237 were put aside as a test or 

hold-out sample to provide an independent assessment of the final scale’s predictive validity. 

The allocation represents a 2/3-1/3 split and is based on no hard and fast rules other than the fact 

that a larger training sample can accommodate more and/or larger cross-validation folds. 

Algorithm 1: Supervised Principal Components 

Background and motivation. Supervised Principal Components Analysis (SPCA) (Bair, 

Hastie, Debashis, & Tibshirani, 2006) is an adaptation of principal components regression. The 
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intuition is that one will achieve better prediction from a pool of predictors by first screening out 

those unrelated to the outcome, instead of simply creating principal components based on all 

possible predictors. The technique was developed for so-called p > n problems, where the 

number of predictors exceeds the number of observations (Bair et al., 2006). However, it is 

useful whenever one is faced with a large number of potential predictors. For instance, Weiss 

and colleagues recently employed it to identify items of the Minnesota Multiphasic Personality 

Inventory (MMPI) that predict mortality (Weiss, Gale, Batty, & Deary, 2013).  

Formally, the goal is to take the n (observations) × p (items) matrix X and partition it into 

an n × q submatrix 𝐗𝝉, with columns containing scores on the q items related to the outcome, and 

an n × r submatrix XD with columns containing scores on items unrelated to the outcome that 

will be discarded from further use. The p items are ranked based on the absolute value of their 

univariate regression coefficients predicting the outcome. Some threshold τ is set so that only the 

q items with coefficients > |τ| are selected. The threshold is the value that minimizes 𝜀GCV during 

k-fold cross-validation. After selecting the items, the 𝐗𝝉 matrix is subjected to the singular value 

decomposition (Bair et al., 2006): 

 

𝐗𝝉 = 𝐔𝝉𝐃𝝉𝐕𝝉
𝐓              (7) 

 

where Uτ in an n × r matrix with the columns consisting of the r principal components of Xτ, Dτ 

is an r × r diagonal matrix of singular values in which d1 > d2 > … dr > 0, and Vτ is an r × q 

matrix.2 Unless there is linear dependence between two items, there are as many principal 

components as items, so r = q even though not all r will be used. For each of the j = 1 … r 

principal components (typically r < 3), the jth component score for observation i is computed as 
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u𝑖𝑗 = ∑ α𝑗𝑘x𝑖𝑘
𝑞
𝑘=1  (Bair et al., 2006). This is simply a familiar regression-weighted component 

score with
 
α𝑗𝑘 as the component j scoring coefficient for item k. In the case of unrotated 

components, α𝑗𝑘 is a loading in the pattern matrix (see Grice & Harris, 1998). Subject i’s scores 

on the first j components denoted by the 1 × j vector uij, are then used to predict his or her 

outcome value yi (Bair et al., 2006): 

 

ŷ𝑖 = 𝑓(β̂0 + 𝐮𝐢𝐣
𝐓𝛃̂)                                  (8) 

 

where f is the model regression function (often a generalized linear model involving a link 

function), β̂0 the intercept (if the model has one), and 𝛃̂ is a j × 1 vector of parameter estimates. 

In the context of a criterion-keyed scale, ŷ𝑖 is persons i’s scale score. It is a model-based estimate 

of the outcome, and computed from the q items, their loadings on the r retained components, and 

the parameter estimates for those coefficients—that is, substituting the expression for component 

scores into (8):  

 

ŷ𝑖 = 𝑓(β̂0 + ∑ β̂j(∑ α𝑗𝑘xik)
q
k=1

𝐫
𝐣=𝟏 )                            (9) 

 

 The threshold parameter used to select items is one key tuning parameter in SPCA. The 

other is the number of components to extract from 𝐗𝝉.3 These tuning parameters are determined 

by fitting several SPCA models with a series of threshold values and one, two, or three 

components. The threshold value and number of components that jointly minimize GCV error 

are then chosen. Typically, one, two, or three components are extracted, based on whether one, 

two, or three minimize 𝜀GCV (Bair et al., 2006). Rotation of components would destroy the 
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orthogonality intended by the procedure, so is not used. Instead, unrotated loadings from the 

original, independent components are used. Rotation would redistribute variance, possibly 

evening out predictive power of components, but they are all added together ultimately in (9) to 

produce a single predicted value, or scale score. The advantage of extracting only one component 

is that the first component often dominates, and limiting the number of components minimizes 

complexity.  

Also note that the linear combination of predictors within 𝑓(∙) in (9) is simply the linear 

predictor 𝜂𝑖  in a generalized linear model. In the context of a criterion-keyed scale, this quantity 

represents an untransformed scale score based on the q items selected for the scale. When filtered 

through the link function of 𝑓(∙), the linear predictor is transformed to ŷ𝑖, which is on the metric 

of the actual outcome. In a scale score context, this can be thought of as a transformed scale 

score expressed in the units of the criterion. For instance, if Y is income in dollars, with f a log 

link function, β0 + ∑ βj(∑ αijxij)
q
k=1

𝐫
𝐣=𝟏  in (9) is an untransformed scale score reflecting the 

natural logarithm of a dollar amount. In contrast, exp (β0 + ∑ βj(∑ αijxij)
q
k=1

𝐫
𝐣=𝟏 ) is a transformed 

scale score in the metric of dollars.  

Illustration. We applied SPCA to the item pool of the EPI to construct a scale criterion-

keyed predicting all-cause mortality. Analyses were performed using the R package superpc 

(Bair & Tibshirani, 2010). Sample code for this and other examples appears in Appendix A. In 

the first step, all 57 EPI items were screened for their association with mortality using Cox 

proportional hazard models. After this step, items above a log hazard threshold determined by 

10-fold cross-validation were subjected to PCA. Final scale scores were computed from 

component scoring coefficients and regression coefficients as in (9) (although note in Cox 
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models there is no intercept). The metric of this scale score is a log hazard rate which, when 

exponentiated, produces a hazard ratio for all-cause mortality over the follow-up period.  

The location of the optimal threshold for the log-hazards of the 57 items is shown in the 

right portion of Figure 2. The test-data likelihood ratio (vs. a null model) was used as the 

measure of GCV error, and was maximized by a threshold of a log-hazard of |1.93|. Sixteen 

items lay beyond this threshold. In the right hand portion of Figure 2, the test-data likelihood 

ratio corresponding to one, two, and three principal components across various thresholds for 

item inclusion is shown. As can be seen GCV error is minimized by two or three components at 

the selected threshold of |1.93|. A small difference appears in the gains from a third component. 

In general, some judgment is required around whether added complexity in any model is justified 

by any prediction gains. In this particular context, an additional linear combination (component 

score) would add substantially to the complication of scale scoring. Therefore, we opted not to 

include it. Table 3 shows component scoring coefficients, corresponding to pattern matrix 

loadings for the two retained components, in the columns “SPCA 1” and “SPCA 2”. The log 

hazard rates for each component with respect to 25-year all-cause mortality are at the bottom of 

the SPCA 1 and 2 columns. All analyses up to this point were conducted in the training sample. 

Once this final model had been developed, we used it to generate scale scores and examined their 

accuracy in the test sample. 

Table 4 shows various measures of predictive accuracy for the SPCA scale scores in the 

first column, in both the training/test and hold out samples. The peak accuracy is the total 

percentage of correct positive and negative classifications, using the scale cut-point that 

maximizes sensitivity and specificity. The point-biserial correlation is a familiar validity 

coefficient metric (McGrath & Meyer, 2006), with Spearman’s rank-order correlation coefficient 
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included for comparison. Also included is the hazard rate for death associated with a 1 SD 

difference in scale scores (i.e., a one unit increase in a scale z-score). When this value is much 

smaller in new data, one or more regression coefficients have been over-estimated in the fitting 

sample (Harrell et al., 1996). A relatively similar HR (or log HR) in independent data suggests 

good generalization. The pseudo R2 is the Cox-Snell version, 𝑅2 = 1 − exp [
−2∗(𝐿𝐿𝑛𝑢𝑙𝑙−𝐿𝐿𝑚𝑜𝑑𝑒𝑙)

𝑁
] 

where LL subscripted “null” and “model” indicate the log likelihood of a null and the fit model, 

respectively. The p-values for these associations are very low and omitted because they are 

uninformative. The area under the curve (AUC) represents the percentage of true positives (i.e., 

predicted decedents who actually were deceased) out of all predicted positives, averaged across 

all possible cut-points for a positive prediction.  

The key point in Table 4 is that the SPCA-constructed scale shows comparable predictive 

validity in both the training and test samples. SPCA thus effectively avoided overfitting by 

effective minimization of an estimate of EPE, constructing a? model that produces a criterion-

keyed scale with generalizable predictive validity.  

Algorithm 2: Regularization 

Background and Motivation. A second family of algorithms tries to minimize EPE by 

shrinking regression coefficients based on their instability, and is called “regularization”. In a 

standard MLE context, instability is reflected in the size of a coefficient’s standard error. In 

likelihood theory, imprecision is determined by the curvature of the (log) likelihood function at 

its maximum (Gould, 2006). The parameter estimates solve a set of estimating equations, written 

in vector form as: 

 

𝛃̂ = ∑
𝜕

𝜕𝛃̂

𝑛
𝑖=1 log (𝐿(yi, 𝑓𝑚(x𝑖))) = 0           (10) 
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where 𝐿(yi, 𝑓𝑚(x𝑖)) is the likelihood for an observation i , there are  i = 1 … n independent 

observations and partial derivatives are with respect to the other parameters in 𝛃̂. The Hessian, or 

matrix of second derivatives, describes the curvature of the log likelihood function at its 

optimum: 

 

𝐇(𝛃̂) =
𝜕

𝜕𝛃̂𝜕𝛃̂𝐓
[∑

𝜕

𝜕𝛃̂

𝑛
𝑖=1 log (𝐿(yi, 𝑓𝑚(x𝑖)))]         (11) 

 

The negative inverse of the Hessian, the Fisher information matrix 𝐈(𝛃̂) = −𝐇(𝛃̂)
−1

yields 

(squared) standard errors for the model coefficients. When the likelihood function is rounded or 

nearly flat in a particular dimension corresponding to some particular β̂, a relatively wide range 

of estimates for that parameter describes the data almost equally well. The small second 

derivative for β̂ produces a large Information Matrix standard error, reflecting uncertainty about 

the precise value of β̂. Since model predictions are then based on β̂, its imprecision erodes out-

of-sample prediction accuracy.  

By shrinking coefficients proportional to a model’s GCV error, regularization methods 

“damp down” the deleterious effects of predictors with large standard errors. For generalized 

linear models, shrunken parameters are achieved by optimizing a penalized log likelihood of the 

form (Park & Hastie, 2007):  

 

𝛃̂𝛿 = 𝑎𝑟𝑔 𝑚𝑖𝑛
β̂

{−log [L(𝐲; 𝛃̂) + 𝛿]}                            (12) 
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where log L(𝐲; 𝛃̂) is the log likelihood of y, the outcome vector in the sample, given the vector 

of  parameter estimates 𝛃̂, and δ is a penalty term. More generally, δ keeps the sum of all j = 

1…p regression coefficients in 𝛃̂ from exceeding a specified total. Two common forms for δ 

under this general scenario are the so-called L1 and L2 penalties (Park & Hastie, 2007): 

 

𝛿L1 = 𝜆 ∑ |β̂𝑗|𝑝
𝑗=1       (13) 

𝛿L2 = 𝜆 ∑ β̂𝑗
2𝑝

𝑗=1                                                                     (14) 

 

where λ is between 0 and 1. In practice, λ is found by trying a series of values between 0 and 1, 

and selecting the value producing the lowest GCV error. Penalization with the L1 term of (13), 

referred to as “Lasso” regression (Tibshirani, 1996), subtracts from the likelihood some portion 

of the summed absolute values of the regression coefficients. The L2 penalty, which corresponds 

to ridge regression (Hoerl & Kennard, 1988), subtracts a portion of the sum of squared 

coefficients. If λ is 0, δ disappears from (12) and the parameters are standard MLEs. As λ 

approaches 1, the penalty term reflects the full sum (L1) or sum of squares (L2) of coefficients.  

How does this penalty term reflect the imprecision of predictors? If β̂s are large but also 

have large standard errors, they will lead to high 𝜀GCV in test data. As a result, a higher value of λ 

will be chosen. Since this creates a larger penalty term for the likelihood, smaller values of β̂ will 

be needed to maximize the penalized likelihood. Because the set of coefficients as a whole 

cannot exceed a certain size, predictors with large standard errors will be “crowded out” by 

predictors with smaller standard errors. With an L1 penalty, the worst predictors may have their 

coefficients set to 0 in order to improve the penalized likelihood, ejecting them from the model 

completely. The Lasso model (L1 penalty) thus performs both variable selection and shrinkage, 
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while the ridge model (L2 penalty) performs only shrinkage. However, a drawback is that the L1 

penalty tends to arbitrarily select only one of several correlated predictors (Park & Hastie, 2007). 

The L2 penalty does not eliminate correlated predictors, but simply shrinks their coefficients. To 

combine the desirable features of both penalties, a penalty based on both L1 and L2 terms was 

developed, called the “elastic net” (Zou & Hastie, 2005), taking the form : 

 

𝛿L1−L2 = 𝜆[∑  α|β̂𝑗| + (1 − 𝛼)β̂𝑗
2]𝑝

𝑗=1      (15) 

 

The first term inside the brackets in (15) is merely the L1 penalty of (13) with a new scaling 

factor (α, a value ranging from zero to one), while the second term is merely the L2 penalty of 

(14) multiplied by 1- α. α has the effect of balancing the overall penalty between the behavior of 

a pure L1 (α = 1) and a pure L2 (α = 0) penalty (Zou & Hastie, 2005). The elastic net penalty of 

(15) can thus be used to move flexibly between a pure Lasso model, shrinking some predictors to 

zero (L1), or a pure ridge model (L2), incorporating all predictors with shrinkage.  Values 

between 1 and 0 allow some correlated predictors to enter the model, while still removing some. 

A slight variation on (15) appears in (Friedman, Hastie, & Tibshirani, 2010), in which (1- α) is 

replaced by (1- α) / 2, and in Park and Hastie (2007) the scaling factor on the L2 portion of the 

term is independent of the scaling factor on the L1 portion of the term.  

Park and Hastie (2007) suggested fixing the L2 scaling factor at some small positive 

value. Friedman et al. similarly suggest fixing α at a value close to 1 so that a small coefficient is 

attached to the L2 term, and Hastie et al. (2009; p. 663) suggest that α be pre-selected or 

estimated via cross-validation, necessitating a search over a tuning parameter space jointly 

defined by α and λ. A common practice is to graph the size of predictors’ coefficients across 
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different values of λ assessed in test data. This is called the “solution path” of the model, since it 

charts the path of a predictor’s coefficient shrinkage as λ moves from 0 toward 1. 

Illustration. Using the R package glmnet (Friedman, Hastie, & Tibshirani, 2011), we fit 

a Cox regression model with elastic net penalization to the training sample, beginning with all 57 

items in the pool. We utilized 10-fold cross-validation to select the optimal value of λ, at each of 

eleven different values of α in (15). In other words, we conducted a two-dimensional search 

across independent tuning parameters. Values of α ranged from 0 (ridge penalty) to 1 (Lasso 

penalty), in increments of .1. Very little difference in the GCV error estimate was noted for the 

best λ at varying α. The 10-fold cross-validated Deviance ranged from 16.59-16.61, indicating 

that whatever the value of α, the algorithm could find an optimum λ leading to comparable 

overall GCV error.  The number of items selected varied considerably however, as expected. At 

α = 0, a pure ridge penalty, all 57 items were included, while at α = 1, a pure Lasso penalty, 38 

items were selected. Intermediate values of α resulted in 46-48 items being selected, consistent 

with suggestions in the literature that when α is neither zero nor one, its exact value may 

sometimes make little difference (Friedman et al., 2010; Hastie et al., 2009; Park & Hastie, 

2007).  

In this particular instance, we chose to place a high premium on parsimony, and even the 

pure Lasso penalty selected a relatively large number of predictors. Thus, to settle on a more 

economical model, we applied Breiman’s (1984) rule and selected the simplest Lasso model 

within one standard error of the cross-validated Deviance. This model corresponded to a λ value 

of .038, and contained 21 items. Two of the items had coefficients close to zero (as shown in 

Table 3) and, in effect, the resulting scale would have 19 items. 
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The entire solution path for this final model, across different values of (log) λ is shown in 

Figure 3. At the far left of the path, λ is near 0, virtually no shrinkage is applied, and most items 

are in the model with coefficients close their MLEs. As one moves right, values of λ increase, 

shrinking coefficients toward zero and eliminating many items from the model. The top x-axis 

shows the number of items in the model at each step. The final items and their shrunken 

coefficients are shown in Table 3. Table 4 shows that scale scores from the elastic net model 

perform virtually as well in the test sample as within the training sample. Regularization in this 

case effectively minimized EPE, yielding a scale with generalizable predictive validity.  

Algorithm 3: Boosting 

Background and Motivation. Boosting partitions the outcome variance into small slices 

and builds a model by fitting the best variables from a predictor pool to each successive slice. 

For this reason, some simple applications of boosting have been called “additive stagewise” 

modeling, because they predict portions of an outcome’s variance in stages that are sequentially 

additive (see Hastie et al. 2009, Chapter 10). A large number of boosting algorithms exist, 

differing (among other things) in the “base learner” or model that is boosted (i.e., different kinds 

of regression models, regression trees); the loss function that is optimized; the number of 

predictors that can enter at each iteration; the use of subsampling or bootstrap aggregating 

(“bagging”); the type of cross-validation used to decide tuning parameters; and the reweighting 

of observations at each iteration based on prediction error. However, all algorithms involve two 

fundamental tuning parameters: the learning rate or “step length”, and the number of stages 

boosted. We discuss a simple algorithm involving these two tuning parameters (analogous to the 

“generic” or L2 algorithm in Buhlmann and Hothorn (2007), and forward stagewise additive 

modeling algorithm in Hastie et al., 2009, Chapter 10).  
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A general overview of a basic boosting process is as follows: first, a regression model is 

fit with one predictor, its coefficient shrunk, and then used to predict the outcome. The residual 

is then computed. Second, from the candidate pool of predictors, the one most associated with 

the outcome residuals is selected, added to the model, and its coefficient shrunk. The model is 

again used to predict the residuals. The residuals from that model are then computed. The 

process next repeats for a third step, and so forth. A “cumulative” model is kept, consisting of the 

predictors used at each stage and their shrunken regression coefficients. A variable used at a 

previous step can re-enter the model at a subsequent step, if it is the one most associated with the 

outcome residuals at that point. Since the re-entering predictor was initially used in the model 

with a shrunken coefficient, only part of the relationship between that predictor and outcome was 

removed or “partialed out”. Thus, some association may remain. When a predictor enters the 

model repeatedly, its coefficient in the “cumulative” model is the sum of its shrunken 

coefficients at each step. Table 5 summarizes the steps of this basic algorithm, referencing a 

shrinkage factor discussed next. 

A simple example can illustrate  boosting. Table 6 shows a sample of n = 10 individuals, 

each with a standardized normal (z-scored) outcome Y regressed on a single standardized normal 

predictor, X. Ordinary least squares (OLS) regression is boosted over s = 1…t 

steps/stages/iterations. At the first step, s = 0, the outcome value of each observation, yi is 

subtracted from the mean of Y. This forms a residual for each observation, y𝑖0 = (y𝑖 − y̅), where 

the subscript i denotes the individual and the second subscript the boosting stage s = 0. 

Beginning at stage s = 1, a standard linear regression is fit, predicting the stage 0 residuals, yi0, 

with a least-squares parameter estimate β̂. At this point, boosting procedures introduce a penalty 

or shrinkage parameter (sometimes called a “step length”), λ, similar to regularization. The 
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shrinkage parameter is often fixed at a small value such as .1 or less, but in general 0 < λ < 1. 

The OLS coefficient β̂ is subscripted to reflect stage s =1, and called β̂1. β̂1 is multiplied by λ (.1 

in this example), and the residuals for each of the i observations in stage one are then computed 

as y𝑖1 = (y𝑖0 − λβ̂1x𝑖). Note that the predictor has not been fully “regressed out” of the outcome 

because its shrunken regression coefficient, λβ̂1, leaves β̂1 − λβ̂1 = (1 − λ)β̂1 of the regression 

relationship in the stage one residuals. Now, updating to stage s = 2, a linear regression model is 

again fit predicting the residuals of stage one, y𝑖1, with X. Normally there would be other 

predictors that might be more related to the stage one residuals, but in this simple example there 

is only a single predictor. This results in a stage two OLS estimate β̂2 that is again shrunk by a 

factor of λ to produce the second-stage residuals y𝑖2 = (y𝑖1 − λβ̂2x𝑖). This process is repeated 

for t stages. In the Table 6 example, t = 3. The “cumulative model” is additive over these stages. 

At the end of stage 1, the coefficient is β̂cum 1 = λβ̂1x𝑖, and at the end of stage two, this is 

updated to β̂cum 2 = λβ̂1 + λβ̂2, and at the end of stage three it becomes β̂cum 3 = λβ̂1 + λβ̂2 +

λβ̂3. The prediction of i at the third stage is, correspondingly, ŷi,cum 3 = λβ̂1x𝑖 + λβ̂2x𝑖 + λβ̂3x𝑖. 

With a single variable, one can determine the exact number of boosting iterations needed to 

produces its standard OLS coefficient, β̂; 
1

𝜆
 iterations are needed. As the procedure approaches 

this value,   𝑙𝑖𝑚
𝑠→

1

𝜆

β̂𝑐𝑢𝑚 𝑠 = β̂ for λ ∈ (0,1] and the cumulative model coefficient grows arbitrarily 

close to the standard OLS coefficient (more generally, to the MLE).  

In reality, p predictors rather than a single one are used. At each stage, the algorithm 

selects the single predictor most related to the current residuals. Each additional variable selected 

thus has incremental validity at its stage of selection. The shrinkage and residualization yield a 

more conservative procedure than a standard forward step-wise procedure because each step is 
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relatively small, and only “part” of a predictor enters (Hastie et al., 2009; Chapter 10). Damage 

from poor predictors is minimized in this way, and truly good predictors will tend to be drawn 

into the algorithm repeatedly to dominate the cumulative model.  

There is another mechanism in boosting to guard against overfitting, however. In the 

stochastic gradient boosting algorithm, a subset of the sample is drawn without replacement at 

the beginning of each step s (Friedman, 2002). The model is fit and its predictions are computed 

for that subsample. If a sampling fraction of 50% is used for instance, only a random 50% of the 

observations are residualized at a given stage. Thus, estimation at each stage involves small 

subsections of data, in addition to estimating “small pieces” of predictors’ coefficients. Reducing 

the residualization of the data at each iteration also prevents sporadic mistakes—for instance, 

allowing a poor predictor to residualize too much of the outcome (Hastie et al., 2009; Chapter 

10). k-fold cross-validation procedures or bagging can introduce similar random variation to 

guard against overfitting. Other modifications such as re-weighting observations according to 

how hard they are to predict, or varying the size λ at each stage are also sometimes used  (Binder 

& Schumacher, 2009; Buhlmann & Hothorn, 2007) 

Even at a slow pace, boosting a model through too many stages will bring the model 

coefficients arbitrarily close to their MLEs, as the simple example above shows, potentially 

overfitting the data (Buhlmann & Hothorn, 2007). Therefore, the critical tuning parameter in 

boosting is at what stage s = 1… t one should stop. Unlike the single variable case above where 

the precise number of iterations needed to reach the predictor’s MLE can be ascertained based on 

a value of λ, such an exact determination cannot be made with a large number of possible 

predictors and the randomness in bootstrap draws. Thus, one “rule of thumb” is that 
𝜆

𝑡
∈

[100, 10,000] (Schonlau, 2005). This “rule of thumb” is actually a sizable interval, and of 
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general use only in identifying potentially under-iterated (i.e., t < 100) or over-iterated (t > 

10,000) models.  

Illustration. We boosted a Cox model in the training sample of HALS using the R 

package mboost (Hothorn, Buehlmann, Kneib, Schmid, & Hofner, 2011), setting λ to .1, and 

choosing the stopping iteration t based on test data likelihood in 10-fold cross-validation. The 

initial stopping stage suggested by this procedure was 2495 iterations. However, the cross-

validation data log-likelihood at this advanced point was only fractionally better than at earlier 

iterations. Since the model had been boosted through so many stages, it included a host of items 

with extremely small coefficients. Few applied researchers or clinicians would want a scale laden 

with minimally relevant items, so we examined earlier stopping points. The cross-validation data 

likelihood appeared to plateau at a much earlier iteration (950), which yielded a more 

parsimonious model. Table 3 shows the items selected and their coefficients from this model in 

the “boosting” column. Table 4 shows the performance of scores from a scale based on the 

boosting model—that is, the linear predictor from the cumulative model coefficients at their final 

stage. Again, predictive validity in the test sample was virtually as good as in the training  

sample, suggesting that boosting yielded a scale with generalizable criterion validity. 

Selecting Algorithms  

Often in SLT prediction applications, multiple modeling algorithms are deployed and 

compared. Each empirical context is unique, and different algorithms may exhibit different 

strengths or weaknesses under different conditions. Few, if any studies imply global superiority 

for any algorithm or class of algorithms (see Hastie et al., 2009, p. 350-352, for some 

considerations). Thus, both applied and simulation studies pitting one SLT predictive model 

against another are an active area of research.  
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In our examples, the difference in predictive performance between scales produced by the 

three algorithms was trivial. When differences do emerge, they may point toward features of the 

data that bear consideration. In the analyses presented here, substantial superiority of 

regularization or boosting over SPCA would reinforce the need for shrinkage of item 

coefficients, and/or the inadequacy of the SPCA item selection method. In that case, an SPCA 

approach with shrinkage might be considered (Bair et al., 2006). Substantial differences between 

regularization and boosting would suggest that one method of shrinkage employed here was 

better than the other. Boosting begins with no variables in the model and builds up predictors’ 

coefficients from zero, while regularization begins with all variables in the model and reduces 

coefficients from their full MLE (Binder & Schumacher, 2009; Buhlmann & Hothorn, 2007). In 

cases of similar performance, selecting the “best” algorithm may be dictated by practical 

considerations. In measurement contexts like ours, for instance, shorter scales might be 

preferable and lead to the use of the 16-item SPCA scale.  

Another issue in model comparison concerns whether a “standard” model should be 

included in the set that is evaluated. The final column of Table 4 shows the performance of a 

“naïve” Cox model with standard MLEs (i.e., no variable selection, no shrinkage). In our 

example, the MLEs show reasonable out-of-sample performance, although the overall model is 

obviously less parsimonious. There would appear to be at least two reasons for this: first, the 

sample is quite large, relative to the number of predictors (i.e., n >> p rather than p > n). 

Therefore, copious information is available to support the estimation of a large number of 

parameters, good variable selection is less important, and the naïve model is not as overfit as it 

would be in a smaller sample. Second, the test data is actually from the same overall sample as 
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the training data in which the naïve MLEs were obtained which, along  with a large sample size,  

likely reduces over-fitting to some extent.  

To illustrate the impact of sample size, we refit all the models in only a random 10% of 

the training and test samples. As can be seen in Table 7, the naïve MLEs show a large drop from 

an “over-optimistic” fit in the training sample. By contrast, both SPCA and regularization 

models show very good generalization to the test sample. The boosting model falls somewhere in 

between, evidencing some over-fitting. These observations suggest that in large samples, and/or 

scenarios in which the resulting model is intended for use in specific samples likely to vary little 

from one occasion to the next (e.g, patients from the same clinic), standard methods ought to be 

compared to SLT-based models. Depending on the degree of difference in performance and 

parsimony afforded by each approach, SLT-based models may or may not be a useful 

improvement over standard models. 

Regarding the issue of similarity between future samples and those used to develop the 

model, a key point is that cross-validation techniques inherently presume that generalization 

across random splits of the training data mimics generalization to new, future data. When 

convenience or other idiosyncratic samples are used for model development, the resulting model 

is not guaranteed to perform well in future samples, which are likely to come from substantively 

different populations. SLT methods provide neither unqualified promises of generalizability nor 

a substitute for good sampling. In psychometrics the generalizability and stability of 

measurement properties are key issues for any scale. Before moving on to more general matters, 

we briefly consider the concept of “reliability” for SLT-based scales. 

Predictive Validity vs. Internal Consistency in SLT Scales 
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Criterion-keyed scales, whether built by SLT methods or not, are fundamentally different 

than scales intended to capture an underlying latent factor. Lest confusion arise, it is helpful to 

explicitly note why. When a scale is not built to capture a latent factor, internal consistency is not 

a measure of reliability (Streiner, 2003). Indeed criterion-keyed scales with high predictive 

validity often might have poor internal consistency. This may seem contrary to the Classical Test 

Theory point of view that “reliability caps validity.” But several independent predictors will 

yield a better predictive linear combination because a) each captures a unique or non-redundant 

portion of outcome variances and b) the precision of the estimates is maximized when 

collinearity is 0, leading to more precise predicted values of the outcome (Seber & Lee, 2012). 

Indeed, this result has been known for well over half a century, and has been called the 

“attenuation paradox” (Loevinger, 1954). Consider the following correlation matrix from a joint 

multivariate normal distribution of six variables, with the first being Y, the outcome, and the 

remaining five items X1-X5: 

 

A simulation drawing 100 samples of varying size from this distribution leads to a scale with an 

average Cronbach’s alpha of .17. Yet when the items are formed into a predictive scale using the 

weighted linear combination from a linear regression, the average validity coefficient between 

the scale and the outcome is .75. Although this is a trivial example, it illustrates the point that 

scales built for latent trait measurement vs. criterion prediction differ and thus must be evaluated 

with different standards.  
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Consider a criterion-keyed scale administered repeatedly within a sample, each time with 

a corresponding criterion measured at some fixed interval in the future. If the scale’s correlation 

with the criteria—its validity coefficient—is relatively similar across these occasions, one might 

argue that this is a kind of reliability, in that it reflects a regularity or consistency in validity. This 

is not, however, a conventional notion of reliability, and the concept of validity generalization is 

perhaps more apt. Whether one looks for consistent criterion validity within a sample over time 

or across samples, regularity in the scale’s predictive capacity, rather than its internal 

consistency, is the key standard by which it should be judged. SLT builds consistency or 

generalizability of prediction into scales. Further exploration of the distinction between 

predictive and latent-variable appears in the literature on “clinimetrics” (Fayers & Hand, 2002). 

 

General Conclusions  

 We have thus far reviewed the core objective of SLT regression methods--minimization 

of prediction error--and illustrated three common algorithms in a research application requiring 

high dimensional exploratory regression. As we noted in the introduction, there are many types 

of psychology research problems for which SLT algorithms may hold utility. These scenarios 

may occur in both “Big Data” and standard-sized data, and are characterized by a high number of 

potential predictors. We deem the first set of circumstances “supportive applications,” by which 

we mean methodological problems that must be solved for an analysis to proceed to primary 

objectives. The solution to these problems involves some sort of model used to reduce biases in 

the data, so that analysis of the a priori question can proceed with greater rigor. We caution 

against viewing “supportive” applications as somehow less important than the primary, 

hypothesis-testing analysis in the study. The quality of the latter depends in large part on that of 
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the former. The second potential use of SLT methods is as a primary mode of analysis itself, in 

inductive or discovery phases of research and in theory refinement.  

Supportive Applications of SLT 

Often, methodological roadblocks arise due to limitations in the study design, and must 

be statistically ameliorated. Perhaps the most ubiquitous example is a causal research question 

posed in the context of non-experimental design where it is simply not possibly to randomize the 

putatively causal factor. Propensity score analysis has been on the rise in psychology as a way to 

approximate random assignment, and thus strengthen confidence in the possibility that observed 

associations are actually causal (Shadish, 2010). Propensity score methods necessitate prediction 

of membership in a treatment or control group, which is then used in analysis of the main 

research question for matching, weighting, or occasionally as a global covariate (Haviland, 

Nagin, & Rosenbaum, 2007).  

Regardless of whether one considers such analyses truly causal, the degree to which this 

method approximates randomization is only as good as the model used to produce propensity 

scores. A weak model with poor prediction of group membership does not “match” or equate 

groups on very many factors effectively. In most observational studies, a host of variables 

distinguish groups or treatment levels, meaning that the propensity score model is likely to be 

high dimensional. The propensity score model is also hard to specify a priori, since factors that 

researchers cannot anticipate may be strong predictors of group membership. However, one does 

not simply want to fit a model with every variable in the data set, unless the sample size is large 

enough to justify such an approach. If it is not, the model will then be severely overfit, and its 

predicted values—the propensity scores—will have such large standard errors that they will be 

virtually useless. Thus, whether or not to move to an SLT-based model involves some judgment 



STATISTICAL LEARNING THEORY                    36 

about the number of predictors one wishes or needs to include for maximal accuracy, relative to 

the amount of information available in the data. This consideration is relevant to all applications 

of SLT subsequently discussed. SLT methods—particularly those that perform variable selection 

and shrinkage—are ideal tools with which to balance the predictive accuracy and the complexity 

of the propensity score model. Boosting, for instance, has been used at least once for this purpose 

(McCaffrey, Ridgeway, & Morral, 2004).  

A second area involves selection models (DeMaris, 2014), of which the Heckman 

selection model (Heckman, 1979) is most prominent. Selection models are needed when 

researchers wish to draw conclusions about an entire sample, but some natural process leads to 

the availability of data only in a subsample. A classic example is the analysis of links between 

education and wages, which can only be conducted in those within the sample who actually have 

jobs. In the Heckman model, selection into the workforce is first predicted by a probit model. 

The probit model is used to adjust the model of education-wage relations, through the correlation 

of selection model and wage equation residuals. As with propensity scores models, a potentially 

large number of predictors may be involved in the selection process and are not known a-priori. 

A large predictor pool may therefore need to be scanned for the probit model. Misspecification 

of the selection model—for instance, carelessly entering large numbers of variables--will yield 

incorrect adjustment to the primary model. Again, some balance between optimal prediction and 

model complexity is needed, and might be achieved by SLT methods performing variable 

selection.  

A third possible support area for SLT involves regression imputation for missing data. 

The specification of the imputation model is often a critical issue in this area, whether one is 

performing single or multiple imputations (Schafer & Graham, 2002). In a single regression 
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imputation, a model that predicts the missing variable(s) poorly will yield imputed values that 

are quite variable and inaccurate. It is therefore useful to harness any other information available 

in the data set that may help predict the missing values. Often, variables within a subset are 

imputed based only on other variables in the subset. Yet these may or may not provide the best 

imputation model for any given variable, so a good imputation model may necessitate a search 

over a large number of auxiliary variables. A trustworthy method of predictor selection is 

therefore important. The effect of shrinkage methods like boosting or regularization would be 

conservative predictions of missing values--meaning imputations less driven by sampling 

idiosyncrasies. Since multiple imputation approaches strive to capture the uncertainty of 

imputation itself, the conservative nature of SLT predictions and safeguards against over-fitting 

would seem useful. 

A fourth “supportive application” in which SLT models might be considered involves 

sample weighting. There are many different types of weighting, and we refer here to inverse 

probability weights, or IPWs (Woolridge, 2002). IPWs are a general way to render some 

subsample representative of a broader reference sample, and constructed similar to propensity 

scores through a logistic model; however, they are, as their name suggests, the inverse of 

predicted probabilities, rather than the probability itself represented by the propensity score. IPW 

estimators are used in a variety of scenarios like attrition in longitudinal studies (Woolridge, 

2007). Usually, a large number of factors predict sample attrition (or similar selection 

phenomenon), and reweighting to match the original sample requires a weight model capturing 

all these factors. Again however, overfitting will lead to weights that are themselves highly 

imprecise, so modeling the missing mechanism must be done with care. SLT methods are ideal 

tools for striking the right balance between comprehensiveness and complexity in this regard. 
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Double-robustness methods combine a single regression imputation model with an IPW model 

for missing data (Funk et al., 2011), and might also profit from the judicious application of SLT 

models.  

To our knowledge, SLT methods have not been yet been considered in selection models, 

imputation, or IPW estimators, and are only beginning to be studied in the context of propensity 

score estimators. These four areas are by no means an exhaustive list of the statistical problems 

for which SLT may be well suited. “Supportive” applications of SLT would appear ripe for 

further research. 

Primary Applications of SLT  

The SLT emphasis on model generalizability dovetails with growing interest in 

psychology in the replicability of research findings. While the so-called “replicability crisis” has 

largely played out within experimental psychology (Francis, 2012), it is also a concern in 

observational research (Asendorpf et al., 2013). In non-experimental work, the specification and 

estimation of regression models is often crucial: small differences in predictor sets and 

coefficient estimates can have large implications for whether a result is perceived as “strong” or 

“weak”, “statistically significant” or “non-significant”. SLT methods may be useful tools of 

primary analysis in two general scenarios where scientific questions require exploratory 

regression analysis. In both cases, the state of knowledge is in a discovery phase—that is,  

deductive hypotheses cannot be usefully formulated because not enough is known about the 

phenomenon. The principle scientific task is thus an inductive one involving observation and 

description of the phenomenon, from which a theory might be built and working hypotheses 

generated (Rozeboom, 1997). 
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In the first case, the construct or phenomenon of interest is the outcome, rather than 

predictor, in an analysis. This usually occurs when the construct is of such importance that the 

scientific priority is to determine how to prevent or promote it. Whether the phenomenon 

precedes, causes, or in other ways acts as “predictor” of other things is of secondary interest. 

Examples might be severe mental illness, IQ, racial discrimination, and suicide. There are  social 

and scientific consequences to artificially narrowing the pool of predictors when  potentially 

important but unexplored determinants of the phenomenon  go undetected.  In the absence of 

knowledge about specific processes and developmental antecedents, a wide range of candidates 

factors are probably best considered in order to capture the etiology or mechanisms giving rise to 

the phenomenon.  

Researchers are often hesitant to “admit” to such exploratory work, and may pursue it 

(with or without guilt) by manually fitting scores of regressions in search of p < .05. Issues of 

how or whether to adjust for multiple comparisons arise and generate great consternation. 

Whatever binary decision rule is selected, a list of “Yes/no” findings is generated, highly 

dependent on the power of the study and subject to sampling error. SLT methods would be 

particularly useful, since they provide a degree of relatedness for the predictor set in the form of 

regression coefficients rather than an accept/reject decision rule, with decisions based on cross-

validation, and designed to maximize generalizability rather than exaggerate findings in the 

training data. Predictors identified in this way can be used to generate hypotheses, leading to a 

deductive step of a priori hypothesis testing with new data.  

A second case in which SLT regression methods might serve as the principle tool of 

analysis involves a “general hypothesis” that entails many specific predictors. For example, one 

might forward an omnibus conjecture that specific facets of personality predict net worth. The 
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motivation for the study is not to determine every possible predictor of net worth in the dataset, 

but is instead a “broad-bandwidth” question. In these cases, there is enough a priori theory to 

suggest that a class or type of phenomenon may predict the outcome, but the class entails a 

potentially large number of predictors, creating a high-dimensional exploratory regression 

problem for which SLT methods would be well suited.  

We suspect that these two situations are far more common than one might guess, but are 

often disguised as classical hypothetico-inductive investigations and pursued with the statistical 

apparatus of null-hypothesis testing. In other words, a fundamentally exploratory research 

problem is presented as a carefully derived and tested a priori hypothesis (Kerr, 1998). Some 

have argued that this occurs because of the domination of the hypothetico-deductive framework 

in psychology, which discourages inductive work (Haig, 2005; Nickerson, 2000; Rozeboom, 

1997). Exploratory work must be disguised or risk widespread distaste4. Yet it is not the pursuit 

of exploratory work itself that warrants scientific policing, but its improper conduct and 

misrepresentation. A common “Big Data” turn-of-phrase is that researchers will “interrogate the 

data”. Doing so in a naïve search for low p-values is at best “enhanced interrogation” however, 

and more often degenerates into “torturing the data”. SLT methods would seem to be a step 

forward from this state of affairs5.  

SLT and machine learning theory are fundamentally different approaches to, analysis and 

often do not even produce p-values (see Breiman, 2001, for a review of other tensions with 

classical approaches). In a field dominated by null hypothesis testing, methods that downplay 

statistical significance may be met with perplexity or skepticism (Haig, 2005; Nickerson, 2000; 

Rozeboom, 1997). Resistance to new approaches in workaday psychological research (Sharpe, 

2013) and aversion to serious modeling (Borsboom, 2006) are oft lamented, and SLT methods 
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are likely to be no exception. Nevertheless effective inductive approaches, theory-building, and 

exploration are mainstay components of psychological science, and statistical adaptation to their 

demands would appear wise. It is within those areas that there may be a potential home for SLT 

methods within psychology.  
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Table 1: Classical Statistical Models Versus Statistical Learning Theory Models 

 Classical Approach Statistical Learning Theory 

Statistical Emphasis Test a statistical null 

hypothesis about an 

association of interest 

Maximize generalized 

predictive accuracy for an 

outcome  

Estimation strategy  Maximize sample likelihood Minimize cross-validation 

error  

Number of predictors Usually one or a small number 

of focal predictors, with 

additional control variables.  

Small to very large predictor 

pool 

Role of sample size  Dictate size of standard errors 

and power for hypothesis 

testing  

Dictate thoroughness of cross-

validation efforts and  

General Scientific Application Testing a theory Building or refining a theory 

Psychometric Purpose Applying developed scales to 

test hypothesized associations 

Building criterion-keyed 

scales from a large item pool 
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Table 2: Schematic of Five-Fold Cross Validation 

Fold 1 Fold 2 Fold 3 Fold 4 Fold 5 

     

     

     

     

     

 

Note. Five-fold cross-validation splits a sample into five equally sized folds. A model is fit in all 

but one fold of the data (the shaded portions), then model prediction error is evaluated in the left-

out (unshaded) fold. This is repeated for all possible combinations of four fitting and one left-out 

fold, and the prediction error across the left-out folds is averaged to provide a cross-validated 

error rate for the model. 
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Table 3: Item Selection and Weighting for Three Criterion-Keyed Scales Produced by Different SLT Algorithms 

EPI Item EPI scale SPCA 1 SPCA 2 Regularization Boosting 

Often longs for excitement Extraversion -0.33 -0.07 0.04 0.1 

Often needs understanding friends to cheer up Neuroticism     

Usually carefree Extraversion    -0.04 

Finds it hard to take no for an answer Neuroticism     

Does NOT stop and think things over before doing them Extraversion     

If says will do something, always keeps promise even if inconvenient Lie     

Mood often goes up and down Neuroticism     

Generally does and says things quickly, without stopping to think Extraversion     

Sometimes feels 'just miserable' for no good reason Neuroticism    0.01 

Would do almost anything for a dare Extraversion     

Does NOT feel suddenly shy when wants to talk to attractive stranger Extraversion 0.18 0.37 -0.11 -0.18 

Does NOT once in a while lose temper and get angry Lie 0.17 -0.05 -0.25 -0.21 

Often does things on the spur of the moment Extraversion     

Often worries about things should not have done or said Neuroticism -0.34 -0.25 0.01 -0.03 

Does NOT prefer reading to meeting people Extraversion   0.00* 0.1 

Feelings are rather easily hurt Neuroticism    0.05 

Likes going out a lot Extraversion     

Occasionally has thoughts/ideas does not want others to know about Lie 
0.39 -0.05 

-0.01 -0.02 

Sometimes bubbling over with energy and sometimes very sluggish Neuroticism -0.32 -0.17 0.06 0.15 

Does NOT prefer to have a few, but special friends Extraversion     

Daydreams a lot Neuroticism     

When people shout at, shouts back Extraversion     

Often troubled by feelings of guilt Neuroticism     

All habits are good and desirable ones Lie 
0.32 -0.22 

-0.14 -0.14 

Lets self go and enjoys self a lot at a lively party Extraversion    0.07 

Calls self tense or 'highly-strung' Neuroticism     

Others think of as being very lively Extraversion     

After doing something important, feels could have done better Neuroticism     

NOT mostly quiet when with other people Extraversion 
-0.08 0.43 

0.02 0.1 
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Sometimes gossips Lie 0.29 -0.18 -0.14 -0.16 

Ideas run through head so that cannot sleep Neuroticism    0.01 

Would rather NOT look up something wants to know in book than talk to 

someone about it 

Extraversion -0.06 0.18 0.09 0.15 

Gets palpitations or thumping in heart Neuroticism     

Does NOT likes the kind of work needs to pay close attention to Extraversion      

Gets attacks of shaking or trembling Neuroticism   -0.07 -0.09 

Always declares everything at customs, even if could not be found out Lie 
0.22 -0.28 

-0.11 -0.17 

Does NOT hate being with a crowd that plays jokes on one another Extraversion     

Is an irritable person Neuroticism     

Likes doing things in which has to act quickly Extraversion     

Worries about awful things that might happen Neuroticism     

Is NOT slow and unhurried in way of movement Extraversion -0.07 0.21 0.31 0.36 

Has NOT ever been late for an appointment or work Lie 0.24 -0.2 -0.08 -0.12 

Has many nightmares Neuroticism     

Likes talking so much never misses chance of talking to stranger Extraversion   -0.07 -0.13 

Troubled by aches and pains Neuroticism -0.19 -0.37 -0.22 -0.3 

Would be very unhappy if could not see lots of people most of time Extraversion    -0.04 

Would call self a nervous person Neuroticism     

Of all people known, NONE who definitely does not like Lie     

Is fairly self-confident Neuroticism   -0.07 -0.17 

Is easily hurt when people find fault with Neuroticism     

Does NOT find it hard to enjoy self at a lively party Extraversion     

Is troubled with feelings of inferiority Neuroticism     

Can easily get some life into a rather dull party Extraversion   -0.00* -0.12 

Does NOT sometimes talk about things knows nothing about Lie 0.26 -0.21 -0.05 -0.12 

Worries about health Neuroticism -0.22 -0.34 -0.03 -0.13 

Likes playing pranks on others Extraversion     

Suffers from sleeplessness Neuroticism     

Component weights  1.54 1.49   

Note. EPI = Eysenck Personality Inventory. Items are in order of appearance. SPCA = Supervised Principle Components, component 

1 and 2. For SPCA, numbers are component loadings (and regression scoring coefficients for components), while “component 
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weights” in bottom row reflect raw regression coefficients (log hazards) for the association between each component and -cause 

mortality over a 25-year span. For boosting and elastic net models, coefficients are log-hazards for all-cause mortality over a 25-year 

span. Blanks indicate that an item was not selected by a particular model for the final scale. * = item included in final model with 

coefficient <.01.
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Table 4: Predictive Validity of Scales in Training/Test and Hold-Out Samples 

Performance Measure SPCA Regularization Boosting Naïve MLE 

Scale Length (number of items) 16 21 27 57 

Training/Test Sample N = 2472     

Peak Accuracy (% Correct Classification) 61% 64% 64% 65% 

Point Biserial Correlation 0.26 0.32 0.35 .37 

Spearman Correlation 0.26 0.33 0.35 .37 

Pseudo R2 0.08 0.12 0.15 0.16 

HR for +1 SD Scale Score 1.51 1.6 1.78 1.87 

AUC .65 .65 .69 .71 

Hold-Out Sample N = 1237     

Peak Accuracy (% Correct Classification) 61% 65% 65% 63% 

Biserial Correlation 0.25 0.31 0.33 .33 

Spearman Correlation 0.24 0.31 0.33 .33 

Pseudo R2 0.07 0.11 0.13 0.14 

HR for +1 SD Scale Score 1.47 1.57 1.73 1.76 

AUC 0.64 0.68 0.69 .69 

  

 

Notes: AUC = Area Under the Receiver Operating Curve; HR = Hazard Rate; MLE = Maximum 

Likelihood Estimate; SPCA = Supervised Principal Components. The final column, “Naïve 

MLE”, pertains to a Cox model with no shrinkage or variable selection (i.e., standard Cox model 

MLEs for all 57 items).
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Table 5: General Algorithm for Boosting  

 

 

Step 

Number 

 

Statistical Procedure  

 

Conceptual Purpose 

1 a Initialize predicted values of y to 

sample mean  

Need an initial unconditional “best guess” 

for outcome 

 ***ITERATE ****  

2 Draw a bootstrap sample from the data Mimic sampling variation in the 

observations used to fit the model 

3b Compute current residuals: loss 

function of y vs. current prediction  

Obtain part of outcome currently 

unaccounted for the model 

4c Fit a model to current residuals Attempt to predict a portion of the 

unaccounted-for outcome 

5d Generate predictions from the current 

model  

Predict an additional portion of 

unaccounted-for outcome  

6e Take only predictions from a 

randomly selected 50% of cases in the 

bootstrap sample 

Introduce further random variation in an 

attempt to avoid overfitting  

7f Add scaled predictions of current 

model to the running prediction. 

Scaling involved multiplying by a 

learning rate, or a constant between 0 

and 1.  

Update the current prediction of the 

outcome with the results of current 

iteration, but scale the update so no 

particular iteration exerts an undue impact 

on the cumulative prediction 

8g Go back to step 2 Move to next iteration 

 

Notes: The scaling factor in step 7 is λ, the learning rate. Smaller values correspond to greater 

shrinkage at each step and a slower fitting process that may require more iterations. The iteration 

procedure is stop when some form of GCV error, usually the error in the out of bag observations, 

is stopped.
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Table 6: Example Simple Boosting of a Linear Regression Model with One Predictor for Ten Observations Over Three Iterations 

 Stage 0 Stage 1 Stage 2 Stage 3 

Predictor 

and 

Outcome 

Variables 

residual- 

ized  

outcome 

predict

-ed  

value 

residual- 

ized  

outcome 

cumu- 

lative  

model 

predict- 

ion  

predict-

ed  

value 

residual- 

ized  

outcome 

cumu- 

lative  

model 

predict- 

ion  

predict- 

ed  

value 

residual- 

ized  

outcome 

cumu- 

lative  

model 

predict- 

ion  

 

x 

 

y 
y𝑖0 = 

(y𝑖 − y̅) 

 

ŷ𝑖1 = 

λβ̂1x𝑖 
 

y𝑖1 = 

(y𝑖0 − λβ̂1x𝑖)  

 

β̂cum 1 = 

λβ̂1x𝑖 

ŷ𝑖2 = 

λβ̂2x𝑖 
 

 y𝑖2 = 

(y𝑖1 − ŷ𝑖2) 

 

β̂cum 2

= λβ̂1x𝑖 

+ λβ̂2x𝑖  
 

ŷ𝑖3 = 

λβ̂3x𝑖 
 

y𝑖3 =
(y𝑖2 − ŷ𝑖3)  

 

β̂cum 3 = 

λβ̂1x𝑖

+ λβ̂2x𝑖 

+λβ̂3x𝑖  

            

1.04 2.37 1.81 .12 1.69 .12 .11 1.58 .22 .10 1.49 .32 

1.04 .38 -.18 .12 -.30 .12 .11 -.40 .22 .10 -.50 .32 

-.51 -.85 -1.42 -.06 -1.36 -.06 -.05 -1.31 -.11 -.05 -1.26 -.16 

-1.55 -.58 -1.15 -.18 -.98 -.18 -.16 -.82 -.33 -.14 -.68 -.47 

.24 1.92 1.35 .03 1.32 .03 .02 1.30 .05 .02 1.28 .07 

-2.16 -2.43 -2.99 -.24 -2.75 -.24 -.22 -2.53 -.46 -.20 -2.33 -.66 

.79 2.55 1.98 .09 1.89 .09 .08 1.81 .17 .07 1.74 .24 

.86 1.55 .98 .10 .89 .10 .09 .80 .18 .08 .72 .26 

1.49 1.78 1.21 .17 1.04 .17 .15 .89 .32 .14 .76 .46 

.31 -1.03 -1.59 .04 -1.63 .04 .03 -1.66 .07 .03 -1.69 .10 

            

  Model Coefficients and Error Terms at Each Stage   

Estimate Stage 0 Stage 1 Stage 2 Stage 3 
βs -- 1.13 1.02 .92 

λ β -- .11 .10 .09 
βcum,s  .11 .21 .31 
εRSS 26.3 23.14 2.58 18.50 

R2
cum 0 .12 .22 .31 
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Note. Simulated sample of ten observations with standardized normal predictor and outcome.
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Table 7: Model Performance at Sample Size 10% of Primary Analyses 

Performance Measure SPCA Regularization Boosting Naïve MLE 

Scale Length (number of items) 9 6 11 57 

Training/Test Sample N = 247    57 

Peak Accuracy (% Correct Classification) 65% 62% 69% 78% 

Point Biserial Correlation .28 .29 .42 .59 

Spearman Correlation .28 .28 .41 .60 

Pseudo R2 .08 .10 .18 .39 

HR for +1 SD Scale Score 1.53 1.56 1.80 3.8 

AUC .66 .60 .74 .85 

Hold-Out Sample N = 124     

Peak Accuracy (% Correct Classification) 64% 63% 62% 63% 

Biserial Correlation .26 .26 .24 .30 

Spearman Correlation .27 .26 .25 .30 

Pseudo R2 .07 .10 .04 0 

HR for +1 SD Scale Score 1.46 1.58 1.29 1.51 

AUC .66 .65 .64 .68 
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Figure 1.  Sampling distribution of an estimator θ̂ for θ, θ ∈ (−∞, ∞). The top estimator is unbiased, with an expectation of 3—the 

parameter’s true value. The bottom estimator is slightly upwardly biased, but has a smaller variance and smaller Mean Square Error. 
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Figure 2. Left: univariate log hazards plotted against item number, with horizontal lines indicating the threshold value for item 

retention selected by 10-fold cross validation. Right: Likelihood ratio from 10-fold cross-validation for differing threshold values of 

item selection and differing number of principal components using selected items. 
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Figure 3: Solution path for the L1/L2 regularization model. The bottom x-axis shows values for 

the log of λ1 in (12), while the y-axis shows the log-hazard of items resulting from the model fit 

at each λ1. Each line represents an item. Starting from the left, λ1 is very small (virtually no 

penalization, coefficients near MLEs) and all items are included in the model. Moving from left 

to right, with increasingly more shrinkage, coefficients tend toward zero and items are eliminate 

when they hit the horizontal “0” line. The top x-axis lists the number of items included at each 

step along the path of λ1 values. The vertical line represents the selected by 10-fold cross-

validation, .038, corresponding to a model with 21 items. 
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Footnotes 

                                                 
1 Our notation generally follows that of Hastie et al. (2009). Capital letters such as X or Y 

refer to random variables in a general sense. A specific value of a variable is denoted with a 

lower case letter. For instance, X is a variable with any possible value, while x is a specific 

value. A vector is denoted by a lower case bold letter such as x and is a column vector unless 

otherwise noted, and a matrix is an upper case bold letter such as X. Capital script letters refer to 

sets. Greek letters indicate parameters, and bolded Greek letters are parameter vectors.   

2 (7) is equivalent to the eigen-decomposition of the q × q inter-item covariance matrix Σ 

associated with PCA because 𝚺 = 𝐗𝐓𝐗 = (𝐔𝐃𝐕𝐓)𝐓(𝐔𝐃𝐕𝐓) = 𝐔𝐓𝐔𝐕𝐃𝟐𝐕𝐓 = 𝐕𝐃𝟐𝐕𝐓 where 

𝐃𝟐 is a diagonal q × q matrix of eigenvalues, the square root of which are singular values 

(Mardia, 1979).  

3 Considerations in psychology around the use of components vs. factors have not entered 

the SPCA literature.  

4 An interesting, and possibly instructive exception is the perennial popularity of 

exploratory factor analysis (EFA) and, more recently, mixture models (i.e., latent class and 

growth-mixture models), which are also fundamentally exploratory. 

5 Large scale null-hypothesis testing can be reasonably conducted, but requires 

approaches to multiple testing such as the False Discovery Rate (Benjamini, 2010). Even here, 

emphasis is sometimes shifted away from “statistical significance” in favor of “interesting” or 

“uninteresting” terminology and p-values are interpreted rather differently (Efron, 2010). 
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