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Comparative Design Space Exploration of Dense and Semi-Dense SLAM

M. Zeeshan Zia1, Luigi Nardi1, Andrew Jack1, Emanuele Vespa1, Bruno Bodin2, Paul H.J. Kelly1, Andrew J. Davison1

Abstract— SLAM has matured significantly over the past
few years, and is beginning to appear in serious commercial
products. While new SLAM systems are being proposed at
every conference, evaluation is often restricted to qualitative
visualizations or accuracy estimation against a ground truth.
This is due to the lack of benchmarking methodologies which
can holistically and quantitatively evaluate these systems.
Further investigation at the level of individual kernels and
parameter spaces of SLAM pipelines is non-existent, which
is absolutely essential for systems research and integration.
We extend the recently introduced SLAMBench framework to
allow comparing two state-of-the-art SLAM pipelines, namely
KinectFusion and LSD-SLAM, along the metrics of accuracy,
energy consumption, and processing frame rate on two different
hardware platforms, namely a desktop and an embedded device.
We also analyze the pipelines at the level of individual kernels
and explore their algorithmic and hardware design spaces for
the first time, yielding valuable insights.

I. INTRODUCTION

The past five years have seen an explosion in SLAM
research, with major advances seen across various directions:
increasingly richer scene reconstruction, maturing of visual-
inertial navigation systems, scaling to large environments,
dynamic scenes, and semantic SLAM. In fact, there have
even been discussions on whether SLAM has already been
solved, as “demonstrated” by a number of commercial prod-
ucts deploying SLAM in the real world, e.g. Google Project
Tango, Microsoft Hololens, Qualcomm Vuforia, Dyson 360
Eye vacuum cleaners, and advanced driver assistance sys-
tems. To sustain this rate of innovation, and as SLAM moves
towards being a mature module in real-world robots, the
importance of holistically comparing SLAM pipelines along
different metrics is becoming even more pronounced.

Unfortunately, there is little work done on comparing
different SLAM pipelines, analyzing the breakdown into
computational kernels or analyzing individual design pa-
rameters. Papers introducing new SLAM algorithms usually
limit themselves to qualitative comparisons on a few video
sequences, or at most give accuracy comparison in terms of
localization error. In fact, given many real-world constraints
that robots have to obey, SLAM is a multi-dimensional
(accuracy, processing time, energy consumption) and multi-
domain (algorithmic, compilation, hardware) optimization
problem. While the many trade-offs involved mean that it
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is unlikely any SLAM pipeline is going to be superior to
another at all points in the configuration or use-case space.

Unlike other areas of computer vision like object detection
and tracking, the lack of benchmarking methodologies in
SLAM have resulted in little work being done on input
parameter exploration, or thorough comparison of different
SLAM systems. Only recently papers have appeared which
allow quantifying the accuracy of pipelines [13], [4], and
benchmarking SLAM from a multi-objective optimization
perspective [9]. It should be clear that for systems integra-
tion, such holistic and quantitative comparison is essential.
For example, smartphones have a strict energy budget and
small UAVs additionally need to adapt their operating point
for the accuracy/energy consumption trade-off dynamically
depending upon how cluttered the environment is and how
much battery they have left. In this work, we leverage the
recently proposed SLAMBench framework [9] to holistically
evaluate two different state-of-the-art SLAM pipelines along
the axes of accuracy, energy consumption, and speed, and
evaluate their design spaces.

In summary, this paper makes the following contributions:

• Analysis of two state-of-the-art SLAM systems, namely
KinectFusion [10] and LSD-SLAM [2], including
breakdown of these pipelines into constituent kernels
and classification into respective parallel patterns.

• Analysis of how input parameter spaces (algorithmic,
hardware) affect the performance for these pipelines.

• Analysis of energy, accuracy, and frame rate tradeoffs
for the two algorithms.

• Extend SLAMBench with LSD-SLAM [2], and TUM
RGB-D dataset [13], to support competitive, multimodal
optimization of different SLAM implementations w.r.t.
quality of result under controlled conditions.

II. RELATED WORK

Visual SLAM research has focused on sparse keypoint
based front ends with three major paradigms for inference.
These include approaches based on Kalman filters [1], par-
ticle filters [3], and bundle adjustment [6]. Strasdat et al
[12] performed a systematic comparison between Kalman
filtering (EKF) and bundle adjustment approaches, showing
that having a large number of keypoints is more important
for performing accurate SLAM than having a large number
of frames. Since the computational requirements of bundle
adjustment methods do not grow with the number of key-
points as severely as EKF-based approaches, bundle adjust-
ment methods are superior in practice for SLAM back-ends.
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Unfortunately, few other studies exist comparing different
SLAM modules in a systematic way as [12] does.

Recently, a new front-end for SLAM has been proposed
from the computer vision community, embedded in a com-
plete pipeline called LSD-SLAM [2]. This “direct” front-
end utilizes edge pixels in the images and performs image-
to-image alignment by whole image matching as opposed
to extracting salient keypoints and performing matching
on these sparse patches encoded by invariant descriptors.
Utilizing a larger portion of data contained within each
image, as opposed to discarding all but a sparse sampling
of keypoints, is definitely a promising approach, even if it is
not yet as mature as keypoint-based approaches [8].

With the advent of consumer RGB-D cameras, Kinect-
Fusion [10] emerged as one of the first systems to perform
dense SLAM in real-time. While the map representation here
limits the scale of the 3D reconstruction, alternative methods
and data structures have emerged [17] that build on Kinect-
Fusion to allow significantly larger scale environments.

A quantitative analysis of the reconstruction accuracy
achievable as a function of input voxel grid resolution has
been performed in [15]. However, the analysis is restricted to
just one algorithmic input parameter, evaluating only along
one metric (accuracy), whereas we evaluate and compare
across multiple input parameters and three metrics.

Recently two datasets for quantitative evaluation of the
accuracy of hand-held six degree of freedom SLAM systems
have been proposed: the TUM RGBD dataset [13] and the
ICL-NUIM dataset [4]. Both these datasets provide ground
truth camera trajectories, against real [13] and synthetic [4]
indoor scenes recorded/rendered with an RGB-D camera.

A recent innovation in comparing SLAM approaches in a
holistic way is the SLAMBench [9] framework, which en-
ables fine-grained quantitative analysis of SLAM kernels and
pipelines along multiple metrics, including ICL-NUIM [4]
for accuracy estimation. SLAMBench includes implementa-
tions of KinectFusion in different languages across multiple
hardware platforms, and provides instrumentation to measure
accuracy, computational time, and energy consumption at a
fine-grained level. In the present work, we extend SLAM-
Bench with LSD-SLAM [2], integrate the TUM RGB-D
dataset [13], and upgrade the energy measurement instrumen-
tation to work with Intel (in addition to ARM) processors.

III. SLAM PIPELINES

We briefly review the two pipelines and compare them.

A. KinectFusion

KinectFusion [10] registers and fuses the stream of mea-
sured depth frames as the scene is explored from different
viewpoints into a clean 3D geometric map. It normalizes
each depth frame and applies a bilateral filter (preprocess),
before computing a point cloud (with normals) for each pixel.
Next, KinectFusion estimates (track) the new 3D pose of the
camera by registering this point cloud against a synthetic
rendering of current global map using a variant of iterative
closest point (ICP). Once the new camera pose has been

estimated, the corresponding depth map is fused into the
current 3D reconstruction (integrate). KinectFusion utilizes
a voxel grid as the data structure to represent the map,
employing a truncated signed distance function (TSDF) to
represent 3D surfaces.

B. LSD-SLAM

LSD-SLAM [2] represents the map as a set of keyframes,
while improving the depth estimates at each edge pixel
(i.e. all those pixels which have sufficiently high intensity
gradient). The pipeline comprises of four modules: tracking,
depth estimation, loop closure detection, and global opti-
mization. Given a new monocular image, the tracking module
estimates a rigid transformation aligning the image against
the current reference keyframe. The depth estimation thread
either converts the frame into a new keyframe propagating
the prior depth estimates to the new keyframe; or performs
small-baseline stereo, probabilistically refining the current
depth estimates. If the decision to choose a new keyframe is
made, the current keyframe is added to the pose-graph in the
global optimization module. The addition involves retrieving
a few of the nearest keyframes already present in the map,
estimating similarity transformations to those keyframes, and
finally adding these transformations as edges in the pose
graph. The module calls g2o [7] to perform global pose graph
optimization. In parallel, a loop closure detection thread,
also called constraint search thread, uses appearance-based
matching to find large-scale matches between keyframes and
obtains new constraints to be inserted into the graph.

C. Qualitative differences between the pipelines

As it should already be clear from the previous sections,
KinectFusion and LSD-SLAM have a number of differences.
Comparing SLAM pipelines that are so different is interest-
ing exactly because it allows us to examine a large variation
on the performance metrics. In the following we make these
qualitative differences explicit.
Sensors: Depth vs Image Intensity. The input sensors to both
the pipelines are different. KinectFusion utilizes depth frames
estimated by a special purpose system-on-chip embedded
on the Kinect device. This causes significant savings on
the computational front while the active sensing requires
additional power expenditure. LSD-SLAM, on the other
hand, has to accumulate depth information in a probabilistic
framework from a number of frames, which is its most
expensive block (Sect. V). Of course active sensing enables
more precise depth estimation just from a single view.
Unfortunately, our analysis does not take these sensor-level
differences into account but, as we shall see, we are still able
to gain useful insights.
Dense vs semi-dense front-end. A dense front-end utilizes all
depth pixels in the input frames, whereas a semi-dense front-
end uses only intensity pixels with strong edges. In principle,
being able to use all the information in the image frame
should provide better estimates, as opposed to discarding a
large number of pixels, even if they are less-informative.



Map representation. The map is represented as a dense
TSDF voxel grid in KinectFusion, whereas in LSD-SLAM
it is represented by a set of keyframes and depth estimates
for the high-gradient pixels in those frames. The voxel grid
is wasteful, requiring empty regions of the space to be
represented and processed, whereas keyframes encoded at the
level of semi-dense edge pixels are much more compressed.
Tracking. In KinectFusion the camera is tracked against
synthetic rendering of the TSDF voxel grid. The relative pose
is estimated by running iterated closest point (ICP). On the
other hand, LSD-SLAM maintains a current keyframe at all
instances against which any incoming frame is tracked by
direct image alignment. The raycasting operation required in
KinectFusion follows a search pattern [9], and is one of the
most expensive kernels in the pipeline, whereas image-to-
image alignment is far cheaper computationally.
TSDF averaging vs global optimization. KinectFusion fuses
data from incoming frames into the map representation by
computing a running average on the aligned TSDF voxel
grid. On the other hand, LSD-SLAM keeps adding new
keyframes and performs global pose-graph optimization ev-
ery now and then. Here TSDF integration is computationally
expensive, whereas global pose optimization is cheap.
Loop closing. The keyframe-based map computes and stores
rigid transformations between frames represented as edges
in the pose-graph. This enables introducing new constraints
provided by a loop closure detection module, into the graph,
and subsequently optimizing to reach a self-consistent map.
However, it is not clear how to perform map deformation to
accommodate loop closures in a voxel grid representation.

IV. IMPLEMENTATION

One contribution of the present paper is in significantly
extending the SLAMBench framework [9] along multiple
axes. We highlight important integration and modification
decisions in the following, some of which also have an effect
on the experimental evaluation presented in Section V. We
will make these extensions public.

A. LSD-SLAM integration

The publicly available implementation of LSD-SLAM
relies upon the Robot Operating System library (ROS), which
is primarily supported only on Ubuntu Linux, to access the
camera stream. To make the SLAMBench framework less
dependent on existing software, we start with an implemen-
tation [16] that removes this dependency.

This first integration challenge is to enforce that all frames
be processed, as done in SLAMBench for KinectFusion, in a
mode called process-every-frame, to ensure repeatability of
experiments. Unfortunately, due to the multi-threaded nature
of LSD-SLAM this is not trivial. Another related issue is
that of achieving deterministic behaviour.

The challenge in enabling a process-every-frame mode
within LSD-SLAM is to avoid dropping any frames during
handovers between the asynchronous threads. Specifically,
incoming frames are tracked against the current keyframe
(track thread), and placed into a temporary buffer. Later,

they are removed and used to update the keyframes’ depth
map (depth estimation thread). However, whilst frames are
stored in the buffer, the current keyframe can be replaced.
‘Old’ keyframes are stored in the pose graph, and cannot
be updated. Therefore, frames tracked against these old
keyframes are dropped as they are no longer useful. Between
repeated executions of the algorithm, over a fixed dataset, the
dropped frames vary slightly due to the asynchronous nature
of the threads, hence not all frames are processed equally;
this also contributes to non-deterministic behaviour.

In the new process-every-frame mode, we solve this prob-
lem by waiting (not introducing a new frame into the system),
until the current frame has been processed by the depth
mapping thread.

Another prior limitation which would have restricted our
intended use of LSD-SLAM integration is the severe non-
deterministic behavior of the system. This behavior results
in variation of as much as 0.5 cm in absolute trajectory
error (ATE, sometimes called mean absolute error MAE [13])
upon multiple runs with TUM RGB-D fr2/desk sequence. The
major source of non-determinism lies in the loop closure
detection block: pre-emption in the thread, and the use of
signals. We specify a pseudo-code version of the original
implementation in Algorithm 1 which can exit in three ways:
the new keyframe signal is fired due to a real new keyframe,
a spurious wake-up due to implementation details of the
SLEEP function used, or the timer timing out. These fac-
tors combined mean that some keyframes can be randomly
considered for constraint-search more than others. Further,
the order in which keyframes and constraints are added to
the pose graph, used by g2o, affects the optimization results
even if they are all added before the next optimization search.

In order to keep most of the existing behavior, our solution
is three fold. Firstly, within the loop in Algorithm 1 we only
consider adding constraints when a new keyframe is added.
Before LSD-SLAM reports the poses of all frames, a final
constraint search (loop closure detection) and optimization
is performed, for each frame, ensuring no constraints are
missed. Secondly, we sort the constraints before adding them
to the pose graph. Finally, we only perform pose graph
optimization after the constraints have been added. The result
is that we get the exact same ATE upon multiple runs of
LSD-SLAM on a given machine.

Yet another new feature is to make algorithmic input
parameters accessible from command line.

Algorithm 1 Loop Closure Detection thread
1: procedure CONSTRAINTSEARCHTHREAD()
2: while keepRunning do
3: if new keyframe then
4: FINDANDADDCONSTRAINTS(keyframe)
5: else
6: keyframe← random keyframe from graph
7: FINDANDADDCONSTRAINTS(keyframe)
8: SLEEP(500ms)
9: end if

10: end while
11: end procedure



B. TUM RGB-D dataset

In addition to LSD-SLAM, we also introduce a real scene
dataset [13] into SLAMBench [9]. Although SLAMBench
already ships with the ICL-NUIM [4] dataset, it is limited
to synthetic scenes. The depth frames, with artificial noise,
provided with the dataset appear quite reasonable, however
the RGB images clearly lack realism. We also show the
limitations of the synthetic dataset quantitatively in Section
V. On the other hand, the TUM RGB-D dataset [13] has been
captured with a Kinect camera, covering a larger variety of
scenes and uses a motion capture system to provide ground
truth camera trajectory.

The format and methodology for using the TUM RGB-
D dataset [13] is different from ICL-NUIM [4]. The mea-
surements, namely RGB, depth, and location are captured
asynchronously in [13] which means additional glue code
is needed for finding the closest corresponding location
measurements for each frame. Secondly, since the origin
is arbitrary in [13], a scale-aware variant of [5] is used
to align the two trajectories (since monocular visual SLAM
cannot provide true scale). We use this method for all ATE
evaluations in this paper. Finally, converting this format to
the raw file format of SLAMBench is non-trivial; we describe
the details in the documentation.

C. Energy measurement for Intel

SLAMBench [9] provides software modules to access the
hardware energy counters on the ODROID board. However
there are no provisions to measure energy for other important
devices such as those from Intel or Nvidia. The Running
Average Power Limit (RAPL) is a feature of Intel processors,
designed with the aim of managing power usage. Energy
usage, amongst other characteristics is provided through the
Model Specific Registers (MSR). We integrate the Perfor-
mance Application Programming Interface (PAPI) [14] for
accessing these registers on Intel, while enabling a consistent
interface to use performance measurement hardware pro-
vided by a number of vendors via the PAPI components. The
Intel MSR registers provide three energy readings: package,
PP0, PP1. The package measurement is for the whole CPU
unit, whereas PP0 is the core components and PP1 is the
non-core. We use the package measurement (PP0) in our
experiments in Section V.

V. EVALUATION

A. Protocol and Setup

We experiment with two hardware platforms: one is a
desktop processor and another is a state-of-the-art embedded
device, to allow benchmarking for two very different families
of use cases. The desktop platform has an Intel i7-4770
Haswell processor with 4 CPU cores, operating at 3.4 GHz,
and running Ubuntu 14.04 (kernel 3.13.0). The embedded
platform is an ODROID (XU3) with the Exynos 5422
SoC from ARM. It comprises of 4 Cortex-A15 “big” cores
operating at 1.8 GHz and 4 Cortex-A7 “little” cores operating
at 1.3 GHz, as well as a Mali GPU (which we do not use),
and runs Ubuntu 14.04 (kernel 3.10.58).

We exclusively use an OpenMP implementation of Kinect-
Fusion [9] to allow a fair comparison with LSD-SLAM
which does not use the GPU. This is a realistic operating
environment, since for many practical use-cases of SLAM
such as augmented reality, the GPU is busy doing graphics
rendering. We operate in the process-every-frame mode un-
less otherwise specified. As default setup for KinectFusion,
we use volume size and resolution of 9.63m3, 512 respec-
tively. For LSD-SLAM we use the default parameters, ex-
cept for the keyframe selection variables: ‘KFUsageWeight’,
‘KFDistWeight’, both of value 5.0. We enable OpenFABMap
and disable keyframe reactivation.

In reporting the results of the algorithmic design space
exploration, we restrict ourselves to parameters which have
significant impact or show surprising behavior.

B. Holistic Comparison of KinectFusion and LSD-SLAM

We perform a holistic comparison of KinectFusion and
LSD-SLAM, along our three metrics, while running on a
synthetic sequence (ICL-NUIM Living Room 2) and a real
sequence (TUM RGB-D fr2/xyz). As detailed in Table I,
LSD-SLAM runs 4.5 − 6x faster than KinectFusion, while
consuming 9 − 19x less energy. This together with the fact
that KinectFusion requires additional energy for the active
sensor and effectively additional computational time which is
presently hidden within the SoC in the depth camera, implies
that KinectFusion is significantly wasteful, specially if all
that is needed is to perform precise tracking. On the other
hand, a runtime of 0.20 seconds per frame, means that even
(the full) LSD-SLAM is far from real-time performance on
a cutting-edge consumer mobile device.

Another interesting observation is that while the compu-
tation time per frame is constant on a given platform for
LSD-SLAM (0.03s for Desktop and 0.20s for ODROID),
the energy consumption is greater by almost 50% for the
real sequence compared to the synthetic sequence. This
highlights the importance of explicitly benchmarking energy
consumption, as it is not just proportional to computation
time as is often implicitly assumed. Unsurprisingly, the
energy consumption values for desktop processor are more
than twice those for the ODROID SoC, which is optimized
for mobile applications.

Yet another observation is that despite the same code being
run on the two platforms (for both KinectFusion and LSD-
SLAM), we do not get the same ATE. This is due to different
compilers, operating systems, and hardware being used, e.g.
different floating point approximation used.

Further, we perform a small experiment on hardware
design space exploration with ODROID, and tabulate the
results in Table II. The experiments involve turning on either
the four “big” A15 cores or the four “little” A7 cores, or
all eight cores together, while distributing the computation
across these cores. Here we gain insights into exploiting
heterogeneous computing platforms for computer vision, and
observe the different character of the two pipelines. First,
we notice that as expected the average computation time
per frame generally goes down as the number and/or speed



Platform Seq. Time/frame (s) ATE (cm) Energy/frame (J)
KF LSD KF LSD KF LSD

Desktop Syn. 0.18 0.03 1.36 4.44 12.51 0.80
Desktop Real 0.15 0.03 2.62 0.99 10.62 1.21
ODROID Syn. 0.89 0.20 1.35 4.37 4.90 0.38
ODROID Real 0.93 0.20 2.62 1.14 4.99 0.50

TABLE I: Holistic comparison table.

Seq. Hardware Time/frame (s) ATE (cm) Energy/frame (J)
KF LSD KF LSD KF LSD

Syn. A7 + A15 0.88 0.20 2.04 4.37 4.94 0.38
A15 1.10 0.24 2.04 4.39 5.60 0.46
A7 2.27 0.28 2.04 4.39 1.91 0.17

Real A7 + A15 0.93 0.20 2.62 0.97 4.99 0.47
A15 0.84 0.26 2.61 1.02 4.80 0.55
A7 1.90 0.36 2.62 1.00 1.11 0.22

TABLE II: Hardware design space exploration.

of cores increases. On the other hand, since the energy
consumption of A7 cores is far smaller than on the A15
cores, distributing the workload between A7 and A15 cores
results in less energy consumption than turning off the A7
cores and doing all computation on A15 cores. In a similar
vein, we consistently notice that the relationship between
energy expenditure and speed is super-linear: while A15
cores execute KinectFusion twice as fast as A7 cores, they
require 2.9− 4.3x energy to achieve this speedup. Similarly,
A15 cores execute LSD-SLAM with a speedup of only
1.2 − 1.4x relative to A7 cores, but need 2.5 − 2.7x the
energy. The lesson learnt is that for both these algorithms, it
is better to have a larger number of low-power less-complex
computational cores like A7, than more expensive and
complex computational cores like A15. This insight should
be useful for a system designer choosing a computational
platform which will run a SLAM system. A SLAM-specific
observation is that KinectFusion scales better than LSD-
SLAM (with the number of cores). This is because while the
KinectFusion pipeline has very little task parallelism, which
means it is essentially a set of sequential modules, there is a
lot of data parallelism inside those modules. On the contrary,
LSD-SLAM is the opposite, having a certain degree of task
parallelism allowing to distribute its workload across four
parallel threads, but little data parallelism.

C. Kernel-level breakdown of KinectFusion and LSD-SLAM

As discussed in Sect. III-C, KinectFusion and LSD-SLAM
have a number of dissimilarities. These dissimilarities make
it difficult to compare the computational requirements of
the two pipelines at the block-level. Still an analysis of the
constituent kernels provides insights into the computational
behavior of the pipelines. Further, we classify the kernels
of LSD-SLAM into parallel patterns, as done in [9] for
KinectFusion (which we repeat here). This classification
coupled with the computational time taken by each kernel
should enable systems researchers to design accelerators
which work for a variety of SLAM pipelines.

We perform kernel-level profiling of KinectFusion running
on the desktop machine. The percentage of time required
by each kernel, together with classification into parallel

Major kernels Block Pattern Percent
Convert mm to meters Preprocess Gather 0%
Bilateral Filter Preprocess Stencil 4%
Half Sample Track Stencil 0%
Depth to Vertex Map 0%
Vertex to Normal Stencil 0%
Track Map/Gather 2%
Reduce Reduction 2%
Solve Sequential 0%
Integrate Integrate Map/Gather 73%
Raycast Raycast Search/Stencil 17%

TABLE III: KinectFusion kernel classification and timings
on desktop, TUM RGB-D fr2/xyz.

patterns [9] is listed in Table III. As mentioned earlier, the
blocks are executed in sequential order, but most kernels
use OpenMP pragmas to exploit multiple cores to operate
on parallel data. As opposed to the similar table in [9],
we disable the graphical visualization kernels, and use the
OpenMP implementation instead of the strictly sequential
C++ implementation as it is more relevant to the multi-core
case. The two most compute intensive kernels, by far, turn
out to be the integrate and raycast kernels which take 73%
and 17% of the computational time, respectively.

We further perform kernel-level profiling of LSD-SLAM
also running on desktop in Table IV. As opposed to Kinect-
Fusion, here the four blocks are running in parallel as
separate threads. We neglect the percentage of time spent in
the glue logic that lets these kernels communicate. However
we list the total time per thread for running the TUM RGB-
D fr2/desk sequence. We observe that the depth estimation
thread takes the greatest amount of total compute time (48
seconds), which can be seen as analogous to the integrate
block of KinectFusion which is also the most expensive.
It should be noted that within the depth block, we avoid
including the time required for creating new keyframes
because it is negligible. Specifically, over the whole sequence
the time required for creating a new keyframe is less than
4% (2 sec) of the time spent on updating the depth map.
The second most expensive thread is track (34 seconds),
which can be seen as doing the job of track plus raycast
in KinectFusion. Surprisingly, the global optimization thread
is the cheapest.

Together the Tables III and IV highlight that Map/Gather
is the most important parallel pattern for SLAM, followed by
Stencil, since kernels following this pattern of computation
take the greatest amount of processing time. While tradition-
ally domain-specific languages (DSLs) for image processing
[11] have focused on stencil and reduce patterns exclusively,
the observation from the preceding analysis indicates that
including native support for Map/Gather patterns together
with Stencil and Reduce in DSLs and/or hardware can enable
fast and low energy implementations of SLAM pipelines.

D. Analysis of KinectFusion parameters and metrics

We analyze the dependence of localization accuracy and
processing time on the voxel grid resolution into which the
3D data from individual frames is integrated, as well as the
impact of imposing a threshold on ICP residual for tracking.



Thread name Major kernels Description Pattern Percent
Tracking Calc. Residuals }

Calculate components of the Levenberg–Marquardt (LM) algorithm
Map 72%

(vectorized) Calc. Weights and Residuals Map 4%
Calc. Jacobian Matrix Reduce 9%
Solve Evaluate the LM algorithm given the above calculations External 0%

Total 34 s
Depth Stereo Line Search Epipolar line search Map 43%

Fill Holes Increase density of depth map Stencil 20%
Regularize Depth Map Denoise the depth map Stencil 28%
Copy Depth Map to Frame Implementation specific overhead Map 6%

Total 48 s
Constraint Find Euclidean Overlaps Get neighbour frames from graph, to insert new constraints Search 6%
Search Filter and Sorting Remove less optimal frames from results Map 4%

Calc. Residuals }
Calculate components of the Levenberg—Marquardt (LM) algorithm
between keyframe and neighbour frames

Map 71%
Calc. Weights and Residuals Reduce 7%
Calc. Jacobian Matrix External 12%

Total 19 s
Optimization g2o Call Run iterations of global optimization External 99%

Update Graph Incorporate improvements from g2o into graph Map 1%
Total 3 s

TABLE IV: LSD-SLAM kernel classification and timings on desktop, TUM RGB-D fr2/desk
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Fig. 1: Varying the voxel resolution in KinectFusion with
default parameters on desktop, operating on the sequence:
(a) TUM RGB-D fr2/xyz, (b) ICL-NUIM Living Room
trajectory 1.

Further, we explore the effect of scene on accuracy and time.
We evaluate the impact of voxel grid resolution on the

ATE, by applying KinectFusion to two sequences: ICL-
NUIM Living Room Trajectory 1 and TUM RGB-D fr2/xyz
while sweeping the parameter volume resolution over the
settings 2563, 5123, 7683, 10243. We observe Figure 1(a)
agreeing with the expected relationship of reducing ATE
(going down from almost 4 cm to 2.5 cm) as volume
resolution increases. However we also see the surprising
result in Figure 1(b) that ATE can stay constant or even get
slightly worse upon increasing voxel grid resolution; more
than 0.2 cm in this case. We attribute this inconsistency to
the complex relationship of tracking with noise of the 3D re-
construction. While the reconstruction improves qualitatively
as seen in a visualization with higher resolution voxel grid,
the representation also becomes noisier as depth samples are
averaged into smaller voxels, implying a higher level of noise
per voxel. In the future, we plan to incorporate novel metrics
that evaluate reconstruction quality alongside ATE.

We further analyze the kernel timing distribution (as
percentage of the total time) varying the volume resolution
again in steps of 2563, 5123, 7683, 10243, plotted in Figure
2(a). We observe that the integrate stage in particular strongly
depends upon the resolution of reconstruction, increasing in

terms of compute load as the resolution increases. This is
because of the need to traverse each voxel in the grid in
the averaging step, whereas most other KinectFusion kernels
have a sub-linear dependence on the number of voxels.

Another input parameter that is part of KinectFusion in the
SLAMBench framework [9] is a threshold on error residuals
obtained from each iteration of ICP for the track block.
This threshold is used as an exit condition for ICP for a
given instance of track kernel execution, together with a
fixed number of maximum iterations. We found that the
ATE is insensitive (in fact practically independent) to the
ICP threshold chosen, despite sweeping this parameter over a
range of five orders of magnitude, from 1×10−6 to 1×10−1.

We also analyzed the kernel timing distribution (as per-
centage of the total time) vs. scene geometry and camera
trajectory: over two synthetic sequences (ICL-NUIM Living
Room trajectory 1 and 2) and one real sequence (TUM RGB-
D fr2/xyz), for fixed parameter settings. We find that the
distribution stays fixed and essentially similar to Figure 2(a).
We see that this is not the case with LSD-SLAM, where the
computation time significantly depends upon the scene (the
number of edge pixels).

E. Analysis of LSD-SLAM parameters and metrics

We perform design space exploration for the algorithmic
parameters of LSD-SLAM, as well as an important hardware
parameter namely the processor clock frequency. We also
visualize the distribution of ATEs across different sequences.

We start by evaluating the minimum pixel gradient parame-
ter, which specifies a threshold on the gradient magnitude. In
LSD-SLAM, all pixels with an image gradient of magnitude
smaller than this threshold are discarded. Thus a higher
gradient threshold implies fewer edge pixels being used for
alignment and depth computation. Figure 2(b) plots this pa-
rameter against ATE and FPS for two sequences. The curves
terminate where the tracking fails for a single frame. As
this threshold is increased and each image is left with fewer
edge pixels, the frame rate increases from approximately
20 fps to 60 fps almost evenly for both sequences - with
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Fig. 2: (a) KinectFusion kernel timings as a percentage of the total time vs. the number of voxels (otherwise default
parameters), running on desktop, on the ICL-NUIM Living Room Trajectory 1 (b) ATE and FPS using LSD-SLAM running
on TUM RGB-D fr2/xyz and fr2/desk sequences sweeping minimum gradient threshold, running on desktop, (c) FPS and
energy per frame of LSD-SLAM whilst changing CPU frequency, on desktop, using TUM RGB-D fr2/xyz.

TUM RGB-D fr2/desk terminating earlier because there are
not enough edge pixels left to allow reliable tracking. On
the other hand, the ATE varies far less over most of the
parameter sweep. The ATE however sharply improves for
very low values of the threshold (for fr2/desk), which can be
seen as the denoising effect of this parameter.

Two other important algorithmic parameters control which
frames become keyframes. The first one of these is the
keyframe to frame distance which defines how often new
keyframes are created, depending upon the Euclidean dis-
tance to the current keyframe; with larger value imply-
ing more keyframes. The second parameter is keyframe to
frame appearance similarity which defines how often new
keyframes are created based on the visual overlap with the
current keyframe; again large values imply more keyframes
Figure 3 visualizes the results of a two dimensional design
space exploration within the range of reasonable parameter
values [2]. Our first observation looking at the plots is that
both accuracy and speed are fairly insensitive to the choice
of these two parameters, with large regions of the plots
having essentially the same color. However on the top-right
of Figure 3(a) we start seeing slightly worse ATEs, as a result
of too many keyframes, since there are not enough frames
tracked against a given keyframe to propagate good estimates
of depth. Similarly in Figure 3(b) we notice that the frame
rate is relatively more affected by the appearance similarity
parameter, which causes it to change expectedly, i.e. become
slower for higher number of keyframes.

So far we have restricted ourselves to the process-every-
frame mode, as it allows us to (partially) decorrelate the re-
sults of the algorithm from the scene and hardware/software
implementation. However, it is still instructive to look at
the performance of the system when the rate of incoming
frames from the camera is fixed. This gives us insights into
what happens as the incoming video frame rate exceeds the
maximum processing frame rate. Figure 4 plots the ATE and
energy consumption per frame for both platforms. Since the
processing frame rate for desktop processor is greater than
30 FPS (Table I), no frames are dropped and essentially all
frames are processed for all the input frame rates, yielding a
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Fig. 3: 2D design space exploration of appearance similarity
and distance between frames in LSD-SLAM using TUM
RGB-D fr2/desk on Desktop with otherwise default param-
eters. The heatmap represents: (a) ATE (cm), (b) FPS.

fixed ATE. However, for the ODROID processor, which can
process at maximum 5 fps (Table I), we notice a dramatic
degradation of accuracy soon after 5 fps, with the ATE going
from 2 cm to 15 cm. Unsurprisingly, energy consumption
for ODROID also exhibits a linear dependency on the
input frame rate, whereas that for the relatively wasteful
desktop processor remains constant due to not reaching peak
performance for this architecture.

As an important hardware parameter we sweep the desktop
CPU frequency and explore the effect on energy consumption
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Fig. 5: Distribution of ATEs using KinectFusion and LSD-
SLAM, run with default parameters on Desktop. MAE is
highlighted. (a) TUM RGB-D fr2/xyz (b) ICL-NUIM Living
Room Trajectory

per frame and frame rate in Figure 2(c). As in the previous
experiment, we notice that the energy consumption remains
fixed. However we also observe the frame rate to have a
linear relationship with CPU frequency. This means that,
for LSD-SLAM, running desktop-grade processors at the
maximum clock frequency yields best performance (speed)
while requiring the same energy.

F. Dataset issues in SLAM

We encounter inconsistent behavior of both the pipelines
over the synthetic and the real datasets in terms of accuracy.
Tables I and II already showed KinectFusion performing
better than LSD-SLAM on the synthetic dataset; and opposite
results on the real dataset. Looking at these results in finer
detail, we plot the distribution of ATEs for both pipelines on
a synthetic sequence in Figure 5(a) and on a real sequence
5(b). We observe KinectFusion not only outperforming LSD-
SLAM on the synthetic sequence (in terms of mean error),
but also the distribution of ATE across frames is tighter
- which implies that fewer frames nearly fail tracking.
On the real sequence we get the exact opposite behavior,
with KinectFusion having a worse accuracy and greater
variance. We attribute these contrasting observations to the
shortcomings of the synthetic dataset, particularly the lack
of realistic texture in the RGB images. Unfortunately, so
far only synthetic datasets provide ground truth geometry
together with camera trajectory. Laser scanning or other
offline reconstruction method have not been used to provide
that functionality in realistic datasets.

VI. CONCLUSION

We exploit our extensions to SLAMBench [9] to analyze
a state-of-the-art SLAM system LSD-SLAM [2] contrasting
it with KinectFusion [10] which is another highly successful
SLAM system. We perform holistic comparison of the two
pipelines along energy, accuracy, and speed across two
hardware platforms: a desktop processor from Intel and a
high-end embedded device from ARM. Further, we profile
the kernel-level computational characteristics and classify the
kernels into parallel design patterns. We also explore the
algorithmic and hardware design spaces, and gain further
insights into the behavior of these pipelines. This analysis
should be of immense value for system-level design and
integration, and the software would prove a valuable tool en-
abling performance optimization analysis for building high-
performance SLAM systems.
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