

Edinburgh Research Explorer

Applying Type Oriented Programming to the PGAS Memory
Model

Citation for published version:
Brown, N 2013, 'Applying Type Oriented Programming to the PGAS Memory Model' Paper presented at 7th
International Conference on PGAS Programming Models, Edinburgh, United Kingdom, 3/10/13 - 4/10/13, .

Link:
Link to publication record in Edinburgh Research Explorer

Document Version:
Peer reviewed version

General rights
Copyright for the publications made accessible via the Edinburgh Research Explorer is retained by the author(s)
and / or other copyright owners and it is a condition of accessing these publications that users recognise and
abide by the legal requirements associated with these rights.

Take down policy
The University of Edinburgh has made every reasonable effort to ensure that Edinburgh Research Explorer
content complies with UK legislation. If you believe that the public display of this file breaches copyright please
contact openaccess@ed.ac.uk providing details, and we will remove access to the work immediately and
investigate your claim.

Download date: 05. Apr. 2019

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Edinburgh Research Explorer

https://core.ac.uk/display/77045844?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://www.research.ed.ac.uk/portal/en/publications/applying-type-oriented-programming-to-the-pgas-memory-model(91bcbd2f-7992-4ef9-a0d9-99a1543ffeb7).html

Applying Type Oriented Programming to the

PGAS Memory Model

Nick Brown

Abstract

The Partitioned Global Address Space memory model has been popularised by a num-
ber of languages and applications. However this abstraction can often result in the pro-
grammer having to rely on some in built choices and with this implicit parallelism, with
little assistance by the programmer, the scalability and performance of the code heavily
depends on the compiler and choice of application.

We propose an approach, type oriented programming, where all aspects of parallelism
are encoded via types and the type system. The type information associated by the
programmer will determine, for instance, how an array is allocated, partitioned and dis-
tributed. With this rich, high level of information the compiler can generate an efficient
target executable. If the programmer wishes to omit detailed type information then the
compiler will rely on well documented and safe default behaviour which can be tuned at a
later date with the addition of types.

The type oriented parallel programming language Mesham, which follows the PGAS
memory model, is presented. We illustrate how, if so wished, with the use of types one can
tune all parameters and options associated with this PGAS model in a clean and consistent
manner without rewriting large portions of code. An FFT case study is presented and
considered both in terms of programmability and performance - the latter we demonstrate
by a comparison with an existing FFT solver.

1 Introduction

As the problems that the HPC community looks to solve become more ambitious then the
challenge will be to provide programmers, who might be non HPC experts, with usable and
consistent abstractions which still allow for scalability and performance. Partitioned Global
Address Space is a memory model providing one such abstraction and allows for the programmer
to consider the entire system as one entire global memory space which is partitioned and each
block local to some process. Numerous languages and frameworks exist to support this model
but all, operating at this higher level, impose some choices and restrictions upon the programmer
in the name of abstraction.

This paper proposes a trade-off between explicit parallelism, which can yield good perfor-
mance and scalability if used correctly, and implicit parallelism which promotes simplicity and
maintainability. Type oriented programming addresses the issue by providing the options to
the end programmer to choose between explicit and implicit parallelism. The approach is to
design new types, which can be combined to form the semantics of data governing parallelism.
A programmer may choose to use these types or may choose not to use them and in the absence
of type information the compiler will use a well-documented set of default behaviours. Addi-
tional type information can be used by the programmer to tune or specialise many aspects of
their code which guides the compiler to optimise and generate the required parallelism code. In
short these types for parallelisation are issued by the programmer to instruct the compiler to
perform the expected actions during compilation and in code generation. They are predefined
by expert HPC programmers in a type library and used by the application programmer who
many not have specialist HPC knowledge.

1

Applying Type Oriented Programming to the PGAS Memory Model Nick Brown

Programmer imposed information about parallelism only appears in types at variable dec-
laration and type coercions in expressions and assignments. A change of data partition or
communication pattern only require a change of data types, while the traditional approaches
may require rewriting the entire structure of the code. A parallel programming language, Me-
sham which follows the PGAS memory model, has been developed which follows this paradigm
and we study a Fast Fourier Transformation (FFT) case study written in Mesham to evaluate
the proposed approach. The pursuit for performance and scalability is a major objective of HPC
and we compare the FFT Mesham version with that of an existing, mature solving framework
and also consider issues of programmability.

2 The Challenge

The difficulty of programming has been a challenge to parallel computing over the past several
decades[8]. Whilst numerous languages and models have been proposed, they mostly suffer from
the same fundamental trade-off between simplicity and expressivity. Those languages which
abstract the programmer sufficiently to allow for conceptual simplicity often far remove the
programmer from the real world execution and impose upon them predefined choices such as the
method of communication. The parallel programming solutions which provide the programmer
with full control over their code often result in great amounts of complexity which can be
difficult for even expert HPC programmers to master for non-trivial problems, let alone the
non-expert scientific programmers which often require HPC.

PGAS languages, which provide for the programing memory model abstraction of a global
address space which is partitioned and each portion local to a process also suffers from this
trade off. For instance, to achieve this memory model the programmer operates at a higher
level far removed from the actual hardware and often key aspects, such as the form of data
communication, are abstracted away with the programmer having no control upon these key
attributes. Operating in a high level environment, without control of lower level decisions, can
greatly affect performance and scalability of codes with the programmer reliant on the compiler
“making the right choice” when it comes to some critical aspects of parallelism.

Whilst the PGAS memory abstraction is a powerful one, on its own it still leaves complexity
to the end programmer in many cases. For example changing the distribution of data amongst
the processes can still require the programmer to change numerous aspects of their code.

3 Type oriented programming

The concept of a type will be familiar to many programmers. A large subset of languages follow
the syntax Type Variablename, such as int a or float b, which is used to declare a variable. Such
statements affect both the static and dynamic semantics - the compiler can perform analysis and
optimisation (such as type checking) and at runtime the variable has a specific size and format.
It can be thought that the programmer provides information, to the compiler, via the type.
However, there is only so much that one single type can reveal, and so languages often include
numerous keywords in order to allow for the programmer to specify additional information.
Using the C programming language as an example, in order to declare a variable m to be a read
only character where memory is allocated externally, the programmer writes extern const char
m. Where char is the type and both extern and const are inbuilt language keywords. Whilst
this approach works well for sequential languages, in the parallel programming domain there
are potentially many more attributes which might need to be associated; such as where the data

2

Applying Type Oriented Programming to the PGAS Memory Model Nick Brown

is located, how it is communicated and any restrictions placed upon this. Representing such a
rich amount of information via multiple keywords would not only bloat the language, it might
also introduce inconsistencies when keywords were used together with potentially conflicting
behaviours.

Instead our approach is to allow for the programmer to encode all variable information
via the type system, by combining different types together to form the overall meaning. For
instance, extern const char m becomes var m:Char::const::extern, where var m declares the
variable, the operator : specifies the type and the operator :: combines two types together. In
this case, a type chain is formed by combining the types Char, const and extern. Precedence
is from right to left where, for example, the read only properties of the const type override the
default read & write properties of Char. It should be noted that some type coercions, such as
Int::Char are meaningless and so rules exist within each type to govern which combinations are
allowed.

Within type oriented programming the majority of the language complexity is removed from
the core language and instead resides within the type system. The types themselves contain
their specific behaviour for different usages and situations. The programmer, by using and
combining types, has a high degree of control which is relatively simple to express and modify.
Not only this, the high level of type information provides a rich amount of information upon
which the compiler can use and optimise the code. In the absence of detailed type information
the compiler can apply sensible, well documented, default behaviour and the programmer can
further specialise this using additional types if required at a later date. The result is that
programmers can get their code running and then further tune if needed by using additional
types.

Benefits of writing type oriented parallel codes are as follows:

1. Simplicity - by providing a well documented, clean, type library the programmer can
easily control all aspects of parallelism via types or rely on default well-documented be-
haviour.

2. Efficiency - due to the rich amount of high level information provided by the programmer
the compiler can perform much optimisation upon the code. The behaviour of types
can control the tricky, low level, details which are essential to performance and can be
implemented by domain experts which are then used by non-expert parallel programmers.

3. Flexibility - often initial choices made, such as the method of data decomposition, can
retrospectively turn out to be inappropriate. However, if one is not careful these choices
can be difficult to change once the code has matured. By using types the programmer can
easily change fundamental aspects by modifying the type with the compiler taking care
of the rest. At a language level, containing the majority of the language complexity in a
loosely coupled type library means that adding, removing or modifying the behaviour of
types has no language wide side effect and the “core” language is kept very simple.

4. Maintainability - the maintainability of parallel code is essential. Current production
parallel programs are often very complex and difficult to maintain. By providing for
simplicity and flexibility it is relatively simple for the code to be modified at a later stage.

4 Mesham

A parallel programming language, Mesham[1], has been created based around an imperative
programming language with extensions to support the type oriented concept. By default the

3

Applying Type Oriented Programming to the PGAS Memory Model Nick Brown

language follows the Partitioned Global Address Space memory model where the entire global
memory, which is accessible from every process, is partitioned and each block has an affinity
with a distinct process. Reading from and writing to memory (either local or another processes’
chunk) is achieved via normal variable access and assignment. By default, in the absence of
further types, communication is one sided but this can be overridden using optional additional
type information.

The language itself has fifty types in the external type library. Around half of these are
similar in scope to the types introduced in the previous section and other types are more
complex allowing one to control aspects such as explicit communication, data composition and
data partitioning & distribution. In listing 1 the programmer is allocating two integers, a and b
on lines one and two respectively. They exist as a single copy in global memory and variable a
is held in the memory of process zero, b is in the memory associated with process two. At line
three the assignment (using operator := in Mesham) will copy the value held in b at process
two into variable a which resides in the memory of process zero. In the absence of any further
type information the communication associated with such an assignment is one-sided, which is
guaranteed to be safe and consistent but might not be particularly performant.

1 var a : Int : : a l l o c a t e d [s i n g l e [on [0]] ;
2 var b : Int : : a l l o c a t e d [s i n g l e [on [2]]] ;
3 a:=b ;

Listing 1: Default one sided communication

The code in listing 2 looks very similar to that of listing 1 with one important modification,
at line one the type channel has been added into the type chain of variable a. This type
will create an explicit point to point communication link between process two and zero which
means that any assignments involving variable a between these processes will use the point to
point link rather than one-sided. By default the channel type is blocking and control flow will
pause until the data has been received by the target process; the programmer could further
specialise this to use asynchronous (non-blocking) communication by appending the async type
into variable a’s type chain. In such, asynchronous, cases the semantics of the language is such
that the programmer issues explicit synchronisation points, either targeted at a specific variable
or all variables, where it is guaranteed that outstanding asynchronous communications will be
completed. It can be seen that in the tuning discussed here the programmer, using additional
type information, guides the compiler to override the default behaviour. This can be done
retrospectively once their parallel code is working and allows one to tune certain aspects which
might be crucial to performance or scalability.

1 var a : Int : : a l l o c a t e d [s i n g l e [on [0]] : : channel [2 , 0] ;
2 var b : Int : : a l l o c a t e d [s i n g l e [on [2]]] ;
3 a:=b ;

Listing 2: Override communication to blocking point to point

The code examples considered in this section demonstrate that, following the traditional
PGAS memory model, using types one can either rely on the simple, safe and well documented
default behaviour, or associate additional information and override the defaults as required.
Types used to specialise the behaviour are themselves responsible for their specific actions.
The benefit of this is that by keeping the majority of the language complexity in the types
contained within a loosely coupled type library, it not only results in a much simpler “core”
language but also experts can architect types which simply plug into the language.

4

Applying Type Oriented Programming to the PGAS Memory Model Nick Brown

4.1 Comparison

Unified Parallel C (UPC)[2] is an extension to C designed for parallelism and follows the PGAS
memory model. It does this with the addition of language keywords, such as shared to marked
shared variables, and functions. Due to the limited nature of associating attributes to data using
keywords there are still decisions which the UPC programmer is stuck with such as one-sided
communication and the programmer is reliant upon the compiler to do the best job it can of
optimisation in this regard. Additionally, whilst the memory model is global and communication
abstracted, the programmer is still stuck with having to work with low level concepts such as
pointers. As discussed, in the type oriented programming model, many additional attributes
can be associated with variables by the programmer if the defaults are not suitable. All this type
information supports a higher level view of the code because the types controls the behaviour
of variables and allows for the elimination of many function calls which are common in more
traditional approaches.

High Performance Fortran(HPF)[4] is a parallel extension of Fortran90. The program-
mer specifies just the data partitioning and allocation, with the compiler responsible for the
placement of computation and communication. The type oriented approach differs because
programmer can, via types, control far more aspects of parallelism. Alternatively, if not pro-
vided, the type system allows for a number of defaults to be used instead. Co-array Fortran
(CAF)[6] provides the programmer with a greater degree of control than in HPF, but still the
method of communication is implicit and determined by the compiler whilst synchronisations
are explicit. CAF uses syntactically shorthanded communication commands like Y[:]=X and
synchronisation statements. Having these commands hard wired into the language is popular,
not just with CAF but many other parallel languages too, the result is less flexible and more
difficult to implement.

Titanium[3] is a PGAS extension to the Java programming language. The PGAS memory
model is followed as the implicit model but also allows the programmer to use explicit message
passing constructs by using additional language facilities. In this respect, providing for both a
higher level implicit memory model and more detailed explicit message passing model, Titanium
has some similarities to Mesham. However explicit control in Titanium relies on the programmer
issuing in built language keywords such as broadcast E from p and/or object methods which
results in language bloat. In Titanium moving from the default PGAS memory model to
the more explicit message passing requires rewriting portions of the code, whereas with our
approach the programmer just needs to modify the type which directs the compiler as to the
appropriate way of handing communication. The Mesham type system is designed such that
it allows the compiler to generate all possible communication options just by using additional
types.

Chapel[7] has been designed, similar to Mesham and Titanium, to allow the programmer to
express different abstractions of parallelism. It does this by providing higher and lower levels
of abstractions which support automating the common forms of parallel programming via the
former and the optimisation and tuning of specific factors using the later. There are some
critical differences between Mesham and Chapel. Firstly, many of these higher level constructs
in Chapel, such as a reduction is implemented via an inbuilt operator, instead in Mesham these
would be types in an independent library. In Chapel, if one declares a single data variable
and then writes to it from multiple parallel processes at the same time then this can result
in a race condition. The solution is to use a synchronisation variable, via the sync keyword
in the variables declaration. In the type based approach the Mesham programmer would be
using a sync type, instead of an inbuilt language keyword, one benefit of this is that if multiple
synchronisation constructs were being used (such as Chapel’s sync, single and atomic keywords)

5

Applying Type Oriented Programming to the PGAS Memory Model Nick Brown

then the behaviour in a type chain where precedence is from right to left is well defined. Whilst
languages such as Chapel might disallow combinations of these keywords, supporting them in
a type chain allows for the programmer to mix the behaviours of different synchronisations in
a predicable manner which might be desirable.

5 FFT case study

FFTs are of critical importance to a wide variety of scientific applications ranging from digital
signal processing to solving partial differential equations. Parallelised 2D Fast Fourier Trans-
formation (FFT) code is far more complicated than the equivalent sequential code. Direct
message passing programming requires the end programmer to handle every detail of paral-
lelisation including writing the appropriate communication commands, synchronizations, and
correct index expressions that delimit the range of every partitioned array slice. Whilst using
the PGAS memory model can help abstract some of these details the programmer is reliant
upon assumptions imposed, in the name of abstraction, which can be costly in terms of scalabil-
ity and-or performance with other aspects such as the details of data transposition still needing
to be considered. A small change of how the data is partitioned or distributed may result in
code rewriting. Orienting parallelism around types, however, can relieve the end programmer
from writing low level details of parallelisation if these can be derived from the type information
in code.

1 var n :=8192;
2 var p:= p r o c e s s e s () ∗ 2 ;
3 var i , j ;
4
5 var S : array [complex , n , n] : : a l l o c a t e d [row [] : : s i n g l e [0]] ;
6 var A : array [complex , n , n] : : a l l o c a t e d [row [] : : h o r i z o n t a l [p] : : s i n g l e [

evend i s t []]] ;
7 var B : array [complex , n , n] : : a l l o c a t e d [c o l [] : : h o r i z o n t a l [p] : : s i n g l e [

evend i s t []]] ;
8 var C : array [complex , n , n] : : a l l o c a t e d [row [] : : v e r t i c a l [p] : : s i n g l e [evend i s t

[]]] : : share [B] ;
9

10 var s i n s : array [complex , n / 2] : : a l l o c a t e d [mu l t ip l e []] ;
11 computeSin (s i n s) ;
12 proc 0 { r e a d f i l e (S , ” image . dat ”) } ;
13
14 A:=S ;
15
16 for j from 0 to A. l o c a l b l o c k s − 1 {
17 var bid :=A. l o c a l b l o c k i d [j] ;
18 for i from A[bid] . low to A[bid] . high FFT(A[bid] [i − A[bid] . low] ,

s i n s) ;
19 } ;
20
21 B:=A;
22
23 for j from 0 to C. l o c a l b l o c k s − 1 {
24 var bid :=C. l o c a l b l o c k i d [j] ;
25 for i from C[bid] . low to C[bid] . high FFT(C[bid] [i−C[bid] . low] , s i n s

) ;

6

Applying Type Oriented Programming to the PGAS Memory Model Nick Brown

26 } ;
27
28 S:=C;
29 proc 0 { w r i t e f i l e (S , ” image . dat ”) } ;

Listing 3: 2D parallel FFT Mesham code

Listing 3 is the parallel aspects of the 2D FFT case study implemented in Mesham. For
brevity the actual FFT computation algorithm, a CooleyTukey implementation, and other
miscellaneous functions have been omitted. At line 5 the two dimensional array S is declared
to comprise of complex numbers be of size n in each dimension, allocated row major fashion
and a single copy of it resides upon process zero. This array is used to hold the initial data,
an image which is read in at line 12 by process zero and then the results of the transform are
placed into it and written back out at line 29. Line 6 declares variable A, again n by n complex
numbers, but this time it is partitioned via the horizontal type into p distinct partitions which
are evenly distributed amongst the processes using the evendist type. This even distribution
follows a cyclical approach where partitioned blocks will be allocated to process after process
and can cycle around if there are more blocks than processes. Line 7 declares the 2D array B to
be sized, partitioned and distributed in a similar manner to that of A but this array is indexed
column major. The last partitioned array to be declared,C which uses vertical partitioning
rather than horizontal, shares the underlying memory with B ; in effect this is a different view
or abstraction of some existing memory.

Line 10 declares the sinusoid array. Using the multiple type without further information
results in allocation to the memory of all processes and this is used to compute the pre-calculated
constant sinusoid parameters needed by the FFT kernel. Note that in this case no explicit array
ordering is provided, in the absence of further information arrays default to row major ordering.
In fact we could have omitted all row types in the code if we had wished but these are provided
to make explicit to the reader how the partitioned data is allocated and viewed.

The assignment A:=S at line 14 will result in a scattering of data held in S, which is located
on process zero, amongst the processes into each partitioned block of A. In the loop at lines 16
to 19, each process will iterate through the blocks allocated to them and for each block perform
the 1D FFT on individual rows. Assignment from A to B at line 21 essentially transposes A
and shuffles the blocks of array A across processes. This allows each process to perform linear
FFT on the other dimension locally. Because C uses vertical partitioning and is a row major
view of the data, performing row-wise FFT on C is the same as performing column-wise FFT
on B at lines 23 to 26. The last assignment S:=C gathers the data distributed amongst the
processes into array S held on process zero.

From the code listing it can be seen that the number of partitioned data blocks is two times
the number of processes. Uneven partition sizes, for instance when the number of partitions
does not divide evenly into the data size is transparent to the programmer. The types also
abstract how and where the data is decomposed and processes can hold any number of blocks
with the allocation, communication and transposition all taken care of by the type library.
In conventional languages and frameworks it can add considerable complexity when blocks of
data are uneven sizes and unevenly distributed, but using the type oriented approach this is
all handled automatically. The programmer need not worry about these low level and tricky
aspects - unless they want to where additional type information can be used to override the
default behaviour.

7

Applying Type Oriented Programming to the PGAS Memory Model Nick Brown

5.1 Modifying data decomposition and distribution

It is often the case that programmers wish to get their parallel codes working in the first instance
and then further tune and specialise if required. Often decisions made early on, such as the
method of data decomposition, might not be correct retrospectively but can be very difficult
to change without rewriting large portions of the code. Conversely, when orientating the code
around types, changing the method of data decomposition is as simple as modifying a type.
This will abstract exactly what data is where and allows for the programmer to not only tune
but also experiment with different distribution options and how these can affect their code
performance and scalability.

In listing 3 the evendist type has been used to perform an even cyclical distribution of
the data. Instead, the programmer can change one or more of the distribution mechanisms to
another distribution type such as array distribution. The arraydist type allows the programmer
to explicitly specify what blocks reside in the memory of what processes using an integer array.
The index of each element in the array corresponds to the block Id and the value held there
which process it resides upon. Listing 4 illustrates using array distribution and is a snippet of
the Mesham FFT code declaring the distributed arrays. At line 1 the array d is declared to be
an array of p integers and in the absence of further information a copy of this is, by default,
allocated on all processes. At lines 3 to 5 for every even numbered block Id we are allocating it
to process one and uneven block Ids to process two. The arrays A, B and C are then declared
to use the arraydist type with the array d controlling what blocks belong where. Apart from
modifying the type and code for the distribution, all other aspects of the FFT code in listing
3 remain unchanged and the programmer can explicitly change what blocks belong where by
modifying the values of the distribution array d.

1 var d : array [Int , p] ;
2 var i ;
3 for i from 0 to p − 1 {
4 d [i] := i % 2 == 0 ? 1 : 2 ;
5 } ;
6
7 var A : array [complex , n , n] : : a l l o c a t e d [row [] : : h o r i z o n t a l [p] : : s i n g l e [

a r r a y d i s t [d]]] ;
8 var B : array [complex , n , n] : : a l l o c a t e d [c o l [] : : h o r i z o n t a l [p] : : s i n g l e [

a r r a y d i s t [d]]] ;
9 var C : array [complex , n , n] : : a l l o c a t e d [row [] : : v e r t i c a l [p] : : s i n g l e [a r r a y d i s t

[d]]] : : share [B] ;

Listing 4: Mesham FFT example using array based data distribution

5.2 Results

Whilst the programmability benefits of orienting parallel codes around types have been ar-
gued, it is equally important to consider the performance and scalability characteristics of
this programming model. We have tested the Mesham version in code listing 3, which uses
a CooleyTukey FFT kernel against the Fastest Fourier Transformation in the West version 3
(FFTW3)[5] library. FFTW is a very commonly used and mature FFT calculation framework
which looks to optimise the computational aspect of FFT by selecting the most appropriate
solver kernel based upon parameters of the data. Performance testing has been carried out on
HECToR, the UK National Supercomputer, a Cray XE6 with 32 cores per node, 32GB RAM

8

Applying Type Oriented Programming to the PGAS Memory Model Nick Brown

per node and interconnection via the Gemini router. Data distribution in both test codes is
that of even, cyclical, distribution with one block of data per process. The results presented in
this section are the average of three runs.

Figure 1: Performance of Mesham FFT version compared to FFTW3

Figure 1 illustrates the performance of the FFT example in Mesham compared with the
same problem solved using FFTW3. It can be seen that on small numbers of processes the per-
formance is very similar and both exhibit good scalability as the number of cores is increased
initially. There is some instability with the FFTW3 version compared to running the code
using an even and uneven partitioning of data. Previous tests using FFTW2 illustrated that
that older version of the library performed poorly when run parallel with uneven block sizes
of data. Ironically in our tests the latest version, FFTW3, exhibits better performance when
run with an uneven partitioning of data compared to an even partitioning. The performance of
the Mesham version is more stable and predictable. The rich amount of information available
at compile and runtime means that the language is able to select the most appropriate form of
communication for specific situations automatically. The one size fits all approach of commu-
nication adopted by many existing libraries is often optimised for specific cases and does not
necessarily perform well in all configurations. At medium numbers of core counts the perfor-
mance of the Mesham FFT version is more favourable than that of FFTW3 although as we
go to larger numbers of processes the Mesham version does degrade faster. Due to the slightly
larger overhead of the presently implemented Mesham parallel runtime system, performance
degradation sets in somewhat earlier for this strong scaling scenario than in the highly tuned
Cray MPI implementation.

9

Applying Type Oriented Programming to the PGAS Memory Model Nick Brown

Due to the abstractions provided by the PGAS memory model and our use of types, it is
entirely possible to maintain correctness of the code whilst running on different architectures
although this might have a performance impact. The implementation of Mesham is such that
all architecture dependant aspects, for example how specific communications are implemented,
are directed through a runtime abstraction layer which can be modified to suit different target
machines. The runtime abstraction layer used for the experiments in this paper was for each
PGAS processor to be single processes which are connected via MPI. A threading layer also
exists which Mesham codes can use unmodified, and an avenue of further work will be to explore
how we might optimise performance by selecting or mixing these layers. As previously noted, by
changing types the programmer can very easily change key aspects of their code or experiment
with different choices such as data decomposition, and this will promote easy tuning to specific
architectures. Contrast against more traditional approaches, such as MPI, the porting of these
codes to different architectures or mixing paradigms such as OpenMP with MPI often requires
substantial and indepth changes to be made.

5.3 Usage in library development

The FFT case study that we have considered in listing 3 simply illustrates the code in a single
function. It is worth mentioning the suitability to more advanced codes, or even library devel-
opment, where data using these complex type representations are passed between functions. In
the current implementation of Mesham the entire type chain of a variable must be specified in
the formal arguments of a function, which means that the compiler has detailed knowledge of
the variables passed to a function and can perform appropriate static analysis and optimisations
upon them. At runtime, when passed as an actual argument to a function, data will already
have been allocated which occurs as part of a variable’s declaration. The Mesham runtime
library keeps track of the state of all program variables which means that during execution
functions not only know the exact type of data but also its current state. The result is that,
for the FFT example, no redistribution of the data would be required if passed to a function.

6 Conclusions

This paper is not intended to describe the entire language Mesham but illustrate the central
ideas behind the programming paradigm and demonstrate advantages when applied to the
PGAS memory model. Aspects of this paradigm could, in the future, be used as part of existing
PGAS languages to get the best of both worlds - a solution which parallel programmers are
already familiar with but the added programmability benefits of our approach.

The rationale behind type oriented parallelism is not only to generate a highly efficient
parallel executable but also enable programmers to write the source program in an intuitive and
abstract style. The compiler essentially helps the programmer determine various sophisticated
details of parallelisation as long as such details can be derived from the types in the source
program. Optimization algorithms can also benefit from such additional type information.
We have used a 2D parallel FFT case study to evaluate the success of our approach, both in
terms of programmability with the benefits this affords, and also performance when compared
to more traditional solving solutions. It has been seen how the Mesham programmer can
architect their code at a high level using language default behaviour and then, by modifying
type information, further specialise and tune whereas existing PGAS solutions often impose
specific “best effort” decisions upon the programmer. By using types programmers can even

10

Applying Type Oriented Programming to the PGAS Memory Model Nick Brown

experiment with different choices, such as data decomposition, which traditionally require a
much greater effort to modify.

We have compared the performance of the FFT Mesham case study against that of FFTW3.
Whereas FFTW3 optimises heavily based upon the computation aspect; our version, where
the compiler and runtime optimise the communication based upon the rich amount of type
information, performs comparatively and in some instances favourably. There is further work
to be done investigating why the performance of the Mesham version decreases more severely
than FFTW past the optimal number of processes and we are looking to extend our version to 3D
FFT with additional data decompositions such as Pencil. We also believe that Mesham would
make a good platform for exploring heterogeneous PGAS, where the complexity of managing
data stored on different devices can be abstracted via types. As discussed in section 5.2 all
machine dependant aspects are current managed via a runtime abstraction layer, and further
development of this could allow for existing codes to be run unmodified on these heterogeneous
machines.

References

[1] N. Brown. Mesham language specification, v.1.0. [online], 2013. Available at http://www.mesham.

com/downloads/specification1a6.pdf.

[2] UPC Consortium. Upc language specifications, v1.2. Lawrence Berkeley National Lab Tech Report,
LBNL-59208, 2005.

[3] P. Hilfinger et al. Titanium language reference manual. U.C. Berkeley Tech Report, UCB/EECS-
2005-15, 2005.

[4] G. Luecke and J. Coyle. High performance fortran versus explicit message passing on the isb sp-2.
Technical Report Iowa State University, 1997.

[5] M.Frigo and S.Johnson. Fftw: An adaptive software architecture for the fft. IEEE Conference on
Acoustics, Speech, and SignalProcessing, 3:1381–1384, 1998.

[6] R. Numrich and J. Reid. Co-array fortran for parallel programming. ACM SIGPLAN Fortran
Forum, 17(2):1–31, 1998.

[7] Cray Inc. Seattle. Chapel language specication (version 0.82). [online], October 2011. Available at
http://chapel.cray.com/.

[8] D. Skillicorn and D. Talia. Models and languages for parallel computation. ACM Computing
Surveys, 30(2):123169, 1998.

11

http://www.mesham.com/downloads/specification1a6.pdf
http://www.mesham.com/downloads/specification1a6.pdf
http://chapel.cray.com/

	Introduction
	The Challenge
	Type oriented programming
	Mesham
	Comparison

	FFT case study
	Modifying data decomposition and distribution
	Results
	Usage in library development

	Conclusions

