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HIGHLIGHTS 

• A better understanding of the resistance and escape mechanisms of anti-angiogenesis 

therapy will facilitate the choices of predictive biomarkers. 

• Precision medicine has the potential to improve the prognosis of patients with gynecologic 

cancer treated with anti-angiogenesis agents. 
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ABSTRACT 

Many clinical trials have demonstrated the benefit of anti-angiogenesis therapy in the 

treatment of gynecologic cancer. However, these benefits have often been in terms of 

progression-free rather than overall survival and in some cases, the magnitude of benefit 

demonstrated in the pivotal phase 3 trials has been disappointing when compared with the 

percentage of patients who responded in earlier phase 2 trials. Two potential explanations for 

this are the current inability to stratify patients according to chance of benefit and the 

development of resistance mechanisms within the tumor. In this article, we review the 

prediction of response and the proposed resistance and escape mechanisms involved in 

anti-angiogenesis therapy, including the up-regulation of alternative proangiogenic pathways, 

vascular co-option, and resistance to hypoxia. These insights may offer a personalized 

strategy for anti-angiogenesis therapy and help us to consider the best selection of other 

therapies that should be combined with anti-angiogenesis therapy to improve the outcome of 

patients with gynecologic cancer. 

 

  



AC
C

EP
TE

D
 M

AN
U

SC
R

IP
T

ACCEPTED MANUSCRIPT

 6 

1. Introduction 

Oxygen supplied by the vasculature is crucial for cell function and survival, and all 

cells typically reside within 100 µm of a capillary blood vessel [1]. Angiogenesis, the 

formation of new blood vessels, is required for tumor growth beyond a millimeter and for 

metastasis [2]. Tumors can recruit vasculature by releasing various growth factors such as 

vascular endothelial growth factor (VEGF), fibroblast growth factor (FGF), and placental 

growth factor. The successful inhibition of human tumor xenograft growth by a monoclonal 

antibody specific for VEGF [3] motivated the development of anti-angiogenesis therapy. In 

2004, bevacizumab became the first anti-VEGF agent to be approved by the U.S. Food and 

Drug Administration (FDA) for cancer patients. In phase 3 trials, bevacizumab showed 

evidence of efficacy in metastatic colorectal [4], lung, [5], breast [6], and renal [7] cancers 

and in glioblastoma [8]. 

In gynecologic cancers, the phase 3 first-line GOG-218 trial enrolled 1,873 women 

with previously untreated macroscopic residual stage III or IV epithelial ovarian, primary 

peritoneal, or fallopian tube carcinoma [9]. In this three-arm study, patients received 

carboplatin and paclitaxel chemotherapy (all three arms) and either concomitant and 

maintenance placebo every 3 weeks (with up to 16 cycles of maintenance) (control group), or 
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concomitant bevacizumab and maintenance placebo (the bevacizumab-initiation group), or 

concomitant and maintenance bevacizumab (the bevacizumab-throughout group). The 

median progression-free survival (PFS) was 10.3 months in the control group, 11.2 months in 

the bevacizumab-initiation group, and 14.1 months in the bevacizumab-throughout group. 

The other phase 3 first-line trial (ICON7) randomized 1,528 women with high-risk 

early-stage or advanced epithelial ovarian, primary peritoneal, or fallopian tube carcinoma. 

When PFS was assessed at 36 months, it was determined that PFS was 20.3 months with 

standard therapy (carboplatin and paclitaxel chemotherapy) but was 21.8 months (a 

statistically significant increase of 1.5 months) when bevacizumab was added to standard 

therapy and continued as subsequent maintenance for up to 12 additional cycles. The addition 

of bevacizumab, however, did not increase overall survival in the intention-to-treat 

population [10]. Two randomized trials in recurrent ovarian cancer have shown significant 

improvement in PFS as a result of adding bevacizumab to conventionally administered 

chemotherapy in patients with platinum-sensitive or platinum-resistant disease. In the phase 3 

OCEANS trial, 484 patients with platinum-sensitive recurrent ovarian, primary peritoneal, or 

fallopian tube cancer and measurable disease were randomly assigned to gemcitabine and 

carboplatin plus either bevacizumab or placebo. The median PFS was 12.4 vs 8.4 months, 
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respectively [11]. In the phase 3 AURELIA trial, 361 women with measurable epithelial 

ovarian, primary peritoneal, or fallopian tube cancer that had progressed within 6 months 

after the women had completed platinum-based therapy (platinum-resistant) were randomized 

to one of six arms (paclitaxel, topotecan, or pegylated liposomal doxorubicin with or without 

bevacizumab). This trial showed that bevacizumab plus chemotherapy doubled the median 

PFS duration of women who received chemotherapy alone (median PFS: 6.7 vs. 3.4 months) 

[12]. VEGF receptor tyrosine kinase inhibitors have also demonstrated encouraging activity 

in patients with ovarian cancer, primary peritoneal, or fallopian tube cancer. Pazopanib is a 

multitargeted tyrosine kinase inhibitor whose main targets include VEGF and PDGF receptor 

families. Maintenance pazopanib therapy provided a median improvement of 5.6 months in 

PFS in patients with advanced ovarian cancer whose disease had not progressed after 

first-line chemotherapy [13]. Phase 2 studies of cediranib monotherapy (an inhibitor of 

VEGFR 1-3 and C-KIT) showed response rates of 17%–23% in heavily pretreated ovarian 

cancer patients [14, 15]. 

For patients with recurrent, persistent, or metastatic cervical cancer, the GOG-0240 

clinical trial showed that the addition of bevacizumab to chemotherapy was associated with 

increased overall survival (17.0 vs. 13.3 months, respectively) and higher response rates 



AC
C

EP
TE

D
 M

AN
U

SC
R

IP
T

ACCEPTED MANUSCRIPT

 9 

(48% vs. 36%) [16]. A subsequent randomized phase 2 study in the same patient population 

demonstrated that when cediranib was administered concomitantly with chemotherapy and 

then as maintenance thereafter, it significantly increased PFS compared with placebo [17]. 

However, some tumors do not respond and others eventually become unresponsive. 

As such, PFS or overall survival benefits in patients receiving anti-angiogenesis therapy for 

gynecologic malignancies are usually measured in months. Therapeutic resistance and escape 

have become practical limitations. In this article, we summarize clinical and translational 

research on predictors of response to anti-angiogenesis therapy and also review potential 

resistance and escape mechanisms to such therapy in gynecologic malignancies. 

 

2. Prediction of response 

There is now clear molecular evidence that ovarian cancer is a highly heterogeneous 

disease. The five main immunohistological subtypes (by order of incidence: high-grade 

serous, endometrioid, clear cell, low-grade serous, and mucinous) differ vastly in terms of 

their stage of presentation [18], chemosensitivity [19], overall survival, and driver genetic 

mutations [20]. Within high-grade serous ovarian cancer, numerous studies have 

demonstrated heterogeneity at the level of gene sequence, gene expression, copy number, or 
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methylation [21-27]. Despite these clear differences, most clinical trials of anti-angiogenesis 

therapy have been performed in unselected patient populations, and progress in terms of 

defining clinical or molecular predictors of sensitivity has been limited. 

In the setting of cervical cancer, again clinical studies have largely been performed in 

unselected patient populations, and little progress has been made in defining subpopulations 

of patients according to their expected benefit from anti-angiogenesis therapy. 

 

2.1. Clinical predictors of response to anti-angiogenesis therapy in ovarian cancer 

A retrospective but predefined subgroup analysis of 502 patients with high-risk 

disease (defined as suboptimally debulked stage III or stage IV) from the ICON7 study 

demonstrated a significant overall survival benefit for women who received bevacizumab 

plus chemotherapy compared with those who received chemotherapy alone (restricted mean 

survival time was 34.5 months with standard chemotherapy compared with 39.3 months with 

bevacizumab) [28]. When a similar retrospective analysis was performed in the GOG218 

dataset [29], no overall survival benefit was demonstrated in suboptimally debulked stage III 

patients (total of 751 patients in three arms). However, in patients with stage IV disease who 

received concomitant and maintenance bevacizumab, the overall survival duration was 40.6 
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months compared with 32.8 months in the control arm. These findings raise the possibility 

that patients with stage IV disease potentially gain more from first-line bevacizumab therapy 

(overall survival benefits were not seen in the intention-to-treat populations in either the 

ICON7 or GOG218 studies). Investigation of the clinical utility of anti-angiogenesis therapy 

within a histotype-specific ovarian cancer context has to date been extremely limited. 

Grisham et al. [30] performed a retrospective analysis of 17 patients with low-grade serous or 

serous borderline ovarian tumors who received bevacizumab and demonstrated a response 

rate of 40% (55% in the low-grade serous ovarian tumors alone). Although many of these 

patients also received chemotherapy, it has become clear that the response rate to 

chemotherapy alone in low-grade serous ovarian cancer is approximately 5% [31, 32], 

suggesting that bevacizumab has significant efficacy in this subtype. An attempt to establish 

the value of bevacizumab in mucinous ovarian cancer in the mEOC/GOG241 trial was 

unsuccessful; the study had to be closed because of poor patient recruitment, despite 

international collaboration. Likewise, the efficacy of anti-angiogenesis therapy in clear cell 

ovarian cancer remains poorly defined. These areas are major priorities for future research. 

 

2.2. Molecular predictors of response to anti-angiogenesis therapy 
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A number of blood or tissue biomarkers have been postulated to predict sensitivity to 

anti-angiogenesis agents on the basis of preclinical studies, but convincing clinical validation 

remains elusive. Collinson et al. [33] demonstrated that a signature of four serum proteomic 

biomarkers (mesothelin, fms-like tyrosine kinase-4, α1-acid glycoprotein, and CA125) was 

able to predict benefit from bevacizumab in a cohort of patients from the ICON7 study. The 

predictive ability was less strong in a second cohort from the same study, but patient numbers 

were small and it is likely that the validation analysis was underpowered. In another 

translational plasma-based study using material from patients in the ICON7 study, the 

combination of high plasma ANG-1 and low plasma TIE-2 was found to predict improved 

PFS in bevacizumab-treated patients [34]. However, in a large retrospective analysis of 

plasma biomarkers in prospectively collected samples from the GOG218 study, no predictive 

biomarkers for bevacizumab efficacy were identified [35]. 

Tissue biomarkers have been sought using translational research samples from both 

the GOG218 and ICON7 studies. Birrer at al. [36] performed an exploratory retrospective 

analysis of candidate predictive biomarkers of efficacy in the GOG218 trial. Of the five 

biomarkers explored, one (CD31, a marker of blood vessel density) was able to discriminate 

patients according to their degree of benefit from bevacizumab when a median cut-off level 
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was used (test for interaction, p=0.003 and p=0.016 for PFS and OS, respectively). When the 

cut-off was adjusted to the highest quartile, the test was even more discriminatory in terms of 

OS benefit from bevacizumab (test for interaction, p=0.008). 

The translational specimens from the ICON7 study have been analyzed in two cohorts. 

Winterhoff et al. used the four gene expression subtypes from the Cancer Genome Atlas 

(TCGA) project [21] to classify 425 tumors from patients enrolled into ICON7 [37]. Patients 

with serous cancer in the mesenchymal subgroup had a 9.5-month PFS benefit if they 

received bevacizumab (25.5 vs. 16 months, p=0.053). The extent of median PFS benefit from 

bevacizumab in the three other molecular subtypes (differentiated, immunoreactive, and 

proliferative) was 5.8, 3.4, and 3.2 months, respectively. 

Previous gene expression analysis and unsupervised hierarchical clustering of tumors 

from a conventionally treated Scottish cohort of patients with high-grade serous ovarian 

cancer identified three molecular subgroups: the Immune subgroup, characterized by 

up-regulation of genes involved in immune response; the Angio subgroup, characterized by 

up-regulation of genes involved in angiogenesis; and the Angioimmune subgroup, 

characterized by up-regulation of both immune response and angiogenesis genes [38]. 

Patients in the Immune subgroup were found to have improved survival compared with 
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patients in the other two subgroups. Since this subgroup was characterized by repression of 

angiogenic processes, it was hypothesized that these patients may not derive as much benefit 

from anti-angiogenesis therapy, and a 63-gene signature was generated to identify this 

subgroup. When this signature was applied to 284 translational research samples from the 

ICON7 study, it was found that the 63-gene signature was able to predict benefit from 

bevacizumab therapy (test for interaction, p=0.016) [39]. Patients in the Immune subgroup 

had inferior PFS (HR = 1.73 [1.12-2.68]) and OS (HR = 2.00 [1.11-3.61]) if they received 

bevacizumab compared with chemotherapy alone. In patients outside of the Immune 

subgroup, there was a nonsignificant trend to improved PFS for the addition of bevacizumab 

(median, 17.4 vs 12.3 months in controls). The findings from both of these translational 

studies in the ICON7 dataset require urgent validation in the GOG218 dataset in order to 

determine not only whether the degree of benefit can be predicted but also whether there is a 

subgroup of patients who are actually harmed if they receive first-line bevacizumab in the 

fashion administered in these trials. 

 

3. Resistance and escape mechanisms 

3.1. Alternatives to angiogenesis for neovascularization 
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It has become clear that angiogenesis is not the only mechanism by which tumors 

develop a vascular supply; there is increasing evidence of adaptation by invasion without 

angiogenesis. One of these mechanisms is vascular co-option [40, 41], also known as 

perivascular tumor invasion. Glioma, the most typical example, grows by co-opting existing 

host vessels. These tumor cells do not rely on a cytokine-driven neovascular response and are 

favored in an environment exposed to anti-angiogenesis therapy. 

For gynecologic cancers, vessel co-option has been observed in mouse ovarian cancer 

models [42]. In such cases, the secondary effect of direct impairment of tumor cell viability 

by multitargeted anti-angiogenesis agents such as sorafenib and cabozantinib would be 

expected, in addition to the original anti-angiogenesis effect on the new lesion that is 

dependent on neovascularization. Although sorafenib (a kinase inhibitor targeting RAF, 

VEGF receptor [VEGFR], and platelet-derived growth factor receptor [PDGFR]) has modest 

antitumor activity, it caused significant toxic effects in several trials [43, 44]. Cabozantinib, a 

kinase inhibitor of MET, VEGFR2, FLT3, c-KIT, and TIE-2, is currently undergoing clinical 

trials for patients with recurrent or progressive ovarian, fallopian tube, or primary peritoneal 

cancer. In advanced, progressive epithelial ovarian cancer, this agent showed a promising 

clinical response rate (overall, 24%). Dose reductions and permanent discontinuations for 
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adverse effects occurred in 43% and 10% of cases, respectively, which is consistent with rates 

for other tyrosine kinase inhibitors [45]. 

Vascular mimicry refers to the formation of fluid-conducting channels by highly 

invasive and genetically dysregulated tumor cells [46]. Immunohistochemical analysis in an 

ovarian cancer model showed that matrix metalloproteinases (MMP)-1, -2, and -9 and 

MT1-MMP were discretely localized to these networks. Because the formation of these 

networks was inhibited by treatment with MMP inhibitors [47], these inhibitors could be 

effective in combination with anti-angiogenesis drugs. 

 

3.2. Acute hypoxia 

At the peak of the response phase of anti-angiogenesis therapy, tumors have regions 

of acute hypoxia [48]. Hypoxia is often implicated in the promotion of tumor progression and 

resistance to therapy [49]. High intratumoral hypoxia is associated with worse clinical 

outcomes in cancer patients [50]. A clinical investigation involving a study of glioblastoma 

patients being treated with the VEGFR inhibitor cediranib pointed to adaptive resistance 

mechanisms involving FGF-dependent revascularization [51]. Tumors subjected to hypoxic 

conditions also expressed higher levels of proangiogenic factors including angiopoietin [48] 
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and hepatocyte growth factor receptor (MET) [52, 53] than did unperturbed tumors, 

suggesting that these angiogenic pathways are potential targets to overcome adaptive 

resistance induced by hypoxia. 

Drugs targeting the mechanisms described above have entered into clinical testing. 

BIBF-1120 is a triple-angiokinase inhibitor of VEGFR, PDGFR, and FGF receptor. In a 

randomized, phase 2 placebo-controlled trial, patients who had completed chemotherapy for 

relapsed ovarian cancer with evidence of response were treated with BIBF-1120. Three-year 

PFS rates were 16.3% and 5.0% in the BIBF-1120 and placebo groups, respectively [54]. A 

Phase 3 (NCT01015118) clinical trial is evaluating the addition of BIBF-1120 to 

carboplatin/paclitaxel in first-line chemotherapy in ovarian cancer. AMG386 is an 

angiopoietin antagonist that selectively binds angiopoietin 1 (ANG1) and angiopoietin 2 

(ANG2). This binding prevents the interaction of ANG1 and ANG2 with TEK tyrosine kinase, 

endothelial (TIE-2) and inhibits tumor endothelial cell proliferation and tumor growth [55]. 

In a phase 2 study of AMG386 combined with paclitaxel, the addition of AMG386 to 

paclitaxel demonstrated dose-responsive improvements in PFS with a manageable safety 

profile distinct from that of VEGF inhibition [56]. AMG386 has entered phase 3 clinical 

investigation in the setting of recurrent ovarian cancer. 
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Certain anti-angiogenesis agents can transiently normalize the abnormal structure and 

function of tumor vasculature to make it more efficient for oxygen and drug delivery. In 

patients with glioblastoma, cediranib, a pan-VEGFR inhibitor, resulted in decreased tumor 

edema by dynamic magnetic resonance imaging. Although this vascular normalization is still 

controversial, drugs that induce vascular normalization can alleviate hypoxia and increase the 

efficacy of conventional therapies if carefully scheduled. Administration of metronomic 

topotecan was able to significantly decrease cell proliferation and angiogenesis by reducing 

VEGF and HIF-1α [14]; thus, its combination with anti-VEGF therapy could be beneficial. 

 

3.3. Recruitment of bone marrow–derived cells 

3.3.1. Monocytes and macrophages 

Hypoxia caused by vessel regression during the course of anti-angiogenesis therapy 

can lead not only to up-regulation of proangiogenic factors within the tumors but also to the 

recruitment of various bone marrow–derived cells, including monocytes, macrophages, and 

endothelial progenitors, which have the capacity to fuel tumors by eliciting new blood vessels 

[48]. Monocytes and macrophages deliver VEGF and other angiogenic molecules in a 

temporal and spatial fashion to avascular areas, resulting in angiogenesis [57]. Compared 
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with controls, macrophages co-cultured with ovarian cancer cells showed significant 

up-regulation of proangiogenic genes including tumor necrosis factor α (TNF-α), CXCR4, 

CXCL12 (also known as SDF-1), colony-stimulating factor 1 (CSF-1), and VEGF [58], 

suggesting that these proangiogenic factors are potential targets for therapy under settings of 

adaptive resistance. Etanercept is a recombinant human soluble p75 TNF receptor that binds 

to TNF-α renders it biologically unavailable, and infliximab is an anti–TNF-α monoclonal 

antibody. These agents showed biologic activity (17% to 20% of patients experienced disease 

stabilization) and safety in recurrent and advanced ovarian cancer in a phase 1 trial [59, 60]. 

For CXCR4, the phase 1 trial of the CXCR4 receptor antagonist plerixafor is ongoing in 

patients with advanced pancreatic, ovarian, and colorectal cancers. Macrophage CSF-1 is 

widely overexpressed in ovarian cancer [58, 61], and the expression is highest at the invasive 

edge, a site abundantly populated by macrophages. The PLX3397 clinical trial, designed to 

target the receptor for CSF-1, is ongoing in ovarian cancer patients. 

 

3.3.2. Endothelial progenitors 

Proangiogenic bone marrow–derived cells also include endothelial progenitors that 

differentiate into endothelial cells to form the inner lining of blood vessel walls. Recruitment 
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of endothelial progenitors is an essential step for tumors that have undergone 

anti-angiogenesis therapy to acquire adaptive resistance by re-neovascularization. 

Cancer-associated fibroblasts promote angiogenesis by recruiting endothelial progenitor cells 

into carcinomas, in part through their ability to secrete CXCL12 (SDF-1), an independent 

predictor of tumor progression and poor survival in ovarian cancer [62, 63]. The antagonist of 

CXCR4 that is a receptor of CXCL12, for example plerixafor, mentioned earlier, could be 

active in preventing this resistance mechanism. 

The origin of endothelium may be either bone marrow–derived endothelial 

progenitors or local endothelial progenitors rooted within organs or vascular parenchyma. 

The only source of endothelial progenitors was believed to be a hematopoietic 

stem-cell–containing CD34 population. However, a population of CD11c+ cells exhibiting 

simultaneous expression of both endothelial and dendritic cell markers (vascular leukocytes) 

was recently discovered; this population of cells is highly represented in human ovarian 

cancers and can assemble into functional blood vessels. Since a decrease in tumor growth 

was associated with a reduced number of CD11c+ infiltrating cells, vascular leukocytes could 

be therapeutic targets. Antibodies directed against specific antigens and conjugated to toxins 

may contribute to blocking tumor vascularization [64]. 
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3.4. Pericyte coverage 

One of the potential mechanisms of resistance to anti-angiogenesis therapy is the 

increased coverage of blood vessel with pericytes. The morphology of resistant tumor vessels 

is distinguishable from the typically dilated tumor vessels of untreated animals, which are, by 

contrast, variably covered with less closely associated pericytes. Tumor vessels lacking 

adequate pericyte coverage are more vulnerable to VEGF inhibition [65, 66]. 

The platelet-derived growth factor (PDGF) ligand/receptor system is one of the major 

signaling pathways for regulating pericyte coverage. In orthotopic murine models of 

advanced ovarian carcinoma, dual targeting of endothelial cells and pericytes has been 

evaluated [67]. PDGF/PDGFR-targeting agents, including pazopanib, sunitinib, BIBF-1120, 

and dovitinib, are being tested in clinical trials. The most promising of these is a phase 3 trial 

of pazopanib, VEGFR-1, -2, -3, c-kit, and PDGFR inhibitor, in advanced renal cell carcinoma. 

Compared with placebo, pazopanib increased PFS from 4.2 to 9.2 months. The difference in 

PFS was even more striking in patients who were treatment-naive (11.1 vs 2.8 months). The 

response rate was also improved (30% vs 3%), and the median duration of response was 

more than 1 year [68]. Additional testing is necessary to determine the full potential of dual 
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targeting of endothelial cells and pericytes in the tumor microenvironment. 

 

4. Discussion 

There is non-conclusive but accumulating evidence to suggest that certain histological 

subtypes of ovarian cancer (e.g., high-grade serous and low-grade serous) are more 

responsive to anti-angiogenesis therapy than are other subtypes (such as clear cell ovarian 

cancer). First-line phase 3 bevacizumab studies suggest that patients presenting with 

later-stage disease derive greater benefit. More work is required to clarify the value of 

stratification on the basis of these simple clinicopathological factors in both ovarian and 

cervical cancers. In terms of molecular markers, some candidate proteomic markers were 

suggested from ICON7, but further validation is required. In addition, molecular subgroups 

based on gene expression analysis from two translational ICON7 datasets suggest that 

stratification on this basis may have value. In GOG218, CD31 expression (as a surrogate of 

vascular density) appears to predict benefit from bevacizumab. The translational studies 

performed in ICON7 require additional validation. 

In terms of precision medicine, tumor imaging or biopsy could be useful for patient 

selection, but such approaches require further development. Dynamic contrast-enhanced MRI 
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enables quantitation of blood volume, blood flow, relative vessel size, and vascular 

permeability in measurable tumor [51]. This kind of vascular imaging could be used to 

evaluate neovascularization and vascular response. Tumor biopsy either percutaneously or via 

minimally invasive surgery [69, 70] could enable assessment of potential resistance 

mechanisms. 

Recently, clinical trials of anti-angiogenesis therapy in combination with other 

targeted therapies such as PARP inhibitors have produced intriguing results. In addition, the 

ongoing MITO16MANGO2b study is evaluating whether administering bevacizumab in 

combination with chemotherapy as second-line therapy to patients with recurrent ovarian 

cancer who have received first-line bevacizumab will be more effective than chemotherapy 

alone. A greater understanding of optimal stratification based on tumor/stromal characteristics 

and resistance mechanisms will allow us to benefit from the results of these clinical trials by 

personalizing anti-angiogenesis therapy for each patient. 
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