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STATEMENT OF TRANSLATIONAL RELEVANCE 

Aromatase inhibitors (AIs) are the treatment of choice for postmenopausal women with 

ER positive breast tumours. Although effective, resistance to AIs, through various 

mechanisms, is an ongoing clinical problem. 

The current study is the first to profile ER activity in the estrogen depleted AI resistant 

setting. Rather than being silenced in response to AI therapy, the ER can undergo 

dynamic adaptations to regulate transcription in an estrogen-independent manner. 

Furthermore, by the time metastatic disease has developed, a small but significant 

subset of tumours has adapted to survive without ER activity. 

From the clinical perspective, this study highlights two important issues: firstly, the need 

for more efficient drugs to completely block ER signalling; and secondly, the need to re-

assess where possible, the ER status during disease progression, particularly at the 

metastatic stage, in order to select the most appropriate treatment. 
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ABSTRACT 

Purpose: Acquired resistance to aromatase inhibitor therapy is a major clinical problem 

in the treatment of breast cancer. The detailed mechanisms of how tumour cells 

develop this resistance remain unclear. Here, the adapted function of ER to an estrogen-

depleted environment following AI treatment is reported. 

Experimental Design: Global ER-ChIPseq analysis of AI resistant cells identified steroid-

independent ER target genes. Matched patient tumour samples, collected before and 

after AI treatment, were used to assess ER activity. 

Results: Maintained ER activity was observed in patient tumours following neoadjuvant 

AI therapy. Genome-wide ER-DNA binding analysis in AI resistant cell lines identified a 

subset of classic ligand dependent ER target genes which develop steroid independence. 

Kaplan Meier analysis revealed a significant association between tumours which fail to 

decrease this steroid independent ER target gene set in response to neoadjuvant AI 

therapy, and poor disease-free and overall survival (n=72 matched patient tumour 

samples, p=0.00339 and 0.00155 respectively). The adaptive ER response to AI 

treatment was highlighted by the ER/AIB1 target gene, early growth response 3 (EGR3). 

Elevated levels of EGR3 were detected in endocrine resistant local disease recurrent 

patient tumours in comparison to matched primary tissue. However, evidence from 

distant metastatic tumours demonstrates that the ER signalling network may undergo 

further adaptations with disease progression as estrogen-independent ER target gene 

expression is routinely lost in established metastatic tumours. 

Conclusions: Overall, these data provide evidence of a dynamic ER response to 

endocrine treatment which may provide vital clues for overcoming the clinical issue of 

therapy resistance. 
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   INTRODUCTION 

Aromatase inhibitor (AI) therapy is now the first line treatment for ER positive 

post-menopausal breast cancer patients. With prolonged exposure, a significant number 

of patients develop AI resistance (1). Several molecular mechanisms of acquired 

resistance have been described and these include enhanced signalling through growth 

factor pathways as well as ligand-independent estrogen receptor (ER) function (2, 3). 

 ER/growth factor cross talk and in particular amplification of the growth factor 

receptor HER2 has been associated with resistance to endocrine therapy in both 

preclinical and clinical studies (4-6). Recently, clinical and proteomic work has implicated 

Phosphoinositide (PI) 3-kinase as a central node in AI resistant second messenger 

signalling networks (2, 7-9). Activation of PI3-kinase has been shown to induce ER 

phosphorylation and promote estrogen independent ER transcriptional activity (10, 11). 

However, molecular studies in models of AI resistance suggest that PI3-kinase may not 

be directly responsible for ligand-independent ER signalling following prolonged steroid 

deprivation (12). 

 Clinical trial data which describes the efficacy of the ER disrupter fulvestrant as a 

second-line therapy in patients who progressed on an AI treatment suggests that a 

functional ER remains after development of AI resistance (13, 14). Though molecular 

studies have suggested that mutations in the ligand binding domain may be important 

in determining response to endocrine therapy (15, 16), ER mutations in primary patient 

breast cancers were found to be uncommon (17). More recently however, reports are 

emerging of ligand binding domain ER mutations in endocrine related metastasis which 

can confer estrogen independent activity of the receptor and contribute to the 

development of resistance (18, 19). Furthermore, global analysis of ER binding events 

has revealed altered DNA binding dynamics and a gain of new target genes in tumours 

from patients with a poor response to treatment (20). 

Clinical and sequencing data describing somatic mutations and altered ER 

activity do not fully explain continued metastatic disease progression. There is now 

evidence that a functioning ER may not be required for sustained tumour growth at 
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established metastatic sites in all patients. Receptor switching between the primary and 

secondary tumours in ER positive breast cancer has been reported, with up to 20% of 

tumours losing ER and/or PR with a reciprocal gain of HER2 (21-23). These clinical data 

raise the possibility that once metastatic tumours have formed, a significant number of 

these become steroid receptor independent. 

 In this study we investigate the functional and clinical consequences of altered 

ER action in response to prolonged estrogen deprivation. In a model of resistance to the 

AI letrozole, we report a global loss of ER binding and identify a subset of classic ligand 

dependent ER target genes which become estrogen independent. Initial adaptation to 

estrogen deprivation, manifested by ligand independent ER activation, is found to 

contribute to the development of local endocrine resistance in vitro. At a clinical level 

failure to regulate the steroid independent ER gene set following neoadjuvant 

treatment associates with poor long-term response to AI therapy in breast cancer 

patients.  Further ER adaptation can occur with the establishment of metastatic 

tumours, where loss of ER function and target gene expression can lead to the 

development of a fully estrogen independent endocrine resistant tumour. 

 

MATERIALS AND METHODS 

Cell lines and treatments 

Endocrine-sensitive MCF7 breast cancer cells were obtained from American Type 

Culture Collection (ATCC). Endocrine-resistant LY2 cells were a kind gift from R. Clarke, 

Georgetown University, Washington DC (24). Cells were grown as previously described 

(25). Aromatase inhibitor sensitive cells (MCF7-Aro) were developed by stable 

transfection of the aromatase gene (CYP19) (Invitrogen). MCF7-Aro cells were cultured 

in MEM supplemented with 10% FCS, 1% L-Glutamine, 1% Pen/Strep, and 200 mg/mL 

Geneticin (G418, Gibco Invitrogen). AI-resistant (LetR and AnaR) cells were generated by 

long-term culture of MCF7-Aro cells with an AI (letrozole, 10-6M, Novartis or 

anastrozole, 10-6M, AstraZeneca) and androstenedione (25 x 10-9 M, Sigma Aldrich) in 

MEM supplemented with 10% charcoal-dextran-stripped FCS, 1% L-Glutamine, 1% 
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Pen/Strep, and 200 mg/mL Geneticin. Cells were maintained in steroid depleted 

medium (phenol red-free MEM with 10% charcoal-dextran stripped FCS, 1% Glutamine 

and 1% Pen/Strep) for 72 hours prior to treatment with hormones (estradiol, 10-7M, 

Sigma Aldrich or androstenedione, 10-7 M, Sigma Aldrich), or letrozole (10-6 M, Novartis). 

All cells were maintained at 370C, 5% CO2 in a humidified incubator. All cell lines were 

authenticated according to ATCC guidelines (Supplementary Table S1). 

 

Transfections 

SiRNA directed against AIB1 (Ambion, AM16706 and Dharmacon L-003759-00-

0005), ERα (Ambion, 4392421 and Dharmacon, LQ-003401-00-0002) and EGR3 (Qiagen, 

GS1960) were used to knock down gene expression. Multiple siRNAs from the EGR3 and 

ER SMARTpools were compared and the most effective was selected for further studies 

(EGR3 siRNA-6 and ER siRNA-4) (Supplementary Fig. S1 and S2). Transfections were 

carried out using Lipofectamine 2000 (Invitrogen) as per manufacturer's instructions.  

 

Cell growth and cell motility assays 

Cellomics Cell Motility Kit (Thermo Scientific, K0800011) was used to assess 

individual cell movement after 24 hours as per manufacturer's instructions using cells 

seeded at 1x104cells/mL. Mean track areas (minimum of 90 cell tracks per condition) 

were analyzed with Olympus cell imaging software and compared with a Student t test. 

For growth assays, following steroid depletion, cells were transfected with siRNA of 

interest, and then 24 hours later seeded out into 12-well plates at 2x104cells/mL. The 

cells were counted manually using a haemocytometer at three different time points. 

Cell numbers were compared by Student t test. 

 

Chromatin immunoprecipitation (ChIP)  

ChIP experiments were performed as described previously (26). Antibodies used 

were anti-ER (sc-543) from Santa Cruz Biotechnologies and AIB1 (sc-25742). LetR cells 

were treated with vehicle or androstenedione and MCF7 cells were treated with vehicle 
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or estrogen for 45 minutes, cross-linked with 1% formaldehyde (F15587, Sigma Aldrich) 

for ten minutes and scraped into PBS with protease inhibitors (Complete Mini, Roche). 

Immunoprecipitation was performed using an antibody attached to Dynal beads 

(Dynabeads® M-280 Sheep Anti-Rabbit IgG, Life Technologies). The proteins were then 

removed from the DNA by reverse crosslinking overnight and the DNA was extracted 

using phenol-chloroform-isoamyl alcohol (P2069, Sigma Aldrich). Real-time PCR was 

carried out in duplicate by SYBR Green PCR (Qiagen) using a Lightcycler (Roche) and 

primers are listed in Supplementary Table S2. 

 

ChIP-seq 

Cells were treated and harvested for ChIP-seq as described previously (26). 

Immunoprecipitation was carried out using an anti-ER antibody (sc-543) attached to 

Dynal beads (Dynabeads® Protein A 10001D, Life Technologies). ChIP DNA was amplified 

as described  (26), and sequenced using the Illumina Genome Analyzer-II system. Single 

end 36-bp ChIP-seq data were generated by the Illumina analysis pipeline version 1.6.1. 

ChIP-seq data from this study has been deposited in the NCBI Gene Expression Omnibus 

(GEO) (http://www.ncbi.nlm.nih.gov/geo/) under accession number GSE54592. LY2 and 

MCF7 ER ChIPseq data has previously been reported and can be found in ArrayExpress 

(www.ebi.ac.uk/arrayexpress/) under accessions E-MTAB-1865 and E-MTAB-223 

respectively (27, 28).  

 

Bioinformatics 

ChIP-seq reads were aligned to the hg19 genome using Bowtie (v0.12.9) (29). 

Bowtie parameters were set to allow reads to be aligned to the genome if they mapped 

to one region only and if they had less than 2 base pair mismatches. MACS (v2.0) was 

applied to the ChIP-seq alignments to call peak regions (30). Peaks were called using a p-

value cut-off of 1e-03. Bioinformatic analyses are described in the Supplementary 

Methods. 
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Expression studies 

RNA isolation and cDNA synthesis were performed as previously described (31). 

Real-time PCR was carried out either by SYBR Green PCR (Qiagen) using a Lightcycler 

(Roche) or by TaqMan probe technology (Applied Biosystems), on the ABI PRISM 7500 

platform. The comparative CT (ΔΔCT) method was applied to analyse relative gene 

expression levels. Primer and probe details are outlined in Supplementary Table S2. 

 

Protein blotting  

Protein from breast cancer cells was lysed, electrophoresed and immunoblotted 

with the following antibodies:  ER (mouse, NCL-L-ER-6F11, Leica Biosystems), AIB1 

(rabbit, sc-25742; Santa Cruz), EGR3 (rabbit, sc-191, Santa Cruz), MREG (mouse, sc-

374216, Santa Cruz), FOXA1 (ab23738, Abcam), β-ACTIN (ab6276, Abcam). 

 

Patient information and construction of tissue microarray 

Patient breast tumour samples for the tissue microarray (TMA) were collected 

and data recorded as previously described (32). Data included: pathologic characteristics 

(tumour stage, grade, lymph node status, ER status, recurrence) and treatment with 

radiotherapy, chemotherapy, tamoxifen, or AIs. Detailed follow-up data (median, 51 

months) were collected on the patients to monitor recurrences. TMAs were constructed 

as described previously (25). 

 

Immunohistochemistry 

Immunohistochemistry (IHC) was carried out using antibodies against EGR3 

(1:500, rabbit, sc-191, Santa Cruz), pSer118 ER (1:500, mouse, mAB2511, Cell Signalling), 

AIB1 (3:200, rabbit, sc-25742, Santa Cruz), ki67 (1:200,mouse, M7240, DAKO), AR (1:50, 

mouse, 318-CE, Novacastra) and ER (1:50, rabbit, 790-4324, Ventana Medical Systems) 

with the Dako EnVisionTM Kit (31). Antigen retrieval was done with either EDTA or 
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sodium citrate. Primary antibody was used at the recommended dilution and incubated 

for 1 hour at room temperature or overnight at 4°C in the case of pSer118. Staining was 

assessed using a modified Allred scoring system as previously described (33). 

Independent observers, without knowledge of prognostic factors, scored slides. Staining 

was also assessed by the Aperio IHC Nuclear Image Analysis algorithm (Leica 

Biosystems). Paired t-tests were used to compare differences in expression between 

matched tumour samples. 

 

Statistical analysis 

Associations of EGR3 with clinicopathologic variables were examined using Fisher exact 

test. Statistical analyses were conducted using STATA 10 data analysis software (Stata 

Corp. LP) and GraphPad Prism 6 (GraphPad software Inc,) and values of p<0.05 were 

considered significant.  Changes in gene expression on AI treatment and association 

with outcome were determined from the Edinburgh dataset of 72 patients treated with 

letrozole, performed on Affymetrix and Illumina microarrays with batch correction (34, 

35). Kaplan Meier analysis was performed using the R Survival package. The Cluster and 

TreeView programs were used to generate heat maps. 

 

RESULTS 

Aromatase inhibitor therapy can induce ligand independent ER activity. Steroid 

receptor expression was maintained in breast cancer tissue from patients following 

neoadjuvant treatment in comparison to matched pre-treatment biopsies 

(Supplementary Table S3; Supplementary Fig. S3 and S4).  However, enhanced pSer118 

ER was detected in post-treatment tissue indicating induction of ligand independent ER 

activity, (n=8 breast cancer patients, p=0.002) (Fig. 1A, Supplementary Table S3 and 

Supplementary Fig. S3).  Consistent with this observation, in cell models of resistance to 

the AI therapies (letrozole resistant LetR cells and anastrozole resistant AnaR cells), ER 

was found to be required for cell growth even in the absence of steroids. By contrast, 

knockdown of ER in a steroid-free environment in endocrine sensitive cells (MCF7 and 
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MCF7-Aro), had no impact on tumour cell number (Fig. 1B, Supplementary Fig. S1 and 

S2). The AI resistant cell lines express higher levels of pSer118 ER than the sensitive cells 

(31).Taken together, these data indicate that reduced estrogen as a result of AI 

treatment can lead to enhanced ligand independent ER activity.  

 

The estrogen receptor develops steroid-independent functional activity in AI resistant 

cells. To examine the consequence of ER signalling following AI treatment we 

investigated global ER signalling in the AI resistant setting. ER ChIP-seq was performed in 

AI resistant breast cancer cells (LetR) in the presence and absence of androstenedione. 

Analysis of genome wide ER-DNA binding events revealed that, similar to tamoxifen 

resistance, ER binding events were observed to be less frequent in AI resistant cells in 

comparison to those published for endocrine sensitive MCF7 cells (27).  Furthermore, 

steroid treatment did not result in any enhancement in ER-DNA interactions in the LetR 

cells (Fig. 2A), supporting a role for ligand independent ER activation in AI resistant cells.   

Examination of the ER binding regions identified from LetR cells in other endocrine 

models (MCF-7 and LY2 cells), confirms reduced ligand dependency as a feature of ER 

activity in endocrine resistance (Supplementary Fig. S5).  

      ER binding peaks in LetR cells were significantly enriched for ERE, FOXA1 and GATA3 

binding motifs (Supplementary Table S4). In addition, interactions between ER and 

FOXA1 were found to be unaltered in LetR cells compared to MCF7 cells indicative of a 

fully functional core ER-DNA complex (Supplementary Fig. S6). Previous studies from our 

group have observed that steroid-independent ER activity in AI resistance can occur in a 

promoter-specific context (31). To investigate this at a global level, the prevalence of 

transcription factor (TF) binding motifs within the ER binding peaks were compared 

between peaks that are unique to the vehicle treated sample, unique to the androgen-

treated sample or common to both (Fig. 2B and C). Estrogen response elements (EREs) 

were found to be significantly enriched in the steroid-independent setting (vehicle only 

and common peaks) compared to the steroid-driven setting (androstenedione only 
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peaks). In contrast, the steroid-driven peaks were enriched for Forkhead motifs such as 

FOXA1 (Fig. 2C, Supplementary Table S5). 

Steroid independent target genes identified from ER ChIP-seq data from this study were 

compared with steroid sensitive ER target genes from public microarray data sets 

(estrogen treated MCF7 cells and testosterone treated MCF7-Aro cells) (32, 33). The 

gene set was refined based on common expression in a second independent LetR gene 

set (36). This analysis defined a set of ER target genes which have become steroid 

dysregulated in AI resistance (Fig. 2D). The set of steroid dysregulated genes are GREB1, 

TFF1, EGR3, MREG, TPD52L1, SIAH2 and MYB, which from hereon are referred to as the 

ER target gene signature (Fig. 2D and Supplementary Fig. S7). Of interest, ChIP-seq in 

LY2 cells confirmed that these genes are also steroid independent ER targets in the 

tamoxifen resistant setting (Supplementary Fig. S8). 

 

The estrogen receptor regulates target genes EGR3 and MREG independently 

of steroids in AI resistant cells.  The ability of AI resistant cells to regulate ER signalling 

in a ligand-independent manner was investigated with in depth studies on selected 

targets, EGR3 and MREG. EGR3 is a transcription factor and an early growth response 

gene while MREG or melanoregulin is a membrane protein named for its involvement in 

melanocyte differentiation. Both of these genes contain an ERE within the ER binding 

peak (Fig. 3A). ChIP confirmed estrogen-dependent ER recruitment in MCF7 cells and 

strong recruitment, independent of androgen treatment, in LetR cells, to the DNA of 

these gene targets (Fig. 3B). Furthermore, ER knockdown using siRNA resulted in 

reduced mRNA and protein expression of both EGR3 and MREG (Fig. 3C). Of interest, the 

binding peak located proximal to the transcriptional start site of EGR3 is located within 

another gene, PEBP4. Knockdown studies confirmed that ER binding regulates 

transcriptional activity of EGR3 but not PEBP4 (Supplementary Fig. S9). Treatment of 

MCF7 cells with estrogen resulted in marked upregulation of EGR3 and MREG at both 

mRNA and protein levels (Fig. 3D). By contrast, vehicle-treated LetR cells had high basal 
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expression of EGR3 and MREG and treatment with androgen did not induce significant 

further regulation (Fig. 3D). 

 

AIB1 binds to the DNA at the same location as ER to regulate expression of 

both EGR3 and MREG. The steroid receptor co-activator, AIB1, is well known to 

cooperate with ER in regulating expression of target genes. The globally identified ER 

target genes in LetR cells were analysed for the presence of AIB1 binding sites using 

publicly available data from AIB1 ChIP-seq in MCF7 cells (37). 75% of identified ER 

binding regions in LetR cells overlapped with AIB1 binding peaks. The ER binding peaks 

which had become independent of steroids were enriched for AIB1 binding sites 

compared to those peaks which remained steroid regulated (Fig. 4A), suggesting a 

potential role for AIB1 in ligand independent ER activity. For EGR3 and MREG, ChIP 

confirmed recruitment of AIB1 to the ER-DNA loci (Fig. 4B). As predicted, this 

recruitment was regulated by estrogen in MCF7 cells, but was steroid independent in 

LetR cells (Fig. 4B). Silencing of AIB1 resulted in reduced transcript and protein 

expression of both EGR3 and MREG, confirming the transcriptional function of AIB1 

binding to the DNA (Fig. 4C, Supplementary Fig. S2). Thus AIB1 appears to retain its 

steroid receptor coactivator role in AI resistant cells and functions to co-regulate 

expression of ER target genes in the absence of steroid. 

Previous studies reported a significant association between AIB1 expression in 

breast cancer tissue and reduced disease free survival in AI treated patients (31).  In this 

study we observed a strong correlation between AIB1, ER and EGR3 (EGR3-ER, n=375, 

p<0.0001; EGR3-AIB1, n=212, p<0.0001; AIB1-ER, n=212, p<0.0001) in the primary 

tumours of breast cancer patients (Fig. 4D, Supplementary Table S6).  

 

Patient treatment with AIs induces an early response in expression of ER target 

gene signature.  The current use of AIs as a neoadjuvant therapy allows real-time 

sampling and monitoring of tumour responses to endocrine therapy (Fig. 5A). 

Expression of our ER target gene signature was examined in a cohort of matched 
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tumour biopsies from 50 letrozole treated patients before, two weeks during and three 

months following neo-adjuvant AI treatment (published dataset GSE20181) (Fig. 5B) 

(38). Treatment with AI therapy reduced expression of the dysregulated gene set, with 

the exception of EGR3 (Fig. 5B). For the genes TFF1, GREB1, MREG, SIAH2 and MYB, the 

decrease in expression was statistically significant (n=50, p-value <0.0001).  

For the gene EGR3 after an initial loss at 2 weeks treatment (n=50, p=0.0016), a 

significant increase in EGR3 transcript was seen following 3 months neoadjuvant 

therapy (p=0.0001) (Fig. 5B). This observation was confirmed at the protein level by 

immunohistochemistry of tumour tissue from an independent cohort of AI treated 

patients (n=9, p=0.0002) (Fig 5C, Supplementary Table S3).  The response to AI therapy 

was modelled in vitro where enhanced EGR3 expression observed following acute 4 

hours androstenedione treatment was inhibited by letrozole, whereas sustained 3 

month co-treatment with the steroid and the AI inhibitor failed to reduce EGR3 

expression (Fig. 5D).  

At a functional level in vitro studies in models of AI resistance confirm a role for 

EGR3 in proliferation and migration of endocrine resistant cells (Supplementary Fig. 

S10). In the patient setting, the clinical significance of the gene response to neoadjuvant 

AI therapy was examined in an extended cohort of 72 paired tumour biopsies with 10 

year follow up data (published datasets GSE20181, GSE55374 and GSE59515) (34). The 

inability of AI therapy to inhibit the expression of the ER dysregulated gene set was 

significantly associated with poor response to therapy.  Breast cancer patients whose 

tumours displayed a combined loss of the ER target gene signature following 3 months 

neoadjuvant treatment had a longer disease free- and overall- survival in comparison to 

patients whose tumours failed to regulate the expression levels of the gene signature in 

response to AI treatment (n=72, p=0.00339 and p=0.00155 respectively) (Fig. 5E). The 

target gene signature associated more strongly with survival than ER gene expression 

alone, although both together had improved predictive value (n=72, disease-free 

survival p=0.00076, overall survival p=0.00025) (Supplementary Fig. S11).  
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ER activity is not required to maintain growth of endocrine resistant distant 

metastatic tumours. In endocrine resistance, ligand independent ER activity is induced.  

This is exemplified by enhanced pSer118 ER and EGR3 observed in endocrine resistant 

cell lines (LetR and AnaR) (31)and in endocrine resistant local disease recurrence patient 

tissue (Fig. 6A; Supplementary Table S3).  With the development of metastatic disease 

however there is a growing body of clinical evidence to suggest that a significant 

minority of tumours lose ER activity in comparison to the primary breast cancer (Fig. 

6B).  In this study, in matched primary and metastatic tumours from patients who have 

developed a recurrence on adjuvant treatment, almost half of the patients displayed 

loss of ER and/or PR expression in the metastatic tissue (n=10) (Fig 6C). Of note, loss of 

AR (androgen receptor) expression was also detected in some but not all patients 

following endocrine treatment (Supplementary Fig. S4). Consistent with the observation 

of loss of steroid receptors, loss of EGR3 protein expression was also found in metastatic 

tumours relative to the matched primary tissue following endocrine treatment (n=10, 

p=0.002 Supplementary Table S3) (Fig 6D).  Furthermore, global analysis of transcript 

changes (RNAseq) between primary and metastatic ER positive AI treated patients 

revealed a loss of the ER target gene signature in both brain and liver metastatic tissue 

(Fig. 6E).  Taken together these data provide evidence that a functional ER may not be 

required in selected patients for maintenance of metastatic tumours secondary to 

endocrine treatment. 

 

DISCUSSION 

Adaptation of ER-positive breast cancer tumours to a depleted estrogen environment 

has been studied extensively. Work presented here and studies from other groups have 

demonstrated continued ER functioning in the presence of AI treatment. Altered 

phosphorylation status, DNA mutations and functional alterations in the ER, including 

ligand-independent activation of the receptor have been observed (18-20). However, 

global analyses of ER-DNA binding events in AI resistant breast cancer have not been 

reported to date. Here we undertook ER ChIP-seq analysis in breast cancer cells 
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resistant to the AI letrozole. Loss of ER binding was observed in the AI resistant setting 

in comparison to that reported for the parental sensitive cells (27). Of interest, similar 

reductions in ER binding events have been reported previously for breast cancer cells 

resistant to tamoxifen (27). Data from this study and previous work from our group and 

others suggest that low levels of global ER binding observed in the AI resistant cells are 

unlikely to be due to either loss of ER phosphorylation at serine 118 (31) or reduced ER 

interactions with the pioneer factor FOXA1 (27). Furthermore, we observed no 

enhancement of ER binding with steroid treatment. Rather, adaptation to sustained 

estrogen deprivation resulted in a subset of classic ligand-dependent ER target genes 

becoming estrogen independent. The ER dysregulated gene signature included classic 

ER targets, GREB1 and TFF1, as well as genes with roles in growth response (EGR3) and 

differentiation (MREG).  

 ER may regulate specific gene sets in a promoter specific manner.  Here analysis 

of transcription factor binding motifs revealed EREs to be enriched in the steroid 

independent setting, giving rise to ER dysregulated genes, whereas ER utilised 

alternative motifs, including forkhead and zinc finger binding motifs, for steroid 

dependent regulation.  We have previously reported promoter specific binding for ER 

and its coactivator AIB1.  Meta-analysis of several gene sets (39-41) demonstrated that 

ER/AIB1 regulated genes which contain either full or partial EREs contribute to pathways 

promoting tumour progression, relative to genes that do not contain an ER response 

element (29).  Ligand independent ER signalling may therefore preferentially utilise EREs 

over other ER binding motifs to promote survival genes in the absence of steroid.   

 Associations between expression of the ER coactivator AIB1 and reduced disease 

free survival in AI treated patients has previously been reported (31).  In this study, 

analysis of the globally identified ER and AIB1 interactome revealed steroid independent 

ER genes to be enriched for AIB1 in comparison to steroid regulated ER targets. In vitro 

molecular studies in models of AI resistance confirmed a role for AIB1 in ligand 

independent regulation of ER targets EGR3 and MREG and ex vivo clinical studies 

demonstrated a strong association between AIB1, EGR3 and ER in breast cancer 



 16

patients.  These data implicate AIB1 in selective ligand independent ER transcriptional 

regulation. 

 This study focussed on the adaptive role of ER in response to AI therapy, but it 

should be noted that several other receptors are likely to contribute to the adaptive 

response. The androgen receptor for example is expressed both pre and post 

neoadjuvant AI therapy and may respond to the increased androgenic environment (42-

44).  Furthermore, growth factor receptor cross-talk has also been well documented in 

endocrine resistant breast cancer. 

 Loss of classic ER target gene expression following neoadjuvant AI treatment has 

been well described (38, 42, 43). We observed loss of the dysregulated ER gene 

signature at both 2 weeks and 3 months following neoadjuvant AI treatment in the 

majority of breast cancer patients examined, whereas a minority did not regulate gene 

expression in response to estrogen ablation.  The inability of AI therapy to regulate 

tumour levels of the dysregulated ER gene set significantly associated with subsequent 

response to adjuvant treatment in ER positive breast cancer patients.  These 

observations are consistent with recent reports of a dynamic four gene signature 

following short-term AI-treatment (2 weeks) as a predictive model for extended AI 

therapy (34). These observations support the concept that early dynamic ER gene 

expression alterations in response to treatment are important in determining long term 

responses to endocrine therapy.  Indeed the clinical relevance, if any, of ligand 

independent ER activity following neoadjuvant AI will become evident as data from 

current trials, combining AI therapy with ER inhibitors (fulvestrant) for the neoadjuvant 

treatment of invasive breast cancer become available (clinicaltrials.gov NCT00921115 

and NCT01953588). 

 Enhanced ligand independent ER activity, as manifest by pSer118 and EGR3 

expression, was found in endocrine resistant local disease recurrent patient tumours in 

comparison to matched primary patient tissue.  These observations are consistent with 

those previously reported in our cell line models of AI resistance (31). On development 

of metastatic cancer in patients who failed on adjuvant endocrine treatment, further 
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adaptations in ER signalling can be observed.  Consistent with clinical studies from our 

group and others (21-23), we observed a loss of ER activity in a significant minority of 

metastatic tumours in comparison to matched primary tissue.  Work from Hoefnagel et 

al. investigating receptor conversion at distant metastatic sites found that, conversion of 

the ER target PR was more frequent than alterations in ER expression itself and that 

overall steroid receptor conversion was more common in the liver and brain, in 

comparison to other metastatic sites (44, 45). In this study, reductions in protein 

expression of the ER target EGR3 were found at all metastatic sites examined.  

Furthermore, loss of the ER gene signature at transcript level was observed in 

metastatic liver and brain relative to the primary tumour. These data are consistent with 

the concept that selected metastatic tumours can adapt to become fully independent of 

ER activity.   

In summary work from this study suggests that estrogen ablation leads to an 

adaptive ER response.  An initial enhanced ligand independent activity seen following 

neoadjuvant treatment and local endocrine resistant disease can give way to loss of ER 

signalling in the distant metastatic setting.  ER adaptability to endocrine therapy has 

several clinical consequences; firstly, the need for more efficient drugs to completely 

block ER signalling during first-line treatment; and secondly, the need to re-assess 

where possible, the ER status during disease progression, particularly at the metastatic 

stage, in order to select the most appropriate treatment. 
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LEGENDS 

FIGURE LEGENDS 
 
Figure 1. The estrogen receptor remains active in breast cancer following AI therapy. A, 

Graphic illustrates tumour sampling before and after neoadjuvant AI therapy. 

Representative images show pSer118 ER immunohistochemistry in matched pre- and 

post- AI treatment tumour samples. The staining was scored (Allred method) and 

graphed for matched tumour samples from eight patients. pSer118 expression 

significantly increased during AI treatment (n=8, paired t-test, p=0.002). B, Growth 

assays under steroid-depleted conditions were performed in AI-sensitive (MCF7, MCF7-

Aro) and AI-resistant (LetR and AnaR) cells. Transient transfection with non-targeting 

(NT) or ER-specific (ER KD) siRNA was used to achieve ER knockdown, as confirmed by 

western blot. Graphs show mean cell number ± SEM (n=3) and demonstrate the 

significant contribution of ligand-independent ER activity to growth of AI-resistant cells. 

**p<0.01, *p<0.05, n.s. not significant. 

 

Figure 2. Identifying the ER transcriptome in AI-resistant breast cancer cells. A, ER ChIP-

seq analysis in LetR cells revealed comparable binding in vehicle treated and 

androstenedione treated samples as illustrated by the ER binding heat map (±2.5kb of 

peak centre) and the Venn diagram depicting the number of ER binding peaks. B, Pie 

charts show enrichment of EREs within ER binding peaks which were not dependent on 

steroid treatment. C, Table shows over-represented transcription factor binding motifs 

within ER peaks. EREs are enriched in steroid-independent peaks whereas FOXA1 motifs 

are enriched in steroid-dependent peaks. D, Steroid-independent ER target genes 

identified from ER ChIP-seq in LetR cells were filtered by comparison to two expression 

data sets (36, 46) as summarised by the flowchart. Filtering was based on genes 

displaying increased expression in response to steroid in MCF7 cells and in MCF7-Aro 

cells and expression in LetR cells. This analysis led to the identification of 7 genes of 

interest which had become steroid dysregulated in AI resistant cells (TFF1, GREB1, EGR3, 

MREG, SIAH2, MYB, TPD52L1). 
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Figure 3. ER regulates EGR3 and MREG expression independently of steroids in LetR 

cells. A, Images from UCSC genome browser of LetR ER ChIP-seq vehicle sample 

depicting EGR3 and MREG ER binding peaks with EREs. B, q-PCR of ER ChIP in MCF7 

(grey bars) and LetR (black bars) cells revealed recruitment of ER to EGR3 and MREG 

genes. IgG was used as an internal control. Treatments were vehicle (V), estrogen (E) 

and androstenedione (A). ER ChIP shows ER binding is steroid-independent in LetR cells 

compared to MCF7 cells. C, EGR3 and MREG expression is regulated by ER. LetR cells 

were transiently transfected with ER siRNA and mRNA was analysed by q-PCR. Protein 

expression was also verified by western blot. β-Actin is used as loading control. D, High 

expression of EGR3 and MREG becomes steroid independent in LetR cells. MCF7 and 

LetR cells were treated with either E or A, and mRNA and protein were analysed by q-

PCR or western blot, respectively. Results are mean ± SEM, n=3. **p<0.01,*p<0.05, n.s. 

not significant. 

 

Figure 4. AIB1 co-activates ER to regulate expression of EGR3 and MREG in AI resistance. 

A, ER binding peaks from LetR cells were compared to AIB1 binding peaks from MCF7 

cells (45). Pie charts illustrate the overlap between ER and AIB1 peaks in treated and 

untreated LetR cells. B, q-PCR of AIB1 ChIP in MCF7 (grey) and LetR (black) cells revealed 

recruitment of AIB1 to EGR3 and MREG promoters. IgG was used as an internal control. 

Treatments were vehicle (V), estrogen (E) and androstenedione (A). AIB1 ChIP shows 

AIB1 binding is steroid-independent in LetR cells compared to MCF7 cells. C, EGR3 and 

MREG expression is regulated by AIB1. LetR cells were transiently transfected with AIB1 

siRNA and mRNA was analysed by q-PCR. Protein expression was verified by western 

blot. β-Actin is used as loading control. Results are mean ± SEM, n=3. *p<0.05, n.s. not 

significant. D, Patient tissue microarray (TMA) was stained for ER, AIB1 and EGR3. 

Images show representative positive and negative staining. Significant associations were 

detected between all 3 proteins using Fisher’s exact test. 
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Figure 5. Maintained expression of steroid-dysregulated genes following AI treatment 

associates with poor outcomes. A, Tumours were sampled before, during and after 

neoadjuvant AI therapy (34, 38) as illustrated. B, Box plots display expression changes of 

steroid dysregulated genes in neoadjuvant AI treated patients (n=50 patients). All genes 

display a decrease in expression with the exception of EGR3 which increases at 3 

months. Paired t-tests pre-treated vs 3 months. C, Protein expression confirms a 

significant increase in EGR3 expression following 3 months AI treatment. Representative 

IHC images are shown. All images were Allred-scored and results are displayed on the 

graph (n=9 patients, paired t-test, p=0.0002). D, MCF7-Aro cells treated with 

androstenedione (A) and anastrozole (AI) were analysed by q-PCR for EGR3 expression. 

Consistent with patient data, EGR3 expression initially decreased and subsequently 

increased significantly in response to AI treatment, n=3, mean ± SEM, 

**p<0.01,*p<0.05). E, Ranked sum of steroid dysregulated gene expression changes are 

associated with poor prognosis. Red=increased and green=decreased at 3 months 

relative to pre-treatment for 72 AI-treated patients (34). White-grey-black bars indicate 

significance of all possible cut points from p=1 to 0.001. Kaplan Meier according to 

expression of the ER gene signature.  Reductions in the ER gene signature following 

neoadjuvant AI therapy associate with increased disease free and overall survival in AI 

treated breast cancer patients (n=72, p= 0.00339 and p=0.00155, respectively).  

 

Figure 6. Early adaptive changes are lost in distant metastatic  tumours indicating a 

switch away from ER signalling. A, pSer118 ER and EGR3 protein expression is increased 

in local recurrent tumours relative to their matched primary tumours (n=6 individual 

patients). Patient details are provided in Supplementary Table S3. B, Graphic illustrating 

the dynamic changes in ER activity observed during breast cancer disease progression in 

select patients. C, ER and PR status is graphed for matched primary and metastatic 

endocrine treated tumours (n= 10 breast cancer patients). Solid lines: AI treated 

patients; dashed lines: tamoxifen treated patients. D, EGR3 protein expression is 

reduced in metastatic tumours of patients that recurred while on endocrine treatment 
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(n=9, p=0.002). Solid lines: AI treated patients; dashed lines: tamoxifen treated patients. 

Representative images of the EGR3 staining of matched patient samples are shown. E, 

RNA-seq data obtained from ER positive matched primary and metastatic breast cancer 

patient tumours following AI treatment (n=3). Heat map illustrates ER gene signature 

expression as determined by RNAseq in primary and metastatic breast cancer tumours 

(n=3). 
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