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Abstract 9 

Land use change from intensive arable production to extensively managed grasslands is 10 

encouraged through subsidy payments to farmers under the European Union’s Common 11 

Agricultural Policy. Created grasslands are sown with a species-rich seed mix and receive 12 

limited or no fertiliser application with the aim of increasing the provision of non-production 13 

ecosystem services. In the UK these agri-environment schemes are funded for periods of 5, 7 14 

or 10 years. This study compared the plant diversity and soil properties of paired intensively 15 

managed (IM) arable and recently created (3, 5, 8 and 9 years) extensively managed species-16 

rich grasslands (SRG) at 4 sites in the Scottish Borders. Botanical surveys of the newly 17 

created grassland plots showed limited establishment of the species-rich seed mixes and the 18 

dominance of grasses that favour more nutrient-rich environments. Soil properties at 0-10 and 19 

30-40 cm depths were measured over 2 consecutive years. Total and available soil nitrogen, 20 

phosphorus and soil organic carbon were not significantly different between paired plots. 21 

This study indicates that in order to create edaphic conditions for species-rich grassland 22 

communities to develop within a 10 year timespan on former intensively managed arable 23 

land, radical changes in soil properties are required, which current de-intensification 24 

managements are not achieving.  25 
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 30 

1. Introduction 31 

A growing awareness of the value of non-production ecosystem services (ES) provision to 32 

human health and wellbeing has encouraged the funding of agri-environment schemes in the 33 

UK, through which farmers receive funding to alter management practices to increase the 34 

provision of certain ES. In general, management to maximise production causes the decline 35 

of other ES (MA, 2005) including the regulation of water quality and nutrient cycling and 36 

maintenance of biodiversity, with mixed effects reported on climate regulation (Pilgrim et al. 37 

2010).  38 

In the European Union (EU) direct support and subsidies are provided to farmers through the 39 

Common Agricultural Policy (CAP). Funding for environmental initiatives is provided under 40 

the second pillar of the CAP through the European Agricultural Fund for Rural Development 41 

(EAFRD) and includes agri-environment schemes that aim to enhance the environmental 42 

value of land, such as the extensification of agricultural management through the creation of 43 

semi-natural grassland (EC, 2009). Under these schemes farmers are required to carry out an 44 

extensification of management practices by reducing or ceasing fertiliser application, grazing 45 

and cultivation, or removing the existing crop or sward and sowing a specified seed mix of 46 

desired grassland species. In England by the end of 2012 there were over 80,000 ha of created 47 

or restored grassland (Wilson et al., 2013), and £3 million was spent on the creation of 48 

species rich grassland and arable reversion to grassland in Scotland from 2008 to 2012 49 

(Scottish Executive, 2012). 50 
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Across the UK SRG creation schemes are funded for periods of between 5 and 10 years. Thus 51 

within 10 years of adoption the benefits of agri-environment aimed at enhancing the 52 

provision of non-production ES should justify both the loss of production and the cost of the 53 

financial subsidy awarded to farmers (Horrocks et al., 2014). Despite the commitment of 54 

substantial sums of money and land to extensification schemes, there has been little research 55 

into (i) the extent to which they enhance provision of multiple ES and (ii) the 56 

 potential for the legacy of intensive agriculture to continue to limit ES provision during the 57 

 funding period of the agri-environment scheme. The creation of SRG in Scotland is listed as 58 

a land management option under the ‘biodiversity and landscape’ and ‘water quality’ regional 59 

priorities (Scottish Executive 2009), so the provision of increased biodiversity and improved 60 

water quality are key targets for SRG creation schemes. 61 

   62 

The UK is a signatory of the Convention on Biodiversity (CBD) and is obliged to take 63 

targeted action to restore biodiversity where intensive agriculture has led to its loss (CBD, 64 

2012). The maintenance of biodiversity enhances the provision of other ES, particularly those 65 

mediated by the soil, e.g. the storage, internal cycling and processing of nutrients (Haygarth 66 

and Ritz, 2009) and carbon (Goldstein et al., 2012). However, intensive agricultural practices, 67 

including the use of fertilisers, pesticides, tillage are incompatible with high biodiversity 68 

maintenance (Pilgrim et al., 2010). Changes to soil properties, which include decreased total 69 

soil nitrogen (N) increased N availability, decreased and soil organic carbon (SOC), and 70 

increased total and (Knops and Tilman, 2000), decreased soil organic carbon (McLauchlan, 71 

2006) and increased total and available phosphorus (P) concentration (Gough and Marrs, 72 

1990; McLauchlan, 2006) decrease botanical diversity. 73 

 74 
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The most diverse grasslands with plant species of the highest conservation value tend to 75 

occur on soils with low nutrient status, as large concentrations of nutrients favours dominance 76 

by a small number of species capable of rapid resource utilisation (Critchley et al., 2002; 77 

Janssens et al., 1998). Thus, substantial concentrations of legacy soil N and P can limit the 78 

biodiversity value of created or restored grasslands (Walker et al., 2004). Legacy soil N and P 79 

can also have significant implications for water quality since,  increased concentrations in 80 

water bodies can result in eutrophication (Søndergaard and Jeppesen, 2007; Dungait et al., 81 

2012). Nutrients leached in forms that are readily available for biotic uptake, such as NO3
-
 82 

(nitrate), may have a particularly large, immediate effect on the aquatic system. 83 

 84 

 Legacy effects of past management on soil properties can still be observed after many 85 

decades (Kopecký and Vojta, 2009) and in some cases thousands of years (Dupouey et al., 86 

2002) following the cessation of intensive agriculture. Yet there are very few published 87 

reports of the co-dynamics of the major macronutrient (N and P) and C cycles in soils 88 

following the cessation of agricultural management (Table S1). 89 

 90 

The aim of this study was to establish the extent of the legacy effect of former intensive 91 

arable management on ES provision including SOC and macronutrient cycling and 92 

biodiversity in recently created (<10 years) species-rich grasslands (SRG) on working farms. 93 

We focus in particular on direct measurement of botanical biodiversity provision, and soil 94 

chemistry, including N and P, which are key factors regulating both biodiversity and potential 95 

nutrient loss to water bodies, key targets of SRG creation.  96 

We tested the hypotheses that: 97 

1. Soil chemical properties (SOC, N, P and pH) will not change within the first 10 years 98 

following cessation of intensive management. 99 
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2. Legacy macro-nutrients will create soil conditions to which prescribed species-rich seed 100 

mixes are not well adapted.  101 

 102 

2. Materials and Methods 103 

2.1 Field Sites 104 

Paired IM-SRG field plots (11 m x 11 m) were established in 2010 in fields on 4 farms in SE 105 

Scotland. SRG seed mixes (Table 1) had been sown 3, 5, 8 and 9 years previously in a 106 

portion of an IM field at each farm. Plot pairs were matched for soil type (silty loam, brown 107 

earth, Lauder series; Soil Survey of Scotland, 1981) using soil particle size analysis, slope 108 

and aspect. All of the IM plots continued to receive fertiliser throughout the study, in contrast 109 

to the SRG plots that had received no fertiliser or biocides since conversion (full details in 110 

Horrocks et al., 2015). Hereafter, each site is identified by the letter S followed by a number, 111 

which refers to the age in years since establishment of the SRG. Before conversion to SRG, 112 

sites S3, S8 and S9 had been under arable rotation for at least 20 years, and site S5 had been 113 

under intensive arable management until 2 years prior to establishment of the SRG.  114 

 115 

2.2 Soil properties 116 

2.2.1 Sampling and preparation 117 

Sites S3, S8 and S9 were sampled in spring (late March) and summer (early July) in 2010 and 118 

2011. The site at S5 was not sampled in 2011 having withdrawn from the agri-environment 119 

scheme at the end of 2010. Soil cores (5 cm diameter x 10 cm length, n=5) were sampled in a 120 

cross diagonal pattern from each plot (Been and Schomaker, 2013). Surface soil cores (0-10 121 

cm depth) were taken in spring and summer. In spring, samples from 30-40 cm depth were 122 

also taken using a soil corer from a pit dug beneath the surface sample to 30 cm.  123 
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Fresh soil samples were sieved (2 mm) prior to analysis. The bulk density (BD) of the surface 124 

soil was determined for spring soil samples in 2010 using steel cores (56 mm diameter and 40 125 

mm depth; Eijelkamp, Giesbeek, the Netherlands) according to Hopkins et al. (2009) and was 126 

used to calculate nutrient concentration per ha.  127 

2.2.2 Total N and SOC 128 

Total N and SOC (% mass) were determined for spring soil samples using elemental analysis 129 

(Carlo Erba NA 1500 analyser; CE Instruments Ltd, Wigan UK). Approximately 15 mg 130 

ground (pestle and mortar) oven dried soil was weighed into a foil capsule. 131 

2.2.3 Total available N 132 

Total available soil N and P concentrations were determined in both spring and summer soil 133 

samples to determine the level of intra-annual variation in more labile nutrient forms (Hatch 134 

et al., 2002 , Blake et al., 2003). 135 

Total available soil N, defined as the sum of ammoniacal N (NH4
+-N), nitrate N (NO3

--N) 136 

and nitrite N (NO2
--N) concentrations, was measured in 5 g of fresh soil extracted with 100 137 

ml of 6% potassium chloride (KCl) on an orbital shaker for 1 hour at 150 revolutions min-1. 138 

The suspension was allowed to settle for 10 mins before 20 ml was filtered through Whatman 139 

No. 42 filter paper (Whatman plc., Maidstone, UK) and analysed for NH4
+ and NO3

-/NO2
- 140 

using a Bran & Luebbe Auto Analyser III (SPX Flow Technology, Brixworth, UK). Two 141 

blanks were prepared for each run and processed in an identical manner (Pansu and 142 

Gautheyrou, 2006). It was assumed that all oxidised N was present as NO3
- since NO2

- 143 

concentrations are usually negligible relative to NO3
- (Shen et al., 2003).  144 

2.2.4 Available P 145 

Available soil P (defined as acetic acid extractable soil P) concentration was determined 146 

using the same method of extraction as for available N with 100 ml of 2.5% acetic acid in 147 
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place of the KCl solution (Edwards and Hollis, 1982). The concentration of phosphate (PO4
3--148 

P) in the extracts was measured using a Bran & Luebbe Auto Analyser III.  149 

2.2.5 Total P 150 

Total soil P concentrations were determined for spring soil samples using the Kjeldahl 151 

method (Taylor, 2000). Twenty ml of 95% sulphuric acid (H2SO4) and 6 Kjeldahl copper 152 

sulphate (CuSO4) catalyst tablets (Fisher Scientific, Loughborough, UK) were added to 0.5 g 153 

of oven dried and ground soil and heated in a Buchi K-437 digestion system (Buchi UK Ltd., 154 

Oldham, UK) for 30 mins at 250°C, followed by 90 mins at 350°C. Once cool, digests were 155 

filtered through Whatman No. 42 filter paper, made up to 250 ml with deionised water, 156 

shaken by hand and then left for 10 hours to reach equilibrium. A 60 ml aliquot was analysed 157 

using a Bran & Luebbe Autoanalyser III using the same method as for available P. 158 

2.2.6 Calculating soil nutrient concentrations 159 

Gravimetric soil moisture content was determined for each homogenised batch of fresh soil 160 

prior to analysis for N and P, by drying a 20 g subsample at 105°C until constant weight was 161 

attained. The value was used to calculate soil N and P concentration per mass of dry soil (mg 162 

kg -1  dry soil) and converted to nutrient content (kg  ha-1) using bulk density values measured 163 

for each field plot. 164 

 165 

2.3 Botanical survey 166 

The percentage cover of plant species identified using Rose (2006) and Hubbard (1992) was 167 

recorded in July 2010 and 2011 using a 1 m x 1 m quadrat subdivided into 0.1 m x 0.1 m 168 

sections at 5 randomly located points within each SRG plot. The value for percentage cover 169 

was converted to a Domin score using the Joint Nature Conservation Committee Standard 170 

conversion table (Rodwell, 2006). Values for key traits, indicating their ecological niche, 171 

were collated from references for all species identified at the sites and included in the seed 172 
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mixes. Traits used were i) Ellenberg indicator (EI) values (Ellenberg, 1979) for light and N 173 

(after Hill et al., 1999); ii) categorisation within the Competitive (C)-Stress tolerant (S)-174 

Ruderal (R) system of plant functional types (Grime, 1974; Grime et al. 1996), with scores 175 

ranging from -2 to 2 on each axis (C,S and R) allocated according to Hodgson et al. (1999); 176 

and iii) canopy height taken as the maximum height according to the LEDA European plant 177 

trait database (Kleyer et al., 2008). 178 

 179 

2.4 Data analysis 180 

The Shannon diversity index (H’) was calculated for plant diversity in each plot (Equation 1), 181 

using the mean % cover to determine the abundance of the ith species as a proportion of total 182 

total cover (Pi) for each species: 183 

       (1) 184 

Where, Pi = abundance of the ith species as a proportion of total cover 185 

All soil analyses were conducted in duplicate and the mean of the replicate values was used 186 

for the data analysis using GENSTAT14. Where a normality plot indicated non-normal data 187 

distribution for a given variable, data were normalised by taking the natural logarithm 188 

(constant e). Data from paired plots at each site were compared for every sampling occasion 189 

using a two sample t-test, following a check for equality of variance the mean and standard 190 

deviation of the measurements and indication of significance of the t-test are reported for all 191 

plots and sampling occasions in tables. Subsequently a randomised block design ANOVA 192 

was applied to combined data from 2010 / 2011 to identify any significant consistent effects 193 

of management over the two year sampling period, management (IM / SRG) was modelled as 194 

a fixed effect, across the 4 sites, with the data blocked according to the site pair, considered 195 

as a random block (S3, S5, S8 and S9).Where both spring and summer analyses were 196 

performed (available soil N and P), separate models were written for the spring and summer 197 
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data to enable the spring data to be analysed using a 2-way split plot design, with soil depth 198 

(0-10 cm / 30-40 cm) and management both taken as fixed effects p<0.05 was considered 199 

significant. The results of the ANOVAs are reported in the text. 200 

 201 

3. Results 202 

3.1 Soil organic carbon 203 

The total SOC content did not vary significantly, as a function of management (p=0.28) or 204 

depth (p=0.46). The smallest SOC contents tended to occur at site S3, ranging from 11.1 (±2) 205 

to 24.2 (±9.3) t ha-1, and the greatest at site S9, ranging from 24.1 (±11.7) to 38.7 (±3.5) t ha-1 206 

in both sampling years. This pattern was observed in both the IM and SRG plots (Table 1).  207 

 208 

3.2 Total and available nitrogen 209 

The mean total soil N content did not vary significantly between IM and SRG plots, as a 210 

function of sample depth (p=0.55) or year ( p=0.11). There was a trend for the smallest total 211 

soil N content to occur at site S3, ranging from 1.08 (±0.19) to 1.85 (±1.44) t ha-1, and the 212 

greatest at site S9, ranging from 0.81 (±0.07) to 3.69 (±0.32) t ha-1 for both depths (Table 1). 213 

The greatest soil available N contents were at site S9, where there were peaks in total 214 

available soil N (>70 kg ha-1) measured in both the IM and SRG plots in spring 2011 and in 215 

the IM plots in summer 2010 (Table 2); on both occasions the content in the IM plots were 216 

significantly greater. The total soil available N in S3, S5 and S8 tended to be less than those 217 

observed at site S9 and showed no consistent relationship with management. There 218 

were significant differences between paired plots for individual sampling occasions but these 219 

showed no consistent effect of management (ANOVA, spring p=0.30, summer p=0.06). 220 

 221 

3.3 Total and available phosphorus 222 
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The mean total soil P (Table 1) did not vary significantly between IM and SRG plots, as a 223 

function of sample depth (p=0.33) or year (p=0.36). Likewise soil available P content (Table 224 

2) did not vary significantly with management in spring (p=0.24) or summer (p=0.97). There 225 

was a trend for the smallest total soil P content to be recorded at site S3, ranging from 0.11 226 

(±0.04) to 0.40 (±0.1) t ha-1 across both depth ranges, and the greatest at site S9, ranging from 227 

0.43 (±0.09) to 0.81 (±0.07) t ha-1. There were significant differences between paired plots 228 

for individual sampling occasions but these showed no consistent effect of management. The 229 

SRG plot at site S5 had a significantly higher total soil P content compared to the paired IM 230 

IM plot in the 0-10 cm depth. In Spring 2010 the IM plot at site S8 had significantly (p<0.05) 231 

greater mean soil total P content in the 30-40 cm depth range compared to the paired SRG 232 

plot. 233 

 234 

3.4 Soil nutrient ratios 235 

The soil C:N ratio was ~10 across all sites and did not vary significantly with management 236 

(p=0.12) or depth (p=34). The N:P ratios were much more variable (3.3-12.1; Figure 1), but 237 

as with the C:N ratio did not vary significantly with management (p=0.29) or depth (p=0.50). 238 

 239 

3.5 Botanical survey 240 

The SRG at plot S9 had the greatest diversity (as determined by the Shannon diversity index) 241 

and species richness in 2010 and 2011 (Table 4). In 2011 the species richness (total number 242 

of species recorded) in the S9 SRG plot was about double that for the S3 and S8 SRG plots. 243 

In 2010 the lowest diversity was recorded in the SRG plot at site S3, whilst in 2011 the 244 

lowest diversity occurred at site S8. The only plot at which an increase in diversity was 245 

observed between 2010 and 2011 was S3 SRG, where H’ increased by 0.62. In the SRG plots 246 

at S8 and S9 H’ decreased by 0.13 and 0.26 respectively between 2010 and 2011. In 2011 all 247 
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three of the SRG plots sampled showed an increase in species richness from the previous 248 

year. 249 

 250 

At all sites grass species provided over 50% of the total cover with forbs much less dominant 251 

(Figure 2). The most dominant grass species (mean % cover >10; Domin score ≥ 5) tended to 252 

be those not present in the seed mix, including Agrostis stolonifera and Holcus lanatus at site 253 

S3, Phleum pratense at site S5, Arrenhatherum elatius, H. lanatus, and A. stolonifera at site 254 

S8 and A. stolonifera at site S9 (Table 4). Grass species present in the seed mixes that 255 

achieved >10% cover included Dactylis glomerata at site S3, Cynosurus cristatus at site S5, 256 

and Poa pratensis at sites S8 and S9, whilst species present in the seed mix which failed to 257 

establish included Festuca pratensis at site S3, Alopecurus pratensis, F. rubra, P. pratenis 258 

and Agrostis capillaris at site S5, A. capillaris, C. cristatus and F. ovina at site S8 and A. 259 

capillaris and F. ovina at site S9. The only forb species not present in the seed mix that 260 

provided a mean cover of >10% (Domin ≥5) was Trifolium repens at sites S3, S5 and S9. 261 

Other forb species that established despite not being present in the seed mix included Rumex 262 

obtusifolius at site S5, Cirsium vulgare, Ranunculus bulbosus, T. repens and R. obtusifolius at 263 

site S8 and Bellis perennis, Cerastium fontanum, C. vulgare, Plantago lancelota, R. bulbosus, 264 

Silene alba, and Taraxacum spp. at site S9. Forb species present in the seed mix and 265 

providing >10% cover (Domin ≥5) included Rhinanthus minor at site S5 and Lotus 266 

corniculatus at sites S8 and S9. At site S8, 5 out of 8 sown forb species were not recorded in 267 

any quadrat in either year, whilst from the same seed mix sown at site S9, only 1 of the 8 268 

species failed to establish. The percentage cover from legumes at the four sites ranged from 269 

10.2% at site S8 in 2011 and 23.2% at site S9 in 2010.  270 

 271 

3.6 Plant traits 272 
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The most dominant grass species (Domin value ≥ 5) had either a generalised strategy 273 

according to C-S-R theory (Grime, 1974), scoring 0 across the three axes according to 274 

Hodgson et al. (1999) or a more competitive / disturbance tolerance strategy, scoring higher 275 

on the C and R axes compared to the stress tolerance (S) axis (Table 5). The EI-N scores of 276 

the most dominant grasses (range 5-7; mode 6) were indicative of species found in soils of 277 

intermediate to high fertility, with the exception of C. cristatus at site S5, which had an EI-N 278 

of 4. The modal EI-light value of the dominant grasses was 7 with all species being typical of 279 

well-lit environments (Hill et al., 1999). The requirement for high light environments was 280 

also a characteristic of the forb species which established, as well as of those which failed to 281 

establish from the seed mixes. The established forb species typically have a generalist or 282 

ruderal / competitive strategy according to the CSR theory, with the exception of Centaurea 283 

nigra, a stress tolerator not present in the seed mix, which established at site S9 (Domin value 284 

= 4) and Lotus corniculatus var. sativus a cultivated variety of a stress tolerator present in the 285 

seed mix at sites S8 and S9. Typically the forb species identified and present in the seed mix 286 

had a lower EI-N compared to the grass species (range 2-9; mode 4). The non-sown species 287 

that had the greatest dominance included T. repens, R. obtusifolius and Cersatium fontanum 288 

which have EI-N values of 6, 9 and 4, respectively.  289 

 290 

4. Discussion 291 

The effectiveness of agri-environment schemes has been a subject of recent debate. The 292 

schemes have been criticised for providing limited benefit and can also have unforeseen 293 

costs, for example, by increasing production pressure and environmental damage elsewhere 294 

to compensate for production losses in agri-environment schemes (Ekroos et al., 2014). The 295 

current study provides valuable insight into the value of extensive grassland creation 296 

schemes. Whilst the findings are primarily applicable to the specific soil type studied (brown 297 
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earths), the results highlight the potential for legacy effects of intensive management on soil 298 

chemical properties to limit the value of agri-environment schemes for enhancing ecosystem 299 

service (ES) provision. 300 

 301 

4.1 Enduring effects of intensive management on soil nutrients 302 

The cycling and changes in C, N and P content in soils are regulated by physical, chemical 303 

and biological processes. In intensively managed systems N, P and C cycles become 304 

decoupled as plants can obtain their required nutrients directly from the soil solution 305 

following fertiliser application (Dungait et al., 2012; Soussana and Lemaire, 2014). 306 

A transition towards more ‘natural’ soil processes would tend to reduce total P in soils and 307 

increase SOC and total N (as components of organic matter), thus altering the stoichiometry 308 

of the soil nutrients. In this study we focus in particular on direct measurement of botanical 309 

biodiversity provision, and soil chemistry, including N and P, which are key factors 310 

regulating both biodiversity and potential nutrient loss to water bodies. We hypothesised, 311 

however, that in the newly created SRG sites (<10 years) in this study, legacy effects of 312 

former intensive management would limit succession towards a more ‘natural’ system with 313 

soil macronutrient content showing no detectable change compared to the IM sites, thus 314 

limiting improvements in key ES provision. The data from four working farms in Scotland 315 

largely support our hypothesis. The percentage total N in our study plots (0.1-0.3%) was 316 

closer to those measured by other authors in IM soils, as opposed to semi-natural grassland 317 

habitats. For example a study of UK grasslands reported a mean soil total N content of 0.5% 318 

at long established semi-natural grasslands, compared to a mean value of 0.3% at adjacent 319 

intensive agricultural sites (Gough and Marrs, 1990). Another study of permanent, species-320 

rich grassland in Western Europe found soil total N ranging from 0.3 to 0.9% (Janssens et al., 321 

1998). These comparisons with other IM sites and established SRGs highlight the extent of 322 
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the legacy effect of former intensive management on the soils in this study, as there is no 323 

significant increase in total soil N, which would be expected when comparing IM sites with 324 

long established SRG.  325 

 326 

Highly managed systems can become ‘leaky’ and maintain relatively high concentrations of 327 

available soil N (Wardle et al., 2004).  In more ‘natural’ systems rates of N release from 328 

organic matter mineralisation may be regulated through plant-soil feedbacks hence these 329 

systems tend to be characterised by improved N use efficiency and retention (Chapman et al., 330 

2005).  The IM and SRG plots in this study maintained similar, high contents of available soil 331 

N, with no significant management effect on total available N content, supporting the theory 332 

that mineralisation rates were rapid. 333 

 334 

The availability of soil P, which remained high in the SRG sites in this study may also 335 

encourage N mineralisation, by supporting elevated rates of microbial activity and 336 

encouraging plant growth and the production of high quality, readily mineralised plant matter 337 

(Janssens et al., 1998; section 4.2). Rates of P cycling are an order of magnitude less than N 338 

(Dungait et al., 2012), thus, fertiliser applications during intensive management tend to lead 339 

to soil P accumulation, which may take many decades to decline following cessation of 340 

fertiliser application (Dodd et al., 2012; Falkengren-Grerup et al., 2006). Desorption or 341 

dissolution of the total P pool can maintain soil available P (Koopmans et al., 2004; Vu et al., 342 

2010). The persistence of accumulated soil P following cessation of intensive management 343 

was observed in this study, as was the maintenance of a consistent pool of soil available P; 344 

neither total nor available soil P content differed significantly between the IM and SRG sites.  345 

 346 
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In agro-ecosystems at steady state, net loss or gain of SOC is not observed, i.e. the amount of 347 

C lost through decomposition processes and harvesting is the same as the net ecosystem 348 

production (Jones and Donnelly, 2004; Smith et al., 2010). There are well-recognised benefits 349 

associated with increasing SOC in agricultural soils, i.e. to mitigate climate change and 350 

improve soil quality. Management changes, including conversion from arable cropping to 351 

permanent grassland have been found to increase SOC (Conant et al., 2001; Guo and Gifford, 352 

2002), however there was no measureable difference in SOC between the paired SRG and IM 353 

plots in this study. We assume that high rates of organic matter mineralisation at our sites 354 

balanced SOC and N inputs from the SRG plants, thus preventing the hypothesised increases 355 

in SOC and total N. 356 

 357 

 4.2 Legacy soil nutrients limit biodiversity provision 358 

The relatively abundant soil available N and total P contents recorded at the SRG sites in this 359 

study are likely to impact on the nature of the plant community established, favouring 360 

dominance by a few plant species typical of more nutrient rich environments and thus  361 

limiting the biodiversity, species richness and conservation value of the created SRG. The 362 

seed mixes sown in the SRG plots in this study met the requirements of the Scotland Rural 363 

Development programme for low productivity mixes and contained plants typical of species 364 

rich grasslands that develop in relatively nutrient poor soils (Scottish Executive, 2011).  365 

 366 

The dominance of non-sown species, particularly grasses and the limited establishment of 367 

sown species, demonstrated that success in establishing the desired sward at the SRG sites 368 

was limited. Analysis of the traits of the most dominant grass species found them to be 369 

characteristic of generalist species able to compete effectively in environments with low 370 

nutrient stress (scoring lower on the S axes relative to C and R and high EI-N) or species able 371 
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to take advantage of disturbance due to high fecundity and rapid growth (scoring relatively 372 

high on the R axes relative to C and S score). Other authors have reported similar 373 

observations, and found that high soil P content in particular can limit biodiversity and 374 

prevent establishment of species typical of low nutrient environments (Pywell et al., 2003).  375 

The conservation of biodiversity is a central goal of agri-environment schemes. Maintaining 376 

biodiversity has been shown to support the provision of other ecosystem services, such as 377 

efficient nutrient cycling and to increase ecosystem stability through functional diversity 378 

(Cardinale et al., 2012), thus biodiversity is a key measure of the ability of a landscape to 379 

provide multiple ES. The plant communities in the newly created SRGs in this study were 380 

less diverse and differed substantially from those found in well-established species rich hay 381 

meadows, which are a threatened European habitat (Garcia, 1992). Traditional hay meadows 382 

in Sweden have been found to have H’s of 2.56-3.71 and mean EI-Ns ranging from 2.3 to 4.5 383 

(Linusson et al., 1998). Similarly Shannon diversity indexes ranging from 0.5 to 5 were 384 

measured in old, permanent grasslands, with the diversity at the majority of low fertility sites 385 

being greater than 2.5 (Janssens et al., 1998). Most of the plots in this study fail to achieve 386 

such high diversity. 387 

 388 

Grassland diversity has been shown to negatively correlate with the grass:forb ratio (Willems 389 

and Nieuwstadt 2009), indicating that the dominance by a few grass species is driving the 390 

relatively low diversity in the SRG plots in this study. Many of the forbs which did establish 391 

generally had low abundance (Domin value of 1). All the forb species had a requirement for 392 

high light environments (EI-light 7 or 8), hence reduction in light availability in the sward 393 

caused by dominant tall growing grasses is likely to have been a significant factor in limiting 394 

forb establishment and overall biodiversity at the sites (Hautier et al., 2009). Amongst the 395 

most dominant forb species were the legumes T. repens and L. corniculatus. The former is 396 
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similar to other dominant species at the sites as it has low stress tolerance (low S score) and 397 

typically grows in relatively nutrient rich soils (EI-N =6), however the latter is stress tolerant 398 

and typically grows in relatively infertile soils (EI-N =2). 399 

 400 

The large soil available P content in the SRG soils could explain the relative dominance by 401 

legumes as P availability has been found to correlate positively with legume abundance 402 

(Bobbink, 1991). Rates of N fixation from legumes in UK grasslands have been estimated to 403 

be between 74-280 kg N ha-1 yr-1 (Cowling, 1982). The abundance of legumes in the SRG 404 

plots should have a positive feedback on soil fertility through N fixation, providing a supply 405 

of easily decomposable (low C:N ratio) litter, which is readily mineralisable. Another 406 

potential source of N input to the SRG plots is atmospheric N deposition which is estimated 407 

at 15.12 kg N ha-1 yr-1 in the area of the field sites (APIS; CEH 2014). The combination of N 408 

fixation and deposition could explain the relatively high available and low total soil N 409 

observed in the SRG plots. The soil in the SRG plots showed no significant difference in N 410 

content to the IM soils, which received fertiliser applications in line with recommendations in 411 

the RB209 fertiliser manual for wheat and winter Barley (DEFRA, 2010), consisting of an 412 

initial fertiliser application of approximately 40 kg N ha-1 in February each year followed by 413 

additional applications in May / April of up to 150 kg N ha-1.  These fertiliser applications 414 

were similar to the potential N fixation by legumes in the SRG sites.  415 

Fertiliser applications to IM plots were made to coincide with crop establishment and the 416 

period of maximum stem extension. During this time, N uptake rates by cereal crops are 417 

likely to have been greater than those of the grassland species in the SRG, which further 418 

explains the similarities in measured soil N between IM and SRG plots, despite cessation of 419 

fertiliser application to the SRG (Horrocks et al., 2014). 420 

 421 
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The observation that some stress tolerant species typical of more nutrient poor soils, such as 422 

L. corniculatus and C. fontanum, did establish at the sites could be due to the spatial 423 

variability in soil nutrient availability observed at the sites, allowing species with lower 424 

competitive ability and greater stress tolerance to establish in patches of lower nutrient 425 

availability. In the case of L. corniculatus var. sativus it is possible that the particular non 426 

wild type cultivar identified at the site had a superior competitive advantage, which could 427 

explain why it was able to develop such dominance at sites S8 and S9 (Schröder and Rudiger, 428 

2012). 429 

 430 

 As well as taking advantage of spatial variability in soil nutrient availability, some species 431 

will be able to benefit from temporal environmental changes. For example, at site S3 in 2011, 432 

the increased cover from forbs and increased diversity could have been in response to the 6% 433 

cover from bare ground at the site in 2010, providing niches for light-loving disturbance 434 

tolerant forb species such as Taraxacum agg. and T. repens that would otherwise have been 435 

shaded out by dominant grass species. Such shifts could be short lived as more competitive 436 

species dominate again in future years. Another factor that can affect establishment of sown 437 

species is the size, composition and longevity of the weed seedbank present at a site. There 438 

are not data for the weed seedbank at the study sites, but assessment of the effect of the weed 439 

seedbank could be a valuable addition to future studies.  440 

 441 

The botanical survey results support the hypothesis that high legacy soil nutrient content, in 442 

particular soil P, limits biodiversity provision at the recently created SRG sites by allowing 443 

the dominance of a limited number of low conservation value grasses. The success of 444 

disturbance tolerant species (high R score) could also be expected as the SRG sites were all 445 
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ploughed prior to sowing so species able to rapidly colonise disturbed soils would have been 446 

advantaged (Pywell et al., 2003).  447 

 448 

The dominance of non-sown species and relatively poor performance of forbs suggest the 449 

composition of seed mixtures selected for the sites were not appropriate to the soil conditions 450 

as a limited number of competitive grass species were able to dominate. The results highlight 451 

the need for management actions that decrease soil fertility prior to attempting to establish 452 

species-rich semi natural swards (Pywell et al., 2003; Smith et al., 2003). Whilst these have 453 

been recommended previously in the literature it is apparent from this study that wider 454 

implementation is required in the field. Soil testing to identify sites suitable for SRG 455 

establishment should be encouraged (Hautier et al., 2009).  456 

 457 

5. Conclusions  458 

Through comparisons of repeated measurements of multiple soil properties at paired IM and 459 

SRG sites this study has provided a much greater insight into soil properties before and after 460 

entry into agri-environment schemes. The data provide strong evidence for a substantial 461 

legacy effect on soil properties which could limit the benefit of newly created SRGs in 462 

supporting enhanced ES provision, including plant biodiversity provision. Despite successful 463 

establishment of some target seed mix species in the newly created grassland sward, overall 464 

the diversity, richness and composition of the plant communities were low when compared to 465 

long established species-rich grasslands, managed extensively for many decades. Overall the 466 

study draws into question the value of funding agri-environment schemes that encourage the 467 

short term creation of ‘semi-natural’ grasslands as the benefits they provide in terms of ES 468 

provision are limited. Instead resources (money and land) may be better prioritised to 469 

maintaining existing and long established semi-natural grasslands, or sowing moderately 470 
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diverse mixtures containing more competitive forbs (Woodcock et al., 2014), which have 471 

been demonstrated to provide significant ES benefits. 472 
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 Table 1. Mean (n=5) total soil organic carbon (SOC), nitrogen (N) and phosphorus (P) content in soil samples collected from paired 650 

intensively managed (IM) and ‘species-rich’ grassland (SRG) plots at 4 sites in the Scottish Borders. Values in brackets show 1 standard 651 

deviation, where a t-test indicated that values were significantly greater (p<0.05) than at the paired plot that figure is in bold. 652 

Site Season Depth 

(cm) 

Total SOC (tonne ha-1) Total N (tonne ha -1) Total P (tonne ha -1) 

2010 2011 2010 2011 2010 2011 

IM SRG IM SRG IM SRG IM SRG IM SRG IM SRG 

S3 Spring 0-10 14.4 (2.0) 16.2 (0.9) 20.1 (14.9) 24.2 (9.3) 1.40 (0.20) 1.63 (0.07) 1.85 (1.44) 1.70 (1.20) 0.12 (0.11) 0.19 (0.12) 0.29 (0.05) 0.40 (0.10) 

Spring 30-40 11.7 (1.7) 14.0 (1.1) 17.4 (12.3) 11.1 (2.0) 1.21 (0.19) 1.38 (0.14) 1.26 (1.27) 1.08 (0.19) 0.11 (0.04) 0.12 (0.04) 0.25 (0.02) 0.31 (0.04) 

S5 Spring 0-10 24.8 (4.3) 28.3 (4.0) - - 2.46 (0.47) 2.58 (1.24) - - 0.29 (0.05) 0.46 (0.14) - - 

Spring 30-40 24.0 (6.1) 24.2 (7.5) - - 2.38 (0.56) 2.32 (0.63) - - 0.24 (0.06) 0.43 (0.19) - - 

S8 Spring 0-10 28.2 (5.7) 23.5 (1.9 24.5 (5.1) 19.7 (4.1) 2.67 (0.49) 2.22 (0.20) 2.31 (0.51) 1.22 (1.02) 0.46 (0.09) 0.35 (0.05) 0.48 (0.12) 0.32 (0.03) 

Spring 30-40 22.4 (2.2) 21.7 (2.4) 33.1 (12.0) 32.1 (11.6) 2.20 (0.18) 2.13 (0.24) 3.06 (1.04) 2.58 (0.65) 0.40 (0.07) 0.31 (0.04) 0.34 (0.13) 0.41 (0.06) 

S9 Spring 0-10 38.7 (3.5) 31.2 (1.1) 29.6 (12.4) 24.1 (11.7) 3.69 (0.32) 2.92 (0.16) 2.72 (1.33) 1.73 (1.28) 0.81 (0.07) 0.60 (0.03) 0.64 (0.16) 0.52 (0.03) 

Spring 30-40 37.9 (2.7) 28.1 (1.6) 25.5 (16.7) 25.2 (9.3) 3.64 (0.26) 2.67 (0.22) 2.33 (1.49) 2.28 (0.83) 0.77 (0.04) 0.54 (0.05) 0.70 (0.05) 0.43 (0.09) 

 653 

 654 

655 
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Table 2. Mean (n=5) available nitrogen (N) and phosphorus (P) content in soil samples collected from paired intensively managed (IM) and 656 

‘species-rich’ grassland (SRG) plots at 4 sites in the Scottish Borders. Values in brackets show 1 standard deviation, where a t-test indicated that 657 

values were significantly greater (p<0.05) than at the paired plot that figure is in bold. 658 

Site Season Depth 

(cm) 

Available N (kg ha -1) Available P (kg ha -1) 

   2010 2011 2010 2011 

   IM SRG IM SRG IM SRG IM SRG 

S3 Spring 0-10 8.14 (2.9) 8.3 (4.7) 18.8 (0.27) 21.6 (16.4) 34.5 (19.9) 32.4 (7.5) 31.6 (5.8) 30.4 (11.4) 

 Spring 30-40 8.6 (3.1) 4.3 (1.3) 12.8 (3.6) 12.8 (2.8) 33.5 (21.1) 33.0 (8.8) 32.9 (8.5) 16.4 (11.5) 

 Summer 0-10 15.7 (0.6) 7.7 (0.9) 17.1 (13.6) 7.9 (4.2) 2.5 (0.24) 17.1 (3.4) 44.5 (6.1) 42.4 (5.4) 

S5 Spring 0-10 4.1 (0.8) 7.2 (2.2) NA NA 11.0 (10.4) 36.5 (53.5) NA NA 

  Spring 30-40 6.2 (2.9) 6.8 (3.2) NA NA 14.0 (13.9) 42.2 (61.9) NA NA 

  Summer 0-10 8.9 (1.4) 14.4 (2.8) NA NA 5.6 (0.3) 3.3 (0.1) NA NA 

S8 Spring 0-10 31.2 (4.1) 25.7 (3.7) 48.8 (8.1) 31.0 (9.9) 23.3 (11.9) 14.0 (6.5) 37.8 (3.8) 27.0 (7.5) 

 Spring 30-40 12.8 (2.5) 13.3 (2.9) 40.0 (8.2) 15.1 (1.3) 14.6 (3.0) 11.9 (3.2) 35.5 (7.1) 27.2 (7.7) 

 Summer 0-10 10.4 (0.1) 11.7 (3.2) 10.6 (5.7) 8.4 (2.4) 20.9 (1.1) 7.3 (2.5) 29.7 (5.2) 34.0 (5.2) 

S9 Spring 0-10 13.5 (5.4) 29.5 (3.8) 112 (20.2) 70.7 (21.9) 22.7 (11.6) 13.1 (6.1) 36.8 (3.7) 25.3 (7.0) 

 Spring 30-40 8.4 (2.6) 13.8 (2.1) 72.1 (9.4) 10.7 (2.0) 38.0 (5.4) 21.3 (11.4) 65.6 (4.2) 21.6 (4.3) 

 Summer 0-10 66.8 (35.1) 10.0 (1.6) 14.4 (7.0) 14.2 (3.2) 20.3 (1.1) 6.9 (2.3) 28.9 (5.1) 31.9 (6.5) 

 659 
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Table 3. Summarising the diversity, percentage of sown species established and species 

richness in each of 4 species rich grassland (SRG) plots in July 2010 and 2011.  

 
 Shannon diversity index  % of seed mix species which have established  Total species richness 

Plot 2010 2011  2010 2011  2010 2011 

S3 SRG 1.33 1.95  50.0 66.7  8 11 

S5 SRG 1.66 NA  38.9 NA  11 NA 

S8 SRG 1.82 1.69  23.1 30.8  9 11 

S9 SRG 2.33 2.07  61.5 61.5  15 21 
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Table 4. Plant species identified at each of 4 species rich grassland plots (S3, S5 S8 and S9). Domin 

scores allocated according to the Joint Nature Conservation Committee Standard (Rodwell, 2006) 

based on mean (n=5) percentage recorded in 1 m x 1 m quadrats in July of 2010 and 2011.  Ellenberg 

indicator values for light and nitrogen (N) were obtained from Hill et al. (1999), the C-S-R category to 

which each species is assigned was obtained from Grime et al. (1996) and scores from -2 to 2 for each 

axis allocated according to Hodgson et al. (1999). Canopy height is the maximum canopy height (m) 

taken from the LEDA plant trait database (Kleyer et al., 2008). Domin values are entered for all 

species present in the seed mix for each site; values in bold and underlined indicate species 

established at sites that were not present in the seed mix. 
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    Domin score  C-S-R scores Ellenberg indicators   

Species Type S3 S5 S8 S9 C S R Light N Canopy height 

Alopecurus pratensis grass   0 1   1 -1 -1 7 7 0.7 

Anthoxanthum odoratum grass 

   
3 -1 0 0 7 3 0.25 

Festuca pratensis grass 0 

  
3 0 0 0 7 6 0.8 

Dactylis glomerata grass 5 

  
4 1 -1 -1 7 6 1.1 

Arrenhatherum elatius grass 

  
6 

 

1 -1 -1 7 7 1.8 

Holcus lanatus grass 5 

 
5 4 0 0 0 7 5 0.5 

Phleum pratense grass 4 8 

 
3 0 0 0 8 6 0.9 

Agrostis castellana grass 4 

  
3 0 0 0 6 4 0.2 

Festuca rubra grass 4 0 

 
4 0 0 0 8 5 0.9 

Agrostis stolonifera grass 5 

 
7 5 0 -2 0 7 6 1.3 

Agrostis capillaris grass 

 

0 0 0 0 0 0 6 4 0.4 

Cynosurus cristatus grass 

 

7 0 1 0 0 0 7 4 0.75 

Poa pratensis grass 3 0 6 5 0 0 0 7 5 0.5 

Festuca ovina grass 

  

0 0 -2 2 -2 7 2 0.35 

Lolium perenne grass 

 
4 

  

0 -1 0 8 6 0.2 

Achillea millefolium forb 

 

0 1 1 0 -1 0 7 4 0.8 

Bellis perennis forb 

   
1 -1 -1 1 8 4 1 

Centaurea nigra forb 

 

0 0 4 -1 1 -1 7 6 0.65 

Cerastium fontanum forb 3 

  
3 -1 -1 1 7 4 0.25 

Cirsium vulgare forb 

 

0 1 1 0 -2 0 7 6 1.2 

Galium verum forb 

 

0 

  

0 0 -1 7 2 1 

Hypochaeris radicata forb 

 

1 

  

0 0 0 8 3 0.1 

Papaver rhoeas forb 

    

-2 -2 2 7 6 0.9 

Plantago lancelota forb 

 

3 

 
1 0 0 0 7 4 0.4 

Prunella vulgaris forb 

 

1 0 1 0 0 0 7 4 0.3 

Ranunculus acris forb 

 

3 0 1 0 0 0 7 4 0.1 

Ranunculus bulbosus forb 

  
1 1 -1 0 0 7 4 0.25 

Rhinanthus minor forb 

 

7 0 0 -2 -1 1 7 4 0.6 

Rumex acetosa forb 

 

0 3 1 0 0 0 7 4 1 

Rumex obtusifolius forb 

 
3 3 

 

0 -2 0 7 9 1.2 

Silene alba forb 

   
1 -1 -2 1 7 6 1 

Taraxacum agg. forb 1 

  
1 -1 -1 1 7 6 0 

Trifolium repens forb 5 7 1 5 0 -1 0 7 6 0.5 

Vicia cracca forb 

 

0 

  

1 -1 -1 7 5 2 

Lotus corniculatus var 

sativus forb 

  

5 5 -1 1 -1 7 2 1.7 

Lathyrus pratensis forb 

 

0 

  

0 0 0 7 5 1.2 

Leontondon autumnalis forb 

 

0 

  

-1 -1 1 8 4 0.15 

Leucanthemum vulgare forb   1 0 1 0 -1 0 8 4 0.6 
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Figure 1. Mean (n=5) soil organic carbon (SOC): total nitrogen (N) plotted against total 

N:total phosphorus (P) ratio at 4 sets of paired intensively managed (IM) and species rich 

grassland (SRG) field plots, measured in July of 2010 and 2011. 
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Figure 2. Mean (n=5) % cover within a 1 m x 1 m quadrat provided by grasses that were 

either present in the seed mix (sown) or not (non-sown) and leguminous (L) and non-

leguminous (NL) forbs that were either sown or non-sown at 4 species rich grassland plots 

(S3, S5, S8 and S9) in July of a) 2010 and b) 2011. S5 was not surveyed in 2011 as the field 

had been withdrawn from the scheme 2011. 

 

 

 


