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Abstract 

Gene × Environment (G×E) interaction studies test the hypothesis that the strength of genetic 

influence varies across environmental contexts. Existing latent variable methods for estimating 

G×E interaction in twin and family data require the specification of parametric (typically linear) 

functions for the interaction effect. The chosen function may, therefore, obscure the underlying 

shape of the interaction effect, and at times, fail to detect a significant interaction if an improper 

functional form is selected. In this article, we introduce a novel approach to the behavior genetic 

toolkit, local structural equation modeling (LOSEM). LOSEM is a highly flexible approach for 

nonparametrically estimating genetic effects across a continuous range of a measured family-

level moderator. This approach opens up the ability to detect and visualize new forms of G×E 

interaction. We illustrate the approach by using LOSEM to estimate gene × socioeconomic status 

(SES) interactions for six cognitive phenotypes and compare results to those obtained from a 

conventional parametric approach. For several phenotypes, LOSEM indicates that shifts in 

genetic variance occur predominantly in the middle range of SES, rather than continuously and 

monotonically across SES as has been assumed in conventional parametric approaches. For one 

phenotype, LOSEM reveals a significant nonlinear gene × SES interaction. We offer 

recommendations for judicious application of LOSEM and provide scripts for implementing 

biometric LOSEM models in Mplus and in OpenMx under R. 

 

Keywords: LOSEM; LOESS; kernel regression; gene × environment interaction, cognitive 

ability 
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Nonparametric Estimates of Gene × Environment Interaction Using Local Structural 

Equation Modeling 

Gene × Environment (G×E) interaction studies test the hypothesis that the strength of 

genetic influence varies across environmental contexts, or equivalently, that environmental 

effects vary as a function of genotype (Plomin et al., 1977). Twin and family behavior genetic 

approaches test for G×E by estimating latent biometric variance components, typically additive 

genetic effects (A), shared environmental effects (C), and nonshared environmental effects (E), 

and examining whether the magnitudes of these variance components differ at different levels of 

a measured environmental variable.1 When the measured environment is composed of a small set 

of discrete categories, testing for G×E is straightforward. However, in many cases the measured 

environment is a continuous variable. Existing methods for estimating G×E with continuously 

measured environmental variables require a priori specification of the interaction’s functional 

form (Purcell, 2002). If the wrong function has been specified, inferences may be biased and, at 

times, G×E effects present in the data may not be detected[TB1][D2], effectively lowering 

power[DB3][etd4]. 

In the current paper, we present a nonparametric method for the estimating the shape of 

G×E interaction in twin and family data and provide scripts for implementing this technique in 

Mplus (Muthén & Muthén, 1998-2010) and OpenMx (Boker et al., 2011). This method can help 

researchers better understand patterns in their data and can improve model selection and testing 

in the analysis of G×E interaction. In the following sections, we first present extant approaches 

to estimating G×E interaction in biometric twin and family models when the environmental 

moderator is measured at the family-level (i.e., is shared by members of the twin pair). We then 

                                                 
1 In this paper, we focus on measured, family-level moderators that are, by definition, the same across family 

members. This level of measurement is currently required for the statistical approach we introduce, and we return to 

this limitation in the discussion. 
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present the novel approach, illustrate it with a real data analysis application, and finally discuss 

its strengths and limitations.  

The Categorical G×E Model 

 When the environmental moderator is categorical (e.g. impoverished vs. not 

impoverished), estimating G×E is a straightforward application of multiple-group structural 

equation modeling (Neale & Maes, 2005, Chapter 9). In the case of a dichotomous moderator 

and an ACE model fit to data from monozygotic twins reared together (MZ) and dizygotic twins 

reared together (DZ), instead of the usual two-group model (one group for MZ twins and a 

second for DZ twins), a four-group model is fit (with additional groups for “low risk” and “high 

risk” environments each for MZ and DZ twins). Such a model is represented in Figure 1A. Each 

of the A, C, and E component paths has two labels (e.g. al and ah) to indicate that the parameter 

is estimated separately for the low (“l”) and high (“h”) risk levels of the moderator. To test for 

G×E, parameters for the low and high risk models are constrained to be equal and compared by a 

χ2 test to one in which they are allowed to differ between the environmental exposure groups. If 

the “a” (or c or e) parameters cannot be constrained to be equal across environmental exposure 

groups without significant loss of model fit, then G×E is supported, as the genetic or 

environmental variance estimate (e.g., a2) significantly differs across groups.  

In cases in which the environmental moderator has been measured continuously, a 

researcher seeking to employ this method must categorize the environmental moderator variable 

by collapsing ranges of the environment into discrete bins. If there is reason to be specifically 

interested in discrete levels of environmental exposure, or if a researcher has a strong a priori 

reason to expect a discontinuous G×E effect at a known cut point, this categorical approach may 

be optimal. Without strong guidance from theory or past research, however, researchers must 
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make arbitrary or intuitive decisions regarding the number of bins to use and the ranges of the 

environment to cluster (i.e. the location of the cut points). Such decisions offer experimenter 

degrees of freedom (Simmons et al., 2011), and may fail to capture important aspects of the 

interaction.  

The Parametric G×E Model 

Purcell (2002) introduced an extension of the classical twin model for the analysis of 

G×E interaction with continuously measured environmental moderators. As depicted in Figure 

1B, this parametric G×E model controls for the main effect of the observed moderator on the 

phenotype (the “moderated mean”). Moreover, it specifies that the regression paths from latent 

biometric factors (A, C, and E) to the phenotype are parametric functions of the observed 

moderator. This approach is achieved by treating the moderator as a definition variable. This, of 

course, requires raw data, but allows for row-wise or individual-level likelihood model 

estimation such that the model-implied means and covariances are estimated for each individual 

pair. When the regression paths are specified to be linear functions of the moderator (as is 

depicted in Figure 1B), this specification produces ACE variance component estimates that are 

quadratic functions of the moderator (as the regression path must be squared in order to produce 

a variance expectation). When the biometric interaction model is expanded to include both linear 

and quadratic interactions on the paths (such that the ACE variance estimates are quartic with 

respect to the moderator), one can test whether genetic variance is an inverted U-shaped curve, 

with the highest genetic variance in the “average” environment (e.g., Burt et al., 2006). Others 

(e.g. Turkheimer & Horn, 2014) have endorsed exponential functions.2 Still others have 

                                                 
2 “We prefer an exponential function rather than a quadratic one as a model of the variances. Exponential models 

share with quadratic models the desirable property of being positive, but have the additional advantage of being 

monotonic uniformly increasing or decreasing with respect to the moderator. Quadratic models of variances are by 
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considered how to test for G×E when the moderator is not necessarily shared by members of a 

twin pair, but may differ between twins, thus allowing for the simultaneous consideration of 

gene-environment correlation (e.g., Johnson, 2007; Medland et al., 2009; Molenaar & Dolan, 

2014; Price & Jaffee, 2008; Rathouz et al., 2008; Schwabe & van den Berg, 2014; van der Sluis 

et al., 2012; van Hulle et al., 2013). We do not recapitulate these theoretical and technical issues 

here, but simply refer the reader to this previous literature, and note here that these multivariate 

extensions also model the paths from the biometric components to the phenotypes as parametric 

functions of the moderator.  

LOSEM: LOESS with Latent Variables 

As noted above, categorical G×E is of limited utility when an environmental moderator 

of interest is truly continuous (e.g., socioeconomic status), because this approach either lumps 

together potentially distinct environmental contexts, risks cutting the data at suboptimal points, 

or loses information. Parametric G×E solves these problems by retaining the full continuous 

range of the environmental variable. Yet parametric G×E models can still be limiting in that the 

functional form (or competing functional forms) of the interaction must be chosen a priori. At 

times, researchers may not have strong theoretical predictions regarding how potential 

moderating effects play out in particular parts of the environmental range, or they may suspect 

that the polynomial function they are estimating is not capturing theoretically relevant effects. 

One intuitive approach might be to categorize a continuous moderator into several bins and apply 

a categorical G×E approach to get a sense of the shape of the interaction and which bins might 

be equated without cost. However, if the bins chosen are too broad, they combine over levels of 

a moderator for which genetic variance may differ substantially. Bins that are too narrow rely on 

                                                                                                                                                             
definition parabolic with respect to the moderator, and once again, biometric interaction models are difficult enough 

to explain without having to account for why a biometric variance first increases, and then decreases, as a function 

of SES” (Turkheimer & Horn, 2014, p. 44). 
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small subsets of the data and are likely too noisy to detect significant effects. Moreover, the 

optimal cut points in the continuous distribution of the moderator by which to best form the 

discrete bins are unlikely to be known, both due to uncertainty about the shape of the function, 

and its correct location along the moderator axis which is often measured on scales lacking an 

absolute reference point. Trying many different binning strategies to see which one “works” 

inflates the risk of false discovery (Benjamini & Hochberg, 1995).  

Local structural equation modeling (LOSEM) is a method developed by Hildebrandt et 

al. (2009) to nonparametrically estimate differences in structural equation model parameters 

across different levels of a measured putative moderator. LOSEM is the latent variable analogue 

of LOESS (LOcal regrESSion), or locally weighted regression (Cleveland & Devlin, 1988), a 

nonparametric regression method that fits a “smoothed” line (a loess curve) through the cloud of 

data points. Both methods draw on kernel regression techniques, in which statistical models are 

locally estimated for kernels of the data (Li & Racine, 2007). In this context, the term kernel 

refers to a weighting function used to select datapoints to be used in local analyses. In the 

following sections, we explain how LOSEM can be applied to produce a nonparametric 

“smoothed” estimate of how genetic and environmental variances differ across the observed 

range of a measured family-level environment. The use of the LOSEM approach has the 

potential to illuminate patterns of G×E that may otherwise be obscured, and may help guide 

researchers toward selecting the most appropriate parametric G×E models. 

Step 1: Specify a general model. First, a general biometric structural equation model is 

specified exactly as would be done in a non-G×E context. Note that although the hypothesis 

being examined predicts that some of the parameters of this model differ as a function of a 

moderator variable, this moderator is not included in the general structural equation model. 
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Typically, in the simplest nonparametric G×E case in which one is interested in whether the 

paths from the biometric components to a phenotype differ as a function of the moderator, the 

specified model would simply be a classical univariate twin ACE model. Of course alternate 

univariate forms are possible, such as a dominant genetic model (ADE), or a model without a 

shared environmental estimate (AE). Because the nonparametric approach does not require any 

moderation effects to be explicitly specified in the general model, it is also easily applied to more 

complex multivariate models (e.g., Cholesky decomposition, correlated factors model, simplex, 

etc.; Neale & Maes, 2005). The primary parameters of interest are the pathways from the latent 

genetic and environmental factors to the phenotype, which, when squared, represent the variance 

accounted for by the ACE components. 

Step 2: Select a range of target values of the moderator. Second, a moderator and 

range of target values of the moderator are selected. For instance, one might be interested in 

characterizing the magnitudes of latent genetic and environmental influences on a phenotype 

across the socioeconomic status (SES) range from 2 SD below the mean SES to 2 SD above the 

mean SES. Care should be taken to avoid extremely high and low value of the moderator (e.g., 

+/- 3 SD), as the effective sample size may become small and the estimates imprecise. If SES is 

on a z-scale, the target values of the moderator would be a vector from -2 to +2. To gain 

sufficient clarity of the trends, the vector could include increments of .1 or even .01. Importantly, 

this decision is not the same as the decision regarding how many bins to use in a categorical G×E 

model. The LOSEM approach makes full use of the entire dataset for every model, whereas 

binning separates data into discrete subsets. By using smaller intervals for the target value of the 

moderator in the LOSEM approach, one simply reduces the distance between estimates (i.e. the 

resolution of the trend), but the estimates do not change depending on the interval. Note also that 
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choosing smaller interval sizes does not reduce the effective sample size as the weighting 

function does not depend on the interval size (see below). The only tradeoff for choosing very 

small intervals is computation time. 

Step 3: Specify a weight function. Third, the model of interest is estimated once at each 

target value of the moderator in the vector created under Step 2. At each step, the observations – 

(rows of data in the model) – are weighted by their distance from the target value of the 

moderator. For instance, individuals for whom the moderator  = 1 will be weighted most highly 

when the target value is 1, but weighted much less when the target value is -1. In this way, every 

row in the data set is informative at all levels of the target, but observations that are closest to the 

location of the target value of the moderator are privileged (weighted more highly) compared to 

distant observations. Thus, if one were interested in characterizing genetic and environmental 

influences across -2 SD SES to +2 SD SES in increments of .01, a total of 401 ACE models 

would be estimated. Each model would be based on the full dataset, but would give different 

weight to the data based on the specified target level of the moderator. 

We follow Hildebrandt et al. (2009) and Gasser et al. (2004) in recommending that 

weights be calculated based a kernel function in which the bandwidth (bw) depends on the total 

sample size (N pairs of twins) and the variability of the moderator (SDM): 

bw = 2 * N(-1/5) * SDM 

This bandwidth selection is based on a rule of thumb designed to minimize and balance the 

amount of bias (i.e., oversmoothing) and variability (i.e., undersmoothing) in the produced 

estimates (Li & Racine, 2007). As the bandwidth is progressively expanded, the weighting 

function approximates a uniform distribution across the moderator, and the “local” results 

actually weight all of the data equally. In this case, the estimates are biased in the sense that they 
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do not capture the nonparametric trend. As the bandwidth is progressively shrunk, the weighting 

function only considers data at a specific level of the moderator. When these estimates are 

combined to produce the nonparametric trend, variability in the estimates is maximized. We 

return to alternative specifications of the weighting function in the discussion. 

The scaled distance (zi) between the value of M for each individual i and the target value 

of M is then scaled according to bw: 

zi = (Mi - target M) / bw 

The kernel weights (K) for each individual i, for each target value of M, is then calculated based 

on this distance, and re-scaled as a final weight (W) to vary between 0 and 1: 

K = (1 / √2π) * exp (-zi
2 / 2) 

W = K / .399 

Figure 2 shows example weighting distributions. The distribution of weights varies as a 

function of sample size and the standard deviation of the moderator. Larger sample sizes and 

smaller standard deviations of the moderator both result in weighting distributions more tightly 

focused around the target moderator value. Figure 2A illustrates weighting distributions based on 

data used in the current study (N = 650, moderator SD = 1).3 Figure 2B shares the moderator SD 

of Figure 1B2B, but is based on a ten times larger sample (N = 6500) to demonstrate how the 

distribution of weights shrinks with larger samples. The bw parameter is the primary determinant 

of the width of the weighting distribution. If desired, this parameter is easily manipulated by the 

researcher to produce different levels of smoothing.  

Step 4: Run the model for each target value of the moderator and compile estimates. 

Finally, the biometric model of interest is estimated once at each target value of the moderator, 

                                                 
3 Due to ECLS-B data regulations, all sample sizes are rounded to the nearest 50. 
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each time weighting the observations by their distance from the current target. To examine the 

obtained nonparametric G×E curve, the user may then plot parameters of interest (e.g., the 

squared additive genetic path from the A factor to phenotype) as a function of the value of the 

target moderator. This approach renders the nonparametric function of the genetic variance 

moving smoothly across values of the environmental moderator.  

The LOSEM approach to G×E is shown as a path diagram in Figure 1C. Each parameter 

is estimated at each of a range of target values of the continuous moderator (in Figure 1C we 

specify this range in terms of[etd5] z-score standard deviationsz units above and below from a 

mean of 0), and this information is aggregated to yield a nonparametric function of the parameter 

estimates across the chosen range of the moderator. In other words LOSEM involves running a 

large number of models — one for each “target” value of the moderator —the estimates from all 

models are combined into a nonparametric representation of how parameters differ across the 

range of the moderator.   

Work flow and implementation in Mplus and R. The online supplement includes 

example scripts to implement LOSEM. For analysts using Mplus (Muthén & Muthén, 1998-

2010), automating the multiple models that need to be run can be accomplished using the 

“MplusAutomation” package in R (Hallquist, 2011; Ihaka & Gentleman, 1996). This package 

includes commands to (1) create multiple modified input files based on a template, (2) run all of 

the input models, and (3) extract and combine model parameters from the output files (see 

Appendix A and B for sample scripts). R can then be used to extract model parameters and bind 

these into a dataset across target levels of the moderator with associated model parameters and 

standard errors. This dataset can then easily be used to plot dynamic nonparametric G[etd6]×E 

interaction trends. Using OpenMx (Boker et al., 2011), the functionality of R can be used to 
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accomplish similar tasks directly (see Appendix C for sample scripts). These packages make it 

extremely easy to run, extract, and aggregate all of the necessary models and parameter 

estimates. The whole process can take as little as 15 minutes. 

In the sections that follow, we demonstrate the power of this approach by re-analyzing 

gene × SES findings and show a potentially novel pattern of result that would have been 

obscured had LOSEM not been employed. Finally, we make several methodological 

recommendations concerning the judicious application of LOSEM.   

Example: Childhood SES moderation of Genetic Effects on Cognitive Ability in the ECLS-

B 

 We have previously used LOSEM in a study of how birth cohorts differ in genetic 

influences on fertility behavior (Briley et al., under review[D7][etd8]) and in a study of how the 

relation between pubertal timing and depression varies as a function of SES (Mendle et al., under 

review). In both of these cases, we expected nonlinear G×E trends, but it was unclear what the 

exact functional form was. LOSEM allowed us to explore the data and make informed analytic 

choices. Here we present another example of LOSEM for the analysis of G×E interaction using 

data from the Early Childhood Longitudinal Study – Birth Cohort (ECLS-B; Snow et al., 2009). 

Previous publications have reported results of parametric gene × SES interaction analyses in this 

dataset. Tucker-Drob et al. (2011) reported that longitudinal increases in mental ability between 

10 months and 2 years were more heritable among children being raised in higher SES families. 

Rhemtulla and Tucker-Drob (2012; also see Tucker-Drob & Harden, 2012) reported that age 4 

math, but not age 4 reading, was more heritable among children being raised in higher SES 

families.  
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These results are consistent with a bioecological model, in which resource-rich 

environments allow for personal interests, preferences, desires, and temperaments to play a large 

role in development (e.g., Bronfenbrenner & Ceci, 1994; Tucker-Drob et al., 2013). However, 

alternative theoretical models have been proposed in which there is a nonlinear relation between 

environmental circumstances and the genetic variance of cognition (e.g., Scarr, 1992; 

Turkheimer & Gottesman, 1991). Under a model of the “average expectable environment” 

(Scarr, 1992, p. 5), genetic variance is predicted to increase as the environment transitions from 

bad to average, but then plateau following. According to this perspective, there is a dramatic 

difference between growing up in poverty and growing up in the middle class, but a less 

appreciable difference between growing up middle class and wealthy. By applying LOSEM to 

nonparametrically model the shape of the G×SES interactions, we seek to determine whether 

SES-related increases in genetic variance occur throughout the range of the SES distribution or 

are confined to a specific range of the SES distribution. We apply LOSEM to all available 

cognitive phenotypes: 10 months Bayley mental development, age 2 years Bayley mental 

development, age 4 years math and reading readiness, and kindergarten math and reading 

achievement. For methodological details on the ECLS-B sample and measurement of these 

phenotypes, including sample statistics, please see Rhemtulla and Tucker-Drob (2012), Tucker-

Drob and Harden (2012), Tucker-Drob (2012), and Tucker-Drob et al. (2011). 

Results 

 Figure 3 compares LOSEM results with traditional Purcell (2002) results. The first two 

columns present variance accounted for in the phenotype by ACE factors. Dotted lines represent 

+/- 1 standard error of the estimate. The last two columns present the main effect of the 

moderator. For the LOSEM approach, the graph plots the estimated mean of the phenotype (i.e., 
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the estimated twin mean of cognitive ability at SES = -2 to +2). For the Purcell (2002) approach, 

the graph plots the regression parameter for the main effect of SES. Table S1 and Supplementary 

Files S1-2 present parameter estimates and model fit statistics for models fit for the current study 

and a more complete analytic description. In the context of the Purcell (2002) model, we found 

significant genetic interaction terms for age 2 Bayley (a' = .193, p < .001) and age 4 math (a' = 

.164, p < .001). Significant interaction terms for the shared environment (c' = .106, p < .01) and 

the nonshared environment (e' = .075, p < .001) were found for age 4 reading. No other 

interaction terms were significant for the standard application of the Purcell (2002) model. 

Higher levels of SES were associated with higher levels of ability. These coefficients ranged 

from .030 (n.s.) to .476 (p < .001, see Table S1). 

Across most models, there was generally good consilience between the LOSEM results 

and the Purcell (2002) specification. For example, the estimate of genetic variance from the two 

approaches correlated very strongly at -2 SES (r = .98), -1 SES (r = .94), -.5 SES (r = .94), +.5 

SES (r = .96), and +1 SES (r = .91), but less strongly for +2 SES (r = .55). This is primarily due 

to the large nonlinear shifts observed at high levels of SES using LOSEM, particularly for 

kindergarten reading. More descriptively, the approaches largely agree on the directional trend of 

the variance components. For age 1 and age 2 Bayley, shared environmental influences decrease, 

nonshared environmental influences decrease slightly, and genetic influences increase with 

increasing SES across both analytic approaches. The general directional trends are also very 

similar for age 4 math and reading. The results are less consistent for kindergarten math and 

reading as the LOSEM results imply fluctuating levels of genetic and environmental influences, 

but the Purcell (2002) results imply very little change in parameters across different SES levels.  
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Despite the general agreement between approaches in broad trends, a few substantial 

differences are evident. Most notably, the linear Purcell (2002) interaction model for 

kindergarten reading ability (Figure 3F) is clearly miss-specified. The LOSEM results indicate 

relatively low genetic variance at low SES, a spike in genetic variance near average levels of 

SES, and a steep decline in genetic variance at high levels of SES. The linear specification of the 

Purcell (2002) model indicates that there is essentially no difference in genetic variance across 

SES, obscuring rather large differences apparent in the LOSEM results. Figure 4 presents a 

specification of the Purcell (2002) model that includes a quadratic interaction term, which is 

significant for genetic influences (see Table S1).  

As discussed earlier, it may be theoretically relevant where in the research range of 

interest of the moderator most of the increases or decreases in genetic variance occur. For 

example, genetic variance may increase by a total of .4 between SES of -2 and +2, but .3 of that 

increase may occur between SES of -0.5 and +0.5 and only .1 between SES of +1 and +2. This 

would be more in line with the “average expectable environment” model, which predicts the 

largest difference to be between bad and good-enough environments, not between good and 

excellent environments. The LOSEM approach easily captures this important information. On 

the other hand, the Purcell (2002) model, due to its specification, tends to predict more extreme 

increases for more extreme values of the moderator. At least for the six phenotypes under 

investigation in the current study, this does not seem well-warranted.  

 Table 1 compares differences in the magnitude of genetic variance across meaningful 

levels of the moderator for each analytic approach. In particular, we were interested in whether 

interaction effects were concentrated at the low-range (SES from -2 SD to -1 SD, Δ a2 low), mid-

range (SES from -0.5 SD to +0.5 SD, Δ a2 mid) or high-range (SES from +1 SD to +2 SD, Δ a2 
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high).4 Both approaches indicate that there is very little increase in genetic variance across the 

low-range of SES. Focusing on the LOSEM approach, genetic variance increases to a greater 

extent in the mid-range than in the high-range for all phenotypes except age 1 Bayley and age 4 

reading (for which there was essentially no interaction). Turning toward the Purcell (2002) 

results, this trend is not evident as the increase in genetic variance is always higher for the high-

range of SES (as required by the model).  

Recommendations for employing LOSEM 

In this section, we offer initial recommendations on effective ways to use the LOSEM 

approach to inform studies of G×E interaction.  

Define the research range of interest. The research range of interest refers to the span 

of the moderator that is under investigation (Roisman et al., 2012). For example, the plots in 

Figure 3 are based on a research range of interest between - 2 SD and + 2 SD of SES, a region 

that contains nearly all of the empirical observations and does not extend to regions of no data 

availability. Using a parametric approach, it would be analytically feasible to explore the range 

from -8 SD to -4 SD of SES, but this range would extrapolate well beyond the data. Similarly, 

LOSEM trends identified where data density is sufficient could be extrapolated to nonsensical 

regions. Applying LOSEM to these regions would likely result in nonsensical estimates as the 

majority of the data would receive relatively equal, and very small, weight in the analysis. These 

practices should be avoided. Of course, researchers should interpret results based on sufficient 

data points and should take care to report on their moderator in reference to a general standard 

(i.e., whether the moderator spans from bad to normal, such as child maltreatment to no child 

maltreatment, or from bad to good, such as is the case for most standardized measures of SES in 

representative samples).  

                                                 
4 Of course, such an approach is inadequate to capture many of the nonlinearities found in the data.  
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 Get the main effects right. Just as the parametric G×E approach requires that the shape 

of the interaction effect conform to a parametric function, it also requires that the main effect of 

the moderator conform to a parametric function. The LOSEM approach estimates the main effect 

of the moderator on the phenotype nonparametrically. When comparing parametric and LOSEM 

approaches, it is important to first scrutinize the extent to which the main effects across levels of 

the moderator are consistent across the two methods prior to interpreting the interaction effects. 

If the main effects differ, the interaction component may also differ, as the biometric components 

in both models, including the interaction component model phenotypic variance that is unique of 

the moderator. In a situation in which the main effects from the two approaches are not in close 

agreement, one could use the main effect trend line produced by the LOSEM approach (column 

3 of Figure 3 and column H of Supplementary File 2) to residualize the phenotype using this 

trendline prior to implementing the parametric model. In this case, the main effect of M and the 

Y intercept could be set to zero the estimated main effect of the moderator in the parametric 

model. should be very close to zero[TB9], and the mean trends in the phenotype would be identical 

to the LOSEM trends. This will yield a set of Purcell-typewould enable for parametric and 

nonparaemtic modeling of variance in the exact same residuals, such that direct comparisons 

between the two approaches could be made. results for variance components that may validly be 

compared to the LOSEM results[TB10][etd11].  

 Choose the right baseline model. Standard approaches to model fitting/trimming (e.g., 

Neale et al., 1989) can guide the selection of reduced biometric models (e.g., an AE model over 

an ACE model) or an alternative model (e.g., one including D rather than C variance 

components). In the case of LOSEM, the possibility exists for reducing or otherwise varying 

models differently at each target value of the moderator. Such locally-distinct genetic 
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architectures are unlikely to have biological validity. Different genetic architectures would imply 

mechanisms that exist in the organism exerting not just varying influence on the phenotype, but 

are actually absent at some levels of the moderator. For this reason, we recommend that the same 

variance components are modeled across all levels of the moderator, with differences in 

magnitude being the primary focus. Still, it is conceivable that there are highly complex 

processes at play that give rise to a situation, for example, in which dominant genetic influences 

on a phenotype are only manifest at certain levels of a moderator. Ultimately, this is a data- and 

topic-specific question, and the near-endless modeling possibilities must be tempered by the 

principle of parsimony. 

 Choose the right tool from the toolkit. The major advantage of using a nonparametric 

exploratory approach, such as LOSEM, is the ability to detect (or to rule out) nonlinear G×E 

interactions. In the current application of LOSEM, we detected model misspecification for 

kindergarten reading ability and corrected this by applying a more appropriate interaction 

function (Figure 4). This pattern would not be detected given typical model fitting approaches, 

but is very easily noticed when nonparametric approaches are used to inform model selection. Of 

course, additional data are necessary to evaluate the replicability of the non-linearity, which was 

only observed for one measure (reading) and at one developmental period (Kindergarten). It is 

unclear whether other G×E interaction studies may have reported null (or positive)biased 

[TB12][etd13]results simply due to inappropriate statistical models. Incorporating flexible, 

nonparametric approaches as a data analytic step can help avoid such pitfalls. 

Examine differences in the magnitude of variance across meaningful ranges of the 

moderator and the proportion affected. To supplement basic visual inspection of LOSEM 

trends, differences in the magnitudes of variance offers a convenient way to quantify how 
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quickly genetic or environmental influences shift over meaningful levels of the moderator. For 

example, Table 1 demonstrates how this approach can help guide interpretation of trends. 

Further, Roisman et al. (2012) suggested calculating the “proportion affected” when evaluating 

the shape and importance of candidate G×E interaction results. Individuals are “affected” by the 

interaction if they experience a level of the environment beyond the crossover point of a 

candidate G×E interaction (i.e., the point of the moderator at which two genotypes appear 

equivalent on a phenotype). The region beyond this point indicates that genotypes are responding 

differently to the environment. They argued that if 16% or 2% of the sample falls above this 

point, then that would provide good or speculative evidence, respectively, for the practical 

importance of an interaction effect. This convention was suggested based on reference to a 

normal distribution in which 16% and 2% of the sample would be 1 and 2 SD above the mean, 

respectively. In the current context, the spike in genetic variance for age 4 math occurs at SES of 

+1.5 SD, indicating that approximately 7% of the sample is “affected” by the spike. Thus, there 

is decent evidence that this increase in genetic variance has a meaningful effect (i.e., accounting 

for approximately half of the total increase in genetic variance, see Table 1) on a meaningful 

proportion of the sample.  

Discussion[TB14][D15]Conclusions and Future Directions 

 We have demonstrated the utility of a novel approach to analyzing G×E interaction 

results. LOSEM produces flexible, dynamic nonparametric estimates of  trends G×E interaction 

that can detect nonlinearities and inform subsequent confirmatory model fitting. We applied this 

approach to a highly studied effect with widely used data to make novel insights concerning 

trends found in the data. We plotted nonparametric estimates of genetic, shared environmental, 

and nonshared environmental variance across levels of SES in the ECLS-B sample for six 
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cognitive ability phenotypes. Using the LOSEM approach, we detected an inverted-U shape 

curve for the genetic variance of kindergarten reading ability. Following up this approach with a 

standard parametric model that included a quadratic term (Purcell, 2002), we confirmed that this 

nonlinearity was statistically significant. As mentioned previously, this result for a single 

phenotype at a single age requires additional replication and investigation before it can inform 

theory, but the process of discovery represents a key strength of LOSEM.  

Additionally, we used the flexible LOSEM results to probe where in the SES distribution 

the majority of the differences in magnitude of genetic variance occur. For several phenotypes, 

the majority of the G×SES interaction occurred in the transition from somewhat bad to 

somewhat good environments with almost no increase associated with the good to excellent 

[etd16]range. Again, this trend would be completely missed if relying solely on parametric, linear 

models. Of course, the current study is primarily concerned with displaying the utility of the 

novel LOSEM approach for G×E interaction studies. Much more empirical evidence will be 

needed to evaluate the exact functional form of this interaction across different ages and 

cognitive phenotypes. 

As with all exploratory approaches, LOSEM has potential pitfalls. Exploratory data 

analysis opens up researcher degrees of freedom that might allow for inappropriate manipulation 

of data to capitalize on noise (Simmons et al., 2011). For example, LOSEM results could be used 

to find just the “right” points of the moderator to dichotomize or categorize different groups. A 

related pitfall would be to over-interpret minor deviations of the LOSEM trends as meaningful 

effects. We have provided some recommendations for avoiding this pitfall, such as using the 

proportion affected by the trend and following LOSEM analyses with confirmatory approaches.  
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Interpretation of LOSEM must balance the detection of meaningful nuance from random 

noise. This balance is primarily determined by the bw parameter. When this parameter is 

increased, noise in the estimates is reduced, but this increases the bias of the estimatesmore 

nuanced micro-trends may be missed. When shrunk, noise in the estimates is increased, but the 

estimates conform closely to local subsets of the data, thus increasing the capability to pick up on 

nuanced trends, but also increasing the chance of picking up on statistical noise. and have greater 

variance. This bias-varianceThis tradeoff is inherent in kernel regression methodology (Li & 

Racine, 2007). We have followed the recommendation of Hildebrandt et al. (2009) and Gasser et 

al. (2004) in calculating bw based on the sample size and standard deviation of the moderator. 

When certain assumptions [etd17]hold perfectly, it can be shown that this produces the ideal 

bandwidth (Li & Racine, 2007). As discussed extensively in previously published work on 

nonparaemteric regression methods, a number of other data driven methods exist for choosing 

the optimal bw (Bowman, 1984; Rudemo, 1982; . These include “plug-in” methods in which 

several different bw’s are used to determine if fit differs[etd18], cross-validation in which a bw that 

minimizes the integrated mean square error is found [etd19](Bowman, 1984; Rudemo, 

1982Hurvich et al., 1998), and minimization of a corrected Akaike’s Information Criterion 

designed specifically for nonparametric regression (Hurvich et al., 1998[etd20])), along with 

adaptive bandwith approaches, ni which local estimates are weighted by a constant number of 

nearby datapoints. Each of these methods may provide slightly different values for bw and 

therefore possibly produce substatntively different end resultstrend estimates. Additionally, we 

followed Hildebrandt et al. (2009) and Gasser et al. (2004) in recommending the kernel function 

follow a Gaussian distribution, but a number of other functional forms are available.  
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These include uniform, triangular, quartic, bisquare, or any other desirable functional 

form. Alternatively, an adaptive bandwidth could be used in which a specific number of nearby 

data points are included in every analysis. This has the desirable feature of ensuring that every 

local estimate is based on sufficient data and is less susceptible to “edge” effects (i.e., suspect 

estimates at extreme ends of the moderator which are not symmetrically weighted simply due to 

the distribution of the moderator). 

In its current form, LOSEM is primarily an exploratory analytic tool, but inferential 

applications would be desirable. Hülür et al. (2011) used permutation as an inferential tool for 

LOSEM in a non-behavioral genetic context. They created 1,000 permuted datasets in which 

they randomly assigned each datapoint a value of the moderator and estimated the structural 

parameter of interest in each dataset. They compared the trend derived from the observed data to 

the 95% confidence interval of the trend from the permuted data across the moderator. They 

interpreted estimates derived from the observed data that did not overlap with the 95% 

confidence interval of the permuted data as evidence of statistical significance. This approach is 

limited in the sense that it does not produce a single test statistic. Racine (1997) provides a robust 

and consistent significance test for nonparametric regression which is also based on resampling 

techniques. This approach generates a test statistic of whether the partial derivative of a given 

nonparametric regression coefficient is zero (i.e., the null hypothesis) or is greater than zero (i.e., 

the alternative hypothesis). [etd21]Alternatively, one could test whether the LOSEM results 

significantly differ from a parametric G×E model if the null distribution is based on the 

parametric results rather than a model of no interaction. Because the distribution of the test 

statistic is unknown, pivoted bootstrap resampling is used to generate the null distribution, and a 

single significance test can be calculated. [etd22]Both of theseResamping approaches are would be 
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computationally intensive, as they. T hey would require performing LOSEM on the observed 

data, generating many resamplings of the data, and then performing LOSEM on each resampled 

dataset. Further, Racine’s (1997) significance test does not directly translate to a structural 

equation modeling context, but similar principles could be applied. It would be desirable if a test 

could be constructed based on LOSEM results (e.g., Figure 3) that did not require the use of raw 

data[D23].     

A major limitation of the LOSEM approach is that it requires the environmental 

moderator to be measured at the family-level. Quantitative behavior genetic methods use the 

sibling pair as the unit of analysis, and the weighting function must be applied at this level. 

Therefore, the LOSEM approach, in its current form, is unable to estimate G×E for moderators 

that vary within families. Several papers have developed and scrutinized parametric G×E 

methods for moderators that vary within families (Rathouz et al., 2008; van Hulle et al., 2013; 

van der Sluis et al., 2012), which allow for modeling of gene-environment correlation. Future 

efforts to develop LOSEM methods to handle such data structures would be highly valuable. 

In conclusion, Conclusion 

LOSEM can be a valuable tool in the behavior genetic toolkit for probing G×E 

interactions. As researchers have successfully adopted LOESS approaches to regression to 

explore and visualize data, LOSEM can be applied to behavior genetic data to detect 

nonlinearities or discontinuities of trends that would otherwise be missed. In the online 

supplement, we provide scripts for implementing LOSEM in Mplus and in OpenMx. We 

encourage researchers to apply LOSEM to better understand the complex interplay between 

genetic and environmental influences. 
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Figure Captions 

Figure 1. Path diagrams representing each type of G×E model. In all models, latent additive 

genetic (A), shared environmental (C), and nonshared environmental (E) factors with are 

estimated for a phenotype for twin1 (Y1) and a phenotype for twin2 (Y2). The A factors 

correlate at 1.0 for monozygotic twins and at 0.5 for dizygotic twins. The C factors correlate at 

1.0, and the E factors are uncorrelated. A. Categorical G×E in which separate parameters are 

estimated for low risk (al, cl, el, and ul) and high risk (ah, ch, eh, and h) environments. B. 

Parametric G×E model in which the focal pathways are specified to be a linear combination of 

parameters representing main effects (a, c, e) and interaction terms (a', c', and e') of the ACE 

components with the moderator (M). The phenotypes are regressed on MThe main effect of M is 

represented as a “moderated mean” (B1b1). The intercept of the phenotype is also estimated , and 

residual means are estimated (B0b0). C. Nonparametric LOSEM G×E model in which local 

parameters for each level of the moderator are estimated (âM, ĉM, êM, µ̂Mû[etd24]M), noting the 

circumflex refers to the fact that these parameters are based on weighted data rather than data 

precisely at the level of M. The subscript [-z…0…+z] refers to the fact that the parameters are 

actually vectors that include weighted estimates from a lower bound of M to an upper bound of 

M. Here, we assume that standardized values of M are used and denoted as z.[etd25] 

Figure 2. Example distributions of weighting variable (y-axis) at three target levels of the 

moderator (x-axis). Data closer to the target level of the moderator carries more weight in the 

analysis. The distribution around the target is smaller with larger sample size and smaller 

standard deviation of the moderator. A. Distribution for the current analysis based on data from 

ECLS-B (N = 650, SD = 1). B. Distribution for hypothetical analysis based on data from ECLS-

B with ten times the number of participants.  
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Figure 3. Comparison of LOSEM and Purcell (2002) gene × socioeconomic status results for 

cognitive ability measures from ECLS-B. A. Age 10 months Bayley. B. Age 2 years Bayley. C. 

Age 4 years Math Achievement. D. Age 4 years Reading Achievement. E. Kindergarten Math 

Achievement. F. Kindergarten Reading Achievement.  

Figure 4. LOSEM, linear Purcell (2002), and nonlinear Purcell (2002) model for Kindergarten 

reading achievement.  

 

 



   LOCAL ESTIMATION OF G×E  33 

 

Table 1. Comparison of differences in the magnitude of genetic variance across levels of SES between LOSEM and Purcell (2002)  

 LOSEM Purcell 

Phenotype Δ a2 Δ a2 low Δ a2 mid Δ a2 high Δ a2 Δ a2 low Δ a2 mid Δ a2 high 

Age 10 

months 

Bayley 

.162 -.025 -.032 .246 .027 -.005 .007 .019 

Age 2 years 

Bayley 

.322 -.044 .372 -.133 .612 .041 .153 .265 

Age 4 years 

Math 

.412 -.003 .189 .186 .576 .063 .144 .225 

Age 4 years 

Read 

.112 .046 -.102 .092 .059 .013 .014 .017 

K Math -.025 .022 .096 -.148 -.055 -.014 -.014 -.014 

K Read -.204 .028 .212 -.387 .051 .012 .013 .014 

Notes. K = kindergarten. Δ a2 = (a2 at SES +2) – (a2 at SES -2). Δ a2 low = (a2 at SES -1) – (a2 at SES -2). Δ a2 mid = (a2 at SES 

+0.5) – (a2 at SES -0.5). Δ a2 high = (a2 at SES +2) – (a2 at SES +1). Linear specification of Purcell (2002) used for all 

comparisons. 
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Figure 1 
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Figure 2 
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Figure 3 
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Figure 4. 
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Nonparametric Estimates of Gene × Environment Interaction Using Local Structural 

Equation Modeling 

Online Supplement 

 In this online supplement, we provide additional details about our methodological 

approach, model fit statistics, parameter estimates, and example scripts to carry out local 

structural equation modeling (LOSEM). 

Methodological Approach 

 We used data from the Early Childhood Longitudinal Study – Birth Cohort (ECLS-B; 

Snow et al., 2009). This sample is nationally representative of children born in 2001 in the 

United States and includes families from a wide range of socioeconomic contexts. The twin 

subsample includes approximately 650 pairs of twins, of which approximately 150 are 

monozygotic pairs and 450 are dizygotic pairs.5 Zygosity was determined by physical similarity 

ratings made by trained interviewers. For all analyses, we used a socioeconomic status (SES) 

variable that was based on parental education, occupational prestige, and household income at 

the baseline wave. We used age 10 months Bayley mental development index, age 2 years 

Bayley mental development index, age 4 years math readiness, age 4 years reading readiness, 

kindergarten math achievement, and kindergarten reading achievement as indicators of cognitive 

ability. All cognitive measures are highly reliable and well-validated (see Snow et al., 2009 for 

full description). All variables were standardized prior to analysis. 

 To apply the LOSEM approach, we used a classical univariate twin model. This model 

decomposes variance in a phenotype into that which is due to additive genetic effects (A), shared 

environmental effects (C), and nonshared environmental effects (E) by using the known variation 

in genetic similarity across monozygotic and dizygotic twin pairs. This is accomplished by 

                                                 
5 Sample sizes are rounded to the nearest 50 in compliance with ECLS-B data restrictions. 
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specifying that the variance in the observed phenotype is partitioned between three latent ACE 

factors created for each member of the twin pair. For monozygotic twins, the correlation between 

A factors is set to 1.0, and for dizygotic twins, the correlation between A factors is set to 0.5. 

This reflects the amount of shared segregating genetic material between siblings. Shared 

environmental factors are set to correlate at 1.0, by definition, and nonshared environmental 

factors are set to correlate at 0.0, by definition. Following this specification, the pathways from 

the latent ACE factors to the phenotype can be used to infer genetic and environmental 

influences. This model acts as the baseline model for the LOSEM approach. Then, models are fit 

to the data at different target levels of the moderator (SES) to produce smoothed estimates of 

genetic and environment influences. 

 The Purcell (2002) model builds on this baseline model to explicitly include the 

moderator (SES) in the model. The main effect of the moderator on the phenotype is controlled. 

Then, the pathways from the latent ACE factors are constrained to be a linear function of the 

moderator (e.g., b + b'*SES) which produces quadratic variance components with respect to the 

moderator. To evaluate nonlinear variance component trends, a quadratic term can be included 

(e.g., b + b'*SES + b''*SES2) to produce quartic variance components with respect to the 

moderator.  

 We applied these two approaches to test gene × environment interaction to each of the six 

cognitive phenotypes available in the ECLS-B dataset.  

Model Fit Statistics 

 Supplementary File S1 presents model fit statistics for all LOSEM models. All models fit 

the data well except for LOSEM models targeted at very high levels of SES for age 4 reading. 

Parameter Estimates 
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 Supplementary File S2 presents parameter estimates for all LOSEM models, and Table 

S1 presents parameter estimates for all Purcell (2002) models.  

Example Scripts 

 Appendix S1 presents an example template file intended to be used with the 

MplusAutomation package. The template file is very similar to a standard input file, but includes 

a section specifying certain iterators to create multiple input files. Appendix S2 presents an 

example R script for using the MplusAutomation template file and creating an aggregated 

datafile. This section is very similar to the example vignettes associated with the 

MplusAutomation package. We encourage readers to explore this material to see the full 

functionality of the package. Appendix S3 presents an example R script for using OpenMx to 

perform the LOSEM approach. The analysis is accomplished by using a pre-written function 

(umxGxE_window) specifically designed to carry out the LOSEM procedure on twin data. All 

scripts assume a datafile with individual participant families represented as rows, and columns 

representing the variables for zygo (zygosity; 1=MZ, 2=DZ), Y1 (standardized cognitive score 

for twin1), Y2 (standardized cognitive score for twin2), and zSES (standardized socioeconomic 

status).  
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Table S1. Parameter estimates from Purcell (2002) models 

 a a' a'' c c' c'' e e' e'' SES SES2 

Age 10 

months 

Bayley 

.053 

(.174) 

 

.062 

(.142) 

 

 .887 

(.030) 

*** 

-.025 

(.029) 

 .453 

(.017) 

*** 

-.018 

(.021) 

 .030 

(.037) 

 

Age 2 years 

Bayley 

.396 

(.075) 

*** 

.193 

(.055) 

*** 

 .691 

(.042) 

*** 

-.072 

(.038) 

 .468 

(.023) 

*** 

-.023 

(.020) 

 .329 

(.035) 

*** 

 

Age 4 years 

Math 

.438 

(.055) 

*** 

.164 

(.043) 

*** 

 .631 

(.042) 

*** 

-.035 

(.038) 

 

 -.387 

(.021) 

*** 

-.032 

(.019) 

 .465 

(.034) 

*** 

 

Age 4 years 

Read 

.284 

(.081) 

*** 

.026 

(.063) 

 .717 

(.035) 

*** 

.106 

(.034) 

** 

 .402 

(.022) 

*** 

.075 

(.019) 

*** 

 .441 

(.033) 

*** 

 

K Math .531 

(.052) 

*** 

-.013 

(.046) 

 .582 

(.048) 

*** 

-.032 

(.046) 

 .382 

(.023) 

*** 

-.024 

(.019) 

 .476 

(.035) 

*** 

 

K Read .573 

(.042) 

*** 

.011 

(.039) 

 .619 

(.047) 

*** 

.059 

(.046) 

 .328 

(.019) 

*** 

.008 

(.015) 

 .406 

(.037) 

*** 

 

K Read 

nonlinear 

.678 

(.054) 

*** 

.015 

(.045) 

-.115 

(.046) 

* 

.608 

(.064) 

*** 

.056 

(.036) 

.008 

(.031) 

.296 

(.027) 

*** 

.003 

(.018) 

.023 

(.016) 

.405 

(.034) 

*** 

-.004 

(.029) 

 

Notes. Parameters not labeled with represent the baseline ACE effect. Parameters labeled with ' represent the interaction effect (× 

SES). Parameters labeled with '' represent the quadratic interaction effect (× SES2). Point estimates are presented with standard errors 

in parentheses. 

* p < .05; ** p < .01; *** p < .001.  
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Appendix S1 – Template File 

[[init]]   !This section defines varying iterators. 

iterators = mod; !Here, the iterator is a variable called mod. 

mod = 100:500; !Mod is a vector from 100 to 500. 

filename = “[[mod]] SES for Age 1 Bayley.inp” !Multiple files with unique names. 

outputDirectory = “C:/Mplus_Automation/Age 1”; !Target file pathway. 

[[/init]] 

 

TITLE: [[mod]] SES for Age 1 Bayley; ![[mod]] indicates each level of the iterator 

!will be used to create multiple input files. 

 

DATA: FILE IS “data.dat” 

 

DEFINE: 

 

!Rescale a standardized SES variable to have -2 to +2 SES equal 100 to 500. 

!The init section does not allow for other functions, such as seq(). 

!Add a positive constant larger than the smallest negative value. 

!Multiply by 100 so that each iteration will increment .01 of the original scale. 

 

ses100 = (zSES + 3) * 100; 

 

!Specify the LOSEM weighting approach. 

 

!bandwidth = 2*N^(-1/5)*SDmod 

bw = 2*650^(-1/5)*100 

 

!scaled distance = (moderator – target level of moderator)/bandwidth 

zx = (ses100 – [[mod]])/bw;  

!Note the inclusion of [[mod]] specifies this will vary from 100 to 500. 

 

!kernel weights = (1/(2pi)^.5)*exp(-scaled distance^2/2) 

k = (1/(6.283185^.5))*exp((-(zx^2))/2); 

 

!weight = k / .399. 

w = k/.399; 

 

VARIABLE: 

NAMES ARE 

zygo 

Y1 

Y2 

zSES; 

 

MISSING ARE ALL (-9999); 

USEVARIABLES ARE Y1 Y2 w;  !Y1 and Y2 are standardized cognitive phenotypes. 

WEIGHT = w;   !Weight based on target levels of SES. 

GROUPING IS zygo (1=mz 2=dz); 

 

ANALYSIS: 

MODEL = NOCOVARIANCES; 

TYPE = COMPLEX; 

 

MODEL: 

!Standard univariate ACE model. 

xA1 by x1*(lxa); xA1@1; [xA1@0]; 

xA2 by x2*(lxa); xA2@1; [xA2@0]; 

 

xC by x1*(lxc); xC@1; [xC@0]; 

xC by x2*(lxc); 
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xE1 by x1*(lxe); xE1@1; [xE1@0]; 

xE2 by x2*(lxe); xE2@1; [xE2@0]; 

 

x1@0; 

x2@0; 

 

[x1*](mx); 

[x2*](mx); 

 

MODEL MZ: 

xA1 WITH xA2@1; 

 

MODEL DZ: 

xA1 WITH xA2@.5; 

[xA1@0]; 

[xA2@0]; 

 

!The model constraint command can be used to calculate the variance components. 

!This also facilitates the extraction of key parameters in the next step. 

MODEL CONSTRAINT: 

NEW(lla llc lle h2 c2 e2 mean); 

 

lla = lxa; 

llc = lxc; 

lle = lxe; 

h2 = lxa^2; 

c2 = lxc^2; 

e2 = lxe^2; 

mean = mx; 

 

!Save this file as “C:/Mplus_Automation/Age 1 Template File.inp” 
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Appendix S2 – MplusAutomation R Script 

#Load (or install) the MplusAutomation package 

library(MplusAutomation) 

 

#Create input files for each level of the moderator 

createModels(“C:/Mplus_Automation/Age 1 Template File.inp”) 

 

#Run all 401 input files. Ensure that the datafile is in the folder with the files. 

runModels(“C:/Mplus_Automation/Age 1”)  

#Note, this location is referenced in template file as the outputDirectory for the 

#input files. 

 

#Put all model parameters in the age1 object. 

age1<-extractModelParameters(“C:/Mplus_Automation/Age 1”) 

 

#Pull out the unstandardized parameters. 

unstdage1<-sapply(age1, “[“, “unstandardized”) 

 

#Pull out and apply variable names. 

oldNamesage1<-names(age1) 

names(unstdage1)<-oldNamesage1 

 

#Restructure. 

lapply(names(unstdage1), function(element){unstdage1[[element]]$filename<<-element}) 

 

#Merge separate models. 

mage1<-do.call(“rbind”,unstdage1) 

 

#Pull out the reduced desired parameters (e.g., the model constraint section). 

rage1<-mage1[mage1$paramHeader==”New.Additional.Parameters”,] 

 

#Label the parameters with SES levels. 

rage1$SES<-rep(100:500, each=7) 

 

#Load (or install) the reshape package. 

library(reshape) 

 

#Create long format file. 

longa1<- melt(rage1, id.vars = c(‘SES’,’param’),measure.vars = 

c(‘est’,’se’,’est_se’,’pval’)) 

 

#Create wide format file. 

widea1<-cast(longa1,SES~param+variable) 

 

#Pull out model fit statistics. 

fita1<- extractModelSummaries(“C:/Mplus_Automation/Age 1”) 

 

#These last two commands create datafiles that have 401 rows reflecting models for 

#each target level of the moderator. The columns reflect the different parameters, 

#standard errors, or fit statistics. These objects can easily be used to plot trends 

#in R or exported. Reduced versions of these files are presented as Supplementary File 

#1 for model fit statistics and Supplementary File 2 for parameter estimates. 
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Appendix S3 – R Script for OpenMx 

#Load OpenMx 2.0 

library(OpenMx) 

#Install helper library for OpenMx (requires devtools to be installed) 

if(library(“devtools”)){ 

 install.packages(“devtools”) #install devtools 

 library(“devtools”) 

} 

if(library(“umx”)){ 

 install_github(“tbates/umx”) #install umx 

 library(“umx”) 

} 

 

#Read data. 

data<-read.csv(“C:/data.csv”, header = TRUE, sep=”,”,) 

 

#Select dependent variables. 

selDVs  = c(“Y1”, “Y2”) 

 

#Select moderator 

moderator  = “zSES”  

 

#Exclude participants that are missing on the moderator 

data  = data[!is.na(data[,moderator]),] 

 

#Subset MZ and DZ data 

mzData  =subset(data, ZYGO ==”1”,c(selDVs, moderator)) 

dzData  =subset(data, ZYGO ==”2”,c(selDVs, moderator)) 

 

#Define LOSEM increments 

targets  = seq(from = -2, to = 2, by =.01) 

 

#Run and plot for specified windows 

umxGxE_window(selDVs = selDVs, moderator = moderator, mzData = mzData, dzData = 

dzData, specifiedTargets = targets) 

 

 

 


