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1 Abstract 6 

The Gutenberg-Richter exponent b is a measure of the relative proportion of large and small 7 

earthquakes. It is commonly used to infer material properties such as heterogeneity, or mechanical 8 

properties such as the state of stress from earthquake populations. It is ‘well known’ that the b-value 9 

tends to be high or very high for volcanic earthquake populations relative to b=1 for those of tectonic 10 

earthquakes, and that b varies significantly with time during periods of unrest. We first review the 11 

supporting evidence from of 34 case studies, and identify weaknesses in this argument due 12 

predominantly to small sample size, the narrow bandwidth of magnitude scales available, variability 13 

in the methods used to assess the minimum or cut-off magnitude Mc, and to infer b.  Informed by this, 14 

we use synthetic realisations to quantify the effect of choice of the cut-off magnitude on maximum 15 

likelihood estimates of b, and suggest a new work flow for this choice. We present the first quantitative 16 

estimate of the error in b introduced by uncertainties in estimating Mc, as a function of the number 17 

of events and the b-value itself.  This error can significantly exceed the commonly-quoted statistical 18 

error in the estimated b-value, especially for the case that the underlying b-value is high. We apply the 19 

new methods to data sets from recent periods of unrest in El Hierro and Mount Etna.  For El Hierro we 20 

confirm significantly high b-values of 1.5-2.5 prior to the 10 October 2011 eruption. For Mount Etna 21 

the b-values are indistinguishable from b=1 within error, except during the flank eruptions at Mount 22 

Etna in 2001-2003, when 1.5<b<2.0.  For the time period analysed, they are rarely lower than b=1.  Our 23 

results confirm that these volcano-tectonic earthquake populations can have systematically high b-24 

values, especially when associated with eruptions. At other times they can be indistinguishable from 25 

those of tectonic earthquakes within the total error. The results have significant implications for 26 

operational forecasting informed by b-value variability, in particular in assessing the significance of b-27 

value variations identified by sample sizes with fewer than 200 events above the completeness 28 

threshold.  29 

Keywords: b-value; volcano; seismology; completeness magnitude 30 
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2 Introduction 31 

Volcanic earthquakes provide insight into physical processes acting at volcanoes, such as the 32 

mechanisms of deformation of the volcanic edifice and magma accumulation, and statistical analysis 33 

of earthquake catalogues are a key component of eruption forecasting methods (McNutt, 1996). 34 

Increased rates of earthquakes are a primary indicator of volcanic unrest, and changing locations of 35 

earthquake hypocentres can be used to map magma migration (Wiemer and Wyss, 2002). The 36 

frequency-magnitude distribution (FMD) of volcanic earthquakes can provide insight into the state of 37 

stress or material properties, and are a key component of most studies of volcanic seismicity.   38 

Where the catalogue is completely reported, the FMD, commonly takes the form of a Gutenberg-39 

Richter (GR) relation (Gutenberg and Richter, 1954): 40 

 log(𝑁) = 𝑎 − 𝑏𝑀, (1) 

where N is the total number of earthquakes of magnitude equal to or greater than M, and a and b are 41 

real, positive constants characteristic of the specific catalogue.  The parameter a is the logarithm of 42 

the number of earthquakes with M≥0, and is thus a measure of the seismicity rate of the region. The 43 

b-value represents the relative proportion of large and small events in the catalogue. It is best 44 

calculated or inferred using the maximum likelihood method (Aki, 1965), now used almost universally 45 

in earthquake seismology (Mignan and Woessner, 2012). Other methods such as a least squares fit of 46 

the data to equation 1 are known to produce a biased estimate (Naylor et al., 2010).  In addition, if the 47 

bandwidth of data is narrow, or equivalently the sample is small, then it is easy to overestimate the 48 

underlying b-value (Main, 2000). Finally, the b-value may also be biased due to incorrect identification 49 

of the threshold for complete reporting, denoted Mc here (Mignan and Woessner, 2012). These and 50 

other sources of bias introduce an epistemic error to any inference from the data.  In principle this 51 

should be accounted for in addition to the aleatory uncertainties inferred from the random error 52 

associated with measurement or statistical fluctuation in the data, but it is often neglected in studies 53 

of volcanic earthquake populations. 54 

The Gutenberg-Richter form of the distribution holds, at least for small and intermediate events across 55 

a remarkable range of sizes and loading conditions, from laboratory experiments to volcanic and 56 

tectonic earthquakes (Main, 1996). In controlled laboratory tests, seismic b-values commonly change 57 

systematically with respect to a variety of controlling factors.  These include the degree of material 58 

heterogeneity (Mogi, 1962), the level of applied stress (Scholz, 1968), the degree of stress 59 

concentration, i.e. the stress intensity normalised to the fracture toughness (Meredith and Atkinson, 60 

1983), the chemical reactivity of the pore fluid (Meredith and Atkinson, 1983), and the pore fluid 61 

pressure (Sammonds et al., 1992). In nature other factors that affect the b-value systematically include 62 

the earthquake focal mechanism (Schorlemmer et al., 2005), the depth (Mori and Abercrombie, 1997), 63 



3 
 

and the degree of coupling or strain partition between seismic and aseismic deformation at plate 64 

boundaries (Mazzotti et al., 2011).  65 

The b-value for tectonic earthquakes, using best practice and large regional or global data sets, is 66 

commonly reported as taking values near unity (Frolich and Davis, 1993). In contrast the reported b-67 

values from published studies of earthquake populations associated with volcanic unrest are 68 

commonly reported as being significantly higher than this, allowing for the random error expected for 69 

a b-value of unity (described in more detail below). The main question we address here is whether this 70 

difference is real or, at least to some extent, an artefact of the known sources of bias described above. 71 

To examine this question we first use synthetic data to explore the effect of various factors on the 72 

estimated b-value, denoted 𝑏̃, and the underlying b-value, henceforth denoted b.  Uncertainties in 𝑏̃ 73 

at one standard deviation, denoted 𝜎𝑏̃, are estimated using the method of Shi & Bolt (1982), which 74 

correctly reflects the (approximately) Poisson ‘counting errors’ expected from sampling a whole 75 

number of events (Greenhough and Main, 2008).  The advantage of using synthetic data is that we can 76 

distinguish between the random error 𝜎𝑏̃, and the systematic error or bias 𝑏̃ − 𝑏, or equivalently to 77 

errors of precision and accuracy respectively.  We show how both depend intrinsically on the sample 78 

size.  First we determine an optimum method of estimating the cut-off magnitude of complete 79 

reporting of events, Mc, for catalogues of different sizes, and then propose a formal workflow for the 80 

estimation of Mc.  The proposed workflow is then applied to two volcanic seismic catalogues at Mount 81 

Etna and El Hierro as important examples of recently-active volcanic systems to address the questions: 82 

(a) are the b-values higher than 1? And (b) do they vary with time significantly outside the estimated 83 

margins of error?  For these examples, b is remarkably stationary and similar to (~1) or only somewhat 84 

larger (1-1.5) than to those of tectonic earthquakes, except for specific transients where the b-value 85 

can be significantly greater than background at 95% confidence.  The results presented here will 86 

provide greater confidence in identifying statistically-significant variations in b-value, and in identifying 87 

physical causes for this variability. 88 

3 Review and synthesis of previous studies  89 

In this section we extend the review of McNutt (2005), who summarised reported b-values and 90 

associated parameters such as source depth from 13 different volcanoes around the world. This review 91 

includes b-values as high as 3 in one case (McNutt, 2005). In Table 1 we extend this study to 21 92 

volcanoes, and include a wider range of associated parameters, including: the number of events; the 93 

range of magnitudes used in the analysed catalogues; the methods used to calculate the completeness 94 

magnitude and fit the b-value; and the range of b-values reported in each study, including a typical 95 

value.  Multiple studies use several methods for analysing b-value variations and thus the results are 96 
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reported separately in Table 1, giving 34 separate results for comparison in this new synthesis. 97 

Information on all the different fields of data could not be found in all cases, e.g. how the threshold 98 

magnitude was estimated, resulting in some blank entries in Table 1.  99 

The maximum reported b-values range between 1.4 and 3.5, with a peak at b=1.7 (Figure 1c). From 100 

Figures 1b there is no clear dependence on the magnitude and b-value. Bonnet et al. (2001) also found 101 

there was no direct dependence of the scaling exponent for fracture length on the scale of observation 102 

and that no significant trends could be determined in the type of faulting (Bonnet et al., 2001).  103 

Figure 1 shows the distribution of b-values compared to the other variables in the study. There are no 104 

clear trends with depth (Figure 1a) or magnitude range or size (Figure 1b). However, there is a weak 105 

decreasing trend in the b-value as the number of events in the sample, N, increases (Figure 1c). The 106 

data only spans from 10 to 300 events covering just over one magnitude unit, with over half, (16 of 107 

25) of the studies using catalogues with either 50 or 100 events. One further study (Ibanez et al., 2012) 108 

containing 7000 events reports a relatively high b-value of 1.57 that does not follow this trend. 109 

However, this study - and many others cited in Table 1 - use the Least Squares method to fit b or to 110 

check the results of the maximum likelihood estimation, introducing a known source of potential bias 111 

outlined in the introduction.  112 

In summary this review has highlighted a significant variability in the reported values of b, and a 113 

significant variability in the methods of analysis used in the different studies. Typical b-values are 114 

usually in the range 1-1.2. They are never (for this list) less than one, and are occasionally very high 115 

(up to 3.5).  The variability is much larger than any systematic trends, except that the b-value tends to 116 

decrease with increasing sample size.  In this paper we use synthetically-generated data to address 117 

some of the most important origins of this variability, in particular the choice of threshold magnitude 118 

and the sample size.  119 

4 Methods for analysis of Frequency-Magnitude Distributions 120 

A variety of statistical methods have been used to model FMD’s and to quantify whether those models 121 

are consistent with the observed data. Most methods involve modelling the proportion of the 122 

distribution above the completeness magnitude. Therefore there is a strong inter-dependence 123 

between estimates of the completeness magnitude and values of parameters of prospective FMD 124 

models. In this section we summarise the current methods used to address this problem. 125 

4.1 Gutenberg-Richter parameters 126 

There is a well-established literature that describes the merits of different statistical methodologies 127 

for FMD analysis. Methods involving regression on cumulative frequencies, or using least-squares 128 
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regression, are known to give biased estimates of the b-value (Naylor et al., 2010) as they are known 129 

to give disproportionate weighting to higher magnitude events (Ghosh et al., 2008). The maximum 130 

likelihood technique has become standard in seismic hazard analysis (Mignan and Woessner, 2012). 131 

The data are assumed to be exponentially distributed (as in eq. 1) and the maximum possible 132 

magnitude is assumed to be at infinity (Aki, 1965). Physically, earthquakes must have a finite maximum 133 

size dependent on the size and strain limits within the Earth, but Mmax is not well constrained by  global 134 

data (Main et al., 2008; Holschneider et al., 2014). The maximum likelihood method weights each 135 

event equally and correctly allows for error structure of the data: in frequency data in the form of a 136 

Poisson distribution (Naylor et al., 2010). Formally, the maximum likelihood estimate of the b-value is: 137 

 
𝑏̃ =

log10 𝑒

𝑀̅ − (𝑀𝑐 − ∆𝑀 2⁄ )
 (2) 

where 𝑏̃ is the estimate of the b-value, 𝑀̅ is the mean magnitude, 𝑀𝑐 is the completeness magnitude, 138 

and  ∆𝑀 is the magnitude bin size of the histogram (Aki, 1965). Aki also showed the uncertainty on 139 

this estimate at one standard deviation (67% confidence) can be approximated to: 140 

 
𝜎𝑏̃ =  

𝑏̃

√𝑁𝑐

 (3) 

Where 𝑁𝑐 is the number of events in the complete part of the catalogue, or 1.96 times this value at 141 

95% confidence. 142 

A summary study by Marzocchi & Sandri, (2003), tested two further improvements on this estimation 143 

of b using binned magnitudes, equation (4) (Bender, 1983), and an improved uncertainty estimate (eq. 144 

5) (Shi and Bolt, 1982; Marzocchi and Sandri, 2003):  145 

 
𝑏̃ =  

1

ln 10[𝜇̂ − (𝑀𝑐 − ∆𝑀)]
 (4) 

 

𝜎𝑏̃ = 2.30𝑏̃2√
∑ (𝑀𝑖 − 𝜇̂)2𝑁

𝑖=1

𝑁𝑐(𝑁𝑐 − 1)
  

where 𝜇̂ is the average magnitude of the sample, and ∆𝑀 is the binned magnitude width. The b-value 146 

is relatively insensitive to the upper magnitude cut-off, so assuming an infinite cut-off in deriving 147 

equations (3) and (5) does not introduce a significant bias.  However, in both cases the quoted error is 148 

formally conditional on the choice of Mc, which in practice must be estimated. This introduces an 149 

implicit source of bias that can be positive or negative.  In this paper we will demonstrate that this 150 

additional source of uncertainty is comparable to or can greatly exceed the estimates from equations 151 

(3) or (5). 152 
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4.2 Calculating the completeness magnitude 153 

Most studies apply a lower threshold or cut-off magnitude, Mc, above which the catalogue can be 154 

regarded as completely recorded (Wiemer and Wyss, 2000). Mc is the lowest magnitude at which 100 155 

per cent of earthquakes in a space-time volume are detected (Rydelek and Sacks, 1989; Woessner and 156 

Wiemer, 2005; Mignan and Woessner, 2012). Earthquakes with smaller magnitudes are less likely to 157 

be completely reported when their amplitude becomes smaller than that of the ambient noise. This 158 

introduces a high-pass filter to the FMD, which could in principle be modelled and fitted to the data.  159 

However, this is rarely (if ever) done explicitly.  In practice most studies assume Mc is the magnitude 160 

at which the log(cumulative frequency)-magnitude curve departs from a linear trend of eq. 1.  There 161 

are three main techniques commonly used to estimate this magnitude, namely the Maximum 162 

Curvature (MaxC) method, the Goodness-of-Fit test (GFT) (Wiemer and Wyss, 2000) and b-value 163 

stability (BVS) method (Cao and Gao, 2002).  164 

The MaxC method calculates the highest value of the first derivative of the cumulative frequency-165 

magnitude curve. In practice this matches the frequency-magnitude bin with the highest number of 166 

events (Figure 2a). The main limitation of this method is that it will systematically underestimate Mc 167 

unless there is a sharp transition between the incomplete and complete portion of the catalogue, as 168 

illustrated in Figure 2a.  169 

The GFT method calculates Mc by comparing the observed FMD with a synthetic one. The best-fit 170 

distribution is calculated for trial cut-off magnitudes using the maximum-likelihood estimates of a- and 171 

b-values of the observed dataset. The residuals between the data and the best fit distribution are then 172 

calculated as a function of cut-off magnitude (Figure 2b). The completeness threshold, Mc, is selected 173 

as being the first magnitude above which the residual between the synthetic straight line fit model 174 

and observed data falls within a 95% confidence window. If 95% confidence cannot be obtained then 175 

a 90% confidence window can be used as a compromise. This method tends to give systematically low 176 

values for Mc although not as low as the MaxC method  (Wiemer and Wyss, 2000). 177 

The BVS method simply evaluates the estimated b-value as a function of the cut-off magnitude. The 178 

assumption here is that 𝑏̃ will initially increase as the cut-off magnitude increases, until the cut-off 179 

magnitude equals Mc after which 𝑏̃ will stabilise. The inferred b-value is deemed to have stabilised 180 

once the average 𝑏 ̃for the five successive cut-off magnitudes falls within error of the selected cut-off 181 

magnitude (Figure 2c). The BVS method tends to have high Mc values relative to other methods 182 

(Woessner and Wiemer, 2005) and consequently higher 𝑏̃ values. 183 
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5 Results for Synthetic catalogues 184 

5.1 Generating synthetic catalogues 185 

We now evaluate which of the three methods for calculating the Mc is the most accurate and reliable, 186 

by generating synthetic catalogues with known Mc and b-value, but different forms of the cut off 187 

below Mc.  As a benchmark check we first generated synthetic data to determine 𝑏̃ and 𝜎𝑏̃ for b=1 and 188 

b=2 as a function of the complete sample size 𝑁𝑐, conditioned on an exact value for Mc.  This provided 189 

a good match to Fig. 1a,b of Marzocchi and Sandri (2003). However, in reality Mc is not known 190 

independently a priori.  Ideally we would hope the incremental FMD would have a sharp and easily 191 

distinguishable peak at Mc, defining the lower limit of the complete catalogue (Figure 3a). In reality 192 

the peak of the distribution is often curved and much broader due to the complexity of the signal to 193 

noise ratio at the recording stations, and of locating and calculating magnitudes for small events, so 194 

defining Mc can be much more challenging (Figure 3b). This introduces an additional source of 195 

uncertainty that is the prime focus of the current paper. 196 

To test each of the three methods, we use two end-member scenarios. The first has a sharp peak 197 

(Figure 3a) and the second a broader peak (Figure 3b). Both catalogues have Mc set to 1.0. The 198 

complete part of both catalogues was created by randomly generating individual events from an ideal 199 

parent Gutenberg-Richter law distribution with a b-value of 1.0. For the sharp-peaked distribution the 200 

incomplete part of the catalogue was generated using a filter with a linear slope of 3, for values below 201 

Mc=1.0 decaying to zero probability at M=0. For the broad-peaked distribution a GR distribution was 202 

used to generate events all the way down to M=0. The probability function shown in Figure 3c was 203 

then applied as a filter to remove events below the known threshold Mc=1.0, until the required 204 

number of events were left in the complete catalogue. 205 

To examine the role of catalogue size, catalogues were generated with a complete size of 50, 100, 200, 206 

500, 1000 and 5000 events. Finally the b-value was varied from a typical tectonic value of 1.0 to a 207 

significantly high b-value of 2.0, to test whether each method can reliably calculate Mc and inferred b-208 

values for the case that the underlying b-value is high. 209 

For each catalogue size, b-value, and distribution shape; 100 catalogue were iteratively generated, and 210 

the estimated Mc and b-values determined using the different methods described in section 4. A bin 211 

size ΔM of 0.1M is used throughout. Figure 3 shows both the average catalogue (solid line) and the 212 

spread of the outcomes associated with the finite sample size (dashed lines).  213 
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5.2 Synthetic Results 214 

5.2.1. Sharp-peaked distribution 215 

In this case the simulations of Figure 4 demonstrate that the MaxC method performs the best in terms 216 

of calculating Mc, closely followed by the BVS method. The GFT performs adequately for 𝑁𝑐=5000 but 217 

fails when 𝑁𝑐=50 as for over 90% of the catalogues b is not even calculated correctly within ±1.0 of the 218 

known value. When b=1 and 𝑁𝑐=5000, MaxC and BVS both correctly lead to a correct calculation of b 219 

with <0.01 error.  220 

5.2.2. Broad-peaked distribution 221 

Figure 5 shows histograms of the best estimates of Mc for the three methods, for different catalogue 222 

sizes and b-values, for the case of the broad-peaked distribution. When 𝑁𝑐=50 for both b=1 and b=2, 223 

MaxC and BVS both systematically underestimate Mc, because very few events have a greater 224 

magnitude than Mc=1.0 (Figure 6). Both MaxC and BVS methods give results with some scatter, 225 

centred on b=1, but several iterations had significantly higher b-values of 2 or above.  Both methods 226 

perform poorly when b=2, as there too few events in the catalogue, with median values of 𝑏̃≈1.5. The 227 

GFT over-estimates Mc when b=1 but appears to give a reasonable estimate when b=2. However, the 228 

95% confidence is only reached when Mc is very close to the maximum magnitude and thus the 229 

complete catalogue size is very small. This results in the inferred b-values being very high for both b=1 230 

and b=2. 231 

When 𝑁𝑐=5000 it becomes apparent that MaxC is not a good method for broad-peaked distributions. 232 

For b=1, Mc is heavily underestimated, with a median value of Mc=0.4, and resulting 𝑏̃-values all less 233 

than b=1. These underestimates are amplified when b=2 with median values of Mc=0.4 and 𝑏̃≈1.3. The 234 

GFT performs much better for both b=1 and b=2 however it gives a conservative estimate for both. 235 

The BVS method performs the best for a broad-peaked distribution, giving only a slightly conservative 236 

estimate of Mc with a median value of Mc=0.9 for b=1 and b=2. The BVS method returns the correct 237 

𝑏̃=1.0 in over 80 iterations. The median value for b=2 is also approximately correct, however there is 238 

a very broad range of results with a slight skew towards values higher than b=2.0. This is a very large 239 

catalogue and the BVS method is clearly the best when b=2.   Our results show that it is intrinsically 240 

more difficult to calculate high b-values, however it is possible to find an estimate with a correct 241 

median value with the BVS method, albeit with a large spread in 𝑏̃. 242 

5.2.3. Comparison of method performance 243 

For a sharp-peaked distribution the MaxC method correctly calculates Mc the highest proportion of 244 

times for both high and low b-values. This outcome is not surprising as the MaxC method finds the 245 

magnitude bin with the highest number of events that, trivially, is the Mc set by the parent distribution. 246 
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The BVS method performs almost as well as the MaxC method for low b-values, but with higher b-247 

values the method returns too high estimates of Mc. However, as long as for larger catalogue sizes the 248 

BVS method continues to return good estimates of the b-value. The GFT method does not work with 249 

small catalogues as the 95% confidence threshold is only reached when the Mc is very close to the 250 

maximum magnitude event, therefore there are a minimal number of earthquakes left in the 251 

catalogue, and thus the uncertainty is very large. For larger catalogues GFT performs much better. 252 

However for both b=1 and b=2, using the GFT-calculated value of Mc results in fewer correct 253 

calculations of 𝑏̃ than the MaxC and BVS methods. Therefore we consider it to be the least-well 254 

performing method.  For b=2 the steeper slope of the complete catalogue leads to a larger spread of 255 

calculated 𝑏̃-values for all three methods than for b=1. This is due to the random scattering of data 256 

due to sampling which has a greater influence on the FMD at high b compared to low b-values, and is 257 

not inherently linked to any of the methodologies.  258 

Figure 7 and Figure 8 compare the performance of the different methods for the case of a broad-259 

peaked distribution, using the mean and standard deviations of 𝑏̃ calculated from the data in Figure 6. 260 

For both b-values the GFT method does not reliably calculate Mc, resulting in a biased estimate of the 261 

b-value. For 𝑁𝑐≤500 the correct b-value is calculated within the statistical error, but the distribution is 262 

heavily skewed towards high b-values, meaning that this method performs sub-optimally for these 263 

small catalogue sizes.  However for larger catalogues (𝑁𝑐=1000 & 5000) the GFT method does calculate 264 

accurate b-value estimates for both b=1 and b=2. The MaxC method returns a systematically-low 265 

estimate of Mc for all catalogue sizes, resulting in under-estimates of the b-value for both b=1 and 266 

b=2. We conclude that it is not an appropriate method for calculating Mc for a broad-peaked 267 

distribution. 268 

The estimates of Mc returned by the BVS method increase in accuracy with catalogue size. For 𝑁𝑐≥200 269 

the BVS method correctly calculates Mc within the 95% confidence limits for both b=1 (Figure 7) and 270 

b=2 (Figure 8). When b=1 and the catalogue size is 𝑁𝑐≥200, the 95% confidence spread around the 271 

true b-value is very small, ±0.25. Using the BVS method with smaller catalogue sizes can result in b-272 

value estimates as high as 2 even with b=1 (Figure 7). This observation suggests that care must be 273 

taken to not over-interpret high b-values calculated for small catalogues sizes. For b=2, the standard 274 

deviation of results is independent of catalogue size at about ±0.75. However, the median and mean 275 

of the 𝑏̃-value estimates tend towards the parent b=2 as catalogue size increases. Again for 𝑁𝑐≥200 276 

for b=2 the BVS method estimates 𝑏̃ to within 95% confidence.  277 

In terms of defining a threshold minimum complete catalogue size, when 𝑁𝑐≥500 our results show 278 

both b=1 and b=2 can be estimated accurately and precisely (Figure 7).  For 𝑁𝑐=100 the statistical error 279 

in estimating b=1 is large, indicating a lack of precision, and for b=2 the average and median values are 280 
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significantly below 2, indicating a residual bias. However, a threshold of 500 for completely-reported 281 

events is a relatively large number for many practical applications.  From the results in Figure 7, a 282 

pragmatic choice of 𝑁𝑐=200 is an acceptable threshold for a trade–off between accuracy, precision, 283 

and realistic catalogue size. 284 

5.3 A proposed workflow for the calculation of Mc 285 

Informed by this analysis, we propose a workflow for analysing the FMD of volcanic earthquake 286 

catalogues (Figure 9). As discussed above, we considered that the minimum catalogue size for reliable 287 

estimation of the b-value is 𝑁𝑐=200.  288 

First, Mc is estimated using each of the MaxC, GFT and BVS methods. If all three Mc estimates agree 289 

within ±0.1, the FMD can be modelled by a sharp-peaked distribution, and so the MaxC estimate of 290 

Mc should be used. If the b-value calculated using this Mc has an error of ≤±0.25 it should be 291 

considered to be reliable. An error of >±0.25 makes it difficult to interpret the b-value and may indicate 292 

an unreliable estimate of Mc.  293 

If the three estimates of Mc vary by ≥0.1, or the b-value calculated from the MaxC estimate of Mc is 294 

≥0.25, we recommend that the BVS method should be used. If the resulting b-value has an error of 295 

≤0.25 it should be considered to be reliable. If this is not the case, the GFT analysis should be used. If 296 

a b-value with an error of ≤0.25 cannot be obtained using any of the 3 methods, we argue that the 297 

catalogue is too small for reliable FMD analysis. If the complete catalogue has over 5000 events and 298 

the b-value uncertainty is still too high, it is likely that the FMD is not consistent with an underlying 299 

Gutenberg-Richter distribution.  300 

For the analysis of variations in FMDs, a large volcanic earthquake catalogue can be split on the basis 301 

of spatial or temporal windows, and this workflow applied to each sub-catalogue in turn. However, 302 

the same minimum complete catalogue size and reliability criteria rules apply to sub catalogues too. 303 

5.4 Error introduced from the completeness magnitude 304 

We now use the workflow of Figure 9 to consider the relative effect of Mc estimation for catalogues 305 

of different size on the accuracy and precision of the estimate of 𝑏̃ for the case of a broad-peaked 306 

distribution.   Figure 10 shows a histogram of the 𝑏̃ for 100 catalogue realizations with b=2, along with 307 

examples of its standard deviation 𝜎𝑏̃ estimated from equation 5. 𝑏̃ is beyond 1 standard deviation of 308 

b in more than 1/3 of the cases, indicating a significant epistemic error in the estimation. We show in 309 

this section that this is due to the bias 𝑏̃ − 𝑏 in the finite-sized sample. The error due to calculating Mc 310 

for individual realisations is illustrated as a blue bar at one standard deviation in Figure 9. The median 311 

𝑏̃ is close to the true value (the central blue dot is near the vertical dashed line), so the residual bias 312 

due to estimating Mc is near zero for a large population of trials.  However, the standard deviation in 313 
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the error due to Mc is much larger than the average statistical error for similar b-values (the black 314 

error bars).  315 

To quantify this error in the general case, we ran many simulations for different values of b and 𝑁𝑐, 316 

with the results shown in Figure 11. Figure 11a shows the average statistical error from equation (5), 317 

Figure 11b the average error in 𝑏̃ due to propagating uncertainties in estimating Mc as illustrated by 318 

the blue horizontal error bar in Figure 10, and Figure 11c the ratio of the two. The ratio was calculated 319 

5 times for each of 15 catalogue sizes between 50-5,000 events and b-values of 0.5, 1.0, 1.5, 2.0 & 3.0, 320 

with the average value indicated by the colour scheme in Figure 11. The ratio varies between 1.2 and 321 

a factor 14 or so for the range studied, implying that the sample bias error is always greater than, and 322 

often much greater than the estimated statistical uncertainty in 𝑏̃ from equation (5). This finding 323 

means that the statistical error commonly used on its own to quantify the 𝑏̃-value uncertainty is not 324 

an adequate description of the total error, though it approaches the total error for large numbers of 325 

events and low underlying b-values. In Figure 11c the ratio can reach an order of magnitude for b>2 326 

and event numbers above 1000. This is because the statistical error 𝜎𝑏̃  is very small when 𝑁𝑐 is large. 327 

However the sample bias also increases with 𝑁𝑐 for high b. This somewhat counter-intuitive result is 328 

because the magnitude range over which Mc can be calculated is much smaller at low 𝑁𝑐  than at high 329 

𝑁𝑐, so the uncertainty is bounded to a greater degree at low 𝑁𝑐, and hence reduces at low 𝑁𝑐.   The 330 

template of Figure 11c can be used empirically to determine a more appropriate error for b-value 331 

estimation. 332 

5.5  Application to volcanic catalogues 333 

We apply our proposed workflow to earthquake catalogues for Mount Etna volcano, Sicily (Murru et 334 

al., 1999; Murru et al., 2005; Murru et al., 2007) and El Hierro volcano, Canary Islands (Ibanez et al., 335 

2012; López et al., 2012; Becerril et al., 2013; Marti et al., 2013; García et al., 2014) to test the reliability 336 

of any previously reported variations in b-values. This is simply to compare results from the proposed 337 

workflow to previous volcanic b-value’s and not to make any interpretation about the behaviour of 338 

the volcanos.  339 

We analyse the Instituto Geográfico Nacional (IGN) earthquake catalogue for El Hierro between July 340 

2011 and December 2013, a period associated with significant seismic activity associated with magma 341 

emplacement, and including a submarine eruption that began on 10th October 2011 (Ibanez et al., 342 

2012; López et al., 2012). The catalogue contains over 20,000 events, and so it is possible to subdivide 343 

it into several phases to analyse b-value variations.  Figure 12 shows how each phase is defined by 344 

changes in event rate, with the first three phases following the scheme of Ibanez et al. (2012). The 345 

start of each phase is defined as midnight at the start of the selected day, however, if necessary the 346 

resolution of the boundaries can be increased as most catalogues give event time to the nearest 347 
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second. All phases have over 200 events at or above Mc, thus the catalogues should be large enough 348 

to calculate reliable 𝑏̃-values following the synthetic analysis. At this stage the catalogue is simply 349 

divided temporally, so earthquakes may originate from different portions of the volcanic edifice. 350 

Should this occur, the b estimate may represent an average between sub-catalogues representative 351 

of different processes or stress conditions. 352 

The results of applying our proposed workflow to the El Hierro catalogue are shown in Figure 12. These 353 

show a very high b-value of 𝑏̃=2.39±0.10 before the onset of the eruption, followed by a fluctuating 𝑏̃-354 

value between 1-1.5 for the remainder of the catalogue. 𝑏̃-value uncertainties are determined using 355 

equation 5. The 𝑏̃-value is always above 1 within these statistical errors. These results are similar to 356 

those of Ibanez et al. (2012), who reported a b-value before the eruption of 2.25±0.05 followed by 357 

values of b=1.34±0.04 and b=1.12±0.01 for the second and third phases respectively (Ibanez et al., 358 

2012). However, the Ibanez study used the 90% Goodness-of-fit method to estimate Mc, and least-359 

squares regression to estimate b. The Mc values they report are significant under-estimates, and this 360 

means that the biased least-squares b-value estimates are, coincidently, close to the values reported 361 

here.  362 

We also analyse the Istituto Nazionale di Geofisica e Volcanologia (INGV) earthquake catalogue for Mt 363 

Etna between January 1999 and December 2014. This catalogue spans several eruptive episodes, 364 

including the 2001 and 2002-03 flank eruptions and more recent paroxysmal activity at the new South 365 

East Crater. The catalogue contains 8000 events, with an event rate that is more stable through time 366 

than the El Hierro catalogue (Figure 12 and Figure 13). We divide the catalogue into 10 sub-phases on 367 

the basis of changes in earthquake rate, with each phase ideally containing between 200-5000 events. 368 

Figure 13 shows the 𝑏̃-values calculated for Mt Etna using our proposed workflow. During the 2001 369 

and 2002-03 flank eruptions the 𝑏̃-value is 1.5 or greater. However from the end of the 2002-03 flank 370 

eruption, the 𝑏̃-value appears to have stabilised at 1.0±0.2. Murru et al. (2007) analysed the spatial 371 

distribution of the b-value at Mt Etna between 1999 and 2005 and found an average of approximately 372 

1.5, with an increase in average b-value with depth from b=1.2 to b=1.9. 373 

Although the 𝑏̃-values for Mt Etna from 2004 onwards are close to 1.0 and there is no systematic trend 374 

in values, the 𝑏̃-values do not encompass b=1 within error for over half of the sub-phases in Figure 13. 375 

As the Shi & Bolt 𝑏̃-value uncertainty (eq. 5) defines one standard deviation error in the 𝑏̃-value we 376 

would expect 68% of the calculated b-values to capture b=1 within error if the underlying b-value is 377 

stationary. We might then conclude that the hypothesis that b=1 can be rejected at this confidence 378 

level. However, we have shown that the total error, including sample bias, can be significantly 379 

underestimated in Figure 11.   380 
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Accordingly we now apply the contour plot for the error multiplication values in Figure 11c to estimate 381 

a more realistic total error for our calculated b-value.  For the 2011-13 El Hierro catalogue (Figure 14a) 382 

the high b-values at the start of the catalogue now have dramatically increased errors, and 3 of the 6 383 

following b-values that sat between 1>𝑏̃>1.5 now lie within 1 standard deviation error around b=1.0. 384 

Using the Shi & Bolt uncertainty for the 2004-2014 Etna catalogue, the estimated 𝑏̃-values for only 2 385 

of 10 phases (20%) lie within one standard deviation of b=1.0. However, once the modified error is 386 

applied to the catalogue (Figure 14b), the estimated 𝑏̃-value for 6 of the 10 phases (60%) lie within 1 387 

standard deviation of b=1.0. The high b-values associated with the 2001 and 2002-03 flank eruptions 388 

also increase in error and could be consistent with b-value of no more than 1.5. The b-values for 3 of 389 

the 10 phases do not lie within 2 standard deviations of b=1 using the modified error. Therefore it 390 

would be hard to reject the hypothesis that b is a constant near unity for these phases, except at 391 

marginal significance. 392 

6 Conclusions 393 

The almost axiomatic inference that b-values are systematically higher for volcanic earthquakes is 394 

based on data and methodology that are often insufficient to address the question, notably the very 395 

small sizes of the samples used, the methods of parameter estimation and the different methods used 396 

to infer the completeness magnitude Mc.  The Maximum Curvature method is simple, and can be used 397 

when a catalogue has a sharp peak in the discrete data. Otherwise the b-value stability method is the 398 

most favourable. If that does not generate a b-value with a standard error ≤0.25 the Goodness-of-Fit 399 

method can be used as a third option. If a stable value of b cannot be obtained then the sample size 400 

must be increased in space and/or time.  Our results imply a pragmatic minimum of 200 events above 401 

Mc is generally needed. From further simulations, we also recommend a minimum of 500 events when 402 

dealing with raw incomplete catalogues before this workflow can be applied. This logic is captured in 403 

a new workflow for estimating Mc. Even when this best practice is followed, there can be a significant 404 

residual error from calculating Mc in a single sample. This is comparable to or much greater than the 405 

statistical error, particularly for higher values of b.  Nevertheless, when this is accounted for we 406 

confirm b-values for the El Hierro catalogue are generally higher than 1 at a confidence level of 95%, 407 

and may be significantly higher during eruptive phases.   For Mount Etna the hypothesis b=1 can be 408 

rejected for only two time intervals, one associated with a flank eruption.  We conclude seismic b-409 

values can be high for volcanic earthquake populations, especially when associated with eruptive 410 

phases. Otherwise they appear to be very close to those obtained for tectonic earthquakes at the 95% 411 

confidence level.   412 

 413 
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9 Tables 557 

Table 1 - Compilation of b-values and range of magnitudes for volcanic seismic catalogues 558 

Reference Volcano Dates Depth, km N Method Mc Mag. range Method b bmin btyp bmax 

(Jacobs and McNutt, 2010) Augustine 2000 - 2006 -2-0 100 ZMAP - MLE 0.8 1.4 2.1 

(Jacobs and McNutt, 2010) Augustine 17/11/05 - 10/12/05 -2-0 ~250 ZMAP -0.1-0.7 MLE - - 1.85 

M. Wyss (written comm.) Coso  0.8-3     - - 1.7 

(Ibanez et al., 2012) El Hierro 19/7/11 - 16/9/11 8-16 7000+ 90GFT 1.3-2.7 LS 1.12 1.57 2.25 

(Ibanez et al., 2012) El Hierro 19/07/2011 8-16 200 90GFT - LS 0.75 1.25 2.55 

(Marti et al., 2013) El Hierro 14/8/11 - 18/8/11 8-16 - - - MLE 0.8 1.1 2.3 

(Ibanez et al., 2012) El Hierro 19/7/11 - 28/7/11 8-16 - 90GFT 1.5-2.6 LS 0.81 1.2 3.01 

(Patane et al., 1992) Etna 1984 - 200 - 2.8- MLE 0.8 1.1 1.7 

(Patane et al., 1992) Etna 29/3/1983 - 6/8/1983 - - - 2.5- MLE 0.7 1.0 2.1 

(Murru et al., 1999) Etna - 9-15 50 MaxC 2.5- MLE  1.4 1.5 3.5 

(Centamore et al., 1999) Etna 1/1/1990 - 31/12/92 - 100 - 2.3-5.1 LS 0.5 1.2 1.9 

(Centamore et al., 1999) Etna 1/1/1990- 31/12/92 - 100 - 2.3-5.1 MLE 0.9 1.1 1.7 

(Murru et al., 2007). Etna July - Aug 2001 0-2 50 GFT 2.6-3.5 MLE 0.7 1 2.6 

(Murru et al., 2005) Etna July - Aug 2001 0-12 50 90GFT 2.6 MLE 0.8 1.5 2.50 

(Murru et al., 2007) Etna Aug 1999 - Dec 2005 1-3 100 90GFT 2.5 MLE 0.7 1.0 1.86 

(Sanchez et al., 2005) Galeras Sep 1995 - Jun 2002 0-2 300 - 1.2-2.8 MLE 0.65 1.0 1.4 

(Jolly and McNutt, 1999) Katmai - 6-8 - - - - 1.0 1.3 1.6 

(Wyss et al., 2001) Kilauea - 4-7,20 - - - - - - 1.9 

(Wyss et al., 2001) Kilauea 1979 - 1997 4-7 50 - 1.8-2.6 MLE & LS 0.6 1.0 1.73 

(Wiemer et al., 1998) Long Valley 1989 - 1998 1-11 150 MaxC 1.3- MLE 1.1 1.4 2.0 

(Jolly and McNutt, 1999) Mageik Sep 1996 - April 1997 0-5 - - - WLS 1.0 1.5 2.0 

(Bridges and Gao, 2006) Makushin July 1996 - April 05 0-8 50 74GFT 0.9-3.9 MLE 0.73 1.21 2.03 

(Wiemer et al., 1998) Mammoth Mtn. 1989 - 1990.5 3-4,7-9 150 MaxC 1.3- MLE 0.95 1.2 1.6 

(Jolly and McNutt, 1999) Martin/Mageik Sep 1996 - April 1997 -2-10 - - 0.7-4.5 WLS - - 1.56 

(Wiemer and McNutt, 1997) Mount Spurr 1991 - 1995 2.3-4.5 100 Inspection 0.1-2.2 MLE & LS 0.6 1.1 1.8 

(Main, 1987) Mount St Helens 20 Mar - 18May 1980 na ~300 Inspection 3.5-5 MLE 0.5 1.0 1.5 

(Wiemer and McNutt, 1997) Mount St. Helens 1988 - Jan 1996 2.7-3.8 100 Inspection 0.4-2.8 MLE & LS 0.8 1.2 1.6 

(Wyss et al., 1997) Off-Ito 1982 - 1996 7-15 100 MaxC 1.6-2.5 MLE 0.44 1.0 1.54 

M. Wyss (written comm.) Oshima  4     - - 1.5 

(Sanchez et al., 2004) Pinatubo 29 June - 19 Aug 1999 0-4,8-13 100 ZMAP 0.73- MLE 1.0 1.3 1.7 

(Novelo-Casanova et al., 2006) Popocatepetl Dec 2000 - Jan 2001 2-7 20 Inspection 1.9-3.3 MLE 1.0 1.7 2.70 

S. Wiemer (written. comm.) Redoubt  3-4,6-8     - - 1.7 

(Power et al., 1998) Soufriere Hills Aug 1995 - Mar 1996 2.0-2.5 100 - 1.7-2.4 MLE 0.9 1 3.07 

(Farrell et al., 2009) Yellowstone 1984 - 2006 4-18 >10 EMR 1.5- MLE 0.5 1.0 1.5 

Values for N are the number of events analysed in each catalogue. These figures are either given or estimated from figures. The methods for calculating the completeness 
magnitude, Mc, are; using ZMAP software; the Goodness-of-Fit method (GFT) with given percentage threshold (e.g. 90GFt is 90% fit); the Maximum Curvature method (MaxC); 
Inspection is choosing a Mc by eye; and using the Entire Magnitude Range method (EMR). The methods for approximating the b-value are the Maximum Likelihood Estimation 
(MLE) and the Least Squares and Weighted Least Squares fit (LS & WLS). The b-value ranges in each study are described by the minimum (bmin) and maximum (bmax) quoted values 
in the study, with a typical value (btyp) being estimated by eye. 

559 
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10 Figures 560 

 561 

Figure 1 – Synthesis of b-value distributions compared to a) depth, b) Magnitude, and c) the number of events in each 562 
catalogue, N. The errors bars show the minimum and maximum values of b from Table 1, and the range of depth/magnitude 563 
over which the catalogue was comprised. The blue dots show the typical b-values. Dotted line marks b=1. 564 

 565 

Figure 2 – a) Discrete and cumulative frequency-magnitude distributions, demonstrating the Maximum Curvature Method 566 
(MaxC). The vertical dotted line represents the estimate of Mc at the highest discrete magnitude bin at (Mc=1.5). b) Residuals 567 
of the Goodness-of-Fit method (GFT) as a function of trial cut-off. Once the residual falls beneath 5% the completeness 568 
magnitude is selected, in this case Mc=2.5. c) b-value stability curve showing the b-values for each cut-off magnitude. The 569 
vertical dashed line indicates when successive b-values (green line) fall within error of the b-value. Here Mc=2.5. 570 
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 571 

Figure 3 – a) Example of a sharp-peaked frequency-magnitude distribution. b) Example of a broad-peaked frequency-572 
magnitude distribution. Both catalogues have an Mc of 1.0 and a b-value of 1.0. Discrete distributions are in reds, cumulative 573 
distributions are in green. The dashed lines show the 95% confidence intervals representing the scatter in the synthetic data 574 
c) The probability filter applied to b). Above Mc=1.0 all generated events are kept in the catalogue. Beneath Mc=1.0 there is 575 
a constantly decreasing probability that that will remain in the catalogue, creating the broad peak in the filtered discrete 576 
FMD. 577 
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 578 

Figure 4 – Histograms for the estimated Mc and b-value for the MaxC (red), GFT (green), and BVS (blue) methods for different 579 
catalogue sizes (columns) and b-values (rows) for the sharp-peaked distribution. The known values of Mc=1.0 and b=1.0 are 580 
marked with vertical bold dashed lines. The median value calculated by each method is shown by the vertical dotted line.  581 

 582 

 583 
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 584 

Figure 5 – Histograms as in Figure 4 except for a broad-peaked distribution.  585 
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 586 

Figure 6 – Frequency-magnitude distributions for b=1 & 2, and Nc=50 & 5000 in the case of a broad-peaked distribution. Red 587 
shows discrete frequency and green cumulative frequency.  The solid red and green lines show the average values of the 100 588 
catalogues. The dashed lines represent a 95% confidence window. The vertical dashed black lines show the known Mc of the 589 
catalogue, Mc=1.0, and the Mc’s calculated by each method. 590 

 591 
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 592 

Figure 7 - Summary of histograms for broad-peaked distributions in Figure 5 for b=1. They show the spread of Mc's and b-593 
value’s against catalogue size, N, for each of the three methods. Error bars represent a 95% spread of the data, with dots 594 
representing the median value and x's the average. The known Mc=1.0 and b=1.0 are marked with a vertical dashed line. 595 
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 596 

Figure 8 - Summary graphs as in Figure 7 but for b=2. 597 
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 598 

Figure 9 - Proposed workflow for best practice based on synthetic analysis. 599 

 600 
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 601 

Figure 10 - b-value frequency plot for 100 synthetic catalogues when Nc=1000 and b=2. The blue (epistemic) error bar 602 
represents one standard deviation error in the data centred on the median b-value. The black error bars show the average 603 
aleatoric (Shi & Bolt b-value uncertainty) error for each bin. 604 
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 605 

Figure 11 – Contour plots showing a) the statistical error in b-value estimated from eq. (5) as a function of varying complete 606 
catalogue size, Nc, and b-value. b) The error in b-value  associated with the uncertainty in calculating Mc, estimated as in the 607 
example given in Fig 10 as a blue horizontal error bar c) The ratio of the error in (b) to the statistical error in (a). 608 
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 609 

Figure 12 – Top: b-value variation through time for the July 2011 to December 2013 El Hierro seismic catalogue using the 610 
proposed workflow. The eruption date is marked by the red dashed line. Bottom: Daily number of events (grey bars) and 611 
cumulative number of events (black line). The phase divisions are marked by vertical grey dotted lines with the number of 612 
events in the complete catalogue of each phase noted at the top of the plot. 613 

 614 

Figure 13 – Plots as in Figure 12 but for the 1999 - 2014 Mount Etna seismic catalogue. 615 
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 616 

Figure 14 - b-value variation through time for a) the 2011-13 El Hierro catalogue, and b) the 1999 - 2014 Mount Etna seismic 617 
catalogue. Sample bias errors in are blue and estimated epistemic error are in grey. One standard deviation error is 618 
represented by the error bars and the grey dashed and blue dotted line respectively represent the 2 standard deviation error 619 
envelope. 620 

 621 


