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ABSTRACT 17 

Chalky microporosity can constitute up to 100% of the total porosity within carbonate 18 

reservoirs, but its contribution to both single- and multi-phase flow is poorly quantified. We 19 

present a flexible, object-based algorithm to construct 3D computational rock 20 

representations that reproduce micritic fabrics of chalky microporous carbonates based on 21 

calcite crystal fabrics observed in 2D SEM images. By methodologically altering model 22 

parameters we begin to explore the state-space of microporous carbonates to quantify 23 

single- and multi-phase flow using both lattice-Boltzmann and network flow models.  24 
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Micropore size has little to no effect on single-phase permeability, while differences in 25 

multi-phase flow properties are observed for microporous fabrics with pores no smaller 26 

than 0.50µm3 suggesting a change in the pore-scale controls on flow. Single-phase 27 

permeability increases by an order of magnitude within fabrics of varying total 28 

microporosity (18% to 35%), but minimal effect on multi-phase flow is observed. Similarly, 29 

multi-phase flow properties are unaltered by micrite rounding due to burial dissolution, 30 

suggesting no alteration in pore-network topology. Micrite rounding, however, notably 31 

increases porosity and single-phase permeability in comparison to original rhombic micrite 32 

fabrics. The presence of moldic mesopores impacts flow but only when there is a direct 33 

connection between them. Otherwise, single-phase permeability is controlled by 34 

micropores. Importantly, recovery is dependent on wetting scenario and pore-network 35 

homogeneity. Under water-wet imbibition, an increase in pore homogeneity (more 36 

micropores) yields a lower residual oil saturation. Together, these results quantify the 37 

importance of microporosity in contributing to, or controlling, overall flow and sweep 38 

characteristics in carbonate reservoirs.  39 

1. Introduction 40 

Understanding the pore system and petrophysical properties of subsurface reservoir rocks 41 

is vital for accurate prediction of fluid flow behaviour and therefore hydrocarbon recovery. 42 

Predicting such properties for carbonate rocks can be a particularly complex task as their 43 

pore systems are inherently multi-scale, often spanning four relevant orders of magnitude 44 

of pore size variation (Choquette and Pray, 1970). Perhaps the least understood type of 45 

porosity within carbonates is microporosity. There are many definitions of the class of 46 

microporosity, including pores <10μm in diameter and hence below the resolution of an 47 

optical microscope (Cantrell and Hagerty, 1999), or pores less than 62.5µm in diameter 48 

(Choquette and Pray, 1970), or pores less than 1µm in diameter in at least one direction 49 

(Pittman, 1971). 50 
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Microporosity has many origins, but the most pervasive form of microporosity is known as 51 

‘chalky’ microporosity (Pittman, 1979; Moshier, 1989a; Budd, 1989). Chalky microporosity 52 

is formed between the crystal faces of rhombic micrite (micro-crystalline calcite, Figure 1a; 53 

see Folk, 1962) which is thought to form through the transformation of acicular high-54 

magnesium calcite and aragonite lime mud crystals into micro-rhombic low-magnesium 55 

calcite (Lucia and Loucks, 2013). This occurs via dissolution and recrystallization, although 56 

the exact details of the process are still debated (Dravis, 1989; Cantrell and Hagerty, 1999; 57 

Heasley et al., 2000; Lambert et al. 2006, Lucia and Loucks, 2013). These pores have a 58 

distinct ‘plate-like’ morphology (Cantrell & Hagerty, 1999) and one spatial dimension 59 

maybe up to an order of magnitude smaller than the other two dimensions (Figure 1b, 60 

inset) where in the smallest dimension the pores are 0.1µm while in the other two 61 

dimension they are around 1µm. Nevertheless, such pores may constitute a significant 62 

percentage of the total porosity and of the potential storage capacity (up to 100% in mud 63 

dominated facies) of some of the largest known carbonate reservoirs, for example the 64 

Middle Eastern Upper Jurassic Arab Formation (Cantrell & Hagerty, 1999; Lambert et al., 65 

2006) and the Lower Cretaceous Thamama group (Moshier, 1989b; Budd, 1989; Smith et 66 

al., 2003; Lambert et al., 2006; Cox et al., 2010; Deville de Periere, 2011).  67 

Relatively few studies have attempted to quantify the contribution of microporosity to both 68 

single- and multi-phase flow. Consequently the resultant effects on petrophysical 69 

properties are neither routinely acknowledged or accounted for when assessing reservoir 70 

quality. For example, it is commonly assumed that hydrocarbons are unlikely to be 71 

emplaced into micropores during primary drainage (due to the small throat diameters, 72 

typically <1µm, and resultant high capillary), and that microporosity therefore contributes 73 

very little to fluid flow through the reservoir unit, containing only bound, irreducible waters 74 

(Pittman, 1971; Kirkham et al., 1996; Cantrell and Hagerty, 1999). Recently, however, the 75 

potential importance of micropores has been highlighted by several authors who have 76 
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shown that it is possible for hydrocarbons to be contained within micropores, especially 77 

towards the top of the oil column (Cantrell & Hagerty, 1999; Lambert et al., 2006). Studies 78 

have also shown that micropores can influence fluid flow by either decreasing residual oil 79 

saturation (Wu et al., 2008; Hollis et al., 2011; Fullmer et al., 2014) or by providing the 80 

permeable pathway between otherwise disconnected, larger scale pores (Roth et al., 81 

2011). While micropore-dominated carbonates have low permeabilities (less than 10mD), 82 

the pervasive distribution of microporosity has been shown to result in a higher sweep 83 

efficiency within intervals with a high percentage of micropores (Wu et al., 2008; Hollis, 84 

2011; Fullmer et al., 2014). Additionally, within some multiscale pore networks, micropores 85 

provide the connectivity and fluid pathway between larger scales of porosity (Figure 1b). 86 

For example, Roth et al. (2011) demonstrated that connectivity through a multi-scale 87 

carbonate pore network was only achieved when pores <12µm in diameter were present in 88 

the model; in these models, the microporosity actually controlled the percolation threshold. 89 

Hence, it is important that the contribution of chalky microporosity to flow is understood 90 

and quantified in order for accurate reservoir property predictions to be made. 91 

Chalky microporous carbonates have many different fabric properties which can vary 92 

throughout a reservoir, and micropore morphology (size and shape) is controlled by the 93 

different styles of packing and size distribution of the micrite crystals (Lambert, 2006; 94 

Volery, 2010; Deville de Periere, 2011; Fullmer et al., 2014). Microporosity can be found, 95 

for example, within micritised grains, or as pervasive horizons of micritic matrix (with or 96 

without larger mesopores), or between grains where the inter-granular pore space has 97 

been micritised (Cantrell and Hagerty, 1999). An additional feature of some microporous 98 

carbonates, particularly those in the Middle East, is micritic dissolution (Budd, 1989; 99 

Moshier, 1989b; Wagner, 1990) which is typically found towards the top of the oil column 100 

(Lambert et al., 2006). Acidic fluids flowing through the micropore network prior to 101 

hydrocarbon emplacement, dissolve the edges and vertices of the rhombic micrite crystals 102 
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to leave rounded crystals (Figure 1c) with a reduced crystal size (Lambert, 2006). 103 

Microporous horizons with rounded crystals due to micritic dissolution have been shown to 104 

have better reservoir qualities (high porosity and single-phase permeability) than their 105 

rhombic counterparts, and have between 8% and 13% more porosity (Lambert, 2006). 106 

However, the effect of micritic dissolution on multi-phase flow properties is unknown.  107 

These observations suggest that further research is required on variations in microporous 108 

fabric properties and the effects that they have on flow, both individually and in 109 

combination. As such, building a flexible computational algorithm to produce digital rock 110 

models that incorporate the textural variations of microporous carbonates provides a 111 

useful methodology.  112 

To understand the flow properties of chalky microporosity, 3D images from computer 113 

tomography (XMT) scanners (Van Geet et al., 2000) would be ideal. Chalky microporosity, 114 

however, is below the resolution of standard micro-computer tomography (µ-CT) scanners, 115 

and although nano-CT scanners (resolution <100nm3/voxel) are capable of imaging 116 

microporosity, the sample volumes (<15µm3) are too small to acquire a statistically 117 

significant dataset. Direct 3D images also provide very little flexibility to study the effect on 118 

flow of variations in microporosity as the properties of the rock fabric in the image cannot 119 

be adjusted with ease, if at all. As such, rock reconstruction methods that focus on 120 

reproducing geological fabrics to infer the pore-space, provide a more viable and flexible 121 

methodology. Indeed, the pore network of a rock is created by its fabric, so by accurately 122 

reconstructing the solid phase(s), the pore network and therefore the petrophysical flow 123 

characteristics (e.g., porosity, absolute permeability, relative permeability and capillary 124 

pressure curves) of the medium can be determined.  125 

Many different methodologies have been developed to produce 3D models of porous 126 

media. For example, there are object-based modelling methods including process-based 127 
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reconstructions (Bakke and Øren, 1997; Øren and Bakke, 2003) and continuum based 128 

reconstructions (Biswal et al. 2007; 2009a,b) and there are statistical or stochastic 129 

reconstructions from 2D images (Okabe and Blunt, 2004; Al-Kharusi and Blunt, 2008; Wu 130 

et al., 2004, 2006; 2008).  131 

While all proposed methods provide advantages for certain applications, they have 132 

limitations for modelling microporosity. For example, reconstructions based on the spatial 133 

statistics of 2D images can be used to create 3D models using multipoint-statistic 134 

techniques (Okabe and Blunt, 2004; Al-Kharusi and Blunt, 2008) or stochastic approaches 135 

involving Markov meshes (Wu et al., 2004, 2006; 2008). These statistical approaches, 136 

however, tend to smooth the true variations in the image structure, and as such fail to 137 

capture the heterogeneous nature of multiscale pore systems such as those within 138 

carbonates. Object-based models provide perhaps the most flexible basis for modelling 139 

rock fabrics as the fabrics can be altered and adjusted to recreate all geological variability 140 

based on observations. However, the complex processes of carbonate diagenesis mean 141 

that process-based modelling methodologies, which work very well for reconstructing 142 

sandstones (Bakke and Øren, 1997; Øren and Bakke, 2003), are problematic to implement 143 

for carbonates. For an application of the method to chalky microporosity in particular, the 144 

diagenetic process of formation of micrite is not only poorly understood, but may also vary 145 

from reservoir to reservoir (Budd, 1989; Moshier, 1989a; Moshier, 1989b; Cantrell and 146 

Hagerty, 1999; Lambert et al., 2006; Richard et al., 2007; Volery et al., 2009; Lucia and 147 

Loucks, 2013). While continuum based modelling methodologies (e.g. Biswal et al. 2007; 148 

2009a,b) provide a unique approach which combines low resolution micro-CT scans with 149 

2D geological/crystal information in a continuum object-based technique to reproduce 150 

carbonate fabrics at multiple resolutions, such an approach did not produce models with a 151 

resolution high enough to examine microporosity, limiting quantification of the effect of 152 

microporosity on the petrophysical flow properties of the rocks in question (Roth et al., 153 
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2011). 154 

In this study, we present an object-based digital rock building methodology that aims to 155 

accurately reconstruct the fabric of chalky microporous carbonates in order to accurately 156 

capture relevant statistical properties of the pore space. Both quantitative and qualitative 157 

underlying data are used to populate the models based on data from 2D SEM image 158 

analysis.  The algorithm is flexible such that it can model the textural variations of 159 

microporous carbonates and include multiple scales of porosity. This new methodology is 160 

thus able to reconstruct reservoir rocks at a resolution capable of capturing microporosity, 161 

enabling interrogation of both single-phase and multi-phase flow in chalky microporous 162 

carbonates.  163 

In what follows, we use the algorithm in combination with a lattice-Boltzmann simulator, a 164 

network extraction algorithm and a multi-phase phase flow simulator to study the single- 165 

and multi-phase flow properties of synthetically generated typical Middle Eastern chalky 166 

microporous carbonates. In particular, we consider the effect of micropore size, total 167 

micropore content and the effect of micritic dissolution within models of purely micritic 168 

matrix. Finally, we examine how moldic mesoporosity within a microporous network affects 169 

the flow properties of synthetically generated multiscale pore networks. 170 

2. METHODOLOGY 171 

2.1. Textural Properties of Micrite and Micropores 172 

The 3D model needs to be calibrated with geostatistical data. Since it is not possible to 173 

image chalky microporosity directly using 3D scanning methods, following other studies 174 

(Biswal et al., 2007, 2009a, 2009b; Deville de Periere et al., 2011) we use scanning 175 

electron microscope (SEM) images to capture the basic textural properties of microporous 176 

carbonates. Image analysis is performed using IMAGEJ (Schneider et al., 2012).   177 

Different types of SEM images are used to extract both quantitative and qualitative data to 178 
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calibrate the models. Secondary electron images (Figure 1) provide a shallow, pseudo 3D 179 

image of rough cut chips which allows the crystal form and the nature of the contact 180 

between crystals to be examined. For example, the micrite in the chalky microporosity 181 

sample in Figure 1a consists of approximately equidimensional euhedral rhomboids, often 182 

with multiple facets, and there is no obvious alignment of crystal orientation. 183 

Images of epoxy resin pore casts (Figure 1b) are used provide insight into the form, size 184 

and distribution of different pore types (macropore and micropore) within a sample. They 185 

also provide crucial information about the nature of 3D connectivity between pores. For 186 

example, the highly connected sponge-like network of platy microporosity, and the 187 

connectivity between this network and a mesopore, can be seen in Figure 1b. 188 

Finally, backscatter images of highly polished, flat sample surfaces (Figure 2a,b) provide a 189 

good contrast between pore and solid. They enable easy binarisation to determine 2D 190 

slice porosities and also allow measurements of crystal diameter to be made within the 191 

image plane. SEM images are taken at a very high resolution (here up to 0.10µm/pixel) 192 

and as such, before any crystal diameter data are extracted through image analysis, the 193 

resolution of the SEM image needs to be reduced (by averaging across neighbouring 194 

pixels) to match that of the models which will be built. This removes features that would be 195 

unresolvable at the model resolution.  196 

After binarisation and resolution reduction, a watershed algorithm can be applied to detect 197 

individual crystals and Feret diameter measurements (with amalgamated crystals 198 

removed) can be made to provide a quantitative crystal size distribution (Figure 2c) from 199 

which the model can be populated. Where it is not possible to detect crystal edges through 200 

an automated process, manual measurements of the longest diagonal length of the crystal 201 

can be made instead. The resulting data are 2D crystal diameters. By collecting a 202 

statistically significant number of diameters (here, over 400 measurements) these are 203 
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assumed to be reflective to the 3D crystal diameters. 204 

2.2 Object-Based Reconstruction Methodology 205 

The crystal size distribution (Figure 2c) is used to build a library of 3D micrite crystals at 206 

the desired resolution, including forms rotated around the x, y and z axes at discrete 207 

intervals throughout the desired range of rotations. Micrite crystals have multiple facets 208 

and so a very high resolution digital model would be required to capture the crystal facets 209 

correctly. As such the rhombs are simplified to cubes; this maintains the approximately 210 

equidimensional and euhedral nature of micrite, but reduces the voxel resolution required 211 

to represent the crystal form. The algorithm is flexible such that if multiple crystal types, 212 

shapes and sizes were required, these could simply be included in the library.  213 

When distributing the crystals, matrix connectivity is guaranteed by allowing (or forcing) an 214 

overlap of neighbouring crystals. Crystals in the library have a layered structure where 215 

voxels on the edges of the crystal are identified; these are allowed to overlap with other 216 

crystal edge voxels, while crystal centres must remain non-overlapping (Figure 3a, b). This 217 

technique has similarities to the ‘cherry-pit’ or penetrable-concentric-shell (PCS) model 218 

(Torquato 1984, 1985, 1986). As such, the smallest crystal size for any model resolution is 219 

33 voxels to ensure both a distinct crystal centre and edge voxels (Figure 3c, d). The 220 

degree of overlap can be varied so as to suitably represent different micritic textures 221 

observed in samples. This allows different styles of micrite packing to be represented, but 222 

a minimum edge layer thickness of one voxel is required at any resolution, to maintain 223 

matrix connectivity. 224 

The rock reconstruction is initialised within a 3D space, discretised into a grid of regular 225 

cubic voxels of a predefined physical size (the resolution). In an iterative process, voxels 226 

are defined as solid by randomly fitting micrite crystals from the library into the grid. This 227 

continues until a desired total percentage of solid, and therefore the desired total porosity 228 



 

10 
 

(𝜙𝐷) is achieved. Crystals are fitted from largest to smallest, with the number of iterations 229 

(Ni
C) of each crystal size (indexed by i) calculated based on the known crystal frequency 230 

distribution (𝑓𝑖𝐶, as shown for example in Figure 2c), the volume of each crystal size (𝑉𝑖𝐶), 231 

the total volume of the grid being filled (𝑉), and the total porosity (𝜙) required in the final 232 

model which is related to 𝜙𝐷  as described below. As such the number of iterations of each 233 

crystal size required to achieve the target porosity is predetermined based on the ratio (𝑅) 234 

between the volume of solid produced by the crystal size distribution and the volume of the 235 

model to be created as shown in Equations (1) and (2): 236 

𝑅 = 𝑉
(1−𝜙)×∑ 𝑉𝑖

𝐶×𝑓𝑖
𝐶𝑛

𝑖=1
     ( 1 ) 237 

𝑁𝑖𝐶 = 𝑅 × 𝑓𝑖𝐶           ( 2 ) 

The overlapping edge voxels of the crystals result in an underestimate of the number of 238 

crystals required to fill the volume as overlapping edges are not accounted for in Equations 239 

(1) and (2), hence the resulting final porosity would always be higher than the required 240 

porosity. To account for this, the target porosity (𝜙 in Equations (1) and (2)) is set at a 241 

value that is predictably lower than the desired porosity (𝜙𝐷). This prediction is based upon 242 

a sensitivity test to determine the average loss in solid voxels due to overlap at a desired 243 

porosity. An example is shown in Figure 4. 244 

At each iteration, a random (possibly rotated) crystal of the correct dimensions is selected 245 

from the crystal library, and randomly selected potential grid locations are successively 246 

tested until a location that satisfies the edge and centre placement conditions is found. 247 

Upon completion, the algorithm results in a binary model (Figure 3b) of the foreordained 248 

porosity (ϕD) that is 100% microporosity and a solid proportion that is 100% micrite. 249 

Information specific to each crystal placed into the model such as crystal centre 250 

coordinates, crystal diameter and rotational information, is stored in an array as objects 251 
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are placed into the volume. This information may be used to manipulate the model fabrics 252 

to perform rounding of the micrite crystals to emulate micritic dissolution, or to include 253 

larger scale features such as mesoscale porosity (pores >10µm in diameter) and cements. 254 

The properties of mesopores and cements can be determined from the SEM images in a 255 

similar manner to the properties of micrite.  256 

Micrite rounding is performed homogeneously across the model volume. The cubic form of 257 

the micrite crystals is altered to a spherical form by tracing the inscribed radius of the 258 

crystals based on their diameter. Because of the alteration to the fabric it is again 259 

important to ensure matrix connectivity of the rounded crystals. This is achieved by testing 260 

that each crystal touches at least one other. If this is not satisfied, slight shifts of the 261 

unconnected crystals are made to abut them against another crystal. In the highest 262 

porosity models generated for this study, this shift process affected less 0.4% of the 263 

crystals, but must nevertheless be performed to reflect the rock texture and avoid floating 264 

crystals in the matrix. 265 

The purely microporous models can subsequently be merged, under certain conditions, 266 

with larger scale pores to generate multiscale networks. The mesopore networks can be 267 

derived from subsections of micro-CT images or can be synthetically generated to 268 

represent, for example, moldic mesopores. Moldic mesopores occur through the 269 

preferential dissolution of forams during burial and an example of such is a mould is shown 270 

in Figure 1b. The modelled moldic mesopores here are simplified to spherical bodies, 271 

although more complex shapes can be used. The size and location of the moulds within 272 

the modelled volume can be determined randomly or predefined.  273 

Although this process of merging the two pore systems does not reflect the processes of 274 

formation of the mesopores and the micritic matrix, the fabrics generated do reflect those 275 

observed from SEM analysis such as the connectivity between mesopores and 276 
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microporosity (Figure 1b) and the rugosity around mesopore edges due to micrite crystals 277 

(Figure 2b). The micrite crystals that exist around the edges of the mesopores can also be 278 

used as nucleation sites for pore-occluding cements such as those seen in Figure 2b, but 279 

we do not study that aspect of the pore system in this paper. 280 

2.3 Sensitivity Analysis of Fluid Flow Properties to Rock Fabric Properties 281 

Here in we explore the variability of chalky microporous carbonate rocks to investigate the 282 

flow properties of the different fabrics. First, we investigate the sensitivity of flow properties 283 

to micropore size, controlled by varying the resolution at which each model is generated. 284 

The size of micropores is likely to vary from reservoir to reservoir and also within any 285 

individual reservoir. Models were generated at five different resolutions: 0.50µm3/voxel, 286 

0.40µm3/voxel, 0.30µm3/voxel, 0.20µm3/voxel and 0.10µm3/voxel, with three realisations 287 

generated at each resolution. Each resolution model had a porosity of approximately 26% 288 

and a volume of 4003voxels and therefore the physical volume size varied between 289 

models (Table 1). Both single- and multi-phase flow were simulated on the full 4003voxel 290 

volume models; however in order to be able to compare the properties of the different 291 

fabrics properly, eight subvolumes of the four lowest resolution models were also isolated. 292 

These subvolumes each had the same physical volume as the highest resolution model 293 

(0.10µm3/voxel) which had a volume of 403µm3. The voxel sizes of these subvolume 294 

models are shown in Table 1. 295 

Secondly, we consider the effect on fluid flow of total porosity within a purely micritic (and 296 

therefore purely microporous) fabric and also investigate the effect of micritic dissolution 297 

on flow for varying total porosity. Within a microporous reservoir, the total microporosity 298 

within micritic matrix varies (Fullmer et al., 2014) and models of varying total matrix 299 

porosity were generated to interrogate the single-phase and multi-phase flow properties of 300 

100% microporous fabrics. Total porosity was varied from 18% to 35% and three 301 
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realisations of each model were created.  These porosities are within the range of reported 302 

values for purely microporous carbonates (Volery et al., 2010; Deville de Periere et al., 303 

2011; Fullmer et al., 2014) and of porosities from SEM image analysis performed for this 304 

study. These models were created at a resolution of 0.40µm3/voxel and were 400 voxels 305 

(or 160µm) in length. Here we also examine the effect of micritic dissolution on flow 306 

properties by performing micrite rounding on one model at each given porosity. 307 

Finally, we investigate the effect of the presence of synthetic spherical moldic mesopores 308 

within a micritic matrix of varying total (micro- and meso-) porosity. Although fully 309 

microporous horizons do exist within reservoirs, it is additionally important to understand 310 

the range of multi-scale fabrics in which micropores do (and do not) contribute to flow. A 311 

mesopore was placed in each octant of a 400voxel3 model generated at 0.40µm3/voxel 312 

resolution. Amongst other properties, the size of forams varies and as such, the radii of the 313 

mesopores in the grid were varied between 10µm and 45µm, generating five different 314 

mesopore models. These mesopore models were combined with purely micritic matrices, 315 

with microporosities of 18%, 25% and 35%. 316 

All models generated during this study were populated with crystals from the crystal size 317 

distribution extracted from SEM image analysis of samples (Figure 2c), discretised to the 318 

correct resolution in each of the above cases in order to create appropriate corresponding 319 

crystal libraries. 320 

2.4 Simulation of flow 321 

Two separate methodologies are employed to simulate single- and multi-phase flow in this 322 

paper. We describe each in turn. 323 

2.4.1. Single-phase Flow Simulation 324 

Single-phase flow simulation for the computation of absolute permeability is performed 325 

directly on the discretised model using a multiple relaxation time (MRT: Chun and Ladd, 326 
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2007) lattice-Boltzmann model (Ludwig: Desplat et al., 2001) which represents the 327 

boundaries of solid objects using a simple bounce-back scheme. Simulations are 328 

performed in lattice units (lu), and converted to SI units (mD) based on the true voxel size 329 

(Δx). A permeability is obtained by computing the steady-state volume flux in a periodic 330 

system (obtained by reflecting the volume along the flow direction and using periodic 331 

boundaries) generated by a constant body force with a viscosity (η) of 1/6 in all cases. The 332 

simulations were parallelised and used 2048 cores on the Blue Gene/Q supercomputer 333 

based at the Edinburgh Parallel Computing Centre. 334 

The steady state volume flux (Q) is related to the macro-scale permeability (k) by the 335 

Darcy equation (Equation (3) below, Darcy, 1856) where the differential pressure (Pb − Pa) 336 

is related to the applied body force and the length of the system in the flow direction (L) of 337 

cross-sectional area (A) by 338 

𝑄 = −𝑘𝐴
𝜂

(𝑃𝑏−𝑃𝑎)
𝐿

           ( 3 ) 

As is usual with this type of calculation, we ensure that the final pore-scale Reynolds 339 

number is below unity to simulate incompressible Newtonian, laminar flow. For the 340 

narrowest pores in the system, we would expect the flow to be poorly resolved which 341 

would lead to some systematic, and likely, underestimates in the permeability. Tests in 342 

capillaries with regular geometries (circular, triangular, square cross-section) suggest 343 

errors in computed permeability to be up to ≈25% for widths less than ~4Δx (Sengupta et 344 

al. 2012). 345 

2.4.2. Multi-phase Flow Simulation 346 

We perform multi-phase flow simulations on pore networks extracted from the generated 347 

models using the Pore Architecture Tool (PAT) algorithm developed by Jiang et al. (2007). 348 

This method is based on extracting the local medial axis through the pore space (using a 349 

thinning algorithm) and separating the network into pore bodies and throats (nodes and 350 
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bonds), preserving the connectivity and topological characteristics of the pore space. 351 

Junctions in the network are defined as pore bodies (nodes) and the connecting pathways 352 

between nodes are then throats (bonds). Quantitative geometrical characteristics of the 353 

network elements such as pore radius, perimeter and area, shape factor and coordination 354 

number (the number of bonds connecting to each node in the network), are all determined. 355 

These geometrical properties control the development and stability of wetting layers within 356 

the network elements (Blunt, 1998; Valvatne and Blunt, 2004). The topology (or 357 

connectivity) of the network plays an important role in controlling the multi-phase flow of a 358 

network and this can be described for the extracted pore network by calculating the 359 

specific Euler number (χ, Vogel and Roth, 2001) which is simply the number of nodes (N) 360 

minus the number of bonds (B) divided by the volume of the model (V): 361 

𝜒 = 𝑁−𝐵
𝑉

           ( 4 ) 

The Euler number can also be used to derive the pore size dependent connectivity 362 

function by removing pores from the network in order of increasing size and recalculating 363 

the Euler number at each step (Vogel and Roth, 2001). Removing larger and larger pores 364 

will eventually result in a positive Euler number (fewer bonds than nodes) which indicates 365 

the point at which the network becomes unconnected and as such an Euler number of 366 

zero is a proxy for the percolation radius of the network.  367 

Multi-phase flow was simulated on the extracted networks using the quasi-static (capillary 368 

dominated flow) Poreflow software (Valvatne and Blunt, 2004) where two-phase flow is 369 

simulated according to invasion-percolation principles during drainage (invasion of oil) and 370 

imbibition (invasion of water). A pressure gradient is applied to each phase across the pore 371 

network (between the inlet and outlet face) and the relative permeabilities of each phase 372 

are determined by calculating the pressure distribution in response to the change in 373 

pressure gradient across each phase, using mass conservation, at each node (Øren et al., 374 
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1998). 375 

In order to simulate multi-phase flow, the pore-scale wetting properties of the model must 376 

be predefined. However, the wetting properties of carbonates and microporosity are poorly 377 

understood. Strong variations of wettability in different reservoirs are observed more 378 

frequently in carbonate reservoirs than in siliciclastic reservoirs (Bobek et al., 1958) and 379 

studies into the wettability of globally distributed carbonates (e.g. Treiber and Owens, 380 

1972; Kashfi, 1974; Morrow, 1976; Chillingar and Yen, 1983; Cuiec, 1984) have indeed 381 

produced varying results. But at the core plug scale, most carbonates have been found to 382 

have an intermediate wetting state (Skauge et al. 2006), i.e. they have a weak affinity 383 

towards oil. Estimating wettability at the core plug scale is a complex task in itself and few 384 

studies have been able to examine the wettability distribution at the pore scale.  Here, two 385 

different imbibition (water flood) wettability scenarios at the pore scale were simulated to 386 

characterise concomitant variations in the multi-phase flow properties. For both scenarios, 387 

the pore network is initially assumed to be strongly water-wet and oil flooding (water 388 

drainage) continues until a residual water saturation of 0.02 has been achieved. For the 389 

first imbibition scenario, the rock remains water wet after drainage and no aging occurs. 390 

The second imbibition wettability scenario was performed under a simple fractionally wet 391 

scenario where 50% of the pores become oil-wet after drainage (due to aging). This type 392 

of wetting is neither pore shape nor pore size dependent, and the oil wet-network elements 393 

are randomly distributed throughout the network. Imbibition continues until a minimum 394 

residual oil is achieved. 395 

3. Results  396 

3.1 Effect of Micropore Size 397 

3.1.1. Model Fabric Properties 398 
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As can be seen from Figure 5, the morphology of the micritic fabric in the model matches 399 

well with that which is observed in the SEM image. 400 

Figure 6 shows 2D slices through a 3D realisation at each resolution, scaled relative to 401 

their physical sizes. Visually the models can be seen to be producing very similar micritic 402 

fabrics, the simple difference being that the pores and crystal are represented by an ever 403 

increasing number of voxels as resolution is increased from 0.50µm3/voxel up to 404 

0.10µm3/voxel (a to e respectively in Figure 6), and the size of the smallest resolvable 405 

feature decreases with each increase in resolution. 406 

3.1.2. Pore Network Properties 407 

The pore radii distributions shown in Figure 7a indicate the change in pore geometry with 408 

model resolution. The box in Figure 7a shows the smallest pores in the generated models 409 

and these pores are equal to the resolution of the model (half a voxel in radius). As the 410 

resolution is decreased progressively from 0.10 to 0.50 µm3/voxel, the smallest pores are 411 

lost from the volumes and (at the other end of the scale) larger pores are incorporated. 412 

This is reflected in the increase in the average pore radius with a decrease in resolution 413 

(Table 2) and an increase in the upper limit of the pores captured  by the models (Figure 414 

7a). 415 

The percolation radius (where the Euler number is 0) can be seen to be dependent on 416 

model resolution. The models generated at 0.10-0.40µm3/voxel have a percolation radius 417 

of ~0.3µm while the model at 0.50µm3/voxel shows a distinct increase to a percolation 418 

radius of 0.38µm. At a resolution of 0.50µm3/voxel the smallest connections (which control 419 

flow in the models of higher resolution) have been lost, and as such the geometry and 420 

topology of the system has been altered changing the connectivity of the pores. This 421 

change in network properties is highlighted by the decrease in the number of nodes and 422 

bonds from 0.40-0.50µm3/voxel (Table 2). A change in the fluid flow properties of the 423 
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0.50µm3/voxel model in comparison to the other resolution models could be expected. 424 

3.1.3. Porosity and Single-phase Permeability 425 

All models had a target porosity of 26% and at each resolution a separate target porosity 426 

trend (Figure 4a) had to be generated. The resultant model porosities fluctuate randomly 427 

around 26% porosity, ranging from 26.8% porosity for the 0.10µm3/voxel model down to 428 

25.9% porosity for the 0.40µm3/voxel model (Figure 8a). The model subvolumes (Table 1) 429 

also show a narrow range of porosities indicating that a reasonably homogeneous medium 430 

and representative elemental volume is being generated at all resolutions. The number of 431 

crystals generated in each full size model is shown in Table 2. 432 

Single-phase permeability (Figure 8b) shows limited variability across all models (between 433 

1.8mD and 2.8mD), including for the 0.50µm3/voxel model which displays no distinct 434 

increase in permeability in comparison to the other resolutions. Additionally, there appears 435 

to be a negative correlation between porosity and permeability due to changes in 436 

resolution (Figure 8c); however over the range of porosities and permeabilities shown, the 437 

variation in permeability is <1mD and in porosity is (<1.5%).  438 

3.1.4. Multi-phase Flow 439 

Figure 9 shows the relative permeability curves from the multi-phase flow simulations over 440 

the full 4003voxel models at each resolution. These plots indicate the effective permeability 441 

of the water and oil phases against saturation. The relative permeability curves of all 442 

models are smooth indicating a homogeneous pore network at all resolutions. 443 

The drainage curves for all models are similar (Figure 9a). Resolution (or average pore 444 

size) can be seen to have little to no effect on water relative permeability, except for the 445 

0.50µm3/voxel resolution model which behaves slightly differently at mid-range saturations, 446 

possibly reflecting the different connectivity and pore size distribution present. There is a 447 

trend of decreasing oil relative permeability at the same saturation with a decrease in 448 
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resolution. 449 

However, upon imbibition the models exhibit separate behaviour depending on their 450 

resolution. For both wettability scenarios, the relative permeability curves for models of 451 

resolution 0.10-0.40µm3/voxel are indistinguishable while the relative permeability curves 452 

of the 0.50µm3/voxel models behave slightly differently. This is most pronounced for the 453 

water relative permeabilities (Figure 9b&c) which show a higher relative permeability at the 454 

same saturation in comparison to the higher resolution models. These differences in 455 

relative permeability result in a residual oil which is dependent on resolution (and therefore 456 

average pore size, Table 2) and is most clearly demonstrated by the capillary pressure 457 

curves in Figure 10b,c. Under water wet imbibition (Figure 10b), the four higher resolution 458 

models show an incremental variation in the residual oil saturation (fractional volume of oil 459 

remaining in the model after full water flood), from 38% and 28%, while the residual oil 460 

decreases notably more, to 23%, for the 0.50µm3/voxel resolution model. Similarly, 461 

although there is no incremental trend for the higher resolution models, under a fractionally 462 

oil wet scenario (Figure 10c) the residual oil decreases substantially from around 24% to 463 

15% for the model at 0.50µm3/voxel resolution. 464 

These results tend to suggest that the pore network of models generated at 0.50µm3/voxel 465 

resolution have sufficiently different properties (such as connectivity and pore size range 466 

and distribution) such that the multi-phase fluid flow properties of these models is altered 467 

in comparison to the higher resolution models. 468 

3.2 Effect of Total Microporosity and Micritic Dissolution 469 

3.2.1. Model Fabric Properties 470 

Figure 11 shows 2D slices through a 3D realisation of each porosity model.  Visually the 471 

average pore size can be seen to increase with porosity, and the models appear to 472 

represent a statistically homogeneous medium, with some random clustering of crystals as 473 
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is observed in SEM images.  474 

The fabric of a rhombic micrite crystal model can be seen more clearly in Figure 12a and 475 

Figure 12c which show the cubic/rhombic and euhedral micrite structure. Additionally 476 

Figure 12 shows the effect of rounding on the crystal fabric. In Figure 12b & Figure 12d the 477 

original grain structure is retained but without crystal vertices. Any apparently floating 478 

grains are connected in the third dimension. The decrease in crystal size after micrite 479 

rounding is demonstrated in Figure 12e.  480 

3.2.2. Pore Network Properties 481 

Within the rhombic crystal models, average pore size increases with an increase in 482 

porosity (Figure 11) which is supported by the results of the pore network extraction 483 

analysis presented in Figure 13a. There is also an increase in the range of pore radii with 484 

porosity although the range of pores captured in each model spans only one order of 485 

magnitude and the majority of pores in the models have a radius of one voxel (two voxels 486 

in diameter, Figure 13a). The homogeneity of the micritic fabric results in a narrow range of 487 

pore radii reflecting a fairly homogeneous pore network distribution. The increase in 488 

average pore size coincides with an increase in the average coordination number (Table 3) 489 

while the total number of elements decreases for the models with the highest porosities. 490 

The percolation radius increases with porosity (Figure 13c) which would be expected as 491 

the average pore size increases. The 18% to 25% porosity models have a similar 492 

percolation radius of 0.25µm, while the 30% and 35% porosity models show an increase to 493 

0.35µm and 0.40µm respectively, indicating that larger pores are better connected in the 494 

higher porosity models, which is again reflected in the average coordination number (Table 495 

3). 496 

In comparison to their rhombic crystal counterpart, the rounded micrite models exhibit an 497 

increase in the range of pore sizes present and also an increase in the average pore 498 
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radius (Figure 13b), due to the decrease in crystal size (Figure 12e). Individually 499 

comparing a rhombic micrite model to its rounded counterpart demonstrates this trend 500 

clearly (Figure 13e). 501 

The percolation radius increases after rounding for all models (Figure 13d & Figure 13f). 502 

However the average connection number does not show an increase across all models 503 

(Table 3). The increase in average connection number after rounding in comparison to 504 

before rounding is most pronounced for the low porosity models and this increase tapers 505 

off to become zero for the highest porosity models which exhibit no change in average 506 

connection number between the rhombic micrite to the rounded micrite fabrics. After 507 

rounding, all models have an average connection number of greater than 4.2.   508 

3.2.3. Porosity and Single-Phase Permeability 509 

The single-phase permeability and porosity results averaged over the individual results of 510 

the three realisations for each rhombic crystal model are shown in Figure 14a&b. For each 511 

set of realisations the three permeability values were within 0.01mD of the mean and the 512 

porosities were within 0.04% of the mean hence the variance was negligible. Over the 513 

range of porosities modelled there is an order of magnitude variation in the single-phase 514 

permeability, from 0.6mD to 7.5mD.  515 

The effect of micrite rounding on porosity was slightly more pronounced for the lowest 516 

porosity models which exhibit an increase of 8% in porosity compared to a 7% increase for 517 

the models with the highest initial porosity (Figure 14b). The increase in porosity with 518 

rounding is reflected in the substantial increase in single-phase permeability for each 519 

individual model as shown by the dashed lines connecting the rhombic models to their 520 

rounded counterparts in (Figure 14b).  521 

3.2.4. Multi-phase Flow 522 

 Based on the pore network properties of the original rhombic crystal models, the increase 523 
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in the average coordination number with increasing total porosity suggests that there 524 

would also be a variation in the multi-phase flow properties for these models. However, 525 

this expected trend is not observed (Figure 15a, b and c). During drainage (Figure 15a), 526 

the oil relative permeability curves can be seen to depend on model porosity. Increasing 527 

the porosity leads to a higher oil relative permeability at the same saturation, most likely 528 

due to the presence of larger pores and due to the increase in connectivity with porosity. 529 

Water relative permeabilities are however almost indistinguishable, showing only a small 530 

variation between models and no discernable trend with porosity. An irreducible water 531 

saturation of 0.07 is achieved for all models. 532 

The imbibition curves for these models are indistinguishable (Figure 15b and c). There is, 533 

however, a distinct difference between the residual oil saturation between the two 534 

scenarios as water wet imbibition results in a residual oil saturation of 25% while the 535 

fractionally wet scenario results in a residual oil saturation of 40%, which is more apparent 536 

in the capillary pressure curves (Figure 16).  537 

The results and trends for the rounded micrite models (Figure 15d,e,f) reflect the results of 538 

the rhombic crystal model. Oil relative permeability curves during drainage show slightly 539 

different behaviours dependent on total porosity whilst the imbibition curves are 540 

indistinguishable. Moreover, the trends and curves for the two different crystal fabrics 541 

cannot be distinguished from each other and so rounding the micrite crystals appears to 542 

have little to no effect on multi-phase flow properties in comparison to the rhombic 543 

counterpart. 544 

3.3 Effect of Mesoporosity within a Micritic Matrix 545 

3.3.1. Model Fabric Properties 546 

The synthetic moldic mesopores modelled in this study were all located in the centre of 547 

each octant within the grid. Therefore, as the mesopore radii are increased, the distance 548 
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separating the mesopores decreases (Figure 17, Table 4). The only model in which the 549 

mesopores touch and create a permeable pathway without microporosity is in the final 550 

model (Figure 17f) where mesopores have a radius of 45µm. This model is a purely 551 

synthetic, conceptual example to examine the change in behaviour upon introduction of a 552 

connected mesopore network. In all other models, the mesopores are generated such that 553 

they are separate bodies, including the model with mesopores of 40µm radius (Figure 17e) 554 

which have a minimum separation distance of a single grid voxel (Table 4). As such the 555 

connectivity between the mesopores in the models with mesopores of 40µm radius or less, 556 

is determined by the presence of microporosity, a shown in the cross-section through the 557 

30µm radius model   (Figure 17d). This style of connectivity is observed in epoxy resin cast 558 

images (Figure 1b) and additionally, the moldic mesopore in Figure 1b shows a rough 559 

topography around its perimeter which is caused by micrite. This rough topography is 560 

captured by the model, again, as shown in Figure 17d. 561 

3.3.2. Pore Network Properties  562 

As stated previously the mesopores in the first four models are very well connected by 563 

microporosity (Figure 17d), without which, they would otherwise be isolated. This variation 564 

in connectivity with mesopore separation (and size) is best examined using the average 565 

and maximum coordination numbers (Figure 18). 566 

Upon introduction of the mesopores (10µm radius) to the micritic matrix, the average 567 

coordination number for each model increases and then progressively decreases with 568 

increasing mesopore radius (Figure 18a). The increase in average coordination number is 569 

because the 10µm radius mesopores connect to a large number of micropores initially. 570 

However, as the mesopores increase in size, there are more micropores connected to the 571 

mesopore edge (increase in maximum coordination number, Figure 18b) and each 572 

micropore that connects to a mesopore has, on average, half of the 3D possible 573 
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connections by connecting to a single mesopore rather than potentially being connected to 574 

multiple additional micropores, as those found in the centre of the micropore matrix do. 575 

Hence, the average coordination number decreases.  However, the variation in average 576 

coordination for each matrix porosity is only 0.1. The average coordination number is 577 

calculated by frequency of occurrence and as such is dominated by the most common 578 

pore size, here, microporosity. Although pores with larger and larger coordination numbers 579 

are present as mesopore radii increases, the coordination number is still dominated by the 580 

microporosity whose presence decreases with increased mesopore radius.  581 

As would be expected, the maximum coordination number for the models was found to 582 

decrease with increasing matrix porosity (Figure 18b) and increase with mesopore radius 583 

such that the maximum coordination number exceeded 1300 in the 40µm radii mesopore 584 

model with 18% matrix porosity (Figure 18b). The maximum coordination number 585 

decreases for 45µm radii mesopores because these pores are overlapping and as such 586 

are not entirely surrounded by microporosity, reducing the maximum coordination number.  587 

3.3.3. Porosity and Single-phase Permeability 588 

 As mesopore radius increases, the relative proportion of the total porosity that is 589 

microporosity within the models decreases (Figure 19a) and as would be expected the 590 

overall effect of the presence of mesopores within a microporous matrix is to increase 591 

single-phase permeability (Figure 19b). However, lattice-Boltzmann flow simulations also 592 

indicate that the impact of the presence of mesopores on single-phase permeability varies 593 

depending on the porosity of the microporous matrix: a lower porosity matrix experiences a 594 

larger increase in single-phase permeability upon the introduction of mesopores into the 595 

model. While the mesopores are unconnected (up to a radius of 40µm), models with a 596 

matrix porosity of 18% experience a full order of magnitude increase in permeability while 597 

those with a higher matrix porosity experience an increase of less than an order of 598 
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magnitude.  599 

Additionally, as the mesopore size increases, the variation in permeability with matrix 600 

porosity also decreases, as indicated by the black boxes in Figure 19b: the spread of 601 

permeabilities is lower for large mesopores than for smaller or no mesopores showing that 602 

increasingly larger mesopores influence flow more relative to the matrix flow. Upon 603 

connection of the mesopores at 45µm radius, all models see three orders of magnitude 604 

increase in permeability as would be expected for a straight capillary tube. Due to the 605 

larger capillary pressure required to simulate flow in the micropores compared to the 606 

macropores, no such flow takes place, and as such, in these models flow completely 607 

bypasses microporosity.  608 

3.3.4. Multi-phase Flow 609 

From Figure 20 and Figure 21 it is clear that the presence of mesopores within the 610 

microporous matrix, and indeed the different sizes of mesopores, greatly impact multi-611 

phase flow. The multi-phase flow properties can be seen to vary significantly across the 612 

range of models generated.  613 

Since the 45µm radii mesopore model is purely conceptual, its multi-phase flow results are 614 

illustrated for drainage only to show the change in behaviour through connected 615 

mesopores. For all other models during drainage, with increasing mesopore size (direction 616 

of arrow) there is a decrease in oil relative permeability at the same saturation (the 617 

opposite trend can be seen in the water relative permeability curves). This occurs because 618 

the larger mesopores are filled with oil quicker than the smaller mesopores as they are 619 

separated by thinner zones of micropores. When these mesopores are filled, the water 620 

saturation decreases hugely, however there is still no permeable pathway from inlet to 621 

outlet so the relative permeability of oil remains lower than in the smaller mesopore 622 

models. This process is also linked to the trend that as mesopore radius increases, the 623 
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relative permeability curves become more step-like. This is best observed for the 30µm 624 

mesopore model water relative permeability curve (Figure 20g) and indicates a more 625 

heterogeneous pore system and the successive invasion of mesopores with oil. Sections 626 

of the curve with a much steeper gradient indicate slow drainage (a slower decrease in 627 

water saturation) as the oil is forced through the microporous horizons between 628 

mesopores. Sections of the curves with a much shallower gradient (boxes) indicate a 629 

sharp decrease in water saturation and the drainage of oil into a mesopore. 630 

During water wet imbibition, these step wise relative permeability curves are not observed 631 

and this is related to trapping. During imbibition the smallest pores fill first which, due to 632 

the fabric of the models, results in a connected pathway from inlet to outlet through the 633 

micropores, bypassing the mesopores. As such, the oil filled mesopores become trapped, 634 

never being drained of their oil and the step wise saturation changes are not observed.  635 

This trapping effect results in an increase in residual oil with increasing mesopore size, 636 

where the volume of the pore system contained within the mesopores increases (Figure 637 

22a). In other words, with an increase in homogeneity (more pores of a single type, here 638 

micropores, fewer mesopores) there is an improved sweep. Residual oil can also be seen 639 

to decrease with an increase in matrix porosity (Figure 21b,e,h and Figure 22). 640 

The water-wet imbibition results for the models with 40µm radius mesopores, however, 641 

disregard this trend and this is thought to be because the pores are only disconnected 642 

from the outlet by a single row of voxels. As such, when merged with the microporous 643 

matrix, some of the mesopores then become directly connected to the outlet and are able 644 

to drain of oil, considerably decreasing residual oil saturation. This effect is interesting but 645 

it should be noted that such models are not representative elemental volumes as the 646 

number of unconnected mesopores may decrease to one, or even zero. 647 

Under a fractionally oil wet imbibition scenario, quite the opposite trend can be observed. 648 
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With increasing mesopore radius, a decrease in residual oil occurs (Figure 21c,f,i and 649 

Figure 22b). As mentioned earlier, under a fractionally wet scenario the oil wettability is 650 

randomly distributed amongst 50% of the pores, independently of any of their physical 651 

properties (shape, size etc). As such, statistically, half of the mesopores will be oil wet 652 

allowing the development of oil films and oil drainage can continue from some mesopores 653 

even while water saturation is high. As mesopore size increases, the relative proportion of 654 

oil that can be drained through oil wet mesopores increases and so residual oil is lower for 655 

models with larger mesopores (Figure 21f&i). Of course, this is a statistical distribution of 656 

wettability and as such some models do not conform to this trend (e.g. Figure 21c, 30µm 657 

radii model). 658 

4. Discussion 659 

By investigating the effect of micropore size (Section 3.1) and total microporosity (Section 660 

3.2) it has been shown that the new object based rock reconstruction algorithm used to 661 

model chalky microporous carbonate fabric is able to capture the basic textural properties 662 

that control the macro-scale single-phase permeability in these rock fabrics. There is a 663 

very good match between modelled single-phase permeability and the experimental 664 

porosity-permeability data (Figure 14a) reported for the chalky microporous facies of the 665 

Middle Eastern Lower Cretaceous Shuaiba formation (Fullmer et al., 2014). Additionally, 666 

the morphology of the modelled crystal fabrics are reasonable when compared to real 667 

rocks (Figure 5).The assumption that chalky micropores are so small that the capillary 668 

pressures are too high for oil to be have also  proven incorrect by this study. The capillary 669 

pressure curves in Figures 10, 16 and 21 show ranges that are not out with the range 670 

expected within reservoirs. 671 

We have aimed to represent some of the different fabrics of microporous carbonates by 672 

varying micropore size, total microporosity, crystal shape due to micritic dissolution and the 673 
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presence of mesopores within the matrix, all of which can be observed in nature through 674 

sample analysis. Since modelling chalky micropores requires sub-micron resolution, being 675 

able to either observe or represent the micropores within a multiscale network is a 676 

formidable challenge. Indeed, in all digital rock reconstructions there is a trade-off between 677 

the spatial resolution of the model and the largest (or smallest) scale of features that can 678 

be examined. The upper limits of computational power and memory restrict firstly the 679 

number of voxels in a model volume and therefore the physical volume of a model that can 680 

be created, and secondly restrict the grid volume through which fluid flow can be 681 

simulated. As such, while a higher spatial resolution of model allows features to be more 682 

finely resolved, a higher resolution significantly reduces the physical model size that can 683 

be held within the memory limits of the machine being used since the 3D model size 684 

increases as the cube of the number of voxels along each axis.  685 

While examining the effect of micropore size it has been observed that the micropores in 686 

models generated between 0.10-0.40µm3/voxel resolution have very similar single- and 687 

multi-phase flow behaviour. This result suggest that models generated at a resolution of 688 

0.40µm3/voxel are able to represent the same physical pore scale flow as models 689 

generated at 0.10µm3/voxel, a resolution which is much closer to the size of chalky 690 

micropores observed in epoxy resin casts (Figure 1b). Indeed, the single-phase 691 

permeability match with experimental data reported in Section 3.2 further corroborates that 692 

modelling the microporous fabrics at a resolution of 0.40µm3/voxel captures the relevant 693 

pore scale features that exist within real chalky microporous carbonate fabrics. 694 

However, models generated at a resolution of 0.50µm3/voxel exhibited different pore 695 

network and multi-phase fluid flow properties. In comparison to these at higher resolutions 696 

models at 0.50µm3/voxel showed a larger percolation radius (Figure 7) and quite different 697 

water relative permeability behaviour during imbibition (Figure 9), which resulted in a lower 698 

residual oil saturation (Figure 10). It is difficult to determine the exact reasons for this 699 
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change in residual oil, however it is likely to be due to the larger volume of the pore 700 

network contained in the modal pore size within this model and also due to the increased 701 

percolation threshold which will reduce trapping. These results tend to suggest that a 702 

tipping point in the multi-phase flow properties of micropores falls between those with a 703 

modal size range of between 0.40µm3/voxel and 0.50µm3/voxel. Below 0.40µm3/voxel the 704 

multi-phase flow properties are similar while above 0.40µm3/voxel, the multi-phase flow 705 

properties vary quite significantly. Interestingly though, the 0.50µm3/voxel resolution model 706 

did not exhibit a distinct increase in single-phase permeability, and all of the different 707 

resolution models have very similar single-phase permeability properties (Figure 8). The 708 

distinct change in percolation threshold and connectivity of the 0.50µm3/voxel model 709 

(Figure 7) has little effect on single-phase permeability in comparison to the other 710 

resolution models. 711 

These results provide the ability to model larger physical volumes, and to incorporate 712 

chalky microporosity into a more multiscale network, by modelling at a resolution of 713 

0.40µm3/voxel. At this resolution it was shown that volume of microporosity affects single-714 

phase permeability by an order of magnitude (0.6mD to 7.5mD) over the range of 715 

porosities examined (18-35%, Figure 14) but that increasing matrix porosity has very little 716 

effect on multi-phase relative permeability and residual oil saturation under both the 717 

strongly water wet and fractionally wet wettability scenarios (Figure 15). The effect of 718 

micrite rounding due to dissolution has also been examined here. Comparing a rhombic 719 

matrix to its rounded counterpart (dashed lines, Figure 14b) shows an increase in porosity 720 

of 7-8% (which is in agreement with the increase in porosity due to rounding reported by 721 

Lambert et al. (2006)) and also a substantial increase in single-phase permeability, up to 722 

an order of magnitude for the lowest porosity models. As such, if a reservoir was of 723 

constant volume microporosity within the rhombic fabrics, rounding of the original fabric 724 

(most probably toward the top of the oil column) would result in a stratigraphic alteration of 725 
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the single-phase permeability due to the increase in porosity, as indicated by these results 726 

and in agreement with Lambert et al. (2006). It is interesting to note, however, that the 727 

overall effect of micritic dissolution on the single-phase and multi-phase permeability 728 

trends appears to be limited. At approximately the same porosity (30%, indicated by the 729 

arrows in Figure 14b), the permeability in a rounded micrite model can be seen to be only 730 

slightly higher (~1mD) than in a rhombic crystal model. This is also shown in the multi-731 

phase flow results (Figure 15) which indicate that micrite dissolution and rounding has very 732 

little effect on multi-phase flow under these wettability scenarios. It appears that rounding 733 

the micrite crystals has little to no effect on the pore network topology in comparison to the 734 

pore networks within rhombic micrite and hence little change in the multiphase flow 735 

properties.  736 

At a resolution of 0.40µm3/voxel it is possible to include up to three orders of magnitude of 737 

pore size variation through the inclusion of meso-scale pores (>10µm diameter). Results 738 

have shown that the addition of mesopores to a micritic matrix greatly impacts the 739 

geometry and topology of the pore system (Figure 18) and the single-phase permeability 740 

of the models increases with increasing mesopore radius (Figure 19). The relationship 741 

between single-phase permeability and mesopore radius is non-linear but is related to the 742 

separation distance between the mesopores and therefore the proportion of microporosity 743 

within the models. Here microporosity dominates single-phase permeability where it 744 

provides the only permeable connection between mesopores (mesopores with a radius of 745 

10-30µm) and single-phase permeability is limited to less than 20mD. A distinct increase in 746 

single-phase permeability for models with mesopores of 40µm radii is due to the single 747 

voxel separation between the mesopores: at such small separation distances the 748 

mesopores may be connected by a single or a few micropores and as such the 749 

permeability becomes dominated by the mesopores. This is the same for models with 750 

mesopores of 45µm radius, where the flow is able to completely bypass the microporosity 751 
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and permeability thus increases by three orders of magnitude.  752 

The multi-phase flow properties of the models also vary significantly with both mesopore 753 

size and matrix porosity and it has been shown that these results are again related to the 754 

separation distance between mesopores and the relative proportion of microporosity in the 755 

models. Most importantly, under a water wet imbibition scenario, an increase in 756 

homogeneity (more micropores, fewer mesopores) increases the sweep of the model 757 

(Figure 22a). This increase in sweep with homogeneity has been reported by other authors 758 

in fabrics where micropores are present (Hollis et al., 2011; Fullmer et al., 2014) and is 759 

also observed in the water wet imbibition capillary pressure curves in Figure 21b, e & h.  760 

We are aware that in reality not all mesopores in a reservoir have the same shape and 761 

size. Here, the mesopore models are entirely synthetic and the porosities of the models 762 

with the largest mesopores are beyond the porosities typically observed in these types of 763 

carbonates (Figure 19a). Yet this study has demonstrated the flexibility of the developed 764 

algorithm to explore these variations and provides a basis to further develop future studies. 765 

By methodologically altering certain parameters of the porous fabrics (crystal packing, 766 

crystal size, porosity, mesopores) and also the properties of fluids simulated, it will be 767 

possible to build a state-space of how the properties of microporous carbonates vary 768 

under these different fabrics and use the trends to predict single-phase and multi-phase 769 

flow. 770 

Finally, across all different fabrics it has been shown that the wettability scenario modelled 771 

during imbibition impacts the residual oil. The wetting state of any rock is extremely hard to 772 

determine as core wettability experiments are expensive (both in time and money), and 773 

more importantly it is difficult to ensure that the core wettability under lab conditions is the 774 

same as in-situ subsurface conditions. Relative permeability data are therefore difficult to 775 

acquire under reservoir conditions. If such data are available, they are usually only for one 776 
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particular bulk plug sample while the wetting state of a carbonate may vary at a much 777 

smaller (pore scale) and indeed larger scales. Modelling two phase flow under a variety of 778 

different wettability scenarios is one possible way to understand how the fluid flow 779 

properties would vary under different wetting states and this wettability dependent variation 780 

in multi-phase flow properties and residual oil has been demonstrated in this study by 781 

looking at strongly wet imbibition and fractionally oil wet imbibition. The multi-phase flow 782 

results for models with varying sizes of mesopores demonstrates the dependency of 783 

recovery on wetting scenario (Figure 22).  784 

However, the wetting state of a real rock is not randomly distributed throughout the pore 785 

network as is simulated for the fractionally wet wettability case here. Intermediate 786 

wettability (where part of the pore system is oil-wet and the remainder oil-wet) maybe 787 

controlled by the pore size or pore shape (degree of curvature), or wettability is controlled 788 

by mineralogy (Kovscek et al., 1993; Skauge at al., 2004).  The mineralogy of the micrite in 789 

these microporous carbonate models does not vary, and as such mineralogy does not 790 

need to be considered as a controlling factor on wettability alteration. Pore size and shape, 791 

however, are viable controls on wettability at the pore scale. While network models are 792 

able to determine wetting alteration due to pore size, they are not able to model wettability 793 

alteration due to changes in pore shape/curvature as defined by the extracted pore 794 

network. Blunt (1998) introduced a model capable of modelling wettability based on pore 795 

shape parametrically but a network model flow simulator capable of modelling fluid layers 796 

that are dependent on pore shape as defined in the pore network, is vital if we are to be 797 

able to predict multi-phase flow properties of carbonates and indeed, other media. Under a 798 

wetting state controlled by pore shape, the multi-phase properties of rounded micrite 799 

compared to rhombic micrite may indeed be very different as although the structure of the 800 

pore network has been seen to vary only slightly in this study, the largest effect of micrite 801 

rounding could be on pore shape. 802 
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5. Conclusions 803 

We present a flexible object-based rock reconstruction algorithm that reproduces the fabric 804 

of chalky microporous carbonates. We apply the algorithm to probe the effects of 805 

micropore size, total microporosity and micritic dissolution on both single- and multi-phase 806 

fluid flow properties within a purely micritic matrix.  The algorithm is also used to examine 807 

the effect of the presence of mesopores of varying sizes within a micritic matrix on both 808 

single- and multi-phase flow.  809 

Micropore size (controlled by varying model resolution) was found to have little to no effect 810 

on single-phase permeability within the range of resolutions modelled here (0.10-811 

0.50µm3/voxel). However a tipping point in the multi-phase flow properties has been 812 

observed for microporous fabrics with pores no smaller than 0.50µm3, which exhibit quite 813 

different flow properties to those with smaller sizes. We conclude that voxels and pores at 814 

least as small as 0.40µm3 for such modelling. 815 

Total microporosity has been shown to influence single-phase permeability significantly 816 

and over the range of porosities modelled (18-35%) an order of magnitude increase on 817 

permeability occurs. These results indicate that microporosity can conduct significant 818 

single-phase permeabilities of up to 7.5mD which is in agreement with literature reported 819 

experimental data. Total microporosity was however shown to have little to no effect on 820 

multi-phase flow behaviour and oil recovery in these models. 821 

The algorithm is capable of mimicking micritic dissolution (rounding) and results indicate 822 

that rounded micritic fabrics have a considerable effect on the porosity (increase of up to 823 

8%) and single-phase permeability (increase of up to order of magnitude) in comparison to 824 

their original rhombic micritic fabrics, while the overall porosity-permeability trends exhibit 825 

only slight increase in permeability at a given porosity suggesting that the pore network 826 

topology is not significantly altered by rounding. Additionally, multi-phase flow properties 827 
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remain unaltered between the rhombic crystal fabric and the rounded model fabric. 828 

Finally it has been shown that the presence of mesopores within a micritic matrix can 829 

greatly impact flow properties after they become directly connected, but if they are 830 

disconnected single-phase permeability is controlled by micropores and only an order of 831 

magnitude variation in permeability is observed with varying microporosity. Indeed, these 832 

fabrics have been shown to be able to conduct significant permeabilities of up to 20mD 833 

while the mesopores are unconnected, demonstrating that microporosity cannot simply be 834 

overlooked within multiscale carbonate pore systems. Additionally, it has been shown that 835 

fabrics with a higher fraction of total porosity that is microporosity retain a much lower 836 

residual oil saturation during water wet imbibition. Under this wettability scenario, the 837 

presence of microporosity within a carbonate reservoir is desirable, as it increases the 838 

sweep of the reservoir during imbibition. 839 

Carbonate microporosity is found within many different rock fabrics and often in 840 

combination with other scales of porosity. This study has examined only a small sector of 841 

the spectrum of fabric variation and indeed the different hypothetical wettability scenarios, 842 

but has shown the breadth of single-phase flow properties and more importantly multi-843 

phase flow properties that can occur through these fabrics. When assessing the 844 

producibility of microporous carbonates it is therefore important to consider the 845 

microporosity and understand its role in fluid flow through the fabrics present. The 846 

algorithm developed here provides a flexible platform with which to probe the full spectrum 847 

of variations of microporous fabrics and different geologically controlled wettability 848 

scenarios. 849 
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Figure 1 Secondary electron SEM images of chalky microporous carbonates. (a) 
Image of a rough cut chip showing the rhomboidal shape of micrite crystals. (b) 
Epoxy resin cast showing the sponge like network of microporosity and its 
connectivity with a larger, meso-scale pore. The inset shows a high resolution image 
of the plate-like morphology of chalky microporosity between the facets of three 
micrite crystals. (c) Image of a rough cut chip showing the rounding effect of micritic 
dissolution: the example highlighted crystals exhibit no vertices or facets. 
 

Figure 2 Example Backscatter SEM images of chalky carbonate microporosity that 
can be used to extract quantitative data for model calibration. (a) & (b) Typical 
backscatter SEM images used for crystal diameter measurements. (c) Crystal size 
distribution as measured from backscatter images and used to populate models at a 
voxel resolution of 0.4µm3/voxel. 
 

Figure 3 (a) 100x100voxel slice through a 25% porosity model demonstrating the 
crystal overlap created by crystal layering. Edge voxels (white) can be seen to 
overlap or touch one another while individual crystal centres (grey) are entirely 
separate. (b) Binarised final fabric of the same slice. (c) and (d) show example 
layered crystal structures of two sizes used in the algorithm (with front-right section 
removed to show internal layered structure). 
 

Figure 4 Example data from sensitivity tests calculating solid volume loss due to 
crystal overlap. (a) Sensitivity test data and resultant trend for 4003 models at a 
resolution of 0.4µm3/voxel over a range of porosities. Using the trend it is possible to 
calculate the model target porosity (𝜙) that should be used in order to achieve any 
particular required final porosity (𝜙𝐷). The arrow shows that a target of 𝜙=18% 
should be used to obtain a final porosity 𝜙𝐷=25% (c) These sensitivity tests can be 
performed for any grid size (three examples are shown) and at any resolution. 
 

Figure 5 Visual comparison between (a) micritic fabrics in a secondary electron SEM 
image of a rough cut chip and (b) a 300x300voxel slice of a 0.10µm3/voxel resolution 
model viewed in pseudo-3D. 
 

Figure 6 400x400 slice of a model at each resolution scaled to relative physical size. 
0.50µm3/voxel through to 0.10µm3/voxel in (a) through (e) respectively. All models 
have ~26% porosity. 
 

Figure 7 Pore network properties of different resolution models. Key indicates the 
voxel resolution of each model. (a) Pore radius distribution. (b) Euler number 
connectivity function. 
 

Figure 8 (a) Porosities computed from subvolumes at each resolution. (b) Single-



 

 

phase permeabilities computed from subvolumes at each resolution. (c) Porosity 
plotted against single-phase permeability computed for each subvolume (unfilled 
symbols) and full scale volume realisation (filled symbols).  
 

Figure 9 Relative permeability curves from simulations of multi-phase flow on 
extracted pore networks within models of varying resolution. Water relative 
permeability curves are shown as solid lines, oil relative permeability curves are 
shown as dashed lines. WW= water wet wettability & FW= fractionally wet wettability. 
 

Figure 10 Capillary pressure cures from simulation of multi-phase flow on extracted 
networks within models of varying resolution. 
 

Figure 11 An example 2D slice through a single realisation of each 3D porosity 
model. Panels a to e show models of 18% to 35% porosity respectively (refer to 
Table 3 for exact porosity values). Black voxels indicate pores, while white voxels 
indicate solid. All slices have dimensions of 400x400 voxels and a resolution of 
0.40µm3/voxel. 
 

Figure 12 A comparison of model fabrics before and after micrite rounding for the 
25% porosity model. (a) 1003 voxel volume of the rhombic crystal model. (b) 1003 

voxel of the rounded crystal model. (c) 100x100 voxel slice of the rhombic crystal 
model. (d) 100x100 voxel slice of the rounded crystal model. (e) Crystal diameter 
histogram and cumulative frequency plots for a 400x400 voxel slice of the rhombic 
and rounded models. 
 

Figure 13 Pore network properties of rhombic models and rounded models. Upper 
row shows pore radius distributions and lower row shows Euler number connectivity 
functions. Left hand column shows results for rhombic models, central column shows 
results for rounded micrite models, and right hand figures show a comparison 
between the results for 25% porosity rhombic micrite and its resultant rounded 
micrite fabric  counterpart. Keys shown apply to figures directly them. 
 

Figure 14 Porosity against single-phase permeability plots. (a) Rhombic crystal 
model results plotted with data from Fuller et al. (2014). Modelled fabrics represent 
those termed Type I by the Fuller et al. scheme. Model data points are an average 
over three realisations of each model. (b) Comparison between rhombic crystal and 
rounded crystal porosity-permeability results. Dashed lines trace the transition of the 
porosity-permeability measurement from the original, rhombic crystal model to its 
rounded counterpart. Arrows indicate a rhombic crystal model and a rounded crystal 
model with similar porosities (~30%). 
 



 

 

Figure 15 Relative permeability curves from simulations of multi-phase flow on 
extracted pore networks. Upper row shows results for rhombic crystal models, lower 
row shows results for rounded crystal models. Water relative permeability curves are 
shown as solid lines, oil relative permeability curves are shown as dashed lines. 
 

Figure 16 Capillary pressure curves from simulation of multi-phase flow on extracted 
pore networks. Upper row shows results for rhombic crystal models, lower row 
shows results for rounded crystal models. 
 

Figure 17 (a) to (c), (e) & (f) show the synthetic moldic mesopore configurations 
used. (d) Shows a slice through model (c) as indicated by the dashed line in (c) after 
the mesopores have been combined with 25% matrix porosity model. 
 

Figure 18 Coordination number data for mesopore models. (a) Average coordination 
number. (b) Maximum coordination number. 
 

Figure 19 Porosity and single-phase permeability plots. (a) Microporosity as a 
proportion of total porosity. Shading indicates mesopore radii as shown on the plot. 
(b) Mesopore radius plotted against single-phase permeability. The 0µm radius 
mesopore (x-axis) data points indicate purely micritic matrix. Boxes highlight the 
decrease in range of permeabilities with matrix porosity as mesopore radius 
increases. 
 

Figure 20 Multi-phase flow relative permeability curves for models with varying 
mesopore radii (see key) and varying matrix porosity. Upper, middle and lower rows 
indicate models of 18%, 25% and 35% matrix porosity respectively. Arrows indicate 
direction of increasing mesopore radius for the oil relative permeabilities (dashed 
lines). Water relative permeabilities are indicated as solid lines. Boxes in (g) indicate 
fast water drainage in comparison to the slower drainage through steeper curve 
gradients either side. 
 

Figure 21 Capillary pressure curves for models with varying mesopore radii (see 
key) and varying matrix porosity. Upper, middle, lower rows indicate models of 18%, 
25% and 35% matrix porosity respectively. Arrows indicate direction of increasing 
mesopore radius. 
 

Figure 22 Plots of mesopore size against residual oil saturation for (a) water wet 
imbibition and (b) fractionally wet imbibition, under varying matrix microporosity. The 
direction of arrows indicates direction of decreasing proportion of microporosity. 
 



 

 

Table 1 Model resolutions, physical size of full model and number of voxels in each 
subvolume model. 

 
Table 2 Number of crystals, nodes and bonds, and average pore radius generated at 
each resolution. 
 

Table 3 Pore network statistics for rhombic crystal models of different porosities and 
corresponding rounded crystal model (indicated by a and b). 
 

Table 4 Model mesopore radius and corresponding mesopore separation distances. 
 



 

 

Resolution 
(µm3/voxel) 

Full Model 
Physical Size 

(µm3) 

Subvolume 
Model Size 

(voxels) 

0.10 403 --- 

0.20 803 200 3 

0.30 1203 133 3 

0.40 1603 100 3 

0.50 2003 80 3 

 



 

 

Model Resolution 

(µm3/voxel) 
# Crystals Average Pore Radius 

(µm) # Nodes # Bonds 

0.10 6417 0.26 19270 10491 

0.20 39858 0.30 133954 68037 

0.30 116407 0.37 283997 141547 

0.40 271875 0.38 709514 342223 

0.50 495190 0.44 584850 187095 

 



 

 

 Model Porosity % # Pores # Throats # Elements Average 
Coordination # 

Average Pore 
Radius (µm) 

R
ho

m
bi

c 

1a 18.9 303255 576183 879438 3.78 0.329 

2a 21.3 323128 633370 956498 3.91 0.327 

3a 25.6 332709 683879 1016588 4.09 0.336 

4a 30.6 309397 663326 972723 4.27 0.344 

5a 35.7 268670 594955 863625 4.41 0.421 

R
ou

nd
ed

 

1b 27.1 293660 623913 917573 4.23 0.327 

2b 29.6 282337 608558 890895 4.29 0.438 

3b 33.7 249887 547965 797852 4.36 0.543 

4b 38.3 207306 460690 667996 4.42 0.615 

5b 42.9 165973 369289 535262 4.42 0.668 

 



 

 

Mesopore 
Radius 

(µm) 

Minimum 
Separation 

(voxels) 
10 150 
20 100 
30 50 
40 1 
45 0 

 














































