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CONDENSATION: Acute systemic fetal inflammation in a sheep model of early pregnancy is 

not driven by cells in the fetal blood. 

 

SHORT VERSION OF ARTICLE TITLE: Inflammation in very preterm sheep fetuses. 
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ABSTRACT 

BACKGROUND: The preterm birth syndrome (delivery before 37 weeks’ gestation) is a major 

contributor to the global burden of perinatal morbidity and mortality. The aetiology of 

preterm birth is complex, multifactorial, and likely dependent, at least in part, on the 

gestational age of the fetus. Intrauterine infection is frequent in preterm deliveries 

occurring before 32 weeks’ gestation; understanding how the fetus responds to pro-

inflammatory insult will be an important step towards early preterm birth prevention. 

However, animal studies of infection and inflammation in prematurity commonly use older 

fetuses possessing comparatively mature immune systems.  

OBJECTIVE: Aiming to characterise acute fetal responses to microbial agonist at a clinically-

relevant gestation, we used 92d gestational age fetuses (62% of term) to develop a 

chronically catheterized sheep model of very preterm pregnancy. We hypothesised that any 

acute fetal systemic inflammatory responses would be driven by signalling from the tissues 

exposed to E. coli lipopolysaccharide introduced into the amniotic fluid.   

STUDY DESIGN: 18 ewes carrying a single fetus at 92d gestation had recovery surgery to 

place fetal tracheal, jugular, and intraamniotic catheters. Animals were recovered for 24h 

before being administered either: intraamniotic E.coli lipopolysaccharide (LPS; n=9); or 

sterile saline (n=9). Samples were collected for 48h before euthanasia and necroscopy. Fetal 

inflammatory responses were characterised by microarray analysis, quantitative PCR and 

ELISA.  

RESULTS: Intraamniotic LPS reached the distal trachea within 2h. LPS increased tracheal 

fluid interleukin-8 within 2h and generated a robust inflammatory response characterised 
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by interleukin-6 signalling pathway activation, up-regulation of cell proliferation, but no 

increases in inflammatory mediator expression in cord blood RNA.  

CONCLUSIONS: In very preterm sheep fetuses, LPS: i) stimulates inflammation in the fetal 

lung and fetal skin; and ii) stimulates a systemic inflammatory response that is not 

generated by fetal blood cells. These data argue for amniotic fuid-exposed tissues playing 

key role in driving acute fetal and intrauterine inflammatory responses. 

KEY WORDS: preterm birth, infection, inflammation, sheep, fetus. 
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INTRODUCTION 

Preterm birth (PTB; delivery before 37 weeks’ completed gestation) is a multi-origin 

syndrome1 that results in excess of 1 million perinatal deaths each year2, 3. The preterm 

deliveries at highest risk of death and significant disability are those occurring at or below 

32 weeks of gestation, most commonly in association with intrauterine infection4 and 

chorioamnionitis5.  Goldenberg and colleagues have suggested that between 25 and 40% of 

preterm births are due to infection, noting that the true rate may in fact be higher due to 

spuriously negative microbial culture results6. An increased risk of adverse neonatal 

outcomes is also independently associated with an elevated cord blood plasma interleukin 

(IL)-6 level (>11pg/mL), termed the fetal inflammatory response syndrome or FIRS7. 

In the presence of microbial agonist, innate immune receptors (including the TOLL-, NOD-, 

and RIG-I-like receptor families) in fetal and maternal tissues drive the expression and 

release of pro-inflammatory mediators including IL-1α/β, IL-6, IL-8 and tumour necrosis 

factor (TNF)-α1, 4, 8. Intrauterine inflammation is considered key to both the premature 

activation of the pathways of parturition and a number of the diseases (e.g. cerebral palsy) 

associated with prematurity8, 9. As such, interventions that resolve both intrauterine 

infection and inflammation may prevent microbially-associated PTB and its sequelae. A 

number of investigators have studied responses to intrauterine infection and inflammation 

in primate10, 11, sheep12, 13, and rodent models14, 15 of pregnancy. However, much remains to 

be understood with regards the tissues responsible for driving intrauterine inflammation. Of 

note, a significant number of previous studies in this field have been undertaken in late-

gestation pregnancies4. 
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We aimed to chronically catheterise fetal sheep to characterise the acute intrauterine 

inflammatory response to E.coli lipopolysaccharide (LPS) in very preterm fetuses. Noting 

that LPS does not cross cell-cell barriers16, we hypothesised that any acute fetal systemic 

inflammatory responses would be driven by signalling from the tissues exposed to the  

amniotic fluid (AF).    

MATERIALS AND METHODS 

Animals: Animal studies were approved by The University of Western Australia’s Animal 

Ethics Committee (approval RA/3/100/1289). 18 date-mated ewes with singleton fetuses at 

92d gestational age (GA) had aseptic recovery surgery to place catheters into the fetal 

jugular vein, trachea and two catheters into the AF as described previously17. After a 24h 

recovery, animals were assigned at random to receive either: i) 10mg E.coli LPS (O55:B5; 

Sigma Aldrich, St. Loius, MO) in 2mL sterile saline via intraamniotic catheter (n=9); or ii) 2mL 

sterile saline via intraamniotic catheter (n=9). 

Amniotic fluid (AF), tracheal fluid (TF) and fetal plasma (FP) were serially sampled 

immediately before and 2, 4, 8, 12, 24 and 48h after treatment administration. Animals 

were euthanised with an intravenous bolus (100mg/kg) of pentobarbitone at 48h. Fetal cord 

blood was collected for blood chemistry analysis, and for RNA extraction using PAXgene 

Blood RNA Tubes (PreAnalytiX GmbH, Switzerland) in accordance with manufacturer’s 

instructions. Fetal tissues were snap frozen in liquid nitrogen for subsequent analysis. 6-9 

animals were analysed per group.    

Tissue RNA preparation: RNA was isolated from fetal tissues (internal groin skin, spleen, lung 

right lower lobe, frontal cortex), and mechanically disrupted with a Precellys homogeniser 
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(Bertin Technologies, Rockville, MD) in 1mL TRIzol (Life Technologies, Carlsbad, CA) in 

accordance with manufacturers’ instructions. RNA was treated with Turbo-DNase (Life 

Technologies) as previously reported and quantified using a QUBIT fluorometer (Life 

Technologies). 

Quantitative PCR: Sheep-specific probes and PCR primer sets were used to perform 

quantitative PCR reactions for IL-1β, IL-6, IL-8, TNF-α, MCP-2, IL-10 and IL-13 using an 

EXPRESS One-Step SuperScript qRT-PCR Kit (all Life Technologies) containing 125 ng RNA 

template in a final volume of 20 µL, following manufacturer’s instructions. Cycling 

conditions and primer/probe sets were as described previously18. Cq values were 

normalised against 18s rRNA and expressed as fold changes relative to saline control values.  

Limulus Assay: The concentration of LPS in the AF and TF was determined using Pierce LAL 

Chromogenic Endotoxin Quantitation Kits (Life Technologies) in accordance with 

manufacturer’s instructions. Plates were read at a wavelength of 405 nm on a Anthos 2010 

Standard Plus plate reader (Biochrom Ltd. Cambridge, UK).  

ELISA: Quantification of IL-6 and IL-8 protein concentrations in AF, TF and FP samples were 

performed using in-house ELISAs as previously described19. TNF-α and MCP-1 levels were 

assayed using ELISA VetSets (Kingfisher Biotech, Saint Paul, MN) according to the 

manufacturer’s instructions with one modification; coated wells were incubated with 

samples overnight at 4 °C. For IL-8 quantification, samples were diluted 1:10 in assay buffer. 

Plates were read at a wavelength of 450 nm on an Anthos 2010 Standard Plus plate reader 

(Biochrom Ltd. Cambridge, UK). For each experiment, samples and standards were assayed 

in duplicate. 
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Microarray: Comparative transcriptomic analysis (Ovine Gene 1.0 ST 8 x 15K Array; 

Affymetrix, Santa Clara, CA) was performed on arterial cord blood RNA collected at 

necroscopy from 4 LPS-exposed and 4 saline-exposed fetuses selected at random. All RNA 

samples underwent quality control assessment for purity and integrity and had a RIN value 

of between 6.5 and 8.8. For each sample, 100 ng of total RNA was processed using a WTPlus 

Kit (Affymetrix) following manufacturer’s instructions. Fragmented, labelled single-stranded 

DNA was hybridised in a GeneChip hybridisation oven 640 at a final concentration of 23 

ng/µL using a GeneChip Hybridization, Wash and Stain Kit (both Affymetrix) in accordance 

with manufacturer’s instructions. Arrays were washed and stained on a GeneChip Fluidics 

Station 450 and scanned on a GeneChip 3000 7G+ scanner and using GeneChip Command 

Console Software (all Affymetrix), following manufacturer’s instructions. Microarray data 

were pre-processed using the robust multi-array average (RMA) algorithm, background 

correction, quartile normalisation and gene-level probe set summation20. Genes 

differentially expressed between the two groups were identified by Significance Analysis of 

Microarrays (SAM) analysis with a false discovery rate (FDR) of 0.1 using BRBArrayTools 

Version 4.4 software21. Gene networks were generated by Ingenuity Pathway Analysis (IPA) 

software (Qiagen, Redwood City, CA).  

 

Quantitative PCR reactions to validate microarray findings were performed on samples 

submitted for microarray analysis using the Roche Universal Probe Library (Roche 

Diagnostics Australia Pty Ltd, NSW, Australia) in accordance with manufacturer’s 

instructions. The four most differentially upregulated targets by SAM analysis were selected 

for analysis: CCNB1 (Right Primer: cctctggaaaaggctcctg; Left Primer: ccttaacaggctcgggttc; 

Universal Probe: 36 Amplicon Size (nucleotides, nt): 73); MT2A (Right Primer: 
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ggatcccaactgctcctg; Left Primer: gcgcacttgcaatctttg; Universal Probe: 92; Amplicon Size (nt): 

78); TCN1 (Right Primer: ttgttgggattaagagtcaaagg; Left Primer: ttatgtcttctttgatttgtccactc; 

Universal Probe: 150; Amplicon Size (nt): 63); TOP2A (Right Primer: 

gaccattatcaatttggctcaga; Left Primer: ggctgcaaaaggttcagatt; Universal Probe: 44; Amplicon 

Size (nt): 60). Cq values were normalised against GAPDH (Right Primer: 

ggcctccaaggagtaaggtc; Left Primer: tctcttcctctcgtgctcct; Universal Probe: 23; Amplicon Size 

(nt): 60); and β-Actin (Right Primer: ggacggaccctcacacatac; Left Primer: 

gtgagaagcctgccaacg; Universal Probe: 70; Amplicon Size (nt): 61). 

 

Statistical Analysis: All qPCR values are mean ± standard deviation (SD). Statistical tests were 

performed on dCq values and data are reported as fold change vs. control. All ELISA values 

are median ± interquartile range (IQR). Statistical tests were performed using SPSS Statistics 

for Windows, Version 20.0 (IBM Corporation, Armonk, NY.). Variance and distribution were 

assessed for normality. Mean differences between normally distributed data were tested for 

significance with one-way ANOVA using a p value of 0.05. Tukey’s test was used to perform 

multiple post-hoc comparisons. Between-group differences in non-parametric data were 

tested for significance with Kruskal-Wallis one-way ANOVA, with a p value of 0.05 accepted 

as significant. Rank-sum tests were used to perform multiple post-hoc comparisons were 

performed with the p value corrected for n multiple comparisons where appropriate. 
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RESULTS 

Clinical observations: All surgeries were successfully completed and there were no fetal 

deaths prior to scheduled euthanasia. No significant differences were identified in birth 

weight, arterial cord blood pH, pO2, pCO2, lactate, glucose or white blood cell counts (total 

or differential) between treatment and control groups. None of the study animals had 

meconium and there was no increase in the presence of fetal edema or ascites as a result of 

LPS exposure. Compared to Saline Control, the concentration of γ-glutamyltransferase (a 

marker of oxidative stress) in fetal cord blood plasma collected at euthanasia was 

significantly increased (p<0.05) at necroscopy in animals exposed to LPS for 48h (Table 1).  

Endotoxin quantification: For animals randomised to LPS-exposure, the endotoxin levels in 

both AF and TF  were below the assay limit of detection (0.1EU/mL)  immediately before LPS 

administration. Endotoxin concentrations in the AF and TF exceeded 1EU/mL by 2h and 

remained above 1EU/mL at all subsequent time points to 48h.  

ELISA: All values are median (25th - 75th centile). Statistical comparisons are relative to saline 

control samples collected contemporaneously at matched time points. There were no 

significant increases in TNF-α concentrations in AF, TF or FP at any time point (data not 

shown). IL-6 concentrations were significantly increased in AF from LPS-exposed fetuses at 

12h, 24h, and 48h, relative to Saline Controls. IL-6 concentrations were significantly 

increased in TF from LPS-exposed fetuses at 24h, and 48h, relative to Saline Control. IL-6 

concentrations were significantly increased in FP from LPS-exposed fetuses at 12h, relative 

to Saline Control (Table 2). 
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IL-8 concentrations were significantly increased in AF from LPS-exposed fetuses at 4h, 8h, 

12h, 24h, and 48h, relative to Saline Control. IL-8 concentrations were significantly 

increased in TF from LPS-exposed fetuses at 2h, 4h, 12h, 24h, and 48h, relative to Saline 

Control. IL-8 concentration was significantly increased in FP from LPS-exposed fetuses at 

12h, relative to Saline Control (Table 3). 

MCP-1 concentrations were significantly increased in AF from LPS-exposed fetuses at 4h, 8h, 

12h, 24h, and 48h, relative to Saline Control. MCP-1 concentrations were significantly 

increased in TF from LPS-exposed fetuses at 8h, 12h, 24h, and 48h, relative to Saline 

Control. MCP-1 concentrations were significantly increased in FP from LPS-exposed fetuses 

at 4h, 8h, 12h, 24h, and 48h , relative to Saline Control (Table 4).    

Quantitative PCR: Results are presented in Figure 1. At 48h, increases in cytokine and 

chemokine mRNA were greatest in the fetal lung (Figure 1A), with statistically significant 

increases in IL-1β (20.7±20 vs. 1.1±0.5), IL-6 (5.9±5.5 vs. 1.1±0.4), IL-8 (66.4±79.5 vs. 

1.0±0.3), TNF-α (13.7±13.8 vs. 1.1±0.4), MCP-2 (83.7±87.3 vs. 1.5±1.7), and IL-10 (3.5±1.6 vs. 

1.1±0.4) mRNA expression. Smaller, statistically significant increases were detected in fetal 

skin (Figure 1C) IL-1β (3.4±1.7 vs. 1.2±0.7) and IL-8 (4.6±2.9 vs. 1.3±0.8) and fetal spleen 

(Figure 1D) IL-1β (1.9±0.6 vs. 1.1±0.4) and TNF-α (2.1±0.7 vs. 1.1±0.5) mRNA expression. 

There was no change in cytokine / chemokine expression in fetal cortex tissue (Figure 1B; IL-

6, IL-8, MCP-2, IL-13) or RNA collected from fetal arterial cord blood (Figure 1E; IL-1β, IL-8, 

TNF-α; IL-6 and MCP-2 were not detectable in either control or LPS-exposed groups).       

Microarray: Using a SAM analysis with a false discovery rate of 0.1, 63 genes were found to 

be significantly differentially expressed between LPS- and saline-exposed groups. Array data 
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has been deposited with NCBI under series entry GSE72240. In keeping with the results of 

qPCR analyses (above), levels of RNA transcripts for key immunomodulatory cytokines (IL-

1α, IL-1β, IL-6, IL-8, IL-10 IL-17A, IL-18) associated with PTB and fetal injury were not 

differentially regulated (either increased or decreased) in circulating RNA collected from 

arterial cord blood at 48h. Figure 2 displays summaries for three signalling pathways 

identified as being significantly upregulated by Ingenuity Analysis. RNA transcript for Cyclin 

B (CCNB1) was found to be differentially regulated in response to LPS exposure. CCNB1 

plays an important role in regulating the cell cycle, though its interaction with cyclin-

dependent kinase 1, allowing transition from G2 phase to mitosis. The CCNB1 promoter is 

upregulated by a number of factors including 17-β estradiol, insulin-like growth factor and 

prolactin-releasing hormone. The overexpression of CCNB1 is associated with a number of 

cancers in humans, and may be indicative of resistance to radiotherapy and chemotherapies 

in breast and neck cancers 22. Quantitative PCR was used to validate statistically significant 

increases in four transcripts (CCNB1, MT2A, TCN1 and TOP2A) identified as being 

differentially upregulated in LPS-exposed fetal blood RNA by SAM analysis, relative to saline-

exposed control samples. Relative to saline control, all four transcripts assessed (CCNB1, 2.4 

fold increase, p=0.028; MT2A, 2.7 fold increase, p=0.043; TCN1, 2.4 fold increase, p=0.030; 

and TOP2A, 2.5 fold increase, p=0.028) were significantly upregulated, although at a slightly 

lower magnitude than that identified in the microarray analysis. Pathway profiles suggest 

the activation of canonical signalling pathways (IL-6 signalling, cellular proliferation, viral 

infection response) associated with cell cycle control and cellular proliferation. These data 

point to a central role for CCNB1 in these pro-proliferative response pathways. Ingenuity 

Pathway Analysis (IPA) Upstream Regulator (UR) analytic was used to predict upstream 

transcriptional regulators that could explain the observed changes in gene expression in the 
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LPS vs. saline-control samples. Interestingly, signalling activation was characteristic of a 

cellular response to viral infection; a number of key regulatory molecules were predicted as 

highly probable upstream signalling nodes, including IL6 and CDKN2A (both p < 0.001). 

CDKN2A encodes the tumour-suppressor protein p16, which exerts a negative influence on 

cell cycling by preventing the transition from G1 phase to S phase 23.  
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COMMENT 

The present work describes the successful development of a chronically catheterized sheep 

model to study inflammatory responses generated by very preterm fetuses. This study 

presents three key findings pertinent to advancing our understanding of the inflammatory 

pathophysiology that underpins the fetal inflammatory response syndrome in very preterm 

fetuses: 

i) when administered to the AF, LPS rapidly (within 2h of administration) entered 

the TF. We, and others, have previously shown the fetal lung to be a key organ in 

driving systemic fetal inflammatory responses12. These data similarly suggest that 

microorganisms gaining access to the intrauterine environment (i.e. by ascending 

infection1 / focal breach in the fetal membranes24) will rapidly gain access to the 

fetal lung; 

 

ii) relative to Saline Control, significant increases in soluble pro-inflammatory 

mediators were identified in TF as early as 2h (IL-8) and in AF as early as 4h (IL-8, 

MCP-1) after intraamniotic LPS administration. The data suggest that the 

magnitude and speed with which changes occur in each compartment (AF, TF, 

FP) may be cytokine/chemokine-dependent. Concentrations of MCP-1 and IL-6 in 

AF and TF were similar across sampling points. The highest concentration of IL-6 

was identified in the FP at 12h, after which time the concentration returned to 

baseline. Concentrations of IL-8 were substantially higher in the AF and TF than 

FP. Increases in cytokine mRNA expression in tissues collected at autopsy were 
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greatest in the fetal lung. Together, these data suggest an important role for the 

lung in driving intraamniotic and systemic fetal inflammatory responses to 

microbial invasion of the AF in early pregnancy; and  

 

iii) the acute systemic fetal inflammation mediated by intraamniotic LPS 

administration was rapidly detectable in FP (MCP-1 by 4h, IL-6 and IL-8 by 12h). 

An absence of cytokine/chemokine RNA expression changes in whole arterial 

blood collected at euthanasia, very modest changes in spleen cytokine mRNA 

expression, and limited changes in markers of liver inflammation, oxidative 

stressand injury (AST, γGT, GLDH) together suggest that the acute systemic fetal 

inflammatory response to LPS is driven by fetal tissues exposed to the amniotic 

environment.   

Given the importance of inflammation to preterm labour and fetal injury, there is significant 

interest in developing and testing anti-inflammatory interventions to complement antibiotic 

therapies in the setting of infection-associated preterm birth. To date, investigators have 

used a variety of pharmacological approaches in an attempt to regulate intrauterine 

inflammation13, 25-27.  

We characterised the acute fetal responses to intraamniotic endotoxin exposure in 

chronically catheterized fetal sheep at 62% of gestation to model early gestational 

inflammatory responses. These data are of importance for the development of 

interventions to identify and target the tissues that respond to intrauterine inflammatory 

stimulation. Moreover, because fetal immunological capacity is a function of gestational 

development4, 28, the use of gestation-appropriate fetuses is an important consideration in 
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infection-associated PTB model system selection. We and others have previously 

investigated fetal lung responses to LPS fetuses at approximately 80% of gestation29. In the 

present study, we demonstrate that the very preterm fetal lung also has the capacity to 

mount a robust pro-inflammatory response to microbial agonist. The fetal skin has also been 

suggested as a potential pro-inflammatory organ in humans30 and we have previously 

characterised its responses to LPS31, and preterm birth associated organisms such as 

Ureaplasma parvum
32 and Candida albicans

19
 in mature fetuses. In the present study, LPS 

exposure yielded modest increases in fetal skin cytokine mRNA expression, notably IL-8, in 

keeping with earlier reports. These data reinforce the ability of the fetus to mount a robust 

pro-inflammatory response to microbial agonist from an early GA. From a model 

perspective, significant increases in FP IL-6, and an IL-6 driven signalling response in fetal 

cord blood cells reinforces the utility of the sheep as a model system for intrauterine 

infection in human pregnancy33. 

From a treatment-development perspective, two of study findings are of particular 

relevance. Firstly, the speed at which inflammatory changes became detectable in the TF, AF 

and FP following LPS administration is of great interest. The hypothetical therapeutic 

window for administering anti-inflammatory therapies to the fetus to prevent preterm 

labour and brain/lung injury remains unknown, but is likely dependent on the infecting 

organism and host susceptibility. Previous studies have demonstrated neurological injury in 

association with intrauterine inflammation34. The present study was not designed to assess 

neurological injury, although it is interesting to note an absence of inflammatory changes in 

a limited panel of mediators measured in the fetal cortex at 48h. Developing anti-

inflammatory therapies for PTB prevention is likely an important element of our quest to 
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prevent PTB and improve perinatal outcomes. However, the speed with which (<2h) the 

fetus responded to agonist in the present study, along with previous work demonstrating 

pathological changes in the fetal brain following exposure to even sub-clinical doses of 

LPS35, serve to highlight the urgent need for better tests to identify women at risk of 

intrauterine infection and PTB.  

Secondly, and of particular interest, is the nature of the response presumably mounted by 

circulating immunocytes to acute fetal inflammation. Surprisingly, this response was 

characterised by inhibition of cell-cycle control, proliferation, but an absence of de novo 

inflammatory mediator expression. In keeping with previous animal studies, quantitative or 

qualitative changes in immunocyte populations were not detected after 48h of LPS exposure 

in this study. It is, however, tempting to speculate that the pro-proliferative signalling state 

identified in the present study is in keeping with qualitative and quantitative changes in 

immunocyte populations previously identified in LPS-exposed sheep fetuses by 7d29. 

Appropriate targeting of anti-inflammatory therapies is an important consideration as 

immunocyte proliferation and differentiation plays a crucial role in augmenting the host 

response to infection. Ureaplasma spp. are the microorganisms most commonly isolated 

from cases of early PTB; data from clinical studies suggest that perhaps up to 30% of very 

early preterm infants are cord-blood culture positive for Ureaplasma spp
36-39. In these cases, 

the presence of systemic microbial agonist argues for the need for anti-inflammatory agents 

to reach the fetal circulation. However, it appears that in the majority of cases, infection 

(and thus pro-inflammatory agonist) is restricted to the AF. In these cases, risking systemic 

fetal immune-modulation may be unnecessary, especially if it were to inhibit immunocyte 

proliferation, which is crucial in allowing the fetus to protect itself from microbial invasion. 
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There are a number of factors to consider when interpreting the data presented above. 

Sheep provide a well-validated model with which to study fetal inflammatory responses to 

microbial agonist; however it is important to note that unlike a number of species (including 

rodents and non-human primates), administration of LPS in early-mid pregnancy does not 

induce the onset of labour 31. Secondly, there are well documented differences between 

species with regards to sensitivity to LPS40, and it is possible that a more vigorous fetal 

response, or analysis outside of the 48h window used in this study, may both lead to the 

identification of de novo cytokine/chemokine production by cells in the blood. Lastly, the 

present study models fetal responses to microbial agonist (LPS) in the AF. It would be of 

particular interest to determine the effect of alternative models of infection, such as acute 

trophoblast infection (with and without AF involvement) on fetal inflammatory responses. 

CONCLUSIONS 

Developing interventions to control the pathological inflammation associated with 

intrauterine infection is likely an important step in our efforts to prevent PTB and fetal 

injury. The availability of gestation-appropriate animal models, such as that described in the 

present study, will likely play a critical role in this work. In successfully developing a 

chronically catheterized sheep model of early pregnancy, our data demonstrate that the 

very premature fetus rapidly generates a robust inflammatory response in response to 

intraamniotic LPS exposure. In the absence of bacteraemia, acute systemic inflammation 

appears to be driven by amniotic-fluid exposed tissues; fetal blood cells (presumably 

immunocytes) respond to systemic inflammation by entering a pro-proliferative state but do 

not contribute to the acute production of inflammatory mediators.  
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This study advances our understanding of fetal responses to microbial agonist at a 

gestational age which is frequently associated with very early preterm birth. This study 

underscores the need to appropriately target anti-inflammatory therapies to fetal tissues 

exposed to the agonist-containing AF, and highlights the likely importance of the fetal lung. 

The speed at which substantial intrauterine inflammation occurs and the comparatively 

subtle nature of acute fetal systemic inflammatory responses also reinforces the urgent 

need to seek improved means of identifying women at risk of intrauterine infection. 
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TABLES 

 

 

 

 

Table 1. Fetal delivery data. LPS, lipopolysaccharide (endotoxin) from E.coli; CB, fetal arterial cord blood; WBC, total white blood cell count; 

AST, aspartate aminotransferase; GGT, γ-glutamyltranspeptidase; GLDH, glutamate dehydrogenase; TB, total bilirubin. *, p>0.05. 

 

 

Group Delivery 

Weight (g) 

# Male 

Fetuses 

Arterial  

CB pH 

Arterial  

CB pO2 

Arterial  

CB pCO2 

WBC  

10
9
/L 

CB AST 

U/L 

CB GGT 

U/L 

CB GLDH 

U/L 

CB TB 

µmol/L 

Saline Control (n=9) 956.0±164.0 6/9 7.15±0.04 14.23±3.2 85.8±8.0 0.93±0.4 16.8±3.8 8.4±3.3 2.6±1.6 10.1±4.0 

LPS (n=9) 850±117.0 6/9 7.13±0.04 13.0±4.5 91.0±6.7 1.1±0.8 16.6±4.9 15.4±7.2* 5.5±7.0 12.3±2.6 
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IL-6 

TIME TREAMENT AF TF FP 

0 h 

SALINE 0.0 (0.0 - 21.8) 84.1 (29.3 - 111.3) 0.0 (0.0 - 18.1) 

LPS 0.0 (0.0 - 103.0) 107.5 (50.7 - 180.6) 17.8 (0.0 - 64.9) 

2 h 

SALINE 0.0 (0.0 - 65.4) 79.7 (67.5 - 141.2) 99.0 (0.0 - 217.3) 

LPS 0.0 (0.0 - 71.5) 47.8 (17.3 - 109.3) 3.8 (0.0 - 33.0) 

4 h 

SALINE 0.0 (0.0 - 3.4) 22.0 (5.3 - 139.6) 15.3 (0.0 - 132.1) 

LPS 42.5 (0.0 - 120.4) 136.0 (32.9 - 174.8) 165.7 (0.0 - 219.2) 

8 h 

SALINE 0.0 (0.0 - 89.7) 41.1 (19.0 - 88.0) 26.2 (0.0 - 95.3) 

LPS 89.6 (47.8 - 165.0) 158.2 (127.4 - 201.3) 256.5 (26.6 - 757.7) 

12 h 

SALINE 0.0 (0.0 - 25.4) 98.1 (25.0 - 139.0) 0.0 (0.0 - 34.0) 

LPS 102.7 (66.4 - 421.3)* 129.5 (120.8 - 193.4) 1159.7 (300.1 - 1342.3)* 

24 h 

SALINE 0.0 (0.0 - 147.0) 50.0 (0.0 - 134.4) 95.3 (56.8 - 314.7) 

LPS 186.8 (145.8 - 619.0)* 334.7 (225.5 - 406.9)* 69.4 (44.2 - 405.4) 

48 h 

SALINE 0.0 (0.0 - 37.4) 100.4 (55.2 - 126.6) 0.0 (0.0 - 88.88) 

LPS 406.3 (343.5 - 601.0)* 412.2 (170.0 - 527.8)* 254.3 (53.4 - 431.2) 

 

Table 2. IL-6 protein concentrations (pg/mL) in amniotic fluid (AF), tracheal fluid (TF) and fetal plasma (FP). h, hour; *, p<0.05 vs. control. 
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IL-8 

TIME TREAMENT AF TF FP 

0 h 

SALINE 464.0 (223.0 - 532.9) 337.7 (29.8 - 728.66) 1007. (764.8 - 1175.8) 

LPS 275.7 (175.1 - 346.1) 362.6 (326.2 - 1030.5) 1412.9 (1051.3 - 1858.1) 

2 h 

SALINE 217.6 (104.5 - 606.5) 220.9 (107.0 - 569.7) 952.4 (678.7 - 1498.3) 

LPS 432.1 (192.5 - 812.3) 1012.0 (705.2 - 1138.3)* 1867.5 (1657.7 - 1965.6) 

4 h 

SALINE 169.6 (0.0 - 524.6) 418.8 (69.2 - 663.3) 1004.6 (874.3 - 1161.0) 

LPS 1910.1 (1702.0 - 2529.3)* 1904.8 (1691.5 - 2029.4)* 1246.2 (1118.6 - 1738.2) 

8 h 

SALINE 315.3 (253.5 - 795.8) 472.7 (184.9 - 802.2) 1229.2 (628.0 - 1706.6) 

LPS 4976.2 (4283.6 - 6148.7)* 2425.9 (2111.3 - 2551.2)* 1142.4 (512.9 - 1827.0) 

12 h 

SALINE 257.9 (68.0 - 475.3) 507.4 (212.9 - 989.3) 890.8 (427.8 - 1246.2) 

LPS 9389.4 (8574.1 - 12020.6)* 3265.8 (2665.2 - 5105.9)* 2119.4 (1512.0 - 2313.3)* 

24 h 

SALINE 303.2 (150.8 - 728.4) 404.2 (133.2 - 1057.1) 796.5 (634.3 - 1140.9) 

LPS 22430.5 (19787.1 - 27368.7)* 13374.4 (11781.8 - 13795.3)* 1409.3 (992.6 - 1731.0) 

48 h 

SALINE 764.8 (673.2 - 2440.2) 785.7 (499.6 - 1301.4) - 

LPS 73963.9 (55876.0 - 89334.6)* 43904.8 (16867.8 - 101299.6)* - 

 

Table 3. IL-8 protein concentrations (pg/mL) in amniotic fluid (AF), tracheal fluid (TF) and fetal plasma (FP). h, hour; *, p<0.05 vs. control. 
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MCP-1 

TIME TREAMENT AF TF FP 

0 h 

SALINE 41.8 (21.7 - 59.6) 12.6 (6.3 - 48.9) 4.0 (0.0 - 26.0) 

LPS 95.6 (35.2 - 122.5) 29.4 (27.5 - 50.5) 12.0 (7.5 - 15.0) 

2 h 

SALINE 41.8 (26.5 - 55.3) 20.0 (4.2 - 38.5) 8.0 (5.0 - 29.0) 

LPS 77.7 (41.8 - 97.9) 79.9 (69.9 - 85.0) 31.0 (22.5 - 32.0) 

4 h 

SALINE 37.4 (19.4 - 57.7) 24.0 (2.1 - 106.5) 4.0 (3.0 - 24.0) 

LPS 91.1 (79.6 - 120.3)* 75.7 (63.3 - 123.8) 99.8 (83.9 - 99.8)* 

8 h 

SALINE 72.6 (37.4 - 106.8) 33.6 (11.0 - 48.9) 8.0 (2.0 - 25.0) 

LPS 127.0 (117.0 - 151.6)* 109.3 (74.7 - 132.4)* 133.7 (108.8 - 142.3)* 

12 h 

SALINE 59.8 (46.3 - 88.2) 40.0 (10.5 - 50.0) 8.0 (0.5 - 18.5) 

LPS 158.4 (111.3 - 207.7)* 145.8 (108.0 - 148.5)* 147.7 (79.9 - 153.7)* 

24 h 

SALINE 68.7 (64.1 - 84.4) 16.8 (12.2 - 78.5) 15.0 (5.0 - 20.5) 

LPS 234.6 (187.5 - 241.3)* 168.1 (147.5 - 197.6)* 97.8 (67.4 - 127.8)* 

48 h 

SALINE 95.6 (71.0 - 132.5) 92.5 (83.8 - 117.7) 4.0 (0.0 - 12.0) 

LPS 257.0 (247.6 - 279.4)* 190.3 (146.3 - 248.0)* 33.9 (30.9 - 63.9)* 

 

Table 4. MCP-2 protein concentrations (pg/mL) in amniotic fluid (AF), tracheal fluid (TF) and fetal plasma (FP). h, hour; *, p<0.05 vs. control. 
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FIGURE LEGENDS 

Figure 1.  

Relative expression (fold change vs. control) of cytokines and chemokines in fetal lung 

(Panel A); cortex (Panel B); skin (Panel C); spleen (Panel D); and cord blood cells (Panel E). IL, 

interleukin; TNF, tumour necrosis factor; MCP, monocyte chemoattractant protein. *, 

p<0.05. 

Figure 2.  

Summary of Ingenuity Pathway Analysis of mRNA from fetal cord blood immunocytes. Panel 

A, IL-6 signalling cascade; Panel B, cellular proliferation cascade; Panel C, viral proliferation 

cascade. 
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