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Abstract

This paper presents a new warmstarting technique in the context of a primal-dual col-

umn generation method applied to solve a particular class of combinatorial optimization

problems. The technique relies on calculating an initial point and on solving auxiliary linear

optimization problems to determine the step direction needed to fully restore primal and

dual feasibilities after new columns arrive. Conditions on the maximum size of the cuts and

on a suitable initial point are discussed. Additionally, the strategy ensures that the duality

gap of the warmstart is bounded by the old duality gap multiplied with a (small) constant,

which depends on the relation between the old and modified problems. Computational ex-

periments demonstrate the gains achieved when compared to a coldstart approach.

Keywords: interior point methods, warmstarting, column generation, linear programming,

cutting stock problem, vehicle routing problem with time windows.

1 Introduction

Starting with the seminal work of Karmarkar [23] the interest and developments in interior

point methods (IPMs) have continued over the last decades. Among these methods, a family

of primal-dual ones have proven to be the most important and widely used [36]. Despite two

decades of successful research concerning this class of methods, there still exists an open question

when solving consecutive (closely) related problems: how to efficiently warmstart?

The need of solving subsequent and (closely) related linear programming problems arises

in many situations. In numerous applications the instance data is subject to variations and

therefore, taking advantage of the previously solved problem could lead to savings in solving the

modified problem. Some examples can be found in marketing plans with changing demands or

customer preferences or in engineering design with modifying product specifications. For these

examples, only the data is modified but the dimension of the problem remains the same. Other
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examples of such situation arise when column generation, cutting plane methods or branching

techniques are used in the context of integer programming. Each of these aforementioned

situations is based on solving related subproblems iteratively until some conditions hold. The

differences between two subsequent problems under these schemes are the addition or elimination

of variables/constraints. Under any of these schemes one could either consider that the size of

the problem (number of variables/constraints) is modified from one iteration to another or that

the coefficients of a whole row or column are set to zero in one problem but not in the other.

In what follows, we consider the former approach, where the sizes of two subsequent problems

are different.

In this paper a new warmstarting technique applicable in the context of primal-dual col-

umn generation method is presented. A thorough theoretical analysis of the new approach is

performed and a computational experience is given to provide evidence of its good behaviour

in practice.

Warmstarting is understood as the use of previous information gathered in the solution

process of a given problem in order to solve a subsequent related problem. The aim of a

warmstarting strategy is to solve the modified problem more efficiently than when no prior

information is considered, known as the coldstart approach. The difficulty of interior point

methods to re-optimize when compared to active set methods is a well-known issue [1]. It

results from a completely different way in which IPMs approach optimality. To guarantee fast

convergence IPMs traverse the interior of the feasible set (by exploiting the notion of central

path and forcing the iterates to stay in its neighbourhood) and approach the boundary of the

feasible region only close to termination. Operating in the interior of the feasible set is the

great advantage of IPMs responsible for their spectacular efficiency [36]. However it becomes a

curse if one tries a naive warmstarting of IPMs. In general IPMs should not warmstart from the

optimal solution of the previous problem because such point is too close to the boundary of the

feasible set and is very likely to be far away from the new central path (leading to the optimal

solution of the new problem) [14]. To overcome these difficulties, several strategies have been

proposed in the literature.

1.1 Literature review

Freund [9] has proposed a shifted barrier method for solving linear programs in standard-form

from an infeasible warmstart. He has shown that under suitable assumptions his potential

reduction algorithm runs in polynomial time. In the same spirit as Freund, Benson and Shanno

[1] have presented an exact primal-dual penalty approach. The authors have introduced a

method which relaxes the non-negativity constraints of primal and dual problems and penalizes

for any violation of them. Their exact method accounts for small perturbations and requires the

setting of some penalization parameters which may be a non-trivial task. A similar approach has

been presented in [6]. The authors have reformulated the primal-dual pair using a slacked form

(without penalization terms). Theoretical conditions under which warmstarted IPMs perform

better than coldstart IPMs are presented. The authors have tested their approach when the

original data is perturbed (linear programming) and in a cutting plane context (combinatorial

optimization). One of the main advantages of the proposed strategy is that it does not require
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extensive setting of parameters and is readily applicable to a wide variety of problems. Note

that the methods presented in [1, 6, 9] modify the original problem adding auxiliary variables.

These methods gradually drive the auxiliary variables to zero obtaining the optimal solution of

the original problem. Another class of warmstarting methods calculates a warmstarting point

and re-optimizes the modified problem from this point.

Mitchell [27] has studied different strategies to obtain an interior point when adding cutting

planes and variables to a linear problem. His methods rely on calculating directions based on the

projection onto the null space of the constraint matrix. A positive step length is always available

so the methods recover feasibility in one step. The methods have been implemented using

the primal projective standard-form variant of Karmarkar’s algorithm for linear programming

within a cutting plane method applied to matching problems [27, 29]. Additionally, Mitchell and

Borchers [28] have studied a different and practical warmstarting strategy using the primal-dual

barrier method applied to solve linear ordering problems.

Goffin and Vial [12] have studied how to deal with the addition of multiple cuts in a cutting

plane framework and have proposed a way of restarting the analytic centre cutting plane method

[11]. The strategy assumes that the cuts are central using a Dikin’s ellipsoid as a reference and

the determination of directions to recover feasibility requires to solve a non-linear optimization

problem. The authors have provided bounds on the number of steps to recover an analytic

centre which depends on the number of cuts added. Similarly, Oskoorouchi et al. [31] can

ensure that dual feasibility is recovered under the condition that the constraints added are

moderately deep. As stated in [12], if there is at least one deep constraint (constraint which

does not intersect the Dikin’s ellipsoid around the query point), the proposed method recovers

only primal feasibility.

Fliege [8] has proposed a new approach to solve convex multicriteria optimization problems.

Having two closely related problems, the method applies few centering steps to the old iterate,

so the new point is very close to the new central path. The author shows that to compute a

finite set of discrete points to describe the solution set, his method runs in polynomial time.

Note that this approach has been studied considering changes only in the objective function

coefficients which differs from our case.

Yildirim and Wright [37] have analysed different criteria to determine a well-suited warm-

starting point. They have compared several different ways of direction searching (i.e., (weighted)

least-square approach and Newton step) and provided complexity and convergence results for

each of these methods after perturbing the instance data. The authors have determined the

size of the perturbation that can be absorbed by each of these methods. Numerical experiments

and further developments in this direction have been presented by John and Yildirim in [21].

A different approach has been presented by Gondzio [14] in a primal-dual cutting plane

method context. The author has proposed to fix the initial values of the new components and

then restore independently primal and dual feasibilities. To calculate the warmstarting point,

modified Newton steps have to be performed. The author has distinguished between deep and

shallow cuts adjusting his strategy accordingly. Although a successful implementation has been

developed, no theoretical guarantee for its performance has been provided.

In [16], Gondzio and Grothey have introduced a primal-dual interior point method that relies
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on multiple-centrality corrector techniques to find a warmstarting solution. From this point,

their method seeks feasibility. The authors have shown under which conditions their short and

long step path following methods can absorb data perturbations in one step or in few steps (for

larger perturbations). They have extended their analysis to problems with special structures

(primal and dual block angular structures). The same authors have studied an unblocking

strategy based on sensitivity analysis [17]. The main idea is to overcome the blocking issue

that any advanced starting point may suffer from by increasing the size of the step allowed in

the Newton direction. First, the proposed strategy identifies which components the blocking

originates from. Then, the method aims to remove the blocking components using sensitivity

analysis. Conditions that an unblocking direction must satisfy and proofs of the existence of

such direction have been provided. The authors have observed that to absorb more infeasibility

in one step it is advantageous to use well-centred points and to keep a large value of the duality

measure.

A very different warmstarting approach has recently been proposed by Skajaa et al.[33] who

employ the self-dual embedding linear programming model which facilitates taking any point

as a warmstarting candidate, including points close to the boundary of the feasible region.

In [6, 14] numerical experiments have been carried out to demonstrate how efficient warm-

starting methods are when compared to coldstart in a cutting plane framework and encouraging

results have been provided.

1.2 Context, motivation and contributions

In this paper we will focus on the case when warmstarting is applied in column generation,

specifically in the context of the primal-dual column generation method (PDCGM) described in

[15]. We address a particularly important application of the column generation method which

arises when solving combinatorial optimization problems.

In [15], the warmstarting strategy proposed in [14] and further improved by heuristic pro-

cedures has been used, showing encouraging results. We will describe this strategy later in the

paper because it provides a benchmark to our new warmstarting technique. Although the old

approach introduced in [14] has worked well in practice, it does not guarantee a full feasibility

restoration nor study the quality of the warmstarted iterate after new columns/cuts are added.

The main motivation of the design of a new warmstarting strategy presented in this paper is to

close this theoretical gap.

Under suitable assumptions, the new algorithm restores primal and dual feasibilities after the

addition of new columns. The method relies on two linear optimization problems to calculate the

direction which recovers primal and dual feasibilities in one step. The direction is determined so

that the small components at a particular solution are not largely modified. The strategy allows

to have control over the new duality gap by expanding the neighbourhood of the central path.

The analysis is performed for the symmetric neighbourhood of the central path. Conditions

are derived for a suitable warmstarting point such that for arbitrarily deep cuts in the dual

space (columns in the primal) primal and dual feasibilities are restored in one step. An extra

care is taken of the “centrality” of the new point and conditions which guarantee that the

new iterate belongs to an expanded symmetric neighbourhood of the central path for the new
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problem are established. In summary, unlike the method proposed in [14] which was based on a

heuristic, the method proposed in this paper has solid theoretical foundations. Computational

experiments show that the method is comparable to the method in [14] and in many cases

superior to coldstart.

The structure of the remaining sections in this paper is the following. In Section 2, we review

the fundamentals of primal-dual methods. In Section 3, we briefly describe column generation

methods and its primal-dual version. In Section 4, we present our specialized warmstarting idea

providing a theoretical analysis which demonstrates how the algorithm deals with infeasibilities

and the proximity to the central path. Computational experiments for solving the root node of

the cutting stock problem and the vehicle routing problem with time windows after applying

Dantzig-Wolfe decomposition comparing the proposed strategy with a coldstart strategy are

presented in Section 5. In Section 6 the main contributions of this study are summarized.

2 Primal-dual interior point methods

In this section we introduce the notation used along the paper and the fundamental ideas behind

primal-dual interior point methods. For a more detailed description of this IPM variant, we

refer the reader to the textbook of Wright about IPMs [36].

Let us consider a linear programming problem represented by the following primal-dual pair

P0 := min cTx, s.t. Ax = b, x ≥ 0, (2.1a)

D0 := max bT y, s.t. AT y + s = c, s ≥ 0, (2.1b)

where x ∈ Rn is the vector of primal variables, y ∈ Rm and s ∈ Rn are the vectors of dual

variables. A ∈ Rm×n represents the coefficient matrix, where rank(A) = m ≤ n, and c ∈ Rn

and b ∈ Rm are vectors of parameters. Let us define the µ-perturbed KKT system associated

to the primal-dual pair (2.1) as

Ax = b (2.2a)

AT y + s = c (2.2b)

XSe = µe, (2.2c)

(x, s) > 0, (2.2d)

where X = diag(x1, x2, ..., xn), S = diag(s1, s2, ..., sn), e = (1, 1, ..., 1) in appropriate dimension

and µ is defined as the barrier parameter which defines the central path. Equations (2.2a) and

(2.2b) are the linear constraints corresponding to primal and dual feasibility, respectively, and

equations (2.2c) are the perturbed complementarity conditions, which are non-linear (bilinear

term).

In a primal-dual interior point method, an approximate solution to the perturbed KKT

system (2.2) is obtained at each iteration by using a (damped) step of a Newton-like system

of equations. The step direction is defined by the vector (∆x,∆y,∆s) which is obtained by
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solving the following system of equations A 0 0

0 AT I

Sl 0 X l


 ∆xl

∆yl

∆sl

 =

 ξlb
ξlc

τµle−X lSle

 , (2.3)

where the primal-dual solution at iteration l is (x, y, s) = (xl, yl, sl), and ξlb = b − Axl and

ξlc = c−AT yl − sl are the primal and dual residuals at iteration l, respectively and τ ∈ (0, 1) is

the centering parameter.

Once direction (∆xl,∆yl,∆sl) is determined from (2.3) and since the next iterate is defined

as (xl+1, yl+1, sl+1) = (xl + αP∆xl, yl + αD∆yl, sl + αD∆sl) suitable values for αP ∈ [0, 1] and

αD ∈ [0, 1] are calculated bearing in mind that (xl+1, sl+1) > 0. After this, µl+1 is updated

(usually reduced) and the primal-dual method continues iterating until a relative duality gap

drops below a prescribed optimality tolerance ε. The stopping criterion is usually defined as

cTx− bT y
1 + |cTx|

≤ ε. (2.4)

One of the most remarkable characteristics of primal-dual methods is that the distance to

optimality, called the duality gap, can be calculated if some conditions hold. The analytic µ-

centre, (x(µ), y(µ), s(µ)), is defined as the unique point satisfying conditions (2.2a)-(2.2c) and

(x(µ), s(µ)) > 0 for a particular µ > 0. The duality gap can be calculated as

cTx− bT y = cTx− (Ax)T y = xT (c−AT y) = xT s = nµ.

3 Column generation

In this section we briefly describe the ideas behind column generation. For a more detailed

explanation of the method, see [25]. The aim of a column generation method is to solve a

problem called the master problem (MP) through a restricted version of it (e.g., a problem

with fewer variables). Initial columns are chosen to construct the restricted master problem

(RMP) usually via a heuristic procedure, a known feasible solution or using artificial columns.

Then, the RMP is solved and dual solutions of the RMP are used in the oracle. The oracle,

also known as the subproblem, is a problem which usually hides the complexity of the original

problem (i.e., integrality). After solving the oracle new columns with negative reduced costs are

obtained and added to the RMP, if any. This process continues until the stopping criterion is

satisfied. The solution of the last RMP provides the optimal solution of the MP. Note that from

one iteration to another we would like to take advantage of the solution process of the previous

RMP in order to speed up the solution process of the new RMP after adding new columns.

Column generation is widely applied in the context of mixed-integer programming. In

this paper we analyse this method after relaxing a mixed-integer programming problem using

Dantzig-Wolfe decomposition (DWD). Loosely speaking, DWD aims to represent the feasible

set of an integer problem using its convex hull and optimizes over this set. This convex hull is

described by a linear convex combination of extreme points and extreme rays. We are interested
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in the case when the instances have a compact non-empty feasible set and therefore, only extreme

points are needed to describe the convex hull of the original problem. Also, we consider a

relaxation of the integer variables of the original problem (i.e., root problem in a branch-and-

bound context) and thus, we have a sequence of linear optimization problems to solve. Since

the number of extreme points is likely to be large and we only need to describe the convex hull

in the region close to the optimal solution, one should rely on methods that exploit this fact.

Column generation is such method.

Let us assume that we are in an intermediate iteration of the column generation process.

The current RMP (2.1) characterized by A, b, c has been solved and the oracle generates k new

columns with parameters (Ā, c̄). Note that c̄j − ĀTj y < 0 for all j ∈ K = {1, . . . , k} for a dual

solution y of the current RMP. The modified primal-dual pair is

P1 := min cTx+ c̄T x̄, s.t. Ax+ Āx̄ = b, x ≥ 0, x̄ ≥ 0, (3.1a)

D1 := max bT y, s.t. AT y + s = c, ĀT y + s̄ = c̄, s ≥ 0, s̄ ≥ 0, (3.1b)

where k is the number of columns (variables) added to the original problem (2.1), x̄ ∈ Rk is the

vector of new primal variables and s̄ ∈ Rk is the vector of new dual slack variables. Ā ∈ Rm×k

represents the coefficient matrix for the new variables and c̄ ∈ Rk the vector of objective function

coefficients. Note that new columns in the primal space are associated to new constraints in

the dual space. Constraints in the dual space can be interpreted as the cuts which restrict the

dual localization set. From now on we will use both, columns and cuts where the former term

refers to the primal space while the latter to the dual. After dropping the iteration index l and

similar to (2.3), the new Newton-like system of equations is
A Ā 0 0 0

0 0 AT I 0

0 0 ĀT 0 I

S 0 0 X 0

0 S̄ 0 0 X̄




∆x

∆x̄

∆y

∆s

∆s̄

 =


ξb̄
ξc

ξc̄

τµe−XSe
τµe− X̄S̄e

 , (3.2)

where ξb̄ = b − Ax − Āx̄, ξc̄ = c̄ − ĀT y − s̄, X̄ = diag{x̄1, . . . , x̄k}, S̄ = diag{s̄1, . . . , s̄k},
µ = (xT s+ x̄T s̄)/(n+ k) and τ ∈ (0, 1) is the centering parameter.

The primal-dual method under which we design our warmstarting strategy is the one de-

scribed in [15]. This technique relies on well-centred close-to-optimal solutions of the RMPs

which are obtained by a primal-dual interior point method. This method takes into account

that solving the RMP to optimality is not needed in the early stages of the column generation

procedure as it was also pointed out in [26, 29]. Loosely speaking, a RMP has to be solved to op-

timality only at the last iteration of the column generation. An important feature of this method

is that even that in one iteration the algorithm may not provide any new column, it guarantees

the progress by decreasing the required distance to optimality. Termination is achieved when

there are no more columns to append and the relative gap drops below a prescribed optimality

tolerance. The method has shown encouraging results in solving the root node of several com-

binatorial optimization problems [15]. Despite the fact the warmstarting strategy presented
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in this paper was proposed to improve the performance in this specific context, it could be

easily extended to any situation where a linear optimization problem is solved using a column

generation or cutting plane framework with a primal-dual interior point method.

4 Warmstarting strategy

In this paper we introduce a specialized warmstarting strategy applicable within the primal-

dual column generation scheme [15]. Specialized because we take advantage of some struc-

ture/properties which are often present when solving combinatorial optimization problems. We

have observed that in many applications all the elements in A and Ā are non-negative. For

instance, columns in the primal space describing cutting patterns (cutting stock problem [10]),

routes (vehicle routing problem [22]) or production plans (lot sizing problem [35]) by definition

contain only non-negative entries. In our developments we do consider this observation and

therefore, the analysis and results should be understood in this context. For a description of

each of the restricted master problems obtained after applying a Dantzig-Wolfe reformulation

[5] for each of these applications, we refer the reader to [15] and the references therein.

The process of finding a warmstarting point has been divided into two stages. In the first,

we need to find a point from a list of stored iterates which satisfies some properties. In the

other, an adjustment (∆x,∆y,∆s) has to be computed taking this point as a reference. After

this, the step is taken in this direction and the old point is updated in the new dimensions to

produce a full-dimension warmstarting point. From this point we continue iterating and solving

system (3.2). Our aim is to find a starting point which reduces the number of iterations required

to solve problem (3.1) when compared to a coldstart approach. To develop such a two-stage

approach we need to deal with two problems: (a) feasibility in the primal and dual spaces and

(b) centrality of the new warmstarting point. We address both issues later.

Since we are designing a new warmstarting technique to be applied in the PDCGM, it is

sensible to point out the similarities and main differences with the strategy currently in use [14]

and other strategies presented in the literature such as the ones studied in [37] and [12].

Despite the fact that our developments follow the idea of Gondzio in [14] of treating primal

and dual infeasibilities separately, our approach differs in two key aspects. Firstly, in the choice

of x̄ and s̄. The aforementioned paper sets s̄j = max
{
|c̄j − ĀTj y|, µ1/2

}
, for every added cut

j. Since it is likely to have (deep) cuts where c̄j − ĀTj y � 0, s̄j usually takes large values.

Furthermore, since the complementarity products of the new variables are set to x̄j s̄j = µ, for

every j = 1, 2, . . . , k, such strategy is likely to produce small values of x̄j . This goes against

the expectations that the new variables corresponding to the recently appended (deep) cuts are

likely to take non-zero values at the optimal solution. In our strategy we do not choose x̄j as a

function of s̄j . Instead, we choose these values bearing in mind their impact on centrality.

A second difference between the strategy of [14] and ours is in the definition of the search

direction to find the new warmstarting point. In the method proposed in [14], the search

direction is calculated using a variation of system (3.2) via target t, which is a consequence of

the choice of x̄j and s̄j . In the primal space, feasibility is restored by choosing small x̄j ’s. In the

dual space, the method ensures that after a full step is taken in this direction, dual feasibility
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is recovered in the new components. However, this method does not guarantee the same for

the old components. It is accepted that the complementarity products for the old variables

may get significantly worse as a price to pay for recovering primal and dual feasibilities. In

our proposed strategy, we aim to restore primal and dual feasibilities using auxiliary linear

optimization problems. The principal aim of both, primal and dual auxiliary problems, is to

seek feasibility while minimizing changes in old variables which are small in order to avoid

large changes in the complementarity products. Our approach follows a variation of a weighted

least-square strategy proposed in [37]. It differs from [37] in the sense that we only consider

small variables and that we have extra constraints to satisfy in both, primal and dual spaces.

The method presented in this paper has several other different characteristics when compared

with the strategy proposed in [12]. Firstly, in [12, 31], the strategy recovers primal and dual

feasibility by solving a non-linear problem while in our approach we aim to minimize large

variations in the old components which are small using linear functions and extra constraints.

Secondly, the strategies proposed in [12, 31] work very well if all the new constraints traverse

the Dikin’s ellipsoid around the query point while our approach relies on a different assumption

which is that the depth of the added constraints does not exceed a reference value which is

a function of µ and γ, where γ defines how close we keep the complementary products with

respect to the barrier parameter (see our definition Ns(γ) below). Thirdly, we are able to

retreat back in the list of iterates while the strategies in [12, 31] take the last iterate as the

reference point and adjust it. In spirit, the strategies developed for the analytic centre cutting

plane method [12, 31] and the one described in this paper aim to the same objective which is to

obtain a well-centred warmstarted iterate after adding new columns/constraints, however while

our approach relies on the notion of the central path, the other approaches aim to get a point

close to the new analytic centre.

In what follows of this Section, we analyse restoring primal and dual feasibilities, the con-

sequences in the new complementarity products and describe the complete algorithm.

Let (x0, y0, s0) be a feasible solution of the primal-dual pair (2.1). Also, let us define the

primal-dual strictly feasible set and the central path neighbourhood as follows

F0 = {(x, y, s) : Ax = b;AT y + s = c; (x, s) > 0},

Ns(γ) = {(x, y, s) ∈ F0 : γµ ≤ xjsj ≤
1

γ
µ;∀j = 1, 2, ..., n}.

We are interested in (x0, y0, s0) ∈ Ns(γ) for a fixed γ ∈ (0, 1). The reader must note that

our definition of the neighbourhood is a slight modification of the wide neighbourhood N−∞(γ)

in [36] proposed in [16]. The aim of our specialized warmstarting algorithm is to find an initial

point from where to start solving the modified problem (3.1). This initial point is obtained from

information gathered when solving problem (2.1) via system of equations (2.3) with ξb = ξc = 0.

Before continuing, let N = {1, . . . , n}, M = {1, . . . ,m} and K = {1, . . . , k} be index sets.

Additionally, let us state the following general assumptions.

(A.1) All elements in matrices A and Ā are non-negative.

(A.2) We are able to store a list of iterates which are strictly feasible and well-centred (i.e.,
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(x0, y0, s0) ∈ Ns(γ)).

(A.3) There exists a Uv such as ‖x0, s0‖∞ ≤ Uv.

(A.4) U2
v > 1.

Assumption (A.1) is motivated by the applications we are interested in solving. There are

several examples in combinatorial optimization where this assumption is valid. We refer the

reader to [15] to see three applications in which this assumption holds. Additionally, there is a

wide variety of problems which satisfy this condition. See for instance the travelling salesman

problem description in [2] where the authors consider the Held and Karp 1-tree relaxation

[19, 20] or the uncapacitated facility location problem [4] just to mention some of them.

For the clarity of the exposition, we have explicitly state Assumption (A.1). This assumption

may seem restrictive. As suggested by one of the referees through an appropriate preprocessing

step, a problem with both positive and negative entries in A may be converted to a problem

with only non-negative entries in A. This would require duplicating the variables and adding

new constraints to it. Extending this analysis to a wider class of problems where A and Ā have

positive and negative elements will be subject of further studies.

Assumption (A.2) is easily met if the feasible path following algorithm is used to solve the

problem.

Assumption (A.3) is a technical requirement similar to the one used in [37] which bounds

the largest primal and dual slack variables. Note that in [37, Theorem 2.1.] and following the

analysis in [30], the authors have shown that for a strictly feasible point (x, y, s) which does not

necessarily lie exactly on the central path but it belongs to its neighbourhood, the following

bounds are satisfied

‖x‖2 ≤ C(d)

(
C(d) +

µn

‖d‖2

)
and ‖s‖2 ≤ 2‖d‖2 C(d)

(
C(d) +

µn

‖d‖2

)
,

where d represents a triplet containing the instance data (d = (A, b, c)), C(d) is the condition

number [30] and recalling µ = xT s/n. Similarly, in our case it is easy to see that C(d) <

∞ (feasible RMPs) and since we use a path-following method and a minor variation of the

neighbourhoods used in [37], Assumption (A.3) is satisfied.

Assumption (A.4) is a also a technical condition which can be easily imposed by setting

Uv = max{‖x0, s0‖∞; 1 + ε}, where ε = 10−8.

Additionally, to these assumptions and due to the nature of our applications, we can always

initialize the column generation procedure with some initial columns so the initial RMP is

feasible (see [15] and reference therein).

Using our definition of the central path neighbourhood for (x0, y0, s0) ∈ Ns(γ), we have

γµ0 ≤ x0
js

0
j ≤

1

γ
µ0 ∀j ∈ N. (4.1)

Both, this definition and the upper bound Uv, allow us to bound x0
j and s0

j , for every j ∈ N ,
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as follows

γµ0

Uv
≤ x0

j ≤ Uv, (4.2a)

γµ0

Uv
≤ s0

j ≤ Uv. (4.2b)

The similarities between the initial RMP and the modified RMP are one of the key ele-

ments to take into consideration when a warmstarting strategy is designed for an interior point

method. If there is no similarity between the initial and modified problems, we can expect that

a warmstarting strategy will not lead to any substantial improvement when compared with

a coldstart approach. This could be the case when the new RMP has a completely different

feasible region around the optimal solution and a close-to-optimality solution of the previous

problem deeply violates the new constraints. Therefore, any information previously gathered

close to the optimal solution will not help to speed up the solution process of the modified

problem. Then, there is a need to understand the relation between the added cuts and the

previous RMP. A sensible way to proceed is to measure the size of the newly added cuts in

terms of the current penalty parameter, µ0. Let the inequality −(c̄j − ĀjT y0) ≤ f(µ0) be used

to determine the depth of the cuts, where f(µ0) is an increasing function of µ0. Note that by

using this idea of associating the depth of the cuts to µ0 and having a list of iterates, we could

retreat far enough in the iteration process to make the cuts relatively shallower. In other words,

for all the cuts we could choose a suitably large µ0 to decrease their relative depth.

As mentioned earlier, the choices of x̄ and s̄ have important consequences in the primal-dual

infeasibilities and in the complementarity conditions. We aim to find a warmstart which: (a) is

feasible in the primal and dual space; and (b) keeps the complementarity products reasonably

small and inside a slightly modified neighbourhood if the cuts satisfy some desirable proper-

ties. We expect the duality gap to increase since we are adding variables/constraints to the

primal/dual problem. However, we would like to keep this duality measure relatively close to

the old one.

Now, let us define some sets and parameters used throughout the paper.

Definition 4.1 Let B0 be the set containing all indices j such that x0
j ≥ s0

j , where j ∈ N .

We call this set the primal dominant partition at solution (x0, y0, s0). Conversely, the dual

dominant partition at solution (x0, y0, s0) is defined as N0 and contains all indices j such that

x0
j < s0

j , where j ∈ N .

The reader familiar with the simplex method may be tempted to interpret the sets B0 and

N0 as a guess of the basic-nonbasic partition. In the spirit of IPM, these sets provide only

an early guess of the primal-dual strictly complementarity partition which in general is not

equivalent to the basic-nonbasic partition.

Definition 4.2 Considering A ∈ Rm×n+ , let us define

Amin := min
i∈M,j∈N :Aij>0

{Aij},

11



as the minimum non-zero element of matrix A. Similarly,

amin := min
i∈M :ai>0

{ai},

is the minimum non-zero element of vector a ∈ Rm+ . Additionally, σmax(A) and σmin(A) denote

the maximum and minimum singular value of matrix A, respectively and

σmax = max{σmax(A), σmax(Ā)}.

In the following three sections we will prove the main results of this paper. Namely, we will

provide the methodology to choose a good warmstart solution such that the primal and dual

feasibilities may be restored in one Newton step and will show (in Section 4.3) that this can be

achieved without significantly affecting the proximity of the new iterate to the central path.

4.1 Dual feasibility

In order to minimize the impact of restoring dual feasibility and to measure its effect on com-

plementarity products, we have defined an auxiliary linear optimization problem. Taking the

second and third equations of (3.2) and considering (x0, y0, s0) ∈ F0, we have

AT∆y + ∆s = 0, (4.3)

ĀT∆y + ∆s̄ = c̄− ĀT y0 − s̄. (4.4)

Such a formulation allows for a considerable freedom in the choice of ∆y. This system of

equations is likely to have multiple solutions.

The following auxiliary linear optimization problem minimizes the relative change of vari-

ables in the primal dominant partition (i.e., corresponding to small s0
j ) when a solution of

problem (2.1) is available.

min
∆y,∆s,∆s̄

∑
j∈B0

∆sj
s0
j

, (4.5a)

s.t.
∑
i∈M

Āij∆yi + ∆s̄j = c̄j −
∑
i∈M

Āijy
0
i − s̄j , ∀j ∈ K, (4.5b)

−
∑
i∈M

Aij∆yi = ∆sj , ∀j ∈ B0, (4.5c)

∆yi ≤ 0, ∀i ∈M, (4.5d)

∆s̄j ≥ 0, ∀j ∈ K, (4.5e)

Observe that by solving this linear problem, feasibility for the new components is achieved

via constraints (4.5b) (the third equation of system (3.2)). Note that the aim of this linear

program is to minimize the relative change of small slacks of the dual problem while a full step

is feasible for all components. The motivation behind this objective is that we would like to
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perturb the previous solution as little as possible. By setting

s̄j = max

{
γµ0

Āmin√
m Uv σmax

, c̄j − ĀTj y0

}
, ∀j ∈ K, (4.6)

and noting that s̄wj = s̄j + ∆s̄j (new slack variables) for every j ∈ K, constraints (4.5e) ensure

that the new slack variables are bounded away from zero. Although one would expect to have

γµ0
Āmin√

m Uv σmax
> 0 > c̄j − ĀTj y0, ∀j ∈ K,

this is not always the case due to the backtracking feature of our strategy. This will be explained

in more detail later in the paper.

The linear problem (4.5) can be simplified by the following steps. First, let us eliminate ∆sj

for every j ∈ B0 by using constraints (4.5c) and substitute ∆y = −∆ȳ. Also, let us introduce a

new parameter fi for every i ∈M such that fi =
∑

j∈B0
Aij

s0j
.

Now, we can rewrite problem (4.5) as

Daux := min
∆ȳ,∆s̄

∑
i∈M

fi∆ȳi, (4.7a)

s.t.
∑
i∈M

Āij∆ȳi −∆s̄j = −(c̄j −
∑
i∈M

Āijy
0
i − s̄j), ∀j ∈ K, (4.7b)

∆ȳi ≥ 0, ∀i ∈M, (4.7c)

∆s̄j ≥ 0, ∀j ∈ K. (4.7d)

To avoid unbounded solutions, if fi = 0, for a given i ∈ M , we set fi = 1. Observe then that

by assumption (A.1), fi > 0 for every i ∈ M . Therefore, the problem (4.7) can be interpreted

as finding the minimum adjustment ∆ȳ of dual variables y such that at the new point y + ∆y

(= y − ∆ȳ) all dual feasibility constraints in (3.1b), including the ones corresponding to new

deep cuts, are satisfied. The objective function (4.7a) promotes such changes ∆ȳ which do not

alter the primal dominant components of s0 (the components corresponding to small values s0
j ).

Let us introduce d ∈ Rk+ such that

ĀT∆ȳ −∆s̄ = −(c̄− ĀT y0 − s̄) = d. (4.8)

If c̄j − ĀTj y0 < γµ0
Āmin√

m Uv σmax
and from definition (4.6), clearly dj > 0. When c̄j − ĀTj y0 ≥

γµ0
Āmin√

m Uv σmax
, the corresponding dj = 0.

The purpose of the next lemma is to show that the problem Daux has a bounded solution.

Lemma 4.3 If Assumption (A.1) holds and given c̄j − ĀTj y0 for every j ∈ K representing the

reduced cost of column j, where Āj represents the j-th column of matrix Ā, problem (4.7) has

a bounded solution.

Proof. Since f > 0 and ∆ȳ ≥ 0, it follows that ∆ȳ is bounded from both sides. Moreover,

∆s̄ ≥ 0 so problem (4.7) has a bounded solution.
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It is not hard to prove that a valid bound of ∆ȳ is

∆ȳi ≤ max
j∈K
{Υj}, ∀i ∈M, (4.9)

where Υj = dj/(Āj)min, for every j ∈ K.

If dj = 0 for every j ∈ K, the trivial solution (∆ȳ,∆s̄) = 0 is the optimal solution. This

case is unlikely since we expect columns with negative reduced costs, namely c̄j − ĀTj y0 < 0.

However, and as it will be explained later, due to our strategy in some occasions this may

happen.

The next lemma states that by calculating direction ∆ȳ from (4.7) infeasibilities are absorbed

in the old components and a dual feasible point for the new problem is obtained.

Lemma 4.4 Let (x0, y0, s0) ∈ F0. If ∆ȳ is chosen by solving (4.7) then a full step in the old

components is feasible. Therefore, dual feasibility is restored in one step.

Proof. From the definition of problem (4.7), we have ∆ȳi ≥ 0 for every i ∈ M and therefore,

∆yi ≤ 0 for every i ∈M . Since Aij ≥ 0 for every j ∈ N and i ∈M and using (4.3), we have:

∆sj = −
∑
i∈M

Aij∆yi ≥ 0, ∀j ∈ N.

Recalling that s0
j > 0, s0

j + ∆sj > 0, ∀j ∈ N as required.

�

Note that Lemma 4.4 only requires a feasible ∆ȳ and ∆s̄ for problem (4.7) and we do

not need to solve (4.7) to optimality. However, we believe that our objective function in (4.7)

promotes small perturbations in the complementarity products of the warmstarting iterate and

therefore, we also seek optimality.

Even though our objective is to minimize the variation of the dual elements in the primal

dominant partition, we cannot guarantee this variation to be small. This is an unavoidable

consequence of the fact that there is no control of the depth of the new cuts and a large variation

of some components ∆s is expected. Despite the lack of control, we can still determine an upper

bound for ∆s in the old components. Note that from (4.3) and ∆y = −∆ȳ, we have

∆s = AT∆ȳ, (4.10)

Also, from (4.9) we have the following bound on ∆ȳi for every i ∈M

∆ȳi ≤
dmax
Āmin

, (4.11)

where, following (4.8) and(4.9), dmax is defined as

dmax = max
j∈K

{
−c̄j +

∑
i∈M

Āijy
0
i + s̄j

}
.

14



Applying l∞ norm to (4.10) and considering the upper bound of (4.11), we obtain

||∆s||∞ ≤ ||AT ||∞||∆ȳ||∞.

≤
√
m σmax(A) dmax

Āmin
.

Thus,

∆sj ≤
√
m σmax dmax

Āmin
, ∀j ∈ N. (4.12)

Additionally, considering (4.8), for every j ∈ K, we have

s̄j + ∆s̄j ≤
√
m σmax dmax

Āmin
+ (c̄j − ĀTj y0), ∀j ∈ K. (4.13)

4.2 Primal feasibility

Similarly to recovering dual feasibility, we aim to restore feasibility in the primal space by

solving an auxiliary linear optimization problem and using the notion of primal dominant and

dual dominant partitions. Considering the first equation of system (3.2) and (x0, y0, s0) ∈ F0,

we have

A∆x = −Ā(x̄+ ∆x̄) (4.14)

To simplify the notation, let us define x̄wj = x̄j + ∆x̄j for every j ∈ K. Primal feasibility

would be easily restored if we could set x̄w = 0. Since in interior point methods this is not

possible, we need to fix or determine a positive value for x̄w. In practice, primal feasibility

could still be easily achieved by setting x̄w sufficiently small. We could apply for example the

primal feasibility restoration direction proposed in [14], ∆x = −ΘAT (AΘAT )−1Āx̄w for non-

degenerate systems where Θ = XS−1 is a diagonal scaling matrix. This is a generalization of

Mitchell’s direction presented in [27] and applied in the primal projective algorithm to handle

multiple cuts. Setting a small value for x̄w seems to be sensible since primal infeasibility depends

on this value. We have designed a slightly different strategy which takes into account setting

x0
j small but also considering centrality aspects. For now, it is enough to say that our choice of

x̄w is the maximum possible value in order to ensure that: (a) a full step in the primal direction

is possible, and (b) primal feasibility is restored. Similar to the dual feasibility restoration, we

have defined the following auxiliary linear optimization problem.

Paux := min
∆x,∆x+,∆x−

∑
j∈N0

∆x+
j + ∆x−j
x0
j

, (4.15a)

s.t.
∑
j∈N

Aij∆xj = −
∑
j∈K

Āij x̄j
w, ∀i ∈M, (4.15b)

∆xj ≥ x0
j (δl − 1), ∀j ∈ N, (4.15c)

∆xj = ∆x+
j −∆x−j , ∀j ∈ N0, (4.15d)

∆x+
j ≥ 0, ∀j ∈ N0, (4.15e)
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∆x−j ≥ 0, ∀j ∈ N0, (4.15f)

where δl is a given parameter which satisfies 0 < δl < 1 and its meaning will be explained

later in the paper. In the primal case and similar to what we did for the dual variables in

the primal dominant partition, we minimize the relative change of the variables in the dual

dominant partition (corresponding to small x0
j ). Note that in this case we allow positive and

negative directions and therefore we minimize the absolute value of such directions. Constraints

(4.15b) guarantee that by taking a full step in direction ∆x, feasibility in the primal space is

completely restored. Constraints (4.15c) ensure that if we take a full step in direction ∆x, the

new iterate will remain positive. Constraints (4.15d)-(4.15f) are additional requirements that

help to calculate the absolute value of every ∆xj in the dual dominant partition. If ∆xj > 0,

then ∆x+
j > 0 and ∆x−j = 0. If ∆xj < 0, then ∆x−j > 0 and ∆x+

j = 0. Finally, if ∆xj = 0, then

both ∆x+
j and ∆x−j are zero. Note that ensuring a non-empty feasible set in Paux for general A

and Ā is a non-trivial task. For instance, large values on x̄w may lead to large negative values in

some ∆xj and therefore, satisfying constraint (4.15c) may not be possible. Later we will define

conditions to ensure that primal infeasibility is completely absorbed in one step.

Following [37], let us use the following QR factorization of AT ,

AT = Q

[
R

0

]
= [Q1, Q2]

[
R

0

]
= Q1R, (4.16)

where Q1 is an n ×m matrix, Q2 is an n × (n −m) matrix, [Q1, Q2] is a matrix with orthog-

onal columns, and R is an m × m upper triangular matrix. It is easy to check that for the

aforementioned factorization and given x̄w

∆x = −Q1R
−T Āx̄w, (4.17)

satisfies equation (4.14). If N0 = ∅, problem (4.15) becomes a feasibility problem and it only

requires to find a solution which solves (4.15b) and (4.15c). Such a solution can be obtained

from (4.17) given suitable value of x̄wj for every j ∈ K, as we will show later. It is known as

the minimum norm solution. However, this is not the only solution ∆x which satisfies (4.14).

Applying l2 norm to (4.17), we have

||∆x|| ≤ ||Q1|| ||R−T ||||Āx̄w||.

Since ||Q1|| = 1, ||R−T || = σmin(R)−1 and σmin(R) = σmin(A), it follows that

||∆x|| ≤ ||Āx̄w||
σmin(A)

.

≤
√
k σmax(Ā) x̄wmax

σmin(A)
. (4.18)

From (4.18), and using our definition of σmax, we can derive loose upper and lower bounds for

every ∆xj , with j ∈ N . These bounds are
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−
√
k σmax x̄

w
max

σmin(A)
≤ ∆xj ≤

√
k σmax x̄

w
max

σmin(A)
, (4.19)

and problem (4.15) has a bounded solution.

Let us define the feasible set of ∆x associated to Paux as SP = {∆x : (4.15b)−(4.15c) are satisfied}.
In addition, let us define a closely related set SQ = {∆x : (4.15b) are satisfied}. Observe that

∆x from (4.17) satisfies (4.15b) hence ∆x ∈ SQ. However, it does not have to satisfy (4.15c)

and therefore in general ∆x /∈ SP . The next lemma states that given a particular choice of x̄w

and the correct choice of µ0, we can guarantee that ∆x ∈ SP .

Lemma 4.5 Let (x0, y0, s0) ∈ Ns(γ) for γ ∈ (0, 1), Aij ≥ 0, ∀i ∈ M, ∀j ∈ N , Āij ≥ 0,∀i ∈
M,∀j ∈ K. If

x̄wj ≤ γ(1− δl)
σmin(A)√
k Uv σmax

min

{
µ0,

1

µ0

}
, ∀j ∈ K, (4.20)

and 0 < δl < 1, then constraint (4.15c) is satisfied.

Proof. To ensure this, we have to show that (4.15c) is satisfied for every ∆xj from (4.19).

Hence, we have to prove that

(
1− δl

)
x0
j ≥
√
k σmax x̄

w
max

σmin(A)
.

Since we need to ensure this for every j ∈ N , it suffices if we check that this inequality is satisfied

for the smallest possible x0
j . We know from (4.2a) that x0

j ≥ (γµ0)/Uv,∀j ∈ N . Therefore, we

need to verify that

(
1− δl

)γµ0

Uv
≥
√
k σmax x̄

w
max

σmin(A)
.

This condition is satisfied if we choose x̄wj for every j ∈ K satisfying (4.20) and by noting that

µ0 ≥ min{µ0, 1/µ0}.

�

Note that with our choice of x̄wj satisfying (4.20) for every j ∈ K, we can find a solution to

problem (4.15). As in the dual case, we now guarantee that a full step can be taken in direction

∆x.

Lemma 4.6 Let (x0, y0, s0) ∈ Ns(γ) with γ ∈ (0, 1) and 0 < δl < 1. By choosing ∆x from

(4.15) and setting

x̄wj = γ(1− δl)
σmin(A)√
k Uv σmax

min

{
µ0,

1

µ0

}
, ∀j ∈ K, (4.21)

we have x0
j +∆xj > 0 and a full step in the primal space is feasible. Therefore, primal feasibility

is restored in one step.

Proof. Similarly to Lemma 4.4, from constraints (4.15c) and since x0
j > 0 and 0 < δl < 1, we

deduce x0
j + ∆xj > 0 as required. Since this solution satisfies condition (4.15b), we conclude

that the warmstart is primal feasible.
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Lemma 4.6 only requires a feasible ∆x from problem (4.15). Similarly to the dual case, we

also seek optimality in order to perturb the complementarity products as little as possible.

Additionally, using the bounds in (4.19), the choice of x̄w in (4.21) and since 0 < δl < 1, we

can guarantee

−(1− δl) ≤
∆xj
x0
j

≤ (1− δl). (4.22)

Note that our choice of x̄wj is independent of s̄wj for every j ∈ K. Moreover, and as described

in Section 4.1, s̄wj for every j ∈ K is not fixed and must be calculated. However, and as we will

see in the next section, both values are related via other parameters (i.e., µ0 and γ) in order

to guarantee that complementarity products are still inside a slightly modified neighbourhood

and that the new duality gap is also bounded.

Summarizing our findings so far, we have shown that by the use of Paux and Daux and choos-

ing carefully s̄j and x̄wj , for every j ∈ K, we could take a full step in direction (∆x,∆y,∆s)

recovering primal and dual feasibilities. Now, we will analyse the consequences that such warm-

starting approach has in the complementarity products.

4.3 Centrality

The main motivation why we have chosen to minimize a variation of the weighted-least squares

approach in our linear optimization problems is to avoid having large variations (∆x,∆s) on

small components. We would like to keep the terms |∆xj |/|x0
j | and |∆sj |/|s0

j | for every j ∈
N bounded by some constant so that we could have some control on the centrality of the

warmstarting point and therefore, a control on the new duality gap.

To analyse what the effect of our warmstarting strategy is considering centrality of the new

iterate, let us first determine the depth of the cut for which our analysis holds. As stated before,

the depth of cut j is defined by −(c̄j − ĀTj y0) for every j ∈ K. It is not surprising that if the

depth of the cuts is large, we will need to backtrack to an earlier iterate. This is considered in

our analysis by the notion of µ0 which is a reference barrier term that measures the depth of

the cuts. When cuts are deep, µ0 is large so we may need to backtrack far from optimality, but

when the cuts get shallower, µ0 gets smaller and therefore, we could choose an iterate close to

optimality. Now, let us state the desired relation between the depth of the cuts and µ0 using

the following expression for every j ∈ K

1

γ
µ0

√
k Uv σmax

(1− δl) σmin(A)
max

{
µ0,

1

µ0

}
︸ ︷︷ ︸

:= Uc

≥ c̄j − ĀjT y0≥−γµ0
Āmin√

m Uv σmax
. (4.23)

If 4.23 holds then centrality results can be proved, as shown below. Note that we have some

control with regards to the size of the cut. This means that we could retreat further back in

the list of saved iterates to find a suitable large enough µ0 and the corresponding (x0, y0, s0)

solution for which this condition is satisfied. Observe that increasing µ0 will expand both sides

of inequality (4.23) increasing the chances to satisfy this condition. Also, observe that the left

hand side inequality provides us with a very loose upper bound when by retreating back in the
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list of stored iterates, some of the reduced costs become positive. This bound becomes useful

when defining the upper bound of the complementarity products obtained by our warmstarting

strategy. Finally, it is fair to say that in some iterations (4.23) may not be satisfied by any of

the stored iterates and therefore, we use coldstart instead.

Now, using definition (4.23) and the definition of s̄j in (4.6), from (4.8) we deduce for every

j ∈ K that

dj = −(c̄j − ĀTj y0) + s̄j ,

≤ 2γµ0
Āmin√

m Uv σmax
.

Hence,

dmax ≤ 2γµ0
Āmin√

m Uv σmax
. (4.24)

Using (4.24) in (4.12) and (4.13) we obtain

∆sj ≤ 2γµ0
1

Uv
, ∀j ∈ N, (4.25)

and

s̄j + ∆s̄j ≤ 2γµ0
1

Uv
+ Uc, ∀j ∈ K, (4.26)

respectively, where Uc denotes the left hand side term of inequality (4.23).

Now, let us analyse the consequences of our choices of s̄w and x̄w and their impact on the

complementarity products of the warmstarting iterate. To do so, first let us define δl as

δl := min

{
C

µ0 + C
,
C

1
µ0

+ C

}
, (4.27)

where

C :=
γσmin(A)Āmin√
k
√
m U2

v σ
2
max

. (4.28)

From (4.27) it is clear that 0 < δl < 1. Additionally, let us define δu as

δu := 6. (4.29)

These values represent the coefficients used to expand the neighbourhood from below and

above, respectively. As mentioned earlier, we expect the new warmstarting point to be inside a

modified neighbourhood. Note that the parameter δl contains valuable information regarding

the old problem and the new columns appended to it, through matrices A and Ā. Also, note

that δu is problem independent. As we will discuss later, this is one of the key results of the

analysis since it guarantees that regardless the size of the cut, and if some conditions hold, the

new duality gap will be bounded by the old duality gap and a constant.

The following theorem states conditions and analyses complementarity products when our
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specialized warmstarting strategy is used.

Theorem 4.7 Let assumptions (A.1)-(A.4) hold and let (x0, y0, s0) ∈ Ns(γ) with γ ∈ (0, 1).

Additionally, let δl and δu be defined by (4.27) and (4.29), respectively. Also, let us set

x̄wj = γ(1− δl)
σmin(A)√
k Uv σmax

min

{
µ0,

1

µ0

}
, ∀j ∈ K,

and

s̄j = max

{
γµ0

Āmin√
m Uv σmax

, c̄j − ĀTj y0

}
, ∀j ∈ K.

Having c̄j − ĀjT y0 satisfying (4.23), for every j ∈ K, and choosing ∆x from (4.15) and

(∆y,∆s) from (4.7) where ∆y = −∆ȳ, we have that

(xw, x̄w, yw, sw, s̄w) ∈ N s(γ),

where

N s(γ)=

{
(xw,x̄w,yw,sw,s̄w)∈F0 :δlγµ0≤xwj swj ≤δu

1

γ
µ0, ∀j∈N ; δlγµ0≤ x̄wk s̄wk ≤δu

1

γ
µ0, ∀k∈K

}
,

and

F0 =
{

(xw, x̄w, yw, sw, s̄w) : Axw + Āx̄w = b;AT yw + sw = c; ĀT yw + s̄w = c̄; (xw, sw) > 0; (x̄w, s̄w) > 0
}
.

Proof. It is not difficult to show that by choosing δl from (4.27) and δu from (4.29), and

using our previous choices for x̄wj (see (4.21)), and s̄wj = s̄j + ∆s̄j (see (4.6) and (4.26)), the

complementarity products for the new components, namely x̄wj s̄
w
j for every j ∈ K, are inside

the modified neighbourhood, N s(γ). Let us prove first that the upper bound holds. For every

j ∈ K, we have that

x̄wj s̄
w
j = x̄wj (s̄j + ∆s̄j),

≤ γ(1− δl)
σmin(A)√
k Uv σmax

min

{
µ0,

1

µ0

}(
2γµ0

1

Uv
+ Uc

)
.

Since 0 < γ < 1, 0 < δl < 1, U2
v > 1, k ≥ 1, min{µ0, 1/µ0} ≤ 1, and the definition of Uc, it is

clear that

x̄wj s̄
w
j ≤ 2γµ0

1

Uv
γ(1− δl)

σmin(A)√
k Uv σmax

min

{
µ0,

1

µ0

}
+ µ0,

< δuµ0, ∀j ∈ K, (4.30)

holds. If we now consider the lower bound for the complementarity products of the new com-

ponents, we have that for every j ∈ K

x̄wj s̄
w
j = x̄wj (s̄j + ∆s̄j),

≥ γ(1− δl)
σmin(A)√
k Uv σmax

min

{
µ0,

1

µ0

}(
γµ0

Āmin√
m Uvσmax

)
.
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Using (4.28), we get

x̄wj s̄
w
j ≥ γC(1− δl)µ0 min

{
µ0,

1

µ0

}
, ∀j ∈ K.

Then, by choosing δl from (4.27), we have

x̄wj s̄
w
j ≥ δlγµ0, ∀j ∈ K, (4.31)

Hence, and considering γ ∈ (0, 1), (4.30) and (4.31) the following result holds

δlγµ0 ≤ x̄wj s̄wj ≤ δu
1

γ
µ0, ∀j ∈ K, (4.32)

which completes the first part of the prove.

Now, we need to prove that the complementarity products of the old components, namely

xwj s
w
j for every j ∈ N , are inside the modified neighbourhood, N s(γ). Firstly, let us prove that

the upper bound holds for every j ∈ N . By definition and conditions (4.2) and (4.22), we have

that for every j ∈ N

xwj s
w
j = x0

js
0
j

(
1 +

∆xj
x0
j

)(
1 +

∆sj
s0
j

)
,

≤ x0
js

0
j

(
2
)(

1 + ∆sj
Uv
γµ0

)
.

Hence, and by using (4.25), we get

xwj s
w
j ≤ δu

1

γ
µ0, ∀j ∈ N.

To prove that the lower bound holds we recall constraints (4.15c) which guarantee

∆xj ≥ x0
j (δl − 1), ∀j ∈ N. (4.33)

Also, from (4.5), ∆sj ≥ 0. Hence for every j ∈ N

xwj s
w
j = x0

js
0
j

(
1 +

∆xj
x0
j

)(
1 +

∆sj
s0
j

)
,

≥ x0
js

0
j

(
1 +

∆xj
x0
j

)
. (4.34)

From (4.33) and since x0
j > 0, we know that

1 +
∆xj
x0
j

≥ δl, ∀j ∈ N.

Replacing this in (4.34) gives

xwj s
w
j ≥ δlx0

js
0
j , ∀j ∈ N,

which completes the proof.
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4.4 Algorithm

Now we are in position to describe the algorithm proposed to find a warmstarting point after

cuts of type c̄j − ĀjT y < 0 are appended to the RMP. Note that this algorithm is embedded

inside a major algorithm which is the primal-dual column generation method (PDCGM for

short) [15]. Let us define T = {1, 2, . . . , h} as the set of indexes of iterates which are strictly

feasible and well-centred in the initial problem. Observe that T , h and their corresponding list

of stored solutions vary at each outer iteration of PDCGM. The list is created in ascending

order so the last stored iterate and the closest-to-optimality solution is denoted by (xh, yh, sh).

Algorithm 1 summarizes the principal steps of our specialized warmstarting strategy.

Algorithm 1 Specialized warmstarting strategy for the primal-dual column generation method

Step 1 : Input A, b, c, c̄, Ā, Uv, n, k, m, γ ∈ (0, 1), list of (xt, yt, st) ∈ Ns(γ) and µt = (xt)T st/n,
where t ∈ T .

Step 2 : If no column is returned by the oracle, set (xw, yw, sw) = (xh, yh, sh), and then go to
Step 9. Otherwise, go to Step 3.

Step 3 : Calculate the smallest µ from the list of stored iterates such that

1

γ
µ0

1

(1− δl)

√
k Uv σmax
σmin(A)

max

{
µ0,

1

µ0

}
≥ c̄j − ĀjT y0 ≥ −γµ0

Āmin√
m Uv σmax

,

is satisfied. If there exists such µ, define µ = µ0, denote its associated solution as
(x0, y0, s0), and go to Step 4. If not, use coldstart and go to Step 9.

Step 4 : Define

δl := min{ C
µ0 + C

,
C

1
µ0

+ C
}, where C :=

γĀminσmin(A)√
k
√
m U2

v σ
2
max

.

Step 5 : Set for every j ∈ K

s̄j = max

{
γµ0

Āmin√
m Uv σmax

, c̄j − ĀTj y0

}
,

x̄wj = γ(1− δl)
σmin(A)√
k Uv σmax

min

{
µ0,

1

µ0

}
,

and define B0 and N0.

Step 6 : Solve Daux. Output: (∆y,∆s,∆s̄).

Step 7 : Solve Paux. Output: ∆x.

Step 8 : Define (xw, x̄w, yw, sw, s̄w) = (x0 + ∆x, x̄w, y0 + ∆y, s0 + ∆s, s̄+ ∆s̄).

Step 9 : Continue with the usual primal-dual interior point method by solving the Newton
system of equations in the old/new dimensions.

Observe that a new list of stored iterates is used every time we initialize Algorithm 1. Note
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that Step 2 accounts for the case in which no columns with negative reduced costs are obtained

from the oracle. This is a particular feature of the PDCGM. There is no point of using a

warmstarting strategy since the current iterate is already well-centred and strictly feasible and

therefore starting from it is the best we could do. Also, it is important to note that every cut

c̄j − ĀjT yh < 0 is generated using (xh, yh, sh). Hence, for any iterate (xt, yt, st), where t ∈ T ,

some of the new columns (cuts) may actually become dual feasible, or at least less infeasible

(shallower cuts). The following theorem summarizes the main discussion and results of this

section.

Theorem 4.8 Using Algorithm 1 and given that a suitable (x0, y0, s0) is available from the list

of iterates, the solution (xw, x̄w, yw, sw, s̄w) ∈ Ns(γ) and the new duality gap is bounded by

(xw)T sw + (x̄w)T s̄w ≤ 6
(
n+ k

)1

γ
µ0. (4.35)

Proof. The proof follows from Lemmas 4.4 and 4.6 and Theorem 4.7.

�

In summary, our strategy aims to restore primal and dual feasibilities separately by means

of auxiliary linear optimization problems. We can ensure that primal and dual feasibilities

are fully recovered if a suitable µ can be found. Note that Theorem 4.8 provides a guarantee

that the new duality gap is bounded by the old duality gap multiplied with a constant which

depends on the number of columns added to the old problem. Our analysis takes into account

special classes of problems arising in combinatorial optimization with non-negative technological

coefficients.

5 Numerical experiments

We have implemented the proposed warmstarting strategy inside the primal-dual column genera-

tion method described in [15]. This column generation implementation has a built-in procedure

which allows to store an advanced iterate in order to use it for future warmstart. We have

taken advantage of this to implement our strategy. We have tested three different strategies to

solve the relaxation of the one-dimensional cutting stock problem (CSP) and the vehicle routing

problem with time windows (VRPTW) after applying the Dantzig-Wolfe reformulation [5]. CSP

problem consists in the minimization of the number of rolls of fixed width that have to be cut in

order to satisfy the demands of different pieces with different widths [10]. VRPTW deals with

the problem of minimizing the distance travelled for a fleet of vehicles while delivering products

to a set of customers distributed in a given area. Additionally, capacity of each vehicle and a

time window when a vehicle should deliver the product are considered [22]. For a mathematical

description of these problems and their corresponding decomposition, the reader is referred to

[2].

The strategies considered to find a suitable candidate from which to start solving each RMP

are:
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• Coldstart (CS). It refers to solving a given RMP without considering any information of

the previously solved RMP and therefore, every RMP is solved from scratch. We rely on

the presolving and heuristic procedures included in HOPDM [13].

• Partial feasibility restoration (PFR). This strategy was introduced in [14] and has been

successfully applied to speed up the column generation procedure in [15, 18]. As described

in Section 4, this strategy ensures that dual feasibility is fully restored in the new compo-

nents if cuts are not too deep. However, it does not ensure the same in the old components.

Additionally, it sets the new components in the primal space to a small value so primal

feasibility can be easily restored.

• One step primal-dual restoration (1SPDR). This strategy has been described in this paper

and aims to recover primal and dual feasibilities in one step by solving two auxiliary

problems. Also, theoretical guarantees are provided so the warmstarting iterate stays

close to the new central path.

The subproblems obtained after applying the reformulation to CSP and VRPTW are solved

using the same source code, i.e., knapsack solver [24] (CSP) and our own implementation of

the bounded bidirectional dynamic programming algorithm proposed in [32], with state-space

relaxation and identification of unreachable nodes [7] (VRPTW).

For the three aforementioned strategies (CS, PFR and 1SPDR), the RMPs are initialized

with the same columns. However, after the first iteration every RMP may be different and

therefore, we may expect that some of the strategies will require fewer outer iterations than

others. To run the tests we have used a laptop with a 2.30 Ghz Intel Core i5 processor, 6

GB RAM and a Linux operating system. The implementations have been developed in C

(solving the two auxiliary problems) and FORTRAN (HOPDM native language). For each of

the strategies, we stop the column generation procedure when the relative duality gap becomes

smaller than the default accuracy δ = 10−6.

In the results presented in [15], it was observed that the time spent solving the RMP

was considerable when compared with the time spent in the oracle when solving CSP. On

the other hand, the dominant task when solving VRPTW was the oracle and the RMP time

only accounted for a small portion of the total time. By presenting the results for these two

applications, we could get a better understanding of the situations where we can expect a

warmstarting strategy to perform better than coldstart and how much the gain can be.

Before continuing, it is important to give some remarks about our implementation. Note

that for advanced column generation iterations, the coefficients of the objective function, in

the primal and dual auxiliary problems (1/s0
j in (4.5) and 1/x0

j in (4.15)), can lead to very

badly-scaled problems (some very large coefficients and others very small). Therefore, we have

decided to scale these coefficients and restrict them to a narrower range. In other words, if a

given coefficient is greater/smaller than a predefined threshold, we have used this threshold as

the coefficient for this specific variable. Note that by doing this, we do not affect the primal

and dual feasible sets, only the scaling of that particular auxiliary problem and therefore, the

strategy still recovers primal and dual feasibility in one step. Additionally, since PDCGM is

based on HOPDM [13], an infeasible primal-dual interior point method is used to solve every
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RMP which keeps the iterates inside a neighbourhood of the central path by making use of

multiple centrality corrector steps [3]. We have considered this in our developments in the

following way. When the column generation process approaches optimality and the depth of

the cuts is small, that is when µ and (c̄j − ĀTj y0
j ) are small, instead of solving the primal and

dual auxiliary problems, we set the values of new components to x̄wj =
√
µ/γ and s̄wj =

√
γµ for

every j ∈ K. We keep the old iterates unchanged. This choice is justified since the cuts at this

stage are likely to be shallow and therefore, by choosing the new components in this way, we

only generate small infeasibilities which HOPDM (and any infeasible primal-dual interior point

method) can easily handle. Additionally, with these choices, we ensure that the complementarity

products for the new iterates are inside the neighbourhood described in (4.1). Moreover, and

after some testing, the directions, and therefore, the correction steps, obtained by solving the

auxiliary problems in an advanced stage of the column generation process, are very short and

do not change significantly the stored iterate. By performing this small change in the algorithm,

we aim to reduce the CPU time of the method by avoiding unnecessary calls to the auxiliary

problems and taking advantage of the infeasible primal-dual interior point method. Finally, to

solve the primal and dual auxiliary problems we rely on the solver HOPDM with tolerance set

to 10−4.

5.1 The cutting stock problem (CSP)

To analyse the performance of these three strategies for solving CSP, we have selected 262

instances from the literature in the one-dimensional CSP (http://www.math.tu-dresden.de/

~capad/). The size of the instances vary between 15 and 585 items. The column generation

procedure is initialized with columns generated by homogeneous cutting patterns, which corre-

sponds to selecting only one piece per pattern, as many times as possible without violating the

width of the rolls.

In Table 1, we summarize our findings. In the first column we denote by k the number of

columns added at each iteration of the column generation procedure. Note that by adding more

columns at every iteration we are targeting to reduce the number of calls to the oracle. However,

in terms of warmstarting this may have an important impact since the similarities between two

consecutive RMPs are likely to be lost. We have grouped the instances in two classes, denoted

by Easy and Hard. The former contains 97 instances while the latter 165 instances. In row All,

we have included the average results when all the instances are considered for that particular

value of k.

For each strategy we show the average number of inner iterations (inner) and the average

CPU time required to solve the RMPs (rmp). Inner iterations refer to the total number of

iterations required to solve the RMPs while the RMP time considers the time required to solve

the RMPs and the time of any warmstating procedure. For instance, for 1SPDR, it is the

overall time of solving the primal and dual auxiliary problems and the time of solving each

RMP. Moreover, we also include the total time required for the PDCGM to converge to an

optimal solution (tot).

Note that the best performance in terms of CPU time for each of the strategies and each

group of instances is obtained when 10 columns are added at each iteration. From our results
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Table 1: Average results on 262 instances of CSP for PFR, CS and 1SPDR strategies adding k
columns at a time: RMP iterations and times (RMP and total).

PFR CS 1SPDR

times(s) times(s) times(s)
k class inner rmp tot inner rmp tot inner rmp tot

1
Easy 1303.9 3.9 4.9 3504.2 7.8 8.7 1762.5 4.1 4.8
Hard 3105.6 15.0 38.2 6184.4 37.0 66.4 3288.0 15.2 36.8
All 2438.5 10.9 25.9 5192.1 26.2 45.0 2723.2 11.1 25.0

10
Easy 427.3 1.6 2.1 1082.4 3.4 3.9 600.4 1.9 2.4
Hard 1002.7 6.1 15.5 2080.9 13.7 23.9 1118.7 6.7 14.6
All 789.7 4.4 10.6 1711.2 9.9 16.5 926.8 5.0 10.1

50
Easy 308.5 2.1 3.9 732.3 4.1 5.6 437.9 2.3 3.6
Hard 706.0 8.5 24.4 1540.5 18.2 32.6 1064.4 11.9 23.2
All 558.8 6.2 16.8 1241.3 13.0 22.6 832.5 8.3 15.9

100
Easy 278.6 1.8 4.6 667.5 4.8 7.9 397.4 2.9 5.7
Hard 665.3 9.0 33.4 1454.8 26.1 53.6 1059.0 20.2 44.1
All 522.1 6.3 22.8 1163.3 18.2 36.7 814.0 13.8 29.9

Table 2: Average results on 262 instances of CSP for PFR, CS and 1SPDR adding k columns
at a time: column generation calls, inner iterations and time per RMP.

PFR CS 1SPDR

k rmp inner/rmp time/rmp rmp inner/rmp time/rmp rmp inner/rmp time/rmp

1 440.4 5.5 0.02 487.5 10.7 0.05 423.2 6.4 0.03
10 120.0 6.6 0.04 146.2 11.7 0.07 111.9 8.3 0.04
50 73.8 7.6 0.08 91.9 13.5 0.14 67.5 12.3 0.12
100 62.8 8.3 0.10 78.6 14.8 0.23 59.9 13.6 0.23

it seems that by adding 10 columns, the number of column generation iterations is reduced

considerably when compared to a single-column approach and at the same time, each strategy

(re)initializes and solves the RMPs efficiently. Note that considering all instances, the best

performance is achieved by 1SPDR when adding 10 columns. It is also fair to say that the

performance of PFR is comparable to the one proposed in this study when this number of

columns is added per iteration. Both warmstarting strategies outperform a coldstart approach

in both number of inner iterations and CPU times.

Let us now compare CS and 1SPDR. Since 1SPDR successfully restores primal and dual

feasibility in almost all the column generation iterations and keeps the complementarity prod-

ucts of the warmstarting iterate inside a slightly modified neighbourhood, the number of inner

iterations to solve the new problem is reduced when compared to CS. The reductions in in-

ner iterations using 1SPDR vary in average between 30% (k = 100) and 48% (k = 1) with

respect to the inner iterations required by CS. To calculate these reductions we have used

(1 − inner1SPDR
innerCS

) × 100%. The savings in time are due to the reduction of inner iterations and

also the efficiency of calculating the new warmstarted iterate. The gains in total CPU time by

using 1SPDR strategy range between 19% to 45% (k = 100 and k = 1, respectively). These

gains were determined considering (1− total1SPDR
totalCS

)× 100%.

The differences between 1SPDR and PFR are due to the nature of each of these strategies

and the environment for which they were developed. It is necessary to remark that 1SPDR aims
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to recover primal and dual feasibility while keeping the warmstarted iterate inside a slightly

modified neighbourhood, but PFR aims to recover only feasibility in the new dual components

and does not ensure the same for the old components. Additionally, the latter was designed to

take full advantage of an infeasible primal-dual interior point method while the former has being

developed considering a feasible primal-dual interior point method and only takes advantage of

the infeasibility nature of the solver at the end of the column generation process, namely when

the primal-dual column generation method is close to termination. In terms of inner iterations,

PFR outperforms 1SPDR. This may be due to the nature of PFR, which delivers close to feasi-

ble solutions but at the same time, the iterates are far enough from the boundaries. Then, only

few centering steps are needed to recover feasibility and return to the neighbourhood of the

new central path. On the other hand, 1SPDR ensures primal and dual feasibility restorations.

However, and as a consequence of such restorations, it slightly increases the neighbourhood and

therefore, at some iterations the warmstarting iterate may be too close to the boundaries. This

originates a sometimes excessive number of centering steps in order to return to the neighbour-

hood of the new central path increasing the number of inner iterations. It is important to point

out that this belief is just empirical since no theoretical support is given for PFR with respect

to complementarity after the restoration is performed. In terms of CPU time, it is not clear

which method performs better. However, the best performance in terms of total CPU time is

obtained when using 1SPDR when 10 columns are added.

Additionally, in Table 2 we present more results of these experiments considering all the

instances. In this table, we include the average number of column generation iterations (rmp),

the average number of inner iterations per RMP (inner/rmp) and the average CPU time required

to solve every RMP (time/rmp) which is expressed in seconds per RMP.

It is clear from Table 2 that by adding more columns to the RMP at each iteration (k), the

number of outer iterations is reduced for all the strategies. A similar result was obtained in

[15] by using the PFR strategy in the PDCGM and for other applications such as the vehicle

routing problem with time windows and the capacitated lot-sizing problem with setup times.

An important benefit of using 1SPDR over PFR and CS with respect to the number of outer

iterations can be observed from Table 2 for CSP. We believe that for this application taking care

of centrality aspects, as with 1SPDR, stabilizes even more the PDCGM and therefore, less calls

to the oracle are needed. In other words, the duals sent to the oracle using 1SPDR are better

centred than the ones obtained by the other two strategies reducing the column generation

iterations. As a consequence of this, the time spent in the oracle is reduced. This is the main

reason why 1SPDR is comparable with the PR in terms of total CPU time. Although adding

more columns at each iteration reduces the number of calls to the oracle (which is the most

time consuming task for this application), it makes the task of warmstarting more difficult since

the new RMP is likely to be very different from the old RMP. This can be seen in the average

time required to solve the RMPs. The speed-ups obtained by using any of the warmstarting

strategies presented here are considerable when compared against CS no matter the number of

columns added per iteration.
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5.2 The vehicle routing problem with time windows (VRPTW)

From VRPTW literature we have selected 87 instances (http://www2.imm.dtu.dk/~jla/solomon.

html) originally proposed in [34]. We have used the number of customers to classify the in-

stances in three groups. Class S corresponds to instances with 25 customers, while class M with

50 customers and class L contains instances with 100 customers. The column generation pro-

cedure is initialized with n single-customer routes (where n denotes the number of customers),

which corresponds to assigning one vehicle per customer.

Table 3: Average results on 87 instances of VRPTW for PFR, CS and 1SPDR adding k columns
at a time: RMP iterations and times (RMP and total).

PFR CS 1SPDR

times(s) times(s) times(s)
k class inner rmp tot inner rmp tot inner rmp tot

1

S 199.8 0.3 1.0 222.1 0.2 0.7 366.6 0.3 0.8
M 397.6 0.6 6.7 525.6 0.5 6.2 866.7 0.9 5.9
L 769.0 1.2 111.5 1109.9 1.4 116.3 2038.6 2.9 124.3

All 455.4 0.7 39.7 619.2 0.7 41.1 1090.6 1.4 43.7

10

S 132.1 0.2 0.4 115.5 0.1 0.4 175.5 0.2 0.4
M 242.4 0.4 2.6 206.6 0.3 2.5 336.2 0.4 2.5
L 470.7 0.8 36.7 414.9 0.8 38.3 772.7 1.5 38.4

All 281.7 0.5 13.2 245.7 0.4 13.7 428.1 0.7 13.8

50

S 115.1 0.2 0.3 115.5 0.2 0.4 152.2 0.2 0.4
M 208.9 0.4 1.8 177.0 0.4 2.1 242.7 0.5 1.9
L 405.2 1.2 23.2 361.5 1.6 27.9 579.2 2.1 24.5

All 243.1 0.6 8.4 218.0 0.8 10.1 324.7 0.9 8.9

100

S 113.6 0.2 0.3 118.8 0.2 0.4 146.5 0.3 0.4
M 184.7 0.4 1.6 166.8 0.5 1.9 244.0 0.7 1.9
L 348.6 1.5 18.3 291.7 1.7 18.4 458.5 2.5 19.8

All 215.7 0.7 6.8 192.4 0.8 6.9 283.0 1.2 7.3

200

S 120.0 0.3 0.4 120.0 0.3 0.5 144.2 0.4 0.5
M 186.6 0.6 1.7 178.5 0.8 2.0 249.4 1.0 2.0
L 359.3 2.3 17.2 296.3 2.6 19.0 445.3 3.5 18.3

All 222.0 1.1 6.4 198.3 1.3 7.2 279.6 1.6 7.0

300

S 119.8 0.3 0.5 128.2 0.4 0.6 147.0 0.4 0.6
M 197.2 0.9 2.0 182.0 1.1 2.2 254.9 1.2 2.2
L 379.1 3.0 16.6 285.8 3.2 18.1 469.1 4.6 18.3

All 232.0 1.4 6.3 198.6 1.6 7.0 290.3 2.1 7.0

In Table 3 we present the results of our computational experiments for VRPTW. As in

Section 5.1, the first two columns denote the number of columns we aim to add per iteration

to the RMP and the classification, respectively. We also present the average number of inner

iterations (inner), the average RMP time in seconds (rmp) and the average total time (tot) per

strategy and number of columns allowed to be added per iteration (k).

As shown in [15], the most expensive task for this application with the PDCGM is solving

the oracle (difference between the total and RMP times). When the number of columns added

per iteration is small, the RMP time accounts as a small proportion of the total CPU time.

Therefore, it might seem a bit odd to see that for some classes the total CPU time is slightly

lower while the RMP time is slightly higher. This is only due to savings in the number of

outer iterations and therefore, in oracle time. The importance of the RMP time with respect
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Table 4: Average results on 87 instances of VRPTW for PFR, CS and 1SPDR adding k columns
at a time: column generation calls, inner iterations and time per RMP.

PFR CS 1SPDR

k rmp inner/rmp time/rmp rmp inner/rmp time/rmp rmp inner/rmp time/rmp

1 121.6 3.7 0.01 124.9 5.0 0.01 124.9 8.7 0.01
10 44.4 6.3 0.01 45.7 5.4 0.01 45.2 9.5 0.02
50 30.6 8.0 0.02 33.8 6.5 0.02 31.1 10.4 0.03
100 25.6 8.4 0.03 28.8 6.7 0.03 26.1 10.8 0.04
200 23.3 9.5 0.05 26.6 7.5 0.05 23.4 11.9 0.07
300 22.2 10.4 0.06 25.4 7.8 0.06 22.0 13.2 0.09

to the total CPU time increases with the number of columns allowed to be added per iteration.

This can be explained since the RMP becomes computationally more expensive (the instance

becomes larger and the warmstarting strategy procedure, if any, consumes time) while the total

CPU time is reduced.

Similarly, in Table 4 we include more information to help with the interpretation of our

results, namely, the average number of outer iterations (rmp), the average number of inner

iterations per RMP (inner/rmp) and the average time required to solve every RMP (time/rmp)

expressed in seconds per RMP.

At first it seems surprising that CS performs so well. One explanation is that the presolving

techniques used by HOPDM are very effective for this class of problems. Note that when

one column is added, the average number of inner iterations per RMP for CS is 5.0 (column

inner/rmp in Table 4).

For this application and the instances chosen, the depth of the cut is usually very large when

compared with the reference parameter µ and therefore, the method retreats back in the list

of iterates moving far away from the region close to optimality and therefore few more steps

are required to reach the desirable sub-optimal solution of the modified problem. However, the

relative large number of inner iterations required for our strategy on average when compared to

PFR and CS, does not have a significant impact on the efficiency of the method. If we compare

the average time per iteration spent in solving the RMP, one can conclude that the RMP

is solved very efficiently regardless the initial iterate (PFR, CS or 1SPDR). 1SPDR requires

slightly more time to solve the RMP since this approach has to solve two auxiliary problems.

The difficulty in solving the RMP increases in all cases with the number of columns added per

iteration.

Note that for VRPTW and for the same number of columns added per iteration, the outer

iterations remains almost constant, no matter if we use coldstart or any of the warmstarting

strategies.

It is important to point out that the columns obtained for VRPTW are very different from

the ones obtained for CSP. While for CSP, the columns represent cutting patterns which have

non-zero integer entries and may be dense, VRPTW has columns containing only few non-zero

integer entries representing routes. Due to the vehicle capacity and time window constraints

one may expect that only few customers are served by each vehicle so sparse columns are

common. On the other hand for CSP, the more challenging instances are the ones with large

width allowing more dense columns.
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The structure of VRPTW adversely affects 1SPDR. It has been observed that if only few

components of a new column have non-zero entries, the set of possible directions which re-

covers primal and dual feasibilities may be very limited. Therefore, large variations in small

components are expected and as a consequence of this, a bad performance of this strategy in

practice.

Finally, from our computational experiments, one can conclude than in some situations,

CS (understood as the initialization provided by HOPDM) may be competitive to an efficient

warmstarting strategy. Nevertheless, we strongly believe that this is more an exception than

the rule and therefore, warmstarting is indeed needed in this context. Note that for VRPTW

all strategies studied here are efficient and solve each RMP in less than a tenth of a second.

6 Conclusions

In this paper we have presented a new strategy to warmstart a primal-dual interior point

method in the context of column generation. The method deals with primal and dual feasibility

restorations while keeping some control in the duality gap of the new warmstart. Proofs that

the method recovers primal and dual feasibilities in one step after new columns are appended

to the restricted master problem are provided. Also, conditions are given to guarantee that the

new duality gap is bounded by a small multiple of the old one, see Theorem 4.8. Additionally,

computational experiments for solving a reformulation of the cutting stock problem demonstrate

the benefits of using such warmstarting strategy when compared to coldstart. In general, savings

between 30 ∼ 48% in the number of inner iterations and 19 ∼ 45% in CPU time can be achieved

on average for different column generation scenarios. For CSP, the advantages of the proposed

method with respect to coldstart are consistent no matter the number of columns added to each

restricted master problem at each iteration. Also, we have provided computational evidence

that the proposed strategy and coldstart behave similarly in terms of CPU time for solving

a reformulation of the vehicle routing problem with time windows. Both strategies seem to

be very efficient due to the structure of the restricted master problems and the presolving

embedded in HOPDM. Additionally, we have compared our strategy with the one presented in

[14] which restores dual feasibility in the new components after new columns are added. Both

warmstarting strategies are competitive in terms of CPU time for both applications. Further

research directions are to analyse and develop a warmstarting strategy that considers primal

and dual infeasibilities so we can take advantage of the infeasible primal-dual interior point

solver HOPDM. Also, we plan to investigate more efficient ways of calculating directions in the

primal and dual spaces and to extend the analysis to a wider class of problems where A and Ā

have positive and negative elements.
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