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New Findings 

 What is the central question of this study? 

Glucocorticoids act in the kidney to promote salt and water retention.  Renal 11β-hydroxysteroid 

dehydrogenase type 1, by increasing local concentrations of glucocorticoids, may exert an anti-

natriuretic effect.  We hypothesised that global deletion of 11β-hydroxysteroid dehydrogenase type 1 

in the mouse would give rise to a salt-wasting renal phenotype.   

 What is the main finding and its importance? 

We subjected a mouse model of global 11βHSD1 deletion to studies of water and electrolyte 

balance, renal clearance, urinary steroid excretion, renin-angiotensin system activation and renal 

sodium transporter expression.  We found no significant effects on renal sodium or water excretion.  

Any effect of renal 11βHSD1 on sodium homeostasis is subtle.   

Abstract 

Glucocorticoids act in the kidney to regulate glomerular haemodynamics and tubular sodium 

transport; the net effect favours sodium retention.  11β-hydroxysteroid dehydrogenase type 1 

(11βHSD1) is expressed in the renal tubules and the interstitial cells of the medulla, where it is likely 

to regenerate active glucocorticoids from inert 11-keto forms.  The physiological function of renal 

11βHSD1 is largely unknown.  We hypothesised that loss of renal 11βHSD1 would result in salt 

wasting, and tested this in a knockout mouse model in which 11βHSD1 was deleted in all body 

tissues.  In balance studies, 11βHSD1 deletion had no effect on water, sodium or potassium 

metabolism; transition to a low sodium diet did not reveal a natriuretic phenotype.  Renal clearance 

studies demonstrated identical haemodynamic parameters (arterial blood pressure, renal blood flow, 

glomerular filtration rate) in knockout and wild-type mice, but revealed an augmented kaliuretic 

response to thiazides in 11βHSD1 knockouts.  There was no effect on the natriuretic response to the 

amiloride analogue benzamil.  Urinary excretion of deoxycorticosterone (DOC) was higher in 

11βHSD1 knockout mice and there was hypertrophy of cells in the zona fasciculata of the adrenal 

cortex.  There was no difference in the activity of the renin-angiotensin and nitric oxide systems, no 

difference in renal histology, and no difference in the abundance of key tubular transporter proteins.  

We conclude that any effect of 11βHSD1 on renal sodium excretion is subtle.   
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Introduction 

In the adult mammalian kidney, glucocorticoids regulate tissue haemodynamics (increasing renal 

blood flow and glomerular filtration rate), the production of vasoactive paracrine / endocrine factors 

and sodium transport in the renal tubule (Mangos et al., 2003; Hunter et al., 2014b).  These renal effects 

contribute to the regulation of total body sodium and systemic arterial blood pressure (ABP).   

In target tissues, glucocorticoid activity is determined by the density of nuclear glucocorticoid 

receptors (GR), circulating levels of glucocorticoids and the activity of 11β-hydroxysteroid 

dehydrogenase (11βHSD) enzymes.  11βHSD1 regenerates active glucocorticoids, catalysing the 

conversion of cortisone to cortisol in humans (11-dehydrocorticosterone to corticosterone in rodents); 

11βHSD2 catalyses the reverse reaction (Chapman et al., 2013).  Adipose-specific 11βHSD1 deletion in 

the mouse attenuates the metabolic consequences of circulating glucocorticoid excess, demonstrating 

that 11βHSD1 activity is a major regulator of local glucocorticoid activity, at least in adipose tissue 

(Morgan et al., 2014).   

Both 11βHSD1 and 11βHSD2 are expressed in the kidney.  11βHSD2 is expressed in the tubular 

cells of the distal renal tubule (connecting tubule and collecting ducts), where it prevents active 

glucocorticoids from binding and activating the mineralocorticoid receptor (MR).  MR can bind 

glucocorticoids and mineralocorticoids with high affinity in vitro (Arriza et al., 1987); 11βHSD2 thus 

acts to maintain the specificity of aldosterone-MR signalling in vivo.  11βHSD1 is expressed in the 

proximal tubule, macula densa and the interstitial cells of the renal medulla (Odermatt & Kratschmar, 

2012); its in vivo function at these sites is controversial.  Enzyme kinetic studies using homogenised 

kidney preparations suggest that 11βHSD1 may act as a dehydrogenase (i.e. converting cortisol to 

cortisone) (Gong et al., 2008).  However, siRNA-mediated knock-down of 11βHSD1 activity in the 

renal medulla results in reduced urinary excretion of corticosterone (Liu et al., 2008), consistent with 

the enzyme operating as a reductase in vivo (i.e. regenerating active glucocorticoid).   

The downstream physiological consequences of renal 11βHSD1 activity are largely unknown.  

However, two lines of evidence suggest that renal 11βHSD1 activity influences systemic blood 

pressure in rodents.  First, renal 11βHSD1 mRNA expression is higher in a salt-sensitive rat model 

(Dahl SS) than in a salt-resistant consomic strain (SS-13BN/Mcw).  This positive association between 

renal 11βHSD1 activity and systemic blood pressure is only apparent when the animals receive high 

dietary salt (Liang et al., 2003; Liu et al., 2008).  Second, knockdown of Hsd11b1 mRNA in the renal 

medulla of Dahl SS rats attenuates salt-sensitive hypertension (Liu et al., 2008), providing the most 

compelling evidence for a causal link between renal 11βHSD1 activity and blood pressure.  Moreover, 
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the renal expression of 11βHSD1 is modified by dietary sodium intake, implying that its activity may 

be regulated by factors directed at maintaining sodium homeostasis.  High dietary sodium reduces 

Hsd11b1 mRNA expression in rat proximal tubules (McKinnell et al., 2000) and in the renal medulla 

of salt-resistant rats (Liang et al., 2003; Liu et al., 2008).   

The literature therefore suggests that renal 11βHSD1 activity leads to increased systemic blood 

pressure, although the mechanism remains unknown.  Given that glucocorticoids can stimulate 

sodium reabsorption in the proximal nephron, distal nephron and collecting ducts (Hunter et al., 

2014b), we hypothesised that renal 11βHSD1 activity opposes natriuresis by regenerating active 

glucocorticoid in the renal tubules.  It follows that the global deletion of 11βHSD1 would result in a 

tendency to renal sodium loss, manifesting in a phenotype that would be subject to neurohormonal 

compensation from the RAAS, hypothalamo-pituitary-adrenal (HPA) axis, sympathetic nervous 

system and other natritropic regulators.   

The aim of this study was to assess the effect of global 11βHSD1 deletion on renal sodium 

transport and to determine the implicated neurohormonal / transport systems.  We subjected 

11βHSD1 knockout mice to perturbations in dietary sodium intake and examined the consequences 

for systemic sodium and water homeostasis, renal haemodynamics, renal sodium transport pathways 

and systemic steroidogenesis.   

Methods 

Ethical approval 

All experimental procedures were performed under UK Home Office licence in accordance with 

the Animals (Scientific Procedures) Act, 1986.  All experimental procedures involving live animals 

were reviewed and approved by local veterinary surgeons.   

Hsd11b1
–/–

 and wild-type mice 

Mice had free access to water and a standard RM1 diet (0.25% Na+; Special Diet Services, Witham, 

UK) unless otherwise stated, and were maintained on a 12 hour light-dark cycle.  Wild type control 

mice (C57BL/6J) were obtained from an in-house colony, derived from purchased stock (Harlan 

Laboratories, Loughborough, UK).  Male mice were used for all experiments.  Hsd11b1/ mice were 

the offspring of homozygous-homozygous crosses in a colony carrying a null mutation in the 

Hsd11b1 gene on the C57BL/6J background (Morton et al., 2004).  The gene mutation (originally 

introduced on an MF1 background) has been previously shown to completely ablate 11βHSD1 

activity in vivo and in vitro (Kotelevtsev et al., 1997).   
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Balance studies 

Mice were housed individually in metabolic cages that enabled the independent collection of urine 

and faeces and were left to acclimatise for five days before any experimental data were obtained.  

Drinking water and diet were provided ad libitum.  Animals were given gel diets to minimise diet 

dispersion and sample contamination.  Gel diet production was adapted from an existing method 

(Ahn et al., 2004).  Diets contained 36% ground diet (RM1; or low sodium diet, Ziegler Bros, Gardners, 

PA, USA), 3.8% bovine gelatine (Dr. Oetker Nahrungmittel, Bielefeld, Germany) and supplementary 

NaCl to make 0.026% Na+ (low-), 0.2% Na+ (normal-) and 2.1% Na+ (high-) sodium diets (percentages 

in dry weight equivalents).  Following acid digestion, the Na+ content of each diet was verified by 

flame photometry.   

During the study period, mice received control Na+ diet for 4 days and then either high or low Na+ 

diet for 8 days (Figure 1A).  Dietary intake, urine output and faecal output were measured over 24 

hour collection periods, each finishing immediately after the nocturnal active period.  At the end of 

the study period, animals were sacrificed by cervical dislocation and terminal blood and kidneys 

were snap-frozen and stored at – 80°C.   

Faecal samples were dried at 105°C for 24 hours to assess gastrointestinal water losses.  To 

measure faecal Na+ and K+ content, dried faecal samples were homogenised then digested in 

concentrated nitric acid (~15M; Fisher Scientific) for 24 hours at 65°C in an orbital shaker.  Digested 

faecal and urine samples were diluted in 10 ppm diluent concentrate (1% Brij35, BWB Technologies 

UK, Braintree, UK) 1:6 and 1:25-1:50, respectively before measurement of [Na+] and [K+] by flame 

photometry (BWB Technologies UK).   

Results were normalised to kidney weight (rather than body weight) because Hsd11b1/ mice 

differ from wild-types in their adipose tissue distribution (Morton et al., 2004).   

Renal clearance 

Renal clearance experiments were performed under terminal anaesthesia (Inactin, thiobutabarbital 

sodium salt hydrate, Sigma) as previously described (Hunter et al., 2014a).  Anaesthesia was induced 

with an intraperitoneal injection of c. 150 mg per kg body weight and maintained by repeated 

intravenous bolus injection at a level sufficient to suppress the blink reflex and a motor response to 

toe pinch (typical total dose 200 – 250 mg per kg body weight).  Catheters were inserted into the 

trachea, jugular vein, carotid artery and bladder.  A bolus dose (0.1 ml / 10 g body weight) of 

physiological saline solution was given via the jugular catheter as soon as intravenous access was 

established, followed by a continuous infusion of 0.2 ml / 10 g / hour with a solution containing (in 

mM): 146 Na+, 5 K+, 113 Cl–, 15 HCO3– and (in % w/v) 0.25 FITC-inulin, 0.5 PAH (p-Aminohippuric 
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acid sodium salt, Sigma), pH 7.4.  Mean arterial blood pressure was recorded from the carotid 

catheter in real time.   

Urine and blood samples were collected according to the protocol depicted in Figure 1B.  Mice 

were left to equilibrate for 60 minutes after surgery.  Urine was collected over a 40-minute baseline 

period, then an intravenous bolus dose of diuretic (either bendroflumethiazide or benzamil) at a dose 

of 2 mg per kg body weight in 1% DMSO was administered.  A 20-minute period of re-equilibration 

was followed by a second 40-minute urine collection.  ~70 µl blood samples were obtained from the 

arterial line at the end of the first equilibration period and after each urine collection; these were used 

to determine haematocrit, plasma [inulin] and [PAH].  At the end of the protocol, a 1 ml sample of 

blood was obtained for the measurement of plasma [Na+], [K+] and [Cl].  The surgeon was blinded to 

genotype until after all analyses were completed.   

The inulin, PAH and electrolyte assays were conducted as previously described (Hunter et al., 

2014a).  Briefly, [FITC-inulin] in plasma and urine was determined by measuring fluorescence 

intensity at pH 7.4, relative to a 9-point standard curve in duplicate.  [PAH] in plasma and urine was 

determined by a colorimetric method, relative to an 11-point standard curve in duplicate.  [Na+], [K+] 

and [Cl] were measured by an ion-sensitive electrode (Roche 9180 Electrolyte Analyzer).  Glomerular 

filtration rate (GFR), effective renal blood flow (eRBF) and the fractional excretion of electrolytes 

(FENa, FEK, FECl) were derived from inulin and PAH clearance, using standard equations (Hunter et 

al., 2014a).   

Urinary steroid and NOx analysis 

Urinary corticosterone, aldosterone and deoxycorticosterone (DOC) were measured by 

colorimetric ELISA as previously described (Al-Dujaili et al., 2009b, 2009a).  Briefly, urinary steroids 

were extracted in surplus 2-methoxy-2-methylpropane and re-constituted in assay buffer.  96-well 

plates were coated with steroid-albumin conjugates overnight (1.25 µg / ml; Steraloids, Newport, RI, 

USA).  The following reagents were then added in sequence (with intermediate washing steps): 

blocking buffer, standards in duplicate, samples in duplicate, primary antibody (sheep anti-

aldosterone at 1:30000; sheep anti-corticosterone at 1:20000 or rabbit anti-DOC at 1:20000, produced 

in-house), HRP-linked secondary antibody (donkey anti-sheep Ig at 1:11000 or goat anti-rabbit at 

1:11000, Sigma), substrate solution and stop solution.  Absorbance was measured at 450 nm.   
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The concentration of total urinary nitrite and nitrate (NOx) was measured by colorimetric assay 

(780001, Cayman Chemicals, Ann Arbor, MI, USA), according to the manufacturer’s instructions after 

diluting urine 1:60.   

Renin and angiotensinogen radioimmunoassay 

Renin and angiotensinogen concentrations were measured by radioimmunoassay of angiotensin I 

generated by incubating plasma with excess angiotensinogen substrate (for renin assay) or excess 

renin enzyme (for angiotensinogen measurements).  Plasma samples (diluted tenfold with assay 

buffer for angiotensinogen), with added substrate or enzyme, were incubated with angiotensin I 

antibody at 37 or 0 °C for 1 hour before the addition of ice-cold assay buffer.  Duplicate angiotensin I 

standards (11 points, 0-40ng/L) were incubated in parallel.  Sample and standard assay tubes were 

then equilibrated at 2 °C for 48 hours with added 125I angiotensin (PerkinElmer).  Free and bound 

angiotensin were separated by charcoal extraction and radioactivity in the free fraction was counted 

in a Wallac gamma counter.  Renin enzyme and angiotensinogen substrate were prepared from 

cytosolic extracts of mouse submandibular glands and from the plasma of nephrectomised rats 

respectively.  Results were expressed as the difference in angiotensin I values in tubes incubated at 37 

and 0 °C.   

Histology 

Kidneys were fixed in situ by perfusion fixation as previously described (Hunter et al., 2014c).  

Mice were sacrificed by vascular perfusion under terminal anaesthesia (sodium pentobarbital, 

Sagatal; Ceva Santé Animale, Libourne, France; 50 mg per kg body weight as an intra-peritoneal 

bolus).  The infra-renal aorta was cannulated to permit retrograde perfusion with a vent in the vena 

cava.  10 ml heparinised saline (20 units / ml in PBS) were infused followed immediately by 50 ml 

fixative (fresh 4 % PFA in PBS, pH 7.4), delivered at a rate of 15 ml / min by a Gilson Minipuls 3 

peristaltic pump.  The kidneys was removed, the poles cut off and discarded, and the central portion 

immersed in 4 % PFA at 4°C for 24 hours before being embedded in paraffin wax.  5 micron sections 

were cut in the transverse plane and either stained with haematoxylin-eosin or used for 

immunohistochemistry.   

Immunohistochemistry (detection of NCC) 

Tissue sections were de-waxed and hydrated through graded alcohols and then heated in the 

presence of 10 mM citrate, pH 6.0.  Indirect immunofluorescent detection of NCC was performed 

using rabbit anti-NCC (Millipore, AB3553) at 1:1000 dilution, with a biotinylated secondary antibody 

(swine anti-rabbit IgG, DAKO) at 1:250.  The binding sites of secondary antibodies were detected 

using a Streptavidin-HRP amplification step (Vectastain R.T.U. Elite ABC reagent) and DAB (3,3’-

diaminobenzidine).   
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Analysis of adrenal cell size 

Adrenals were collected from mice housed in metabolic cages.  After formalin fixation and careful 

dissection (to remove surrounding adipose tissue), they were embedded in paraffin blocks, sectioned 

and stained with haematoxylin and eosin.  Sections were analysed with a Zeiss Axioskop compound 

microscope using a Nikon Coolpix 995 camera and MCID imaging software.  Cross-sectional areas of 

cells in morphologically distinct regions of the cortex and medulla were estimated by counting the 

number of nuclei (150-200) in a defined field area.  The observer was blinded to genotype and dietary 

Na+ treatment.  Results were expressed as mean ± standard error of averages from triplicate 

measurements of sections from four adrenal glands / treatment group.   

Western blot analysis 

Kidneys were homogenised in a buffer containing phosphatase, kinase and protease inhibitors 

(250 mM sucrose,10 mM triethanolamine, 2 mM EDTA, 50 mM NaF, 25 mM Na β-glycerophosphate, 

5 mM Na pyrophosphate, 1 mM Na orthovanadate, 1 % Protease Inhibitor Cocktail Set III, 

Calbiochem ®, pH 7.6).  Supernatants from two 15 minute centrifugations at 4000 g were pooled to 

form a total cellular protein fraction free from gross cellular and nuclear debris.  Total protein 

concentration was measured using a commercial bicinchonic acid assay (Pierce/Thermo Scientific, 

Rockford, IL, USA).   

For high molecular weight protein targets (>100 kDa), protein samples were diluted in NuPAGE 

LDS sample buffer (Invitrogen/Life Technologies, Paisley, UK) and 50 mM dithiothreitol (DTT; 

Sigma).  After heating to 70°C for 15 mins, samples were loaded in NuPAGE Novex 3-8% Tris-Acetate 

gels (Invitrogen/Life Technologies) and electrophoresed for 75 min at 150 V.  For lower molecular 

weight targets, samples were diluted in Laemmli buffer and (after heating) loaded in 12% Precise 

Protein Gels (Pierce/Thermo Scientific) and electrophoresed for 65 min at 100 V.   

Samples were transferred to a PVDF membrane (Hybond P, GE Healthcare Life Sciences, Little 

Chalfont, UK) using semi-dry transfer cell (Bio-Rad Laboratories Ltd, Hemel Hempstead, UK) at 10V 

for 30 min.  Membranes were incubated with blocking buffer (5 % w/v non-fat dry milk powder / 0.2 

% v/v Tween-20 in PBS) on a rolling shaker at room temperature for 1 hr and then incubated with 

primary antibody overnight at 4°C.  Primary antibodies and their dilutions were: rabbit anti-NCC 

(Millipore, AB3553) at 1:1000; sheep anti-pT53-NCC (Division of Signal Transduction Therapy, 

Dundee University), at 1:500 (= 0.2 – 1.2 µg / ml); sheep anti-NKCC2 (DSTT, Dundee) at 1:10000; 

rabbit anti-ENaC-γ (Johannes Loffing, Zurich) at 1:5000; sheep anti-NDRG1 (DSTT, Dundee) at 1:515; 

sheep anti-pNDRG1 (DSTT, Dundee) at 1:150.  For Western blots designed to recognise pT53-NCC, 

the corresponding non-phosphorylated peptide was included in the solution of primary antibody at a 
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final concentration of 10µg / ml.  After three five-minute washes with wash buffer (0.2 % v/v Tween-

20 in PBS) the membrane was incubated with an HRP-conjugated secondary antibody for 1 – 2 hrs at 

room temperature and then washed again (three ten-minute washes).  Secondary antibodies and their 

dilutions were: goat anti-rabbit IgG-HRP (Santa-Cruz, sc-2030) at 1:2000; donkey anti-sheep IgG-HRP 

(Sigma, A3415) at 1:20000.  Peroxidase activity was revealed using SuperSignal® West Pico 

Chemiluminescent Substrate to expose photographic film.   

Films were photographed using a digital SLR camera (Nikon D40) with the exposure set to 

maximise dynamic range without significant pixel saturation.  Images were analysed in ImageJ 

(version 1.47v).  A rectangular region of interest (ROI) was drawn to encompass the entire vertical 

range of each lane and the area under this curve was taken as a measure of the band density.  No 

background subtraction step was applied.  The bottom portion of each gel was excised prior to 

transfer to the PVDF membrane and stained with Coomassie blue.  The density of each lane on the 

film was divided by the density of the corresponding Coomassie lane in order to correct for variation 

in the total amount of protein loaded for each sample.  The final data were normalised so that for each 

assay, the wild-type group had a mean value of 1.0.   

Statistical analysis 

Data were assessed for Gaussian distribution using D’Agostino & Pearson omnibus test or 

Shapiro-Wilk normality tests (for small n-numbers).  Analysis was carried out using unpaired 

Student’s t-test or 2-way ANOVA (with repeated measures) with Holm-Šídák post hoc test as 

appropriate on GraphPad Prism 6.0 Software.  P < 0.05 was considered significant.  Results are 

presented as ANOVA-derived p-values and mean ± 95 % confidence interval (CI) unless otherwise 

specified.   

Results 

Urinary electrolyte excretion in conscious Hsd11b1/ and wild-type mice 

Net urinary electrolyte excretion was measured in conscious mice housed in metabolism cages.  

After acclimatisation and baseline measurements (on 0.2% Na+ diet), animals were transitioned to 

either high (2.1%) or low (0.026%) dietary sodium (Figure 1A).  Baseline characteristics are 

summarised in Table 1.  Hsd11b1/ mice had significantly higher body weight and kidney weight, 

compared to age-matched wild-type.  Heart weights did not differ between genotypes (wild-type: 

127.1 – 230.5 mg vs. Hsd11b1/ 149.8 – 178.8 mg; n=7/8; 95%CI; p=0.650 by unpaired t-test).   
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Dietary intake of food and water did not differ significantly between genotypes (the p-values for 

comparison between genotypes by 2-way ANOVA were as follows: in the low-Na+ cohort, p = 0.395 

for water intake and p = 0.234 for food intake; in the high-Na+ cohort, p = 0.428 for water intake and p 

= 0.208 for food intake).  Any variation in the balance data was dominated by changes in excretion of 

water, Na+ or K+ (raw data provided in Supplemental Table S1).   

Hsd11b1/ mice did not differ from wild-type controls in water balance, Na+ balance or K+ balance 

under basal conditions.  Nor were there any differences in their response to either dietary Na+ loading 

or restriction (Figure 2).  In the low-Na+ study (n = 12), Hsd11b1/ mice had reduced insensible losses 

of water and K+ (manifesting as a smaller positive 24 hr balance) under baseline conditions.  However, 

these differences were not replicated in the statistically more powerful (n = 22) high-Na+ study.  

Following transition to a high-Na+ diet, in both genotypes there was a transient period of positive Na+ 

balance during the first 4 days, until Na+ excretion was up-regulated to match intake (Figure 2B).   

Renal clearance under anaesthesia 

In order to resolve glomerular and tubular effects, renal function was investigated by renal 

clearance under terminal anaesthesia, in mice that had been maintained on a normal (0.2%) Na+ diet.  

Haemodynamic parameters (arterial blood pressure, ABP; renal blood flow, RBF; glomerular 

filtration rate, GFR), plasma electrolyte concentrations and urinary electrolyte excretion were 

measured at baseline (after an initial acclimatisation period) and after a bolus dose of 

bendroflumethiazide (BFTZ, 2 mg per kg body weight; Figure 1B).  BFTZ is an inhibitor of the NaCl 

co-transporter (NCC) in the distal convoluted tubule (DCT), a known target of glucocorticoid 

signalling (see discussion).   

Hsd11b1/ mice did not differ from wild-types in either the concentration of Na+, K+ and Cl in the 

plasma (Table 2).  There were no significant genotype-specific differences in ABP, RBF and GFR either 

at baseline or following BFTZ, although there was a trend towards lower RBF and lower GFR in the 

Hsd11b1/ mice at baseline (Figure 3).  The was no significant difference in heart weight between the 

two genotypes.  Urinary Na+ and Cl excretion both exhibited the expected increase following 

thiazide administration, but there were no differences between this response in Hsd11b1/ mice 

compared to wild-types, whether assessed as net urinary excretion (UNaV / UClV) or as fractional 

excretion (FENa, FECl) (Table 2B; Figure 3).  BFTZ induced a kaliuresis of greater magnitude in 

Hsd11b1/ mice than in wild-types (p < 0.05; Table 2B).   
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It is possible that the greater thiazide-induced kaliuresis in Hsd11b1-/- mice was the result of 

enhanced Na+ reabsorption in the distal nephron through the epithelial sodium channel, ENaC.  We 

therefore tested the effect of the ENaC inhibitor benzamil under renal clearance (Figure 1B).  This 

elicited a natriuresis that was no different in Hsd11b1-/- and wild-type mice (Figure 4).   

Urinary steroid excretion and adrenal morphology 

We sought to determine the consequences of global 11βHSD1 loss for urinary steroid excretion.  

Urine samples collected from the metabolic studies were used make a longitudinal assessment of 

steroid excretion.  There were no consistent genotype-specific differences in the urinary excretion of 

corticosterone or aldosterone (Figure 5).  As expected, aldosterone excretion was inversely correlated 

with dietary Na+ intake in both genotypes.  DOC (deoxycorticosterone) excretion was elevated 

approximately 2-fold in Hsd11b1/ mice; this difference was accentuated by high dietary Na+, which 

elevated DOC excretion in both genotypes (Figure 5C).   

Hsd11b1/ mice also exhibited a difference in adrenal morphology (Figure 6).  Compared to wild-

types, cells of the zona fasciculata (ZF) were larger in Hsd11b1/ mice – an effect most pronounced in 

the inner ZF (i.e. that part closest to the medulla).  No differences were apparent in the zona 

glomerulosa or in the adrenal medulla.   

Renin-angiotensin and nitric oxide systems 

There were no genotype-specific differences in the plasma concentrations of renin and 

angiotensinogen (AGT).  As expected, both compounds were suppressed by high dietary Na+ feeding 

(Figure 7AB).  Urinary excretion of nitrite and nitrate (NOx) varied in proportion to dietary Na+ 

intake; there were no genotype-specific differences (Figure 7CD).   

Gross renal structure and histology 

There was no difference in the ratio of kidney to body weight between genotypes: 4.9 ± 0.4 in WT 

vs. 5.3 ± 0.4 in Hsd11b1/ (mg kidney weight per g body weight; mean ± SD; n=13; p=0.11 by unpaired 

Student’s t-test).  Kidneys were fixed in situ by vascular perfusion, sectioned and stained with 

haematoxylin/eosin.  There were no gross differences in renal histology between genotypes (Figure 

8AB).  There was no evidence of chronic kidney disease (e.g. glomerulosclerosis, interstitial fibrosis, 

tubular atrophy) in Hsd11b1 mice/; nor was there any apparent expansion or atrophy of specific 

nephron segments.  We applied an immunohistochemical stain (anti-NCC) to label the distal 

convoluted tubule, as this segment is known exhibit structural plasticity in response to perturbations 

in Na+ homeostasis; the DCT appeared morphologically normal in Hsd11b1 mice/ (Figure 8C-F).  

NCC was associated with the apical membranes of DCT cells and displayed no major difference in 

distribution or intensity between genotypes.   
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Expression of tubular transporter proteins 

The abundance of key transporter proteins in whole kidney homogenates was determined by 

Western blot.  We applied this analysis to mice maintained on normal dietary Na+ and following 

dietary Na+ restriction, as our over-arching hypothesis was that Hsd11b1-/- mice have a tendency to 

renal salt-wasting.  We reasoned therefore that any perturbation in renal Na+ homeostasis would be 

most pronounced following Na+ depletion.   

We analysed two tubular sodium transporters known to be regulated by glucocorticoids (the Na-

K-2Cl co-transporter NKCC2 and NCC).  In the case of NCC, in addition to measuring the abundance 

of total protein, we measured that of a phosphorylated form that is associated with active NaCl 

transport (pT53-NCC).  There were no genotype-specific differences in the abundance of NKCC2, 

total NCC or pT53-NCC in kidneys harvested from mice maintained on a normal (0.2%) or low 

(0.026%) Na+ diet (Figure 9).   

Prompted by our finding of enhanced thiazide-induced kaliuresis in Hsd11b1-/- mice, we measured 

the abundance and predominant molecular mass of the gamma subunit of ENaC (ENaC-γ).  Channel 

activation is associated with cleavage of this subunit from a form that runs at c. 85 kDa on Western 

blot to one that runs at c. 70 kDa (Masilamani et al., 2002).  As expected, the 70 kDa band was stronger 

in mice maintained on a low Na+ diet.  However there was no difference in the total abundance of 

ENaC-γ (assessed by densitometry of all bands), nor in the abundance of the 85 kDa or 70 kDa 

isoforms in Hsd11b1-/- compared to wild-type mice on either diet (Figure 9).   

We also analysed the phosphorylation status of NDRG1 (n-myc downstream-regulated gene 1), an 

index of Sgk1 activity, itself a direct target of glucocorticoid signalling (Murray et al., 2004; Inglis et al., 

2009).  This was no different in the kidneys of Hsd11b1/ mice, compared to wild-types (on either a 

normal or low Na+ diet; Figure 9).   
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Discussion 

Our primary hypothesis was that Hsd11b1/ mice would display a propensity for renal Na+ and 

water loss, as a consequence of diminished glucocorticoid generation in the kidney.  The control of 

renal Na+ excretion is dominated by the RAAS, with glucocorticoids playing a modulatory role 

(Hunter et al., 2014b).  Therefore we anticipated that any phenotype would be subtle, and subject to 

compensatory changes in other natritropic neurohormonal control systems.   

Systemic and renal steroid metabolism 

We found increased urinary excretion of DOC in Hsd11b1 mice/, but excretion of corticosterone 

did not differ from wild-type mice.  DOC is a precursor of corticosterone, and both steroids are 

synthesised in the zona fasciculata under the control of ACTH (Al-Dujaili et al., 2009b).  Circulating 

levels of DOC and corticosterone thus usually increase or decrease in parallel.  We found cell 

hypertrophy in the zona fasciculata of Hsd11b1/ adrenal, consistent with increased production of 

DOC and / or corticosterone.  Circulating [corticosterone] is known to be elevated approximately 2-

fold in Hsd11b1/ mice (Kotelevtsev et al., 1997; Morton et al., 2004).  As has been argued before, this 

is presumably a result of a loss of normal 11βHSD1 activity in the hypothalamus and pituitary, 

blunting the negative feedback effect of circulating glucocorticoids on ACTH production (Kotelevtsev 

et al., 1997; Harris et al., 2001).  Human patients with genetic mutations inducing functional 11βHSD1 

deficiency also exhibit excessive ACTH-mediated adrenal steroid secretion, with consequent 

hyperandrogenism (Lavery et al., 2013).   

Urinary excretion of corticosterone will reflect circulating [corticosterone] and the combined 

activities of renal 11βHSD1 and 11βHSD2.  Our finding (that there is no difference in urinary 

excretion, despite evidence of increased corticosterone production) is compatible with the expected 

reduction in renal 11βHSD1 activity (assuming no difference in renal 11βHSD2).  The urinary 

excretion of corticosterone is diminished following the inhibition of renal 11βHSD1 in rat kidneys 

(Liu et al., 2008).   

Renal electrolyte excretion: net effects 

No significant urinary Na+ losses were observed in Hsd11b1/ mice – even when mice were 

transitioned to a low Na+ diet.  It is possible that no effect was seen because the elevated levels of 

circulating corticosterone compensated completely for absent renal 11βHSD1 activity, resulting in 

normal tissue levels of active glucocorticoid in the kidneys of Hsd11b1/ mice.  Furthermore, any 

natriuretic tendency may have been offset by increased mineralocorticoid activity from DOC (see 

below).  We found no differences in measures of RAAS and NO system activity in Hsd11b1/ mice, 
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arguing against any major compensatory adjustment in these regulators of vascular tone, renal Na+ 

excretion and ABP.   

It is possible that our metabolic cage data were subject to confounding stress effects.  We included 

a 5-day acclimatisation period, which should provide sufficient time for the stabilisation of urine 

output and urinary electrolyte excretion (Stechman et al., 2010).  However, mice housed in metabolic 

cages have been reported to display HPA axis activation (manifesting as elevated faecal excretion of 

corticosterone) that is sustained for up to 3 weeks (Kalliokoski et al., 2013).  Such an effect may have 

masked subtle differences in corticosterone excretion and renal fluid-electrolyte metabolism between 

the Hsd11b1/ and control groups.  However, there were no differences between these groups in 

basal urinary Na+ excretion (measured as UNaV or FENa) in our renal clearance study – i.e. in mice that 

were not subject to the stress of a metabolic cage.   

Renal electrolyte excretion: glomerular and tubular functions and molecular pathways 

Glucocorticoids are known to increase renal blood flow and glomerular filtration rate (Hunter et 

al., 2014b).  There was a trend towards a reduction in both parameters in Hsd11b1/ mice, but this did 

not reach statistical significance.   

It is possible that, even without any change in net urinary Na+ excretion, there was a change in the 

predominant site of Na+ reabsorption in the renal tubule.  For example, glucocorticoid-mediated 

increases in Na+ reabsorption in the distal tubule might be offset by a reduction in reabsorption in the 

proximal tubule.  We therefore assessed molecular surrogates for Na+ transport activity in the thick 

ascending loop of Henle (NKCC2 protein expression) and the DCT (NCC protein expression and 

phosphorylation).  These targets were chosen because their expression / activity are stimulated by 

glucocorticoids in rodent models (Mu et al., 2011; Frindt & Palmer, 2012).  We also assessed gross 

renal structure; glucocorticoid treatment can induce segment-specific changes in epithelial structure 

in the distal renal tubule of rabbits (Wade et al., 1979).   

We found no differences in gross renal structure, and no difference in the expression and / or 

phosphorylation status of NKCC2 and NCC in Hsd11b1/ mice, arguing against a shift in the 

distribution of renal Na+ transport along the nephron.  However, our renal clearance study did 

provide some evidence of altered electrolyte transport in the distal nephron.  Thiazide treatment 

elicited a kaliuresis of greater magnitude in Hsd11b1/ mice.  Thiazides stimulate K+ excretion 

because their action delivers a tubular Na+ load to the connecting tubules and collecting ducts, where 

Na+ reabsorption through ENaC generates a lumen-negative potential gradient that drives K+ 

secretion.  We found no evidence of enhanced ENaC activity in Hsd11b1-/- mice: the natriuretic effect 
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of benzamil was no greater than in wild-type mice and the proteolytic activation of ENaC-γ was not 

evident on Western blot.  Thus we presume that the enhanced kaliuresis observed in Hsd11b1-/- mice 

reflects the activity of either ROMK or the Na-K-ATPase in the distal nephron (although we have no 

data to support this contention).  Both of these molecules might be expected to be upregulated by the 

mineralocorticoid activity of DOC, which we detected at elevated levels in Hsd11b1/ mice.   

NDGR1 phosphorylation in whole kidney homogenates (an index of Sgk1 activation) was no 

different in Hsd11b1/ mice.  Sgk1 is a target of both mineralocorticoid (Chen et al., 1999) and 

glucocorticoid (Hunter et al., 2014b) signalling in renal tissue.  Our finding suggest that there is no 

significant net stimulation of corticosteroid-responsive pathways in the kidneys of Hsd11b1/ mice, 

but does not preclude relative differences in glucocorticoid or mineralocorticoid signalling in defined 

regions of the kidney.   

Our failure to detect a striking water-electrolyte phenotype is in accordance with the known 

effects of glucocorticoids on renal tubular Na+ transport.  Glucocorticoids can stimulate Na+ 

reabsorption via a number of pathways in the proximal and distal renal tubule, but their effects are 

often only evident when glucocorticoids are present in excess and they tend to modulate transport 

processes that are under the dominant control of another system (e.g. the RAAS and / or sympathetic 

nervous system) (Hunter et al., 2014b).  It is possible that any effect is masked by a compensatory 

increase in corticosterone excretion in the global Hsd11b1 knockout, and it would be interesting to 

examine renal Na+ transport in a kidney-specific knockout.  It is also possible that glucocorticoids 

only exert significant effects on renal Na+ transport when they are present in excess.  Thus, loss of 

renal 11βHSD1 may not yield a discernible phenotype, whereas 11βHSD1 over-expression might.   

Perspective: implications for clinical medicine 

Excess glucocorticoids cause obesity, insulin resistance, diabetes mellitus, hyperlipidaemia and 

hypertension.  These traits, collectively the “metabolic syndrome”, are major risk factors for 

cardiovascular morbidity and mortality.  Adverse cardiometabolic consequences may also be 

associated with “replacement” doses of therapeutic glucocorticoid, perhaps because these perturb 

ultradian rhythms in glucocorticoid signalling (Henley & Lightman, 2014).   

The actions of 11βHSD1 in liver and adipose tissue have been extensively studied.  Over-

expression at these sites gives rise to salt-sensitive hypertension and activation of the renin-

angiotensin-aldosterone system (Masuzaki et al., 2003; Paterson et al., 2004).  There is an emerging 

hypothesis that 11βHSD1 over-activity is central to the pathogenesis metabolic syndrome (Anagnostis 

et al., 2009) and a corresponding interest in 11βHSD1 inhibitors as therapeutic agents in the metabolic 
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syndrome and type 2 diabetes mellitus (Tahrani et al., 2011; Anagnostis et al., 2013).  However, the 

potential contribution of renal 11βHSD1 to the pathogenesis of Na+-retention and hypertension in the 

metabolic syndrome has not – to our knowledge – been hitherto explored; nor have the potential 

consequences of renal 11βHSD1 inhibition.  Our results suggest that renal 11βHSD1 deficiency does 

not exert significant effects on systemic blood pressure and Na+ homeostasis.  The clinical use of 

11βHSD1 inhibitors would not therefore be predicted to confer significant off-target effects on renal 

Na+ transport.  No such adverse effects were detected in a clinical trial of 11βHSD1 inhibition in type 

2 diabetes mellitus (Rosenstock et al., 2010).   

Conclusions and implications for basic renal physiology 

We found no physiologically significant effect of global 11βHSD1 deletion on renal Na+ excretion, 

arterial blood pressure, kidney function or renal perfusion.  We conclude that any effect of 11βHSD1 

on renal Na+ excretion is subtle.   
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Table 1.  Baseline characteristics of experimental cohorts.  Data presented as mean ± standard 

deviation.  Comparisons between genotypes are by unpaired t-tests; significant p-values are 

underlined.   

 

cohort n =  age  
/ days 

body weight  
/ g 

kidney weight  
/ mg 

kidney:BW 
ratio / mg per g 

 

Metabolic study: high Na
+
 group 

WT 11 81 ± 3.3 25.0 ± 1.4 160.9 ± 9.9 6.65 ± 0.41 

Hsd11b1
 –/–

 11 91 ± 11.4 27.7 ± 2.5 172.9 ± 13.5 6.88 ± 0.88 

p =   0.006 0.027 0.438 

 

Metabolic study: low Na
+
 group 

WT 6 97 ± 3.7 26.8 ± 2.7 156.5 ± 9.3 6.41 ± 0.55 

Hsd11b1
 –/–

 6 103 ± 12.0 31.1 ± 3.5 190.5 ± 22.2 6.54 ± 0.44 

p =    0.040 0.006 0.647 

 

Renal clearance study: effect of bendroflumethiazide 

WT 7 214 ± 82.5 33.9 ± 5.0 173.5 ± 19.3 5.16 ± 0.44 

Hsd11b1
 –/–

 8 164 ± 65.9 34.2 ± 6.4 179.0 ± 17.3 5.34 ± 0.84 

p =   0.912 0.574 0.620 

 

Renal clearance study: effect of benzamil 

WT 6 126 ± 2.7 31.4 ± 1.7 304.7 ± 35.2 9.68 ± 0.78 

Hsd11b1
 –/–

 5 101 ± 9.9 29.2 ± 1.1 276.6 ± 14.7 9.46 ± 0.46 

p =  
 

0.037 
0.132 0.594 

 

Histology study 

WT 3 174 ± 1.5 30.7 ± 3.3   

Hsd11b1
 –/–

 3 191 ± 0.6 31.7 ± 1.0   

p =   0.631   
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A 
 

 
WT Hsd11b1

 –/–
 p 

PNa mM 146.6 ± 2.4 148.1 ± 2.7 0.2604 

PK mM 3.69 ± 0.28 3.50 ± 0.35 0.2785 

PCl mM 118.3 ± 3.5 118.6 ± 4.7 0.8794 

Hct % 42.0 ± 2.4 40.9 ± 2.5 0.3876 

 

B 

BASELINE BFTZ p-values 

 WT Hsd11b1
 –/–

 WT Hsd11b1
 –/–

 BFZ GT IA 

UV 

µL·min
-1
·g KW

-1
 

7.54 5.42 30.44 32.81 <0.0001 0.9651 0.5028 

(5.34 , 9.75 ) (3.15 , 7.96) (19.62 , 41.26) (23.70 , 41.91)    

UNaV 

µmol·min
-1
·g KW

-1
 

0.68 0.59 7.06 7.64 
<0.0001 0.7687 0.6895 

(-0.01 , 1.38) (0.17 , 1.01) (4.02 , 10.09) (5.16 , 10.12)    

UKV 

µmol·min
-1
·g KW

-1
 

1.77 1.17 2.24 2.74 0.0012 0.8279 0.0435 

(1.10 , 2.44) (0.78 , 1.55) (1.71 , 2.78) (2.06 , 3.43) 
   

UClV 

µmol·min
-1
·g KW

-1
 

0.57 0.37 5.24 5.55 <0.0001 0.9352 0.6612 

(-0.08 , 1.21) (0.19 , 0.54) (2.83 , 7.64) (3.80 , 7.29)    

FEK 

% 

42.8 41.1 57.2 68.0 
0.0002 0.4161 0.1515 

(33.6 , 52.1) (33.9 , 48.2) (40.8 , 73.6) (56.0 , 80.1)    

FECl 

% 

0.38 0.40 3.63 3.89 <0.0001 0.6624 0.6702 

(0.03 , 0.74) (0.22 , 0.58) (2.59 , 4.67) (2.97 , 4.67) 
   

 

 

Table 2.  Renal clearance data.  Hsd11b1–/– (n = 8) and wild-type (n = 7) mice were used in a renal 

clearance study as described in the main text.  A) Plasma electrolyte concentrations and haematocrit 

(HCT) in the terminal blood sample.  Data are presented as mean ± SD.  There were no significant 

differences between genotypes (by unpaired t-test).  B) Renal clearance parameters at baseline and 

following a bolus dose of bendroflumethiazide (BFTZ).  Data are presented as mean and 95 % CI.  UV, 

urine flow; UNaV, UKV and UClV, urinary excretion of Na+, K+ and Cl–; FEK and FECl, fractional 

excretion of K+ and Cl–.  p-values for comparisons between genotypes (GT) and baseline vs. after 

BFTZ made by 2-way ANOVA with repeated measures; IA = interaction.  p-values < 0.05 are 

underlined.   
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Figure 1.  Experimental protocols.  A) Time-course of experimental protocols for balance studies.  B) 

Time-course of renal clearance studies.  P1, P2, P3: plasma collections.  BFTZ: bendroflumethiazide 2 

mg per kg body weight administered as an intravenous bolus.  BZM: benzamil 2 mg per kg body 

weight administered as an intravenous bolus.  (NB BFTZ and BZM were used in separate 

experimental series; they were never administered together.)   
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Figure 2.  Water, sodium and potassium balance in Hsd11b1–/– and wild-type and mice.  Dietary 

intake and urinary and faecal excretion of water, Na+ and K+ were measured in metabolic cages.  

Balance data were calculated as the difference between dietary intake and total excretion (sum of 

urinary and faecal excretion).  All data were normalised to kidney weight (KW).  Mice were fed a 

baseline (0.2 % Na+) diet for four days, followed by high Na+ (2.1 %) or low Na+ (0.026 %) diet for eight 

days.  A – C) Response to high-Na+ diet (n = 11 Hsd11b1–/– + 11 wild-type).  D – F) Response to low-

Na+ diet (n = 6 + 6).  Data are presented as mean ± 95 % CI.  Comparisons between genotype (GT) and 

sodium intake (SI) were made by 2-way ANOVA; IA = interaction.  * p < 0.05 by post hoc Holm-Šídák 

test.   
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Figure 3.  Renal clearance data: effect of bendroflumethiazide.  Hsd11b1–/– (n = 8) and wild-type (n = 

7) mice were used in a renal clearance study as described in the main text.  Recordings were made 

during a baseline period and after the intravenous administration of bendroflumethiazide (BFTZ), 2 

mg per kg body weight.  A) Mean arterial blood pressure, MABP.  B) Renal blood flow, RBF.  C) 

Glomerular filtration rate, GFR.  D) Fractional excretion of Na+, FENa.  Data are presented as mean ± 95 

% CI.  Comparison between genotypes (GT) and baseline vs. after BFTZ were made by 2-way 

ANOVA with repeated measures; IA = interaction.  There were no significant differences between 

genotypes.   
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Figure 4.  Renal clearance data: effect of benzamil.  The natriuretic effect of benzamil (BZM) was 

tested in a renal clearance study.  BZM was administered intravenously at a dose of 2 mg per kg body 

weight to Hsd11b1-/- (n = 5) and wild-type (n = 6) mice.  The fractional excretion of Na+ (FENa) was 

determined before and after BZM.  Data are presented as mean ± 95 % CI.  Comparison between 

genotypes (GT) and baseline vs. after BZM were made by 2-way ANOVA with repeated measures; IA 

= interaction.  There were no significant differences between genotypes. 
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Figure 5.  Longitudinal urinary steroid excretion.  A & D) Urinary corticosterone excretion in 

response to high- and low-Na+ diet respectively (n = 3 Hsd11b1–/– + 3 wild-type).  B & E) Urinary 

aldosterone excretion on high- and low-Na+ diet respectively (n = 3 + 3).  C & F) Urinary DOC 

excretion on high- and low-Na+ diet respectively (n = 3 + 3).  Data are presented as mean ± 95% CI.  

Comparisons between genotype (GT) and sodium intake (SI) were made by 2-way ANOVA with 

repeated measures; IA = interaction.  * p < 0.05 between genotypes by post hoc Holm-Šídák test.  

(Aldosterone results were missing for day 4 on high Na+ and day 11 on low Na+; these data were 

excluded from the ANOVA.)   
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Figure 6.  Cross-sectional area of adrenal cells in Hsd11b1–/– and wild-type mice.  Adrenal glands 

were harvested from Hsd11b1–/– and wild-type mice maintained on normal- (0.2 %) and low- (0.026 

%) Na+ diets for 8 days.  Mean cell size was measured in A) the zona glomerulosa of the adrenal 

cortex; B) outer zona fasciculata; C) inner zona fasciculata and D) the adrenal medulla.  Data are 

presented as mean ± 95 % CI.  Comparison between genotype (GT) and sodium intake (SI) were made 

by 2-way ANOVA; IA = interaction.  E) – H) Representative images of adrenal sections, stained with 

haematoxylin and eosin.  Scale-bars are 100 microns.   
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Figure 7.  Activity of renin-angiotensin and nitric oxide systems.  A) Plasma renin concentration in 

Hsd11b1–/– mice on normal (n = 9) and high (n = 5) Na+ diet and wild-type mice on normal (n = 13) and 

high (n = 5) Na+ diet.  B) Plasma angiotensinogen concentration in the same experimental groups (n = 

8, 4, 10 and 4 respectively).  C & D) Urinary NOx excretion (representative of total body NO 

production) in Hsd11b1–/– and wild-type mice on high and low Na+ diet respectively (n = 5 for each 

experimental group).  Data are presented as mean ± 95 % CI.  Comparison between genotype (GT) 

and sodium intake (SI) were made by 2-way ANOVA; IA = interaction.   
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Figure 8.  Renal histology and NCC expression by immunohistochemistry.  A & B) Renal cortex 

(H&E stain) in wild-type and Hsd11b1–/– mice respectively.  No gross changes in renal histology were 

apparent in Hsd11b1–/– mice (n = 3 for each genotype); representative images are shown.  C & D) 

Low-power view of immunohistochemical stain for NCC in renal cortex of wild-type and Hsd11b1–/– 

mice respectively.  E & F) High-power view of immunohistochemical stain for NCC in renal cortex of 

wild-type and Hsd11b1–/– mice respectively.  NCC was detected (as expected) in the apical cell 

membrane of the distal convoluted tubule.  The distribution did not differ between genotypes (n = 3 + 

3); representative images are shown.   
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Figure 9.  Immunoblot analysis in whole kidney homogenates from Hsd11b1–/– and wild-type mice.  

A) Densitometry analysis of immunoblots for total NCC (t-NCC), the phosphorylated form pT53-

NCC, NKCC2 (t-NKCC2), ENaC-γ and total (t-) and phosphorylated (p-) NDRG1.  Whole kidney 

homogenates were prepared from Hsd11b1–/– (n = 6) and wild-type mice (n = 6) maintained on normal 

(0.2 %) Na+ diet (cohort 2 from the metabolic study).  After correction with a loading control 

(Coomassie-stained band), density was normalised so that for each target protein, the wild-type 

group had a mean density of 1.0.  For ENaC-γ, densitometry data are presented for the sum of all 

bands.  B) Densitometry analysis applied to immunoblots of kidney homogenates from mice 

maintained on a low (0.026 %) Na+ diet (n = 6 for each genotype).  Data are presented as mean ± 95 % 

CI.  There were no significant differences between genotypes in either the normal or the low Na+ 

cohort (by unpaired t-test).  No inferences were drawn between blots – i.e. between normal and low-

Na+ groups.  C) Representative immunoblots; the Coomassie-stained gel used as a loading control is 

shown below each blot.  Size markers are in kDa. 

 


