
 

 

 
 

 

Edinburgh Research Explorer 
 
 

 
 

 
 

 
 

 

 
 

 
 

 
 

 
 

 
 

 
 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Big data, organizational learning, and sensemaking

Citation for published version:
Calvard, T 2016, 'Big data, organizational learning, and sensemaking: Theorizing interpretive challenges
under conditions of dynamic complexity' Management Learning, vol. 47, no. 1, pp. 65-82. DOI:
10.1177/1350507615592113

Digital Object Identifier (DOI):
10.1177/1350507615592113

Link:
Link to publication record in Edinburgh Research Explorer

Document Version:
Peer reviewed version

Published In:
Management Learning

Publisher Rights Statement:
Final published paper available via http://dx.doi.org/10.1177/1350507615592113

General rights
Copyright for the publications made accessible via the Edinburgh Research Explorer is retained by the author(s)
and / or other copyright owners and it is a condition of accessing these publications that users recognise and
abide by the legal requirements associated with these rights.

Take down policy
The University of Edinburgh has made every reasonable effort to ensure that Edinburgh Research Explorer
content complies with UK legislation. If you believe that the public display of this file breaches copyright please
contact openaccess@ed.ac.uk providing details, and we will remove access to the work immediately and
investigate your claim.

Download date: 05. Apr. 2019

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Edinburgh Research Explorer

https://core.ac.uk/display/77045497?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://doi.org/10.1177/1350507615592113
https://www.research.ed.ac.uk/portal/en/publications/big-data-organizational-learning-and-sensemaking(46432cff-af2d-40b8-b376-6897fc8d24c0).html


Corresponding Author:  

Thomas S Calvard 

University of Edinburgh Business School, 

29 Buccleuch Place, Edinburgh, EH8 9JS. 

Email: Thomas.Calvard@ed.ac.uk 

Big data, organizational learning, and sensemaking: Theorizing interpretive 

challenges under conditions of dynamic complexity 

 

 

Thomas S Calvard 

(University of Edinburgh Business School,) University of Edinburgh, UK 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



2 
 

   

 

Abstract 

In this conceptual article, the relations between sensemaking, learning, and big data in 

organizations are explored. The availability and usage of big data by organizations is an 

issue of emerging importance, raising new and old themes for diverse commentators 

and researchers to investigate. Drawing on sensemaking, learning, and complexity 

perspectives, this article highlights four key challenges to be addressed if organizations 

are to engage the phenomenon of big data effectively and reflexively: responding to the 

dynamic complexity of big data in terms of ‘simplexity’; analyzing big data using 

interdisciplinary processes; responsible reflection on ideologies of learning and 

knowledge production when handling big data; and mutually aligning sensemaking with 

big data topics to map domains of application. The article concludes with additional 

implications arising from considering sensemaking in conjunction with big data 

analytics as a critical way of understanding unique aspects of learning and technology in 

the twenty-first century.  
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Introduction 

This paper identifies some major challenges to be faced if organizations and their 

members are to access, analyze, and generally engage big data as effectively, 

responsibly, and mindfully as possible. The central argument and contribution made lies 

in theorizing that the potential value of big data in improving organizational 

effectiveness is only as great as the successful interplay of sensemaking, learning, and 

complexity management processes underpinning big data practices. Specifically, big 

data’s overwhelming quantity can only be translated into accessible quality via the 

reflexive, critical, and flexible use of appropriate theories, cues, interpretive frames, 

routines, and learning mechanisms to bridge the gap between raw data and knowledge 

creation. Hence this paper focuses on the intersection of three topics of continuing 

relevance to organizations and their boundaries: sensemaking, learning, and big data. 

  Taking sensemaking first, it is widely recognized as a key process for effective 

organizing, although definitions and relevant theories vary widely (Maitlis and 

Christianson, 2014). A recent attempt at an integrated definition defines sensemaking 

as: “a process, prompted by violated expectations, that involves attending to and 

bracketing cues in the environment, creating intersubjective meaning through cycles of 

interpretation and action, and thereby enacting a more ordered environment from which 

further cues can be drawn” (Maitlis and Christianson, 2014: 67). Sensemaking can also 

be defined in terms of a set of core principles or properties characterizing its attendant 



4 
 

   

processes, in terms of being retrospective, ongoing, social, and linked to identity, cue 

extraction, and environmental enactment (Weick, 1995; Weick et al., 2005). Finally, it 

can also be broadly identified with closely related process terms that it has generated 

(e.g. sensegiving, sensebreaking) and the topics of broad relevance to organizations and 

organizing that it informs (e.g. crises, change, learning, cognition) (Maitlis and 

Christianson, 2014; Maitlis and Sonenshein, 2010; Sandberg and Tsoukas, 2014). With 

its focus on reducing various interpretations for mentally modelling situations, ongoing 

sensemaking activity thus seems essential to the identification and fixing of valuable 

patterns learned from large, continuous streams of big data.  

 Learning is a second key area of organizational theory and practice of interest 

here, and is also linked to sensemaking, although the exact terms used for the linkage 

may vary, in terms of the organizing, becoming, change, and interpreting processes that 

are being described (Clegg et al., 2005; Colville et al., 2013a). The concept of learning 

itself is challenging, and poses an antithetical, oxymoronic challenge to the organizing 

aspects of sensemaking: “to learn is to disorganize and increase variety. To organize is 

to forget and reduce variety” (Weick and Westley, 1999: 190). Like sensemaking, and 

with some parallel similarity to it, learning remains something of a broadly contested 

concept, captured by evolving or competing definitions and metaphorical 

interpretations. Any broad definition of learning is likely to encompass the more 

cognitive acquisition of knowledge and skills on the one hand, and the more socially 
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situated, experiential participation in communities of practice on the other (Elkjaer, 

2004). The attempt to reconcile these two perspectives into a mutually enriching ‘third 

way’ (Elkjaer, 2004) mirrors efforts in the sensemaking literature to mutually and 

interactively relate perceptions to actions, individuals to collectives, and persons to 

environments. As a result, work on the learning organization (Senge, 1990) remains 

open to multiple critical readings of how organizations can learn collectively in terms of 

the distinctive activities and emphases of their practices (Ӧrtenblad, 2007). In parallel, 

work on organizational learning continues to incorporate a range of important concepts 

like emotions, intuitions, and networks, whilst acknowledging the many defensive 

barriers to individuals’ learning (Argyris, 2004). Linking organizational learning to big 

data can make crucial contributions to understanding knowledge creation when 

organizations generate varieties of interpretations, and to how technological 

developments shape learning processes (Argote, 2011).  

 The third and final area of this paper is the phenomenon of big data or big data 

analytics (the term analytics is almost invariably used alongside big data) – one that has 

been less extensively written about by academics than either sensemaking or learning. 

The distinctiveness of big data is debatable, with perhaps no totally robust definition 

available. However, it is generally recognized that it constitutes the latest phase of an 

ongoing data management and analytics journey, a phase where data is so big and 

complex it requires more advanced processing technologies to handle it, and can 
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potentially offer organizational insights and sources of value that smaller scales of data 

processing cannot (Mayer-Schönberger and Cukier, 2013). The ‘bigness’ of big data is 

often differentiated in terms of its volume (amounts generated over time in units such as 

petabytes or exabytes), its velocity (the speed and immediacy of data creation), and 

variety (the new sources, technologies, and media associated with the data) (McAfee 

and Brynjolfsson, 2012). The contribution of the current analysis is to theoretically 

identify the need for and nature of interrelated organizational learning and sensemaking 

mechanisms that might support new epistemologies of knowledge creation amidst the 

management of big data (Kitchin, 2014). Organizational learning through big data can 

thus be re-conceived of as a continuous, disruptive blend of induction, deduction, and 

abduction, occurring alongside data sensemaking routines and capabilities that seek to 

identify recurring patterns and link them to possible remedial actions.   

Big data is generated from “clickstream data from the Web, social media content 

(tweets, blogs, Facebook wall postings etc.) and video data from retail and other settings 

and from video entertainment. But big data also encompasses everything from call 

center voice data to genomic and proteomic data from biological research and 

medicine” (Davenport et al., 2012: 22). The business models of leading tech companies 

like Google and Amazon appear to thrive on making sense of big data, whilst other 

companies like IBM or Deloitte offer analytical services for exploiting big data to 

companies and institutions around the world (Barton and Court, 2012).  Most 
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commentators describe big data analytics in terms of strategic opportunities and 

necessary changes to be made to organizations, but there is also a sense of pitfalls and a 

need for a deeper, critical understanding of the double-edged conditions and processes 

surrounding its use (Boyd and Crawford, 2012).  Important questions are raised about 

effective statistical practices, how IT functions across organizations, the importance of 

theory, and how big data analytics is different from more traditional analytics formats. 

Overall, “there is no question that organizations are swimming in an expanding sea of 

data that is either too voluminous or too unstructured to be managed and analyzed 

through traditional means” (Davenport et al., 2012: 22).  

 The remainder of this article thus reflects on the challenging issues raised by an 

era of big data analytics for organizations. Crucially, it is argued that  big data can be 

complex and overwhelming for organizations trying to learn, change, and make sense of 

their environments. To make best use of big data then is argued to require reflexively 

managing the epistemological dance of ongoing alternations between highly exploratory 

learning experiences that generate a variety of possibilities for interpretation and action, 

and more deductive sensemaking possibilities captured by pre-existing interpretive 

frames that work to reduce that variety (Weick and Westley, 1999). 

 

Identifying four challenges in trying to make sense of and learn from big data 
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 Big data raises debates about whether new formats and types of knowledge can 

be developed by organizations which will benefit from this new era of information 

management, and how raw data should best be analyzed, interpreted, communicated, 

shared, and ultimately acted upon. Big data offers an excellent way to promote higher-

order forms of organizational learning, given that it can provide surprising glimpses of 

things outside of what is currently known. However, learning simultaneously depends 

on ongoing sensemaking activity to fix, frame, temper, and reveal forms of enduring, 

actionable meaning. Thus the mutual relationship between the organizing activity of 

sensemaking and the disruptive, re-organizing activity of learning depends on 

reflexively engaging these tensions for big data (Clegg et al., 2005; Colville et al., 

2012).  

 Big data analytics represents a situated, concrete arena where sensemaking and 

learning mutually struggle to extract revised meanings from altered conditions of 

relative complexity. The greater volume of complex information generated more fluidly 

and accessibly in real time means that big data can potentially foster learning in crisis 

(LiC), via the practising of analytic and interpretive routines amidst failures and 

unknown, emergent contingencies (Antonacopoulou and Sheaffer, 2014). Big data 

analysis may enable us to ‘see what we say’ and ‘know what we think’ much more 

interchangeably than ever before (Colville et al., 2012). However, it may also fuel its 

own crisis of meaning, as we are self-consciously overwhelmed by the freedom and 
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burden to respectively create and share some form of meaning in context (Sack, 1988). 

Salvaging organizational learning from such a crisis may depend on managing 

sequences of other ‘sense’ processes, such as the destruction of existing meanings 

(sensebreaking), the manipulative silencing of sources of meaning (sensehiding), and 

strenuous efforts to acquire information that casts doubt on established meaning 

(sensedemanding) (Maitlis and Christianson, 2014). For sensemaking to support 

widespread organizational learning from big data there need to be flexible ways of 

knowing: what data to look at, various available ways of looking at it, and possible 

reasons why one is looking at it in the first place.  

Certain discourses are needed then to provide meaning to large quantities of 

numbers or text. Below, four key challenges are presented to better understand this 

overall issue, mainly by reflecting on theoretical debates in relation to literature on 

complexity theory, sensemaking, learning, and the sociology of knowledge. A broad 

approach like this seems warranted, in keeping with the theoretical roots that influenced 

sensemaking itself (Weick, 1969). The value of the current approach is to show that 

bigger data on its own does not set us free from the burden to create meaning; cycles of 

sensemaking are still inevitably required to fix meaning, alongside learning, which 

departs from and updates meanings as data keeps being generated under conditions of 

dynamic complexity. Too much learning may result in a floundering in the endless 
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patterns of big data; too much sensemaking may result in a race to the bottom as big 

data is used to unilaterally confirm and pursue a certain a priori agenda. 

The four challenges of meaning here concern simplexity, interdisciplinarity, 

ideological views of learning or knowledge production, and domains of application 

linked to big data and sensemaking.  These four areas deal with how the context, 

content and process aspects of ongoing big data analyses can be specified in practice. 

All four imply interrelated organizing and learning processes; cycles of interpretation 

and assembly rules that work on the phenomenon of big data to reduce its equivocality 

whilst keeping the possibilities of learning open (Weick and Westley, 1999).  

Value is also offered from this analysis by outlining four themes crucial to 

supporting reflexivity in the interpretation of big data; ways to ensure that there is a 

dynamic and fruitful sorting through of epistemological perspectives, interpretations, 

courses of (inter)action, and ways of knowing.  The term reflexivity here is thus used in 

a fairly general sense, rather than pursuing an in-depth examination of the concept itself, 

which has many forms and uses (e.g. Holland, 1999; Johnson and Duberley, 2003). 

Sensemaking and learning can be connected further via reflexivity by adopting a 

reflexive epistemology (e.g. Zolo, 1990). Such a view maintains that all the data in the 

world cannot set organizations free from theories or empirical circumstances towards an 

abstracted universal knowledge or truth at a transcendental perspective of ‘nowhere’; 

any value-adding analysis instead requires pragmatically, continuously, and iteratively 
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sorting through a multiplicity of contextual perspectives, lenses, judgements, and filters 

from ‘somewhere’ (Nagel, 1986).  

 

Getting from complexity to simplexity 

 Given the volume, velocity, and variety of information generated, a reflexive 

epistemology of big data rests in part on the interrelationships between complexity, 

simplicity, and simplexity (Cunha and Rego, 2010). Like sensemaking and learning or 

stability and change, simplicity and complexity are something of a duality, with each 

providing conditions for the promotion of the other (Cunha and Rego, 2010). This 

duality is expressed in the notion of “simplexity”. Simplexity can be defined in various 

ways, depending on how the complementary, dialectic, back-and-forth dynamics 

between simplicity and complexity are theorized to be operating (Kluger, 2008).  

Certainly organizations can become too single-mindedly simple over time and 

set themselves up to fail (Miller, 1993), yet there is also the possibility that they 

generate too much complexity and fail to realize coherent value or sufficiently clear 

communications (Siegel and Etzkorn, 2013). Complexity and simplicity also co-occur at 

different locations or levels; workers may be complex, but organizational structures and 

processes may be simple, for example (Cunha and Rego, 2010). It is frequently noted in 

this literature that ‘there is nothing simple about simplicity’ or that ‘simplifying is not 

simple’ (Berthoz, 2012). Simplexity then reflects this paradox; that there is a general 
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need to try to make things simple, understandable, and general, but with the 

qualification that this very process of exhibiting deep simplicity is itself somewhat 

complex. Simplexity can thus also be defined by dynamically balancing complexity of 

thought with simplicity of action to better engage novel, complex, and changing 

circumstances (Colville et al., 2012). 

Simplexity is relevant to big data given that large amounts of complex data can 

continually tempt organizations to action, surprising insights, storytelling, and ongoing, 

iterative studies of its flows, along with further processual cycles of collection, 

comparison, and interpretation (Weick, 2012). Sensemaking relates to efforts to reduce 

complexity in terms of its emphasis on a ‘vocabulary’ of elements trying to 

continuously organize themselves to order, and the ‘grammar’ linking those elements 

into various configurations (Weick, 1969). Alternatively, organizational learning has 

been increasingly acknowledged as emergent and fluid, socially complex, and borne 

from the tensions residing in organizations as complex adaptive systems 

(Antonacopoulou and Chiva, 2007). In general, big data itself implicates the 

complexity-simplicity interface where mediating simplexity processes are needed; 

where models, metrics, search terms, and storage facilities are used to extract 

simplifying interpretations from complex data sources (McAfee and Brynjolfsson, 

2012).  
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Achieving simplexity for big data in organizations therefore means being able to 

characterize the data beyond its generally ‘big’ aspect; to understand that quantity does 

not always equal quality, but rather that the precise granular aspects of the data and the 

ways in which it is analyzed are what makes it ‘smart’ data that leads to helpful insights 

(George et al., 2014). Using big data in this way to understand the dynamic complexity 

of “events that are variously unexpected, surprising, unorthodox, and rare” (Colville et 

al., 2013b: 1202) may mean striking a difficult balance of simplexity – between 

reductionism that aids sensemaking and playful multiplicity that denies unity of 

interpretation and accepts possibilities for learning (Serres, 1995).  

Sensemaking may become discrepant in the search for simplexity as routines, 

cues, and frames co-occur and compete for attention (Colville et al., 2013b). For 

example, researchers and analysts working with big data may be in conflict over 

whether to use more familiar analytical cues inappropriately (e.g. p-values for 

significance of correlations) or less familiar but more appropriate cues (e.g. effect sizes, 

regression variance explained), as well as more sophisticated data mining and 

visualization techniques as frames (George et al., 2014). In striving for simplicity, the 

temptation to ‘lie with statistics’ (Huff, 1991), consciously or unconsciously, may 

distort sensemaking and suppress learning through overly-simplistic interpretations. Big 

data closely juxtaposes sensemaking and organizational learning by indulging a 
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motivation to “understand connections (which can be among people, places, and events) 

in order to anticipate their trajectories and act effectively” (Klein et al., 2006: 71).  

Whether or not big data can aid effective interplays between sensemaking and 

organizational learning sits at the centre of several contested myths around effective 

human-computer interactions and decision-making. Specifically, there are key debates 

about whether: passively receiving automatically processed data will aid or hinder 

sensemaking; more information will lead to suboptimal sensemaking and greater 

overconfidence; problem-solving can be too open-minded; heuristic biases are 

correctable to ensure reliable sensemaking; sensemaking will follow neat waterfalls to 

refined understandings or more dynamic cycles (Klein et al., 2006). The ‘bigness’ 

(volume, velocity, variety) of big data allows us to tap into a more immediate, large-

scale ‘sense’ of what is happening across societies, but requires simplexity of human 

cognition in recognizing a multiplicity of patterns that tells some, but never definitively 

all, of a particular story. 

Another complexity question concerns how to relate the retrospective 

sensemaking of big data that has already accumulated across time to the enactment of 

more prospective forms of sensemaking and organizational learning. High-profile 

examples like Google’s ‘Project Oxygen’, identifying eight key behaviors of existing 

managers by drawing on large and diverse sources of company data, have yielded 

results that are not terribly surprising although, according to the project co-lead, were 
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“about us, by us, and for us” (Garvin, 2013). Hence big data is often used in the 

traditional retrospective sensemaking mode to consolidate and enact a partially existing 

reality identified by the data.  

For big data to generate novel understandings, becoming prospective and 

forward-looking, corresponding prospective sensemaking can encourage the necessary 

simplexity. This can be achieved by supplementing big data analytics with various 

material practices (Stigliani and Ravasi, 2012), strategic devices like scenario 

forecasting (Wright, 2005), corporate futurists, and attempts at foresight or 

counterfactual thinking (MacKay, 2009). These prospective sensemaking motions 

remain relatively under-researched (MacKay, 2009), although big data may produce 

more evidence of devices and experts that stretch sensemaking toward the aspiration of 

learning about a potentially “ “knowable future” extracted from the things that machines 

know better about us than we know ourselves” (Anderson and Rainie, 2012: 11).  

An organizational example of this is where the large U.S. insurer Allstate has 

developed a device called ‘Drivewise’ that finds relatively simple trends amidst 

complex amounts of data by providing minute-by-minute driving reports (King, 2014). 

This balances sensemaking with learning to structure car insurance and reward safe 

drivers with lower insurance rates, where in the past only demographic information and 

retrospective application of penalties post-collision could be applied, limiting more 

prospective learning. There is a striving to enact some simplicity from driving patterns, 
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tempered by a simplexity dynamic in processing and acting on complex data. In 

learning terms, this also relates to a continuous mindfulness and preparedness for 

multiple futures, many of which may of course not ultimately occur and remain partially 

unknowable (Hernes and Irgens, 2013).  

 

Interdisciplinarity as an interpretive frame for big data, learning, and 

sensemaking 

 Interdisciplinarity presents another ontological and epistemological challenge to 

the reflexive process of big data organizing, in terms of how individuals and collectives 

working with pre-existing interpretive disciplinary frames make sense of and learn from 

the data. There is again a connection with complexity theory, if we see disciplines as an 

evolving network of interrelated elements and relations (Klein, 2004). In terms of 

sensemaking, it follows that to appreciate the complex features of big data by 

registering and reducing some of its ambiguity requires some corresponding complexity 

in terms of disciplines or subject areas. Rather than being arbitrary, random or crudely 

chaotic, this complexity should be ‘effective’ in terms of its requisite variety; it should 

match the variety of big data with a corresponding variety of frames that are as 

theoretically comprehensive as possible for interpreting the data (Boisot and McKelvey, 

2010).  
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Michel Foucault – arguably an interdisciplinary scholar working with big data 

ahead of his time – has written extensively about the complex evolution and 

juxtaposition of disciplines, and his body of work shows how disciplines give rise to 

scientific discourses and framings of societal problems, with profound implications for 

what constitutes knowledge and the exercise of power over meaning (Foucault, 2002; 

Takács, 2004). Indeed, the history of literature, culture, and science can be seen in terms 

of an ongoing organizing exercise undertaken to make sense of disciplines and learn 

about the world (Moran, 2010). Interdisciplinarity also has relevant linkages with 

organizational learning, given the networks of knowledge, communities of practice, and 

reflexive, dialogic learning mechanisms that mixing disciplinary boundaries can 

potentially give rise to (Brewer, 1999; Cunliffe, 2002; Jordan, 2010; Syed et al., 2009).  

 In order for organizations to learn from big data, they simultaneously need to 

develop supporting capabilities for learning how to analyze it. Such learning implies at 

the very minimum an interdisciplinary base including statistics, computer science, 

applied mathematics, and economics (George et al., 2014), not to mention any task-

specific disciplines brought to bear on the particular content at hand. In a work 

environment that is increasingly globally connected, rich in online media, and smart 

computational systems, sensemaking, interdisciplinarity, and computational thinking are 

being identified as part of an interrelated set of vital work skills for the future (Davies et 

al., 2011).  
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 Indeed, to make sense of big data and refine the future skills that will be needed 

to analyze it effectively, a new profession of ‘data scientists’ with their own growing 

communities of practice is emerging, although they remain in relatively short supply 

due to the interdisciplinary nature of the work (Davenport and Patil, 2012). This 

challenge again implicates the reflexive interplay between sensemaking and 

organizational learning. The social construction of ‘data science’ and ‘data scientists’ 

represents an attempt to make sense of the interdisciplinary skillset and mindset needed 

to extract general value from big data. However, much of the situation-specific value of 

big data will also require further interactive learning across the diversity and social 

complexity of other interdisciplinary actors (Antonacopoulou and Chiva, 2007), 

depending on the context and application (e.g. the arts; see Lazar, 2013). 

 In a review of literature on interdisciplinary organization (Siedlok and Hibbert, 

2014), it is noted that interdisciplinarity eludes a singular meaning, but rather refers to 

“a continuum of possible meanings and activities, with the core of the definition being 

‘the integration or synthesis of two or more disparate disciplines, bodies of knowledge, 

or modes of thinking to produce a meaning, explanation, or product that is more 

extensive and powerful than its constituent parts’” (Rhoten and Pfirman, 2007, cited in 

Siedlok and Hibbert, 2014: 4). Siedlok and Hibbert (2014) go on to specify four types of 

interdisciplinary organizing that vary in integration and duration: sourcing, 

consolidating, synergizing, and configuring. This parallels a sensemaking emphasis on 
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processual verbs (Bakken and Hernes, 2006), and in turn the verbs of organizational 

learning (‘acquiring’, ‘participating’, ‘experiencing’) (Elkjaer, 2004).  

 Examples of organized interdisciplinarity in action often indicate the generation, 

integration and analysis of big data to some extent – manipulating stem cells in a 

bioreactor, applying evolutionary modelling to geography research, the emergence of 

the field of systems biology, and the growth of nanoscale research  (Siedlok and 

Hibbert, 2014). There are tendencies for disciplines to continually visualize data to see 

how problems and trends are related (Fox and Hendler, 2011).  Furthermore, disciplines 

are managing data for making it available to one another (e.g. ‘biocuration’; see Howe 

et al., 2008), and generally working towards data ecosystems designed along socio-

technical principles to be “discoverable, open, linked, useful, and safe collections of 

data, organized and curated using the best principles and practices of information and 

library science” (Parsons et al., 2011: 555). For example, OpenSearch is a tool that 

allows specialist data stewards to share search results across a federated system in a way 

that supports the tailoring and distribution of diverse, esoteric information not 

accessible to standard search engines. OpenSearch forms the commercial basis for the 

Amazon Marketplace, and is beginning to be used in interdisciplinary science initiatives 

(Parsons et al., 2011).  

What is common to most successful interdisciplinary endeavours is an effort to 

characterize complexity – often of a computational or scientific nature – by using a 
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blend of actors’ tools and techniques, together comprising a system of data metrics and 

material ‘boundary objects’ (e.g. wikis, visualizations), to foster learning and 

sensemaking across diverse collectives and individuals (Nicolini et al., 2012; Stigliani 

and Ravasi, 2012). Just as interdisciplinary problem-solving crosses the boundaries of 

disciplines, big data correspondingly crosses the boundaries of organizational forms, as 

big data project partners strategically reflect on their own variety in relation to the 

variety of data, signalling possibilities for inter-organizational learning in evolving 

economies of information and knowledge (Evans and Wurster, 1997). For example, 

Climate Corp, a Silicon Valley start-up with origins in Google, was acquired by the 

large agricultural multinational Monsanto after it crunched decades of multi-source data 

to model global farming inefficiencies in efforts to minimize starvation and wastage 

(Chan et al., 2014). Similarly, in China, a crowdsourcing mapping project, Danger 

Maps, is drawing on the inputs of government data and citizens to highlight high 

pollution areas and environmental risk, with the charitable backing of e-commerce giant 

Alibaba, whilst other NGOs follow suit in using big data to drive sustainable social 

activism (Chan et al., 2014).  

 By flowing around and between disciplines, big data invites sensemaking of a 

more pragmatic character within and across organizations, where disciplines and 

specialisms provide some rigorous organizing structures for making sense of big data.  

Regarding learning, the gaps and connections between these structures provide spaces 
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for reflection and insights about messy practical issues relevant to reality and experience 

(Fendt, 2013). 

 

Reflecting on Ideologies of Learning and Knowledge Production 

 When analyzing big data, organizational actors will not just dispassionately 

bring disciplinary backgrounds to it, but rather, “as individuals develop their 

personalities, personal habits, and beliefs over time, organizations develop world views 

and ideologies” (Hedberg, 1981, cited in Fiol and Lyles, 1985: 804). Individuals and 

groups will hold various beliefs about how the form and content of big data should be 

managed, how inputs should be converted into outputs, and how knowledge will shape 

further rounds of actions and decisions. The defensive barriers to organizational 

learning apply just as strongly when working on big data, which under social 

observation will bring normative and sensemaking pressures to appear compliant, 

competent, decisive and diplomatic  (Argyris, 1976). The general way to address these 

biases is through questioning and changing underlying values or features of the status 

quo, transcending them via double-loop learning (Argyris, 2003). Thus successful Ford 

CEO Alan Mulally’s favored saying ‘the data will set you free’, in relation to changing 

Ford’s entrenched corporate culture, probably says much more about Mulally’s vision, 

values and empowering leadership style than it does about anything inherent to data per 

se (Kaipa and Kriger, 2010; Hoffman, 2013).  



22 
 

   

 Crucially, much of the discourse surrounding the attractions of big data analytics 

for organizations may reflect a much broader attempted antinomic swing towards a 

rational ideology (away from a normative one), driven by a broad, deep cultural and 

economic yearning for an emphasis on observable, orderly patterns of behavior (Barley 

and Kunda, 1992). Yet rather than big data itself being self-evidently valuable and 

enlightening, just as important, if not more so, are the values and ideologies that are 

brought to bear on the data, texturing the sensemaking and learning activities carried 

out. Big data might be viewed as an extended version of knowledge management and 

information science agendas, where the movements between data, information, and 

knowledge are shaped by contested cultures, capabilities, and viewpoints in complex 

social systems (Skyrme and Amidon, 1997; Zins, 2007). Sensemaking processes will 

help to construct delimited forms of knowledge from the data, whilst learning may 

involve returning to the data and experimenting with other ideologies and framings to 

create new knowledge and wisdom to be made sense of.  

There is a complexity of views or orientations on what shapes the ultimate 

qualities of learning and knowledge (behaviorist, humanist, constructionist etc.), with 

sensemaking nestled in amongst them (Schwandt, 2005). One key interpretive frame is 

philosophy of science discourse; entire organizational collectives make sense of their 

internal and external environments according to rationalized logics that draw on a range 

of philosophies: structural realism, instrumentalism, problem solving, foundationalism, 
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and critical realism (Kilduff et al., 2011). These logics offer “alternative vocabularies of 

motive, frameworks for reasoning, and guidelines for practice” (Kilduff et al., 2011: 

297). Institutions may thus vary in the emphasis they place on analyzing big data for 

getting at deeper truths in terms of epistemology, and trying to represent reality in terms 

of ontology.  

As an example, the Large Hadron Collider operation illustrates a scientifically 

pure, deductive, structural realist blue-sky approach, co-existing alongside socially 

catalyzing, critical realist organizations like Greenpeace and inductive, foundationalist 

organizations mining data in a fairly random, theoretically neutral trial-and-error 

fashion, all hoping to generate new knowledge from data in different ideologically-

informed ways (Kilduff et al., 2011). These philosophies of knowledge and learning can 

be related to processes of institutional sensemaking (Weber and Glynn, 2006), reflecting 

wider social and historical aspirations of collectives to pursue a certain constrained, 

distilled version of truth and reality. At lower levels of aggregation and over periods of 

organizational change, these institutional logics will be legitimized by sensegiving and 

sensemaking, embodied by storytelling around key events and interactions, albeit with 

competing stories dynamically vying for attention (Brown et al., 2009; Cunliffe and 

Coupland, 2012). 

In a similar vein, an influential body of twentieth century work on the sociology 

of knowledge considers how social organizations develop and test ideas and shape 
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different types of shared knowledge from within the limits of our rationality and 

cognitions (Grandori and Kogut, 2002; Swidler and Arditi, 1996). The so-called 

‘paradigm wars’ also continue to shape how communities of scholars produce 

knowledge. In line with the current approach, their resolution rests on fostering enough 

reflexivity to avoid treating paradigms as incommensurable, and to instead produce 

knowledge more pluralistically, more multi-paradigmatically (Shepherd and Challenger, 

2013). There are also considerable debates about whether a particular mode of 

knowledge production – where organizations are the subject, object, or both – can be 

truly rigorous, relevant and evidence-based, with ideological discourse and counter-

discourse reinforcing a certain sense of relativism (e.g. Hessels and van Lente, 2008; 

Morrell, 2008; Tourish, 2013).  

 Big data analytics adds a new dimension to these debates, with distinctive 

threats (e.g. privileging quantity over quality, correlation over causation, noise from 

multiple comparisons, misinterpreting actionable knowledge) and opportunities (e.g. 

triangulation of sources for more fine-grained pattern detection, accurate forecasting, 

machine learning) arising from more complex inputs to filter through our equally 

complex ideological schemes. Some practitioner-oriented literature emerging on big 

data contains descriptive starting points for conducting analyses (e.g. Hurwitz et al., 

2013), where further mindfulness and reflection might be fruitfully directed. 

Furthermore, the data is not just coming from human sources, but increasingly from 
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networks of automated sensors (the ‘Internet of things’), and there are concerns about 

how overwhelming amounts of information can be made sense of; into feedback, 

automated algorithms, and segmentation of populations. At the same time, there are 

more emotive concerns that this will lead to massive threats to privacy, dramatic power 

shifts, and unwelcome deceptions (Anderson and Rainie, 2012; Brown et al., 2011). 

Sensemaking of big data technologies will thus need to be supported via 

relatively novel techniques, occupations, divisions of labor and routines (Barley, 1996), 

such as real-time data forecasting (‘nowcasting’), and software that makes inferences 

based on complex pattern recognition and prediction (Anderson and Rainie, 2012). 

However, the social and political projects of big data are still taking form, because we 

have yet to fully map philosophies of learning and knowledge to guide our sensemaking 

practices as emerging users and producers of big data. The social and cognitive 

complexity of using, sharing, and applying big data to organizational learning and 

knowledge practices has yet to be fully, explicitly, and reflexively aligned with the 

technological complexity that gave rise to big data in the first instance. For example, 

IBM is still trying to develop and make sense of new roles and routines for turning the 

artificial intelligence Watson into a fully-fledged healthcare service (Arnaout, 2012).  

In some cases, a relatively inductive, analytics-driven epistemology may itself 

constitute a form of double-loop learning. One such example is the Moneyball story, 

where the general manager of the Oakland Athletics baseball team, Billy Beane, started 



26 
 

   

using a ‘sabermetrics’ system of novel analytics to question and radically change the 

existing decision-making of scouts around how teams are assembled and organized, 

with other teams and organizations ultimately following suit in light of Beane’s success 

(Mayer-Schönberger & Cukier, 2013). In other organizational contexts, the formatted 

and extracted data being made sense of may pose more nuanced ethical and 

epistemological dilemmas, as spaces or moments for learning emerge (Weick and 

Westley, 1999). For example, online dating business OkCupid reveals subtle aggregate 

trends about the social and romantic preferences of its many diverse users, trends that 

they may be unaware of or deny as individuals, yet driving cycles of learning and 

sensemaking as users and organizational actors dynamically employ ideologies to 

theorize and engage with information patterns that affect and implicate them (Rudder, 

2014). 

In terms of addressing the complexity of big data, simply single-mindedly 

pursuing a highly positivistic scientific agenda is, on its own, highly unlikely to yield 

rich understanding and strategic adaptability. It is more likely to inflexibly run a system 

into the ground through a series of self-reinforcing, deviation-amplifying loops, 

generating an excess of delimited sensemaking, but a dearth of learning (McKenna, 

1999; Weick, 1969). In sum, the key to leveraging balanced learning and sensemaking 

in relation to big data will partly be rooted in reflexivity, mindfulness, and heedful 

interrelating of the various ideologies underlying perspectives on learning and 
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knowledge in organizations (Johnson and Duberley, 2003; Learmonth, 2008; Weick and 

Roberts, 1993).  

 

Mutually aligning sensemaking and big data domains of application 

 The final big data challenge theorized here concerns how learning and 

sensemaking processes can formulate and shape the content of big data analyses and 

applications. In other words, sensemaking and organizational learning can help to map 

potential domains and topics for big data learning. Reflexive consideration of their 

respective domains and applications prompts the question – what can sensemaking and 

big data mutually learn from one another? Evidently, the potential scope for mutual 

alignment is huge, if a little unwieldy, with common overlaps (e.g. crisis management; 

organizational change) and distinctive gaps (e.g. sensemaking lacks quantitative 

analysis; big data lacks processes of social construction). Both sensemaking and big 

data can be applied, in theory, to almost anything. Sensemaking, for example, has been 

applied to culture, markets, globalization, technology, politics, interpersonal 

interactions, societal crises, organizational changes, and so on (Maitlis and 

Christianson, 2014). Big data topics and agendas are specified more concretely and 

contextually than some of the more academic framings of sensemaking, but there are 

clearly broad opportunities for synergies: cancer research, genetics, social media, 
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terrorism, climate change, health and other government-recorded domains (Boyd and 

Crawford, 2012).  

 Sensemaking work itself, with its theory-focused approach, complements the 

more problem-focused approach that big data seems to have encouraged, and together 

they have the potential to mutually re-constitute each other and set agendas that can 

better capture the complexity of organizational issues (Weick, 1992). This marriage 

between conceptual theory-building and analytical problem-solving is fruitful because it 

avoids dangers, specifically where “a potential danger of the AS [analytic scientist] is 

getting bogged down in infinite details; a potential danger of the CT [conceptual 

theorist] is ignoring them altogether for the sake of comprehensiveness” (Mitroff and 

Kilmann, 1978, cited in Weick, 1992: 174).  

 This mutual alignment is ongoing and necessitates continually resolving the 

pragmatic interplay between theory, practice, and production, with theory mediating a 

sense of scientific progress via projects and stakeholders (Shields, 1998). A pragmatic 

stance also offers ways of incorporating ethics, and experimenting more usefully 

between extreme positivist and anti-positivist positions (Hernes and Irgens, 2013; 

Wicks and Freeman, 1998). Big data needs sensemaking to reduce disorder and 

prioritize issues from within complex social systems comprising markets, laws, social 

norms, and forms of structured architecture (e.g. code) (Boyd and Crawford, 2012; 

Lessig, 1999). Complementarily, sensemaking can open itself back up to learning from 
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big data issues by bridging predominantly qualitative approaches with quantitative ones, 

combining levels of analysis, modifying computational properties of complex causal 

systems, and blending and interpreting metrics and text (Shah and Corley, 2006).  

The value here lies in acknowledging that the topical applications of big data can 

be interwoven with the topical contents of sensemaking scholarship, whilst sensemaking 

and learning are also interwoven around big data as dialectical processes that prioritize, 

constrain, and enable what the precise forms and varieties of evolving topical agendas 

for big data (and sensemaking) might look like. For example, large retail organizations 

like Sears and Walmart have used big data to make sense of customer transactions and 

pricing, but also to foster learning about how to combat fraud, run marketing 

campaigns, make supply chains more transparent, and support consumption patterns 

during crises or natural disasters; in many ways making sense of and learning from the 

sensemaking of their own stakeholders (Van Rijmenam, 2014). 

 The interplay of sensemaking and learning in organizations can thus facilitate 

the pragmatic social construction of relevant, rigorous and ethical big data projects. 

Sensemaking can help to constrain, and learning to enable, various dynamic 

classifications of big data, in terms of: sources (e.g. how openly accessible or man-made 

they are) (Manyika et al., 2013), processes of data collection or creation (e.g. affective 

social media data, ‘exhaust’ data from automated systems, ‘lifelogging’ data of 

individuals’ daily activities), organizational sectors or operations where it has most 
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potential for inquiry and innovation (e.g. finance, healthcare, information services, HR), 

and analyses conducted (e.g. descriptive, predictive, or prescriptive) (Brown et al., 

2011; Davenport, 2013).  

 The intertwined social-cognitive processes of learning and sensemaking will 

thus continually flow through the medium of big data itself, in attempts to interpretively 

enact a ‘social physics’, at least wherever people are implicated (Pentland, 2014).  The 

products of mutually aligning big data agendas with the contents and processes of 

sensemaking and organizational learning are likely to emerge in distinctive forms of 

knowledge or representation.  These could be the culturally evolved units called 

‘memes’ (Bryant, 2004), or dynamic framings of ‘messy’ or ‘wicked’ policy problems 

(e.g. climate change, stem cell engineering, internet regulation) that defy single optimal 

solutions, contain contested elements where facts and values collide, and require 

pluralistic sensemaking processes to try and resolve them (Calton and Payne, 2003; 

Pedler and Trehan, 2008).  

 In summary, the reflexive challenge of achieving mutual alignment of topical 

domains which sensemaking and big data can both be applied to, driven by social-

cognitive sensemaking and learning processes, represents a way of meaningfully 

structuring big data analytics offerings in the first instance. Studying the organizing and 

learning processes surrounding big data agenda formation can help to contextualize and 

resituate learning and sensemaking in a visible, future-oriented, technologically-
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supported, and diversified twenty-first century medium (Easterby-Smith et al., 2000; 

Nicolini and Meznar, 1995; Weick et al., 2005). Furthermore, identifying the emergence 

of memes and messy problems links learning once more to conditions of dynamic 

(social) complexity, although work outlining the exact co-evolutionary, paradoxical 

mechanisms governing this complexity continues (Antonacopoulou and Chiva, 2007; 

Bryant, 2004; McElroy, 2000).  

   

Drowning in Data: Implications and Concluding Remarks 

 In this paper, big data has been related to the theorization of four process-

oriented challenges to be addressed by a reflexive epistemology, where sensemaking 

continually reduces interpretive variety whilst learning works to keep various 

possibilities open, all under conditions of dynamic complexity. These conceptual 

arguments, as elaborated in the preceding sections, are summarized for the reader in 

schematic form in Figure 1. This paper has sought to build theory in a value-adding 

way, by taking a prescient focus on big data analytics as an emerging societal issue, as 

well as providing some utility by organizing sensemaking, learning and complexity, 

bricolage-fashion, around big data to frame and structure the challenges it creates 

(Boxenbaum and Rouleau, 2011; Corley and Gioia, 2011).  

INSERT FIGURE 1 ABOUT HERE 
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Future research and practice with big data analytics can work on further 

investigating and managing the four interrelated tensions between the countervailing 

tendencies of sensemaking and learning developed here – the continuous social 

construction of simplexity, interdisciplinary frames, ideologies of knowledge and 

learning, and the formalization of topics and agendas. An overall process perspective 

should prove useful in acknowledging how these challenges unfold across interactions 

and over time (Hernes and Maitlis, 2010), mediated by big data technologies that serve 

as artefacts; embodying, narrativizing, contextualizing, and even institutionalizing 

certain logics that arise from big data processing. As well as the variance inherent in 

these organizing processes, nouns, events, outcomes, and topics will remain 

complementarily important as structuring entities, nodes, spaces for action, and 

substantive content (Bakken and Hernes, 2006; Czarniawska, 2006). Interconnectivity, 

and its ongoing resolution and representation, will be a key theme for theory and also 

practice; big data is surrounded by interconnected mobile technologies that self-

organize to make a digital ecosystem of platforms and services (Dean et al., 2013).  

 Another key area for future investigation and refinement of practice will be in 

terms of the sensegiving required for training, communicating, and leading effectively 

in big data environments. Communication to achieve shared knowledge representations 

will require a pragmatic blend of modalities; not just scientific-propositional, but 

narrative and visual modes too (Worren et al., 2002). Big data communications may 
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also reflect future-oriented, prospective sensemaking aspects. Careful attention can thus 

be given to the utopian or dystopian discourses and storytelling narratives that big data 

can create (Boyd and Crawford, 2012); discourses of becoming that imply progress, 

hope, or fear, often masking more subtle shifts in complex socio-technical 

arrangements. Future research can analyze the complex forces of narrative and multi-

vocal ante-narrative surrounding big data trends and phenomena. Work on prospective 

sensemaking will be able to draw links with learning and materiality (Bjørkeng et al., 

2009; Stigliani and Ravasi, 2012), where practitioners will need to wrestle with metrics, 

databases and other ‘boundary objects’ to adaptively make sense of big data practices, 

ensuring coordinated patterns of predictable action and routines that balance order and 

disorder.  

 In addition, there will be value in linking sensemaking principles and 

technological discourses together more explicitly, as users and other stakeholders have 

evolving discussions about which features of technology they like or dislike, and 

innovative adjustments take form (Griffith, 1999).  Big data implicates an entire cluster 

of technologies, and hints at artificial intelligences on a grander scale. Sensemaking 

offers a welcome social constructivist perspective on the user-centred learning that 

occurs in experiencing technology, although the cultural antinomies of determinism-

voluntarism and materialism-idealism need to be more explicitly acknowledged too 

(Leonardi and Barley, 2007).  
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 In terms of complexity, chaos and organizations, there is still much to 

understand about how far the mathematical underpinnings of the natural world and pure 

scientific systems can be faithfully applied to the change dynamics of social systems 

(Burnes, 2005). Future research might then fruitfully address relationships between 

sensemaking and learning by accounting for how they occur across space and time 

(Antonacopoulou, 2014). Big data creates a scenario where complexity dynamics, social 

and natural, can more openly take form across timeframes and spatial scales where data 

is generated and processed. Ironically, it may be that complexity theory and its concepts 

need to be simplified, typified and made sense of to get beyond hyperbole and ensure 

their wider use (Manson, 2001). Big data being generated within more familiar, natural 

mediums (e.g. social media, mobile apps) is ripe for engagement with these areas.  

Inherent in most of the preceding discussion is the notion of paradoxes. A 

central concern has been that sensemaking and learning exist in something of a 

paradoxical relationship concerning the uncertainty and variety of perception-action 

links (Weick and Westley, 1999). Learning is implicated in the tensions underlying 

most organizational paradoxes, and working through them requires managing cycles of 

dynamic equilibria, so that the tense oppositions of multiple dualities can be continually 

worked through (Smith and Lewis, 2011). The four challenges in this paper could thus 

usefully be conceptualized as paradoxes, in terms of managing the complex form and 

content of big data projects, as well as the ways chosen to interpret and act on analytic 
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results. Future research and practice on big data analytics needs therefore to be 

concerned with successfully resolving paradoxes to achieve cycles of sensemaking and 

learning.  

There is perhaps a self-referential irony posed by much big data, and to some 

extent all data, insofar as: we create it, collect it, comment on it, refute it, enact it, 

manipulate it, make sense of it, and yet at the same time, it accumulates and evolves in 

ways that we struggle to comprehend, and learning is periodically required.  Its presence 

has the capacity to act on us as an environmental sensemaking structure, yet at other 

times we are reflexive learners with the agency to interact with the data as object, and 

overall big data constitutes a fluid medium for cycles of organizing and learning 

activity. There is thus a potential interweaving of the inductive and the deductive, the 

subjective and the objective (Allard-Poesi, 2005), the layperson and the expert, and the 

collection of old data followed by the subsequent altered generation of new data. 

Concerning the practicalities of big data then, there is a sensemaking-type need 

to try and fully understand and learn from discrepancies, errors, and even crises that can 

occur. For example, the ‘big data hubris’ and over-reliance on certain algorithmic 

dynamics that ultimately led to erroneous predictions by the Google Flu Trends 

algorithm (Lazer et al., 2014), as well as other general possible abuses of metrics and 

analytical decision-making (Davenport et al., 2010). In response to these issues, this 

paper has presented a critical route for trying not to drown in but make sense of big data 
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via a reflexive epistemology; one that lies in a continuous engagement with the variety-

forming interplay between sensemaking and learning. More specifically, this means 

attending to regulatory processes and reflexive dynamics concerning simplexity, 

interdisciplinarity, ideologies, and topical agendas surrounding big data’s production 

and use as potentially valuable knowledge, evolving in conjunction and comparison 

with ‘smaller’ traditional modes of theory testing and data analysis.  
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Figure 1. Challenges of sensemaking and learning through the lens of big data. 

 

 


