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When a steep breaking wave hits a vertical sea
wall, in shallow water, a rapidly ascending planar jet
forms. This jet is ejected with high acceleration due
to pressure created by the violent wave impact on
the wall, creating a so-called ‘ flip-through’ event.
Previous studies have focussed on the impulsive
pressures on, and within, the wall and on the velocity
of the jet. Here, in contrast, we consider the formation
and break-up of the jet itself. Experiments show that
during flip-through a fluid sheet, bounded by a rim,
forms. This sheet has unstable transitional behaviours
and organising jets; undulations in the thickness of
the fluid sheet are rapidly amplified and ruptured
into an array of vertical ligaments. Lateral undulations
of the rim lead to the formation of finger-jets, which
subsequently break up to form droplets and spray.
We present, a linear stability analysis of the rim-
sheet systems that highlights the contributions of
rim retraction and sheet stretching to the breakup
process. The mechanisms for the sequential surface
deformations in the rim-sheet system are also
described. Multiple, distinct, instability modes are
identified during the rim deceleration, sheet stretch
attenuation and rim retraction processes. The wave
numbers (and deformation length scales) associated
with these instability modes are shown to lead to
the characteristic double peak spectrum of surface
displacement observed in the experiments. These
mechanisms help to explain the columnar structures
often seen in photographs of violent wave impacts on
harbour walls.
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Figure 1. Sequential side view images at flip-through; a breaking wave face hits the vertical wall (wall surface is located

at the right edge of the ruler) at phase (c), immediately producing a vertical jet at the impact (time interval of 10 ms). The

instant when the forefront of the incident wave touches the wall is defined to be t= 0.0s.

1. Introduction
When a shoaling wave crest approaches a vertical wall, the wall prevents the forward flow of
water causing the water level at the wall to rise rapidly. The surface between the rising wave
trough and advancing crest converges rapidly, and often focus at a point on the wall (see figure 1),
resulting in violent wave impact – the so-called flip-through event [1,2]. The thin film-like vertical
jet formed at the flip-through is projected upward at high acceleration [3].

In engineering, most attention on this wave–wall interaction has concentrated on the impact
pressures acting on the wall during either sloshing impacts [3] or breaking wave impacts [4,5].
The pressure impulse during the flip-through impact has been derived theoretically by Cooker
and Peregrine [1,2], providing a mathematical interpretation of underlying dynamics before the
start of uprush.

The normal theoretical description assumes both potential flow and homogeneity along
the wall, allowing the problem to be simplified by removing the third, transverse, coordinate
direction [4]. We have found, however, that the high pressure gradient along the wall, resulting
from the impact, accelerates the fluid vertically ejecting a planar thin jet, which follows with
inherent transverse deformations (see figure 2 and the supplementary movie file, Movie 1); a
horizontal straight rim initially forms along the free edge of the planar jet and subsequently
evolves cusp-like formations with simultaneous undulations in the thickness of the film bounded
by the rim. The undulations in the rim are rapidly amplified to produce typical finger-shaped
jets on the rim as the sheet ruptures. The finger jets are then fragmented into large numbers of
droplets forming a spray. The formations of sea spray observed during wave impacts on sea walls
may be interpreted using the unstable behaviours of these uprising jets. Such an interpretation is
presented here for the first time.

The free-surface dynamics through fingering and breaking up processes have been observed
in breaking ocean waves, crown splash and liquid sheet fragmentation.

(a) Breaking waves on beaches

On shallow water coasts (without walls), depth-induced breaking waves have been also found
to produce secondary finger jets which are fragmented into droplets at wave splashes. When
a breaking wave crest overturns and impacts onto a forward water surface, a secondary jet
is rapidly formed and is projected forwards. The initial, two-dimensional, spanwise vorticity
produced along the inner surface of the overturning jet becomes unstable and the change in
orientation results in multiple pairs of counter-rotating vortices that are stretched obliquely
downward beneath the surfaces of the secondary jet [6]. The surface just above these vortex
pairs is entrained into the interior of the water to create a convergent free surface flow, resulting
in the formation of a transverse array of longitudinal scars on the wave surfaces [7]. In the
secondary jet stretching causes the counter-rotating vortices to be intensified within the jet, thus
the vortex-induced scars on the jet surfaces are deepened and finally penetrate the jet forming
multiple finger jets [8]. The fingers are stretched along the jet axes, breaking up into droplets via
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Figure 2. Sequential lateral view images of surface deformations of the flip-through jet at the level of 150 mm above a still

water surface. Successive frames (with a 160 mm×90 mm field-of-view), separated by a constant time increment of 4.0

ms, are arranged vertically with the earliest frame at the bottom.

capillary instability. A series of these studies concludes that the initial shear instability manifested
in breaking waves triggers the transverse deformation of the jet, evolving into the fingers via
vorticity dynamics.

(b) Crown splashes

Crown splashes are also known to produce fingers on an undulating circular rim as a result
capillary instability during the retracting behaviour of the rim (see the review by [9]). In this event,
a droplet impact initially induces a cavity on receiving liquid and a circular fluid sheet rising with
rapid expansion. A circular rim formed along the upper edge of the sheet is pulled back by surface
tension during the retracting process. The volume of the rim increases until unstable undulations
in the rim grow sufficiently causing the crown structure with the finger jets aligned along the rim.
Many investigations of the unstable motion of the rim and the initiation of finger jets have been
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performed [10–12] and of the unsteady behaviour of the stretching rim [13,14]. The recent study
by Agbaglah et al. [12] concludes that retracting behaviour initially governs the rim instability for
short duration in the Rayleigh-Plateau (RP) mode, then Rayleigh-Taylor (RT) instability starts to
contribute as the fingers are initiated.

(c) Liquid sheets

Capillary sheet dynamics have been widely studied since theoretical interpretations of the free
edge and radically expanding sheet by Taylor [15,16]. Mechanisms for the atomisation of the
sheet through a combination of interactive capillary, rim and centrifugal dynamics have been
investigated for more complex rim-sheet system [17,18]. Bremond et al. [18] found that the
capillary waves traveling on the sheet to the free edge induce amplification of the transverse
thickness modulations, leading to the formation of ligaments perpendicular to the sheet edge.
Yarin and Weiss [19] show the formation of a cusp-shaped rim is due to capillary discontinuity
waves propagating on the sheet.

Strong stretching of the planar jet is known to modify the capillary response. Longuet-Higgins
[20] presented another possible mechanism for the longitudinal disintegration of pre-splash
overturning jets via modification of the capillary orientation in stretched jet surfaces; capillary
waves with transverse crests emerged on a curved free-falling overturning jet. Change in
orientation by gravity-induced stretch amplifies the capillary amplitude, causing the lateral
disintegration of the falling jet.

These previous findings for breaking waves on beaches, crown splashes and thin liquid sheets
provide theories for the dynamics of the flip-through jets induced by wave impacts on vertical
walls. In this study, the mechanical and geometrical features of the finger and ligament formations
on the uprushing jet are experimentally characterised using these analogies. The mechanical
stability of the flip-through jets is also considered using a linear stability analysis for the rim-
sheet coupled system using a long wave approximation, and comparisons with the experimental
results are made.

The paper is organised as follows. In Section 2, the experimental setup and conditions are
explained. Section 3 discusses the geometric features of the deformations of the rim and sheet
observed experimentally following the wave impact. In Section 4, the unstable behaviour of the
rim-sheet system is discussed, using linear stability analysis, as a model for the jet formed at flip
through. Section 5 explains the observed mechanisms to deform the jets during the flip-through
event in terms of the transitional instabilities amplified on the system. Finally, the results are
summarised in Section 6.

2. Laboratory Experiment
In this section, we explain the measurement system set-up for the water wave experiments
comprising: a laboratory wave flume with the vertical wall; an optical system with a high-speed
camera; and the wave measurement and control system.

The experiments were performed in a 24 m long wave flume, with a width of 0.6 m and depth
of 1.0 m, fitted with a piston type wave maker with active wave absorption. A transparent, acrylic,
rectangular, box 0.2 m long and 0.6 m wide with a height of 1.0 m was installed on the 1/20 slope
beach to form a breakwater with a vertical seaward face (see figure 3). The static contact angle of
the front wall surface with water surface was about 70 o. The model breakwater was weighted
and anchored to the beach to achieving a stationary wall. We define the coordinate system for the
experiment with the origin at the point of wave breaking in the horizontal shoreward x axis, the
nearside of the flume in the transverse, y, axis and at the still water level in the vertical z axis. The
still water depth at the origin x= 0 was 100 mm.

The resulting wave impact pressure is very sensitive to the incident wave shape at the impact
[4], and consequently the surface behaviour of the vertical jets also depends strongly on the
surface shape of the wave face (or local wave steepness). In general, progressive waves with mild
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Figure 3. Experimental setup

steepness reflect off the wall and behave like standing waves at the wall, while steeper waves
produce more violent impacts causing highly accelerated thin up-rushing fluid jets. The post
breaking wave impact provides more complex fluid flows involving entrained air bubbles and
induced turbulence. Therefore, in the experiments, the position of the vertical wall, relative to the
breaking point, was taken to be a parameter used to define the impact modes of shoaling waves;
During the experiments the model breakwater was located at x = -400, -300, -200, -100 mm (in
the pre-breaking region) , 0 mm (for the flip-through mode), and 200 mm (for the post-breaking
region).

A rectangular blue light-emitting-diode (LED) panel (200× 100 mm) was set behind the
transparent front wall of the model breakwater and used to illuminate the dyed water passing
over it. An 8-bit high-speed video camera recorded the illuminated area using a 45◦ angled
reflector (see figure 3). The region illuminated by the LED panel was also traversed vertically
from 50 mm above the still water level to +300 mm at 50 mm intervals to allow the vertical
evolution of the jets to be examined. The water in the flume was coloured using Uranine dye
(Sodium Fluorescein), to enhance contrast of the liquid region. Uranine excites with blue, 436
nm, light and fluoresces with a green, 530 nm, light. A low-pass optical filter (≤ 450 nm) was
fitted to the camera, to eliminate the fluorescent emissions from liquid and allow only the blue
component, from the back light, to be recorded. The concentration of the dye, 0.11 mg l−1, was
chosen to ensure that there would be no light transmission across a 0.25 mm thick fluid film. This
set up ensures that the image brightness on the liquid area roughly indicates the thickness of the
sheet as the transmitted light intensity through the film proportionally decreases with the film
thickness. 8-bit, 1280× 1024 pixel images were recorded at 500 Hz with an exposure time of 0.125
ms and stored on a PC connected to the camera as uncompressed bitmaps.

Throughout the experiments monochromatic waves with the incident wave height of 146 mm
and a wave period of 1.9 s were used. Two wave gages were installed in the constant depth
section of the flume, at water depth h of 275 mm, to determine the incident wave height (see
figure 3). When the first wave passed the shoreward wave gage, a TTL signal was sent to the
high-speed video camera to start recording, this synchronises the impact phase of each of the 20
trials performed for each experimental case to allow a statistical analysis of the results.

In a post-processing procedure, noise on the acquired images was reduced using median
filtering. Image coordinates were transformed to real coordinates using a linear image
transformation, providing quantitative measures of the liquid surface on images at 0.10 mm/pixel
resolution.
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Figure 4. Sequential side view images of surface shapes at the impact at x = -100 mm (top), x = 200 mm (bottom); time

interval of 10 ms. The instant when the forefront of the incident wave touches the wall is defined to be t= 0.0 s.

3. Experimental results
This section describes the features observed during the experiments in the three impact regimes
(pre-breaking, flip-through and post breaking). The transverse deformations of the jets are
characterised in terms of wave number spectrum.

(a) Wave impacts

The dynamics of the up-rushing jet depend both on the relative location of the sea wall and the
point at which the wave breaks. Clearly, the initial vertical acceleration of the jet resulting from the
wave impact depends on the incident wave steepness immediately prior to impact (see detailed
in review by [4]). If the wall is far from the breaking zone, linear, sinusoidal waves are reflected
by the sea wall forming the characteristic pattern of standing waves. Steeper, shoaling, waves,
however, cause rapid changes in dynamic pressure at the wall, accelerating the surface upward
during the wave–wall interaction (see phases (a) – (c) on the top panel of figure 4). The vertically
accelerated water surface at the wall forms a planar thin film-like jet extending from the standing
wave crest as shown in phase (d). In the flip-through case, a nearly vertical wave face progressing
toward the wall focuses at a point on the wall with the forward trough lifted up (see phase (c) of
figure 1). A high pressure gradient occurring at the focus point ejects the water sheet extending
from the standing wave crest (phase (d) of figure 1, and (a) – (d) of figure 5).

In the case of broken wave impact, the overturning jet entraps air prior to impact (see phases
(a) and (b) on the bottom panel of figure 4). During the impact, the trapped air is squeezed before
finally breaking up into large numbers of bubbles. The resulting aerated water spray is dispersed
over a wide area. The entrapped and entrained bubbles significantly change the dynamics of the
wave impact; the compressibility of air causes pressure oscillations on the wall and alters the
duration of the pressure rise, maximum pressure and the sound speed [4,5]. The combination of
these multiple effects of air mixture yields very complex fluid motion in the jet.

Peregrine [21] provided a mathematical model of a splash from a thin layer of water. He
interprets the projection of a jet at an angle with respect to the fluid layer by considering the
conservation of mass and momentum using Bernoulli’s theorem and including both the impact
and projections points. The expansion of the crown formed by droplet impacts can be described in
terms of the propagation of a discontinuity wave at the projection point on the layer streams [19].
Roisman and Tropea [22] extended this model to derive a solution of the crown shape.

Cooker and Peregrine [2], on the other hand, derived a theoretical solution for the fluid flow
in a rectangular wave impact and found that the vertical velocity (v1) on the free-surface become
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Figure 5. Sequential side view images (a) – (d) of the uprising jet at the flip-through impact; time intervals of 0.002 s, and

schematic representation (e) of the formation of the jet from the kinetic discontinuity expected at the flip-thorough impact

of a rectangular wave.

infinite at the wall location (x =0); v1 ∼−2U0/π log(x/H), where U0 is the impact velocity normal
to the wall and H is the distance from the bottom to the wave crest (see figure 5 e). Assuming
that the upward stream in a thin fluid layer, with thickness h1, on the vertical wall above the
free-surface of the rectangular wave occurs at the inception of the impact, despite the singular
velocity at the wall, the finite mean velocity may be found by explicitly integrating v1 over the
layer thickness; v1 ∼−2U0/π (log(h1)− log(H)− 1). Following the approach in Roisman and
Tropea [22] for a jet projection from the kinetic discontinuity between the lower and upper
layers with thickness ranging from h1 to h2 and velocity from v1 to v2 (see figure 5 e), the
mean velocity vector of the jet, vB ≈ (v1 sinα/2, h1v1/hB + 4γ cosα/ρhBv1), jet inclination angle

α≈ arccos
(
(hB − 2h1)v1

2/(hBv1
2 − 8γ/ρ

)
, and the jet thickness hB = h1 + h2, can be found. In

this case of static upper film with v2 =0 exists (the impact region on the wall was observed to be
wetted by run up of preceding wave and a thin film remains after flip-through impact). Although
we are unable to quantify, experimentally, the real thickness of this thin film, assuming the
approximate thickness of the projecting jet, hB ≈ 0.1 mm (Section 4 (f)) and the thinest lower film
of one order thinner than hB above the free-surface, h1 ≈ 0.01 mm, the approximate measures of
the mean velocity vector and splash angle are estimated to be vB ≈ (1.3, 6.4)ms−1, and α≈ 23o,
respectively.

Figure 5 (a) – (d) shows the local orientation of the uprising jet formed during the flip-through
impact. The jet is ejected upward at angles with respect to the vertical wall that are consistent
with the inclination angle approximated by the splash model. This indicates that the uprising
fluid moves upward without contacting the wall during the initial jet projection. The flip-through
jet may therefore be treat as a free jet.

Figure 6 shows the mean upward velocity of the jet (measured using image analysis) plotted
against the location of the wall at three different heights above the still water level. The vertical
velocity decreases with increasing height as drag force and gravity decelerates the water sheet.
The maximum vertical velocity (∼ 6.7ms−1) occurring at flip-though (x= 0) is more than ten
times the maximum vertical velocity estimated by the small-amplitude linear wave theory [24]
for the standing wave (approximately 0.6ms−1). Although an exact comparison of the observed
velocity with the analytical predictions of Cooker and Peregrine [2] is impossible because of the
singularity at the wall, the predicted mean velocity of the jet is of the same order of the mean
velocity of the observed jet. We note that the velocity is also comparable with that reported by
Bruce et al. [23] for random wave impacts on a 10:1 battered wall. As the breaking point moves
seaward the jet velocity falls off rapidly.
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Figure 6. Ensemble mean rise velocities of the jets, and theoretical maximum vertical velocity of the standing wave.

Figure 7. Evolution of transverse surface forms of the flip-through jet via fingering, rupturing film and breakup into sprays;

(a) to (f) represent the vertical level z = 50, 100, 150, 200, 250, 300 mm.

(b) Evolution of jets at flip-through

In the experiments no corrugations or irregularities are observed in the wave crest which could
lead to transverse changes in velocity during the impact. However, an uneven transverse surface
can be observed in the up-rushing sheet together with a defined rim following the impact.

The evolution of the sheet as it initially forms finger jets before rupturing and breaking up
into spray is shown in figure 7 (see also the supplementary file, Movie 1). In the early stages of
figure 7, images (a) and (b), a rim is observed to form at the leading edge of the sheet-like jet. Image
(b) clearly shows a striped pattern bellow the rim, indicating transverse undulations of sheet
thickness, these may be due to the capillary re-orientation causing longitudinal disintegration
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Figure 8. Transverse forms of the tip of uprising jet at x = -200 mm (top, pre-breaking case), x = -100 mm (middle,

quasi-flip-through case) and x = 200 mm (post-breaking case); vertical level z = 100 mm (left) and 200 mm (right).

of the thinning jet [20]. As the jet rises (images b to d), the transverse undulations near the rim are
amplified forming cusp-like structures before evolving into a regular pattern of finger jets. During
this stage of evolution the sheet is being stretched and consequently thins.

The amplified undulations of sheet thickness rupture in the fully stretched sheet, resulting in
holes that are then elongated vertically (see images c – d), finally an array of vertical ligaments is
formed which merged with the deformed rim (images d – e). The rim-ligament system detaches
from the standing wave crest in images (e) to (f ), before finally disintegrated into individual
droplets through capillary instability. The fact that a wetted wall is not observed after preceding
jets have passed in Movie 1 further indicates that their is no contact of the jet with the wall.

Saruwatari et al. [8] found that the mechanism for forming fingers in jets splashing onto a still
water is governed by vorticity dynamics within the sheet not by surface tension. They failed to
find, however, any evidence of rim formation at either the leading edge of the jet nor the ruptured
sheet (as in figure 7), suggesting the mechanisms observed above are different from those for
splashing jets. Consequently, vortex dynamics may be irrelevant in the present issue.

The transverse rim instability emerged in the early stages (figure 7 images b to d) is visually
analogous to that observed in the crown splash, which may also be interpreted by considering
the retracting dynamics and the capillary effect. The regular deformations and breakup of the
sheet, formation of the longitudinal ligaments and the detachment of the rim from the sheet
have, however, never been reported in crown splashes. The simultaneous amplification of the
undulations in sheet thickness, which may be triggered by destabilisation of the stretched,
thinning sheet during re-orientation of capillary waves [20], suggests the dynamics of the coupled
rim-sheet system governs the breakup mechanism for flip-through jets.
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(c) Formation of jets during pre- and post- breaking impacts

Figure 8 shows a series of images of the resulting sheet at z = 100 and 200mm above the still water
level in pre- and post-breaking cases. When the wall is seaward of the breaking point, a standing
wave with a uniform transverse wave crest forms. As the wave runs-up on the vertical wall a sheet
of water is ejected upwards, which in this case is in contact with the wall. In the top images with
the wall 200mm seaward of the breaking point, as the sheet emerges small disturbances appear
along the edge of the sheet, which are amplified as the sheet stretches to form regular patterns
of fingers. In the non-breaking case, where the jet contacts the wall, the shear between the fluid
and the wall that also affects the deformation of the jet, which should be treat as a moving contact
line problem. Toroian et al. [25] identified unstable transverse behaviour of a spreading film on a
slope to interpret the finger formation of the film driven by capillary, gravity and shear balance,
which may be relevant to the local deformation of the pre-breaking jet in the deeper water region.

When the wall is closer to the breaking point at x=−100mm, a quasi flip-through process is
observed (figure 8 middle). In this case a rim with lateral undulations is clearly identifiable on
the sheet at z = 100mm, while the neck of the jet (associated with the standing wave component)
moves up the wall. As the sheet rises, the rim becomes detached from the sheet and ligaments are
formed as the sheet ruptures. These features indicate that, in this case, the motion of the preceding
sheet can be modeled as a free jet without wall contact.

In the post-breaking case, an air pocket is trapped by the overturning jet and is compressed
and collapses into many bubbles when the broken wave hits the wall (see the bottom sequence
in figure 4). The aerated fluid forms many very complex and irregular jets, which are dispersed
in many directions, as a result of the combined effects of aeration and turbulence (see figure 8
bottom). Large numbers of the spray jets are produced during the initial stage of the impact
with some jets evolving into ligaments, which successively breakup into droplets due to the
capillary instability. Although it is interesting to discuss the complex fluid motions in this region,
many unknown mechanical factors, such as compressibility effects and modifications of pressure
responses owing to aeration [4,5], surface-vorticity interactions [8] in addition to the capillary and
sheet dynamics, need to be understood for identifying the broken wave impacts, which should be
left for future investigations. In this paper, we therefore concentrate on the mechanism of surface
deformation and break-up for the flip-through case.

(d) Geometric features of the flip-through jets

In order to quantify the observed deformations of the uprising jets, the edges of liquid areas on
the images were detected by an active contour model based on an energy fitting algorithm using a
level-set iteration [26]. The detected boundaries for liquid jets and sprays were defined separately;
spray droplets are defined as having a closed boundary, while the jet boundary must touch the
edge of the image (see figure 9 (a)). Liquid which is out of the focal plane of the camera and which
has the maximum absolute gradient of image intensity along the liquid boundaries lower than a
given threshold, is removed from ensemble statistics.

An integral length F (y) is useful for quantifying the transverse undulations of the jets. F (y)

is defined by counting the pixels in the yth column which are inside a jet (see figure 9), pixels
inside spray droplets are explicitly excluded from the count. Figure 9 shows F (y) plotted at
three different times, following impact for the flip-though case at z = 100 mm (figure 7 b), the
corresponding photographs (a) – (c) are shown above the graph. Although a double-valued
surface profile with respect to y may smear F (y) somewhat, we find F (y) consistently defines the
transverse locations of the cusped rims and fingers (indicated by broken lines in the sequential
images (a) – (c)) and this is used for estimating the major intervals of the rim deformations.

The temporal behaviour of the transverse variations of the integrated lengths are analysed
using the Fourier spectrum S(K) to determine the length-scales of the deformations (see
figure 10). Here, the dimensional wave number K = 2π/L is used where L is the transverse
wavelength (in mm). It should be noted that the lowest wave number component, corresponding
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Figure 9. An example of the estimated integrated lengths F (y) for the flip-through jet forms on the sequential images (a)

– (c) at z = 100 mm (corresponding level to figure 7 b). The detected interface boundary for the back-light images of the

jets (drawn by red lines) and dispersed sprays (blue line) are shown in (a). The broken lines indicate the corresponding

locations in the images and plots of F (y).

Figure 10. Wave number spectra for the integrated length F (y) at z= 200 mm; x=-200 mm (left), x=-100 mm (middle),

x=0 mm (right). Arrows indicate two prominent spectrum peaks observed in quasi-flip-through and flip-through cases.

to the mean surface location, is not shown so as to emphasise higher wave number components.
A prominent spectrum band widens as the breaking point approaches, i.e. x→ 0. This is a
relatively narrow band, 0.3<K < 1.0 mm−1, furthest from the breaking point (x = -200 mm) and
is widest, 0.1<K < 2.0 mm−1, at flip-through (x = 0 mm). At x= 0mm two significant peaks are
observed in the spectrum at K ≈ 0.26 and 0.67 mm−1 (corresponding to about 24.2 and 9.4 mm of
wavelengths). This suggests two distinctive fluctuation modes triggered by different instability
mechanisms govern the formation of the transverse deformations. The observed spectrum is
compared later with linear instability growth.

Figure 11 shows a sequence of the mean relative complement image brightness (CIB), averaged
over the transverse, y, directions plotted against the z coordinate. As previously discussed (see
Section 2) the complement image brightness is proportional to the thickness of the fluid sheet,
consequently the CIB = 1 if the backlit fluid sheet is thicker than 0.25mm and will be zero where
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Figure 11. Evolution of transversely averaged relative compliment image brightness of the back-light images taken at z

=150 mm. The temporal sequence with time interval of 2.0 ms is indicated by the line color in order of gray, green, black,

blue and red.

Figure 12. Schematic illustrations of the deposition type of the droplet splash (a), corona splash (b), surface form of the

standing wave crest on the vertical wall (c) and the flip-through jet ejected with an inclination angle (d).

there is no fluid in-front of the back light. Figure 11 shows a region of relatively high mean CIB
appearing behind the leading edge, due to the presence of the deformed rims, followed by a thiner
sheet region, with a correspondingly lower CIB. As the jet rises the sheet, between the wave crest
and the rim, elongates and thins. This geometric feature, a thinning sheet with approximately
constant thickness, is used as the basis of the rim stability analysis presented in Section 4.

(e) Flip-through vs crown splash

The distinct behaviours of splashing jets, during wave impacts, depend on the relative location
of the breaking point and the wall and may be characterised by analogy with droplet impact on
a solid wall. Rioboo et al. [27] provide a description of the possible outcomes of droplet impact
on a dry wall. The deposition process is characterised, for relatively low impact speed and small
droplet size, by a radially spreading lamella which forms during the impacting process (figure 12
a). At higher impact velocity the corona rim and sheet are radically ejected at an inclination angle
with respect to the bottom wall (figure 12 b). As the corona (or crown) grows azimuthal stretching
and expansion modify the capillary instabilities on the rim [28]. Dropplet impacts on a thin liquid
film typically produce identical crown splashes with a specific splash angle [29].
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In the case of the splashing jet (figure 12 c and d), the underlying process can also be split into
two distinct types. In the pre-breaking case a laterally uniform planar sheet moves up the vertical
wall (see top panel of figure 8 and figure 12 c). This type is directly comparable to the deposition
type of the droplet impact, but with the thinning sheet spreading upwards rather than radially.
In a similar way the flip-through jet can be considered as a planar version of the axisymmetric
crown splash. Here the wave impact ejects a fluid sheet, bounded by a rim at an acute angle to
the wall (see figures 5 and also 12 d). Unidirectional longitudinal stretching of the sheet results
in rapid thinning with transverse undulations. As the sheet stretches these lead to longitudinal
ruptures forming a vertical array of ligaments and detachment of the rim from the sheet (figure 7).
This mode is never observed in crown splashes with radical expansion. The observation that the
unstable behaviour of the rim sheet system is dominated by longitudinal stretching is the basic
assumption for the present mathematical model.

(f) Scaling the jet motion

The rim size and the sheet thickness observed in the experiments can be roughly estimated from
the back-light image intensity (see Section 2). The rim radius, ae, is in the range of 1.0 to 1.5 mm
during the flip-through event, while the sheet thickness, he, just before rupturing is less than 0.1
mm. Consequently, the representative lengths, ae ≈ 1.0 mm and he ≈ 0.1 mm have been used for
scaling the dynamics of the flip-through jets.

Based on these thicknesses a characteristic velocity and time-scales can be estimated. The
retracting behaviour of the sheet is associated with the Taylor-Culick velocity, vret =

√
2γ/ρlhe,

which is estimated, using the dimensions from the experiments to be about 1.2ms−1. Here, ρl is
the density of liquid and γ is the surface tension. Whilst this is less than the initial velocity of the
jet (∼ 6.7ms−1, see figure 6) it is of a comparable order of magnitude. The time scale associated
with the capillary motion of the sheet is τch =

√
ρlh

3
e/γ, as the sheet thins and he → 0 this time

scale becomes shorter, accelerating the capillary behaviour on the sheet. In a similar way the
capillary time scale for the rim is τcr =

√
ρla

3
e/γ, as the rim thickens during the retraction, in

contrast with the sheet, the time scale becomes longer and thus the capillary processes on the rim
slow down. Based on the experimental measurements these time scales are τch ≈ 1.2× 10−4 s

and τcr ≈ 3.1× 10−3 s. At the initial stage of jet formation the rim and sheet thicknesses are
comparable, so consequently O (τcr)∼O (τch). With simultaneous onsets of the rim growth and
sheet thinning, however, the increasing difference between τcr and τch may lead the sequence of
rim and sheet behaviour observed with time lags shown in figure 7. Transverse undulations in
the sheet thickness are first observed (figure 7 a). As the sheet thins there is rapid growth in these
undulations eventually leading to rupture (figure 7 b – c), while slower transverse deformations
of the rim occur for longer duration, eventually leading to fingering (figure 7 b – f ).

The viscous time scales can also be estimated from the experimental measurements; for the
sheet, τvh = h2i ν

−1 ≈ 0.01 s and for the rim, τvr = a2i ν
−1 ≈ 1.0 s. Since both these times scales are

significantly longer than those associated with the capillary processes we conclude that viscous
effects play only a minor roll in the initial unstable motions of the jet. While the effects of
viscous shear increase with decreasing thickness, the Ohnesorge numbers for the sheet, Ohh =

ν
√

ρ/hiγ = 0.0117, and rim, Ohr = ν
√

ρ/aiγ = 0.0037, indicate that viscous effects found in both
systems will be small. For simplicity, we therefore assume inviscid flow in the present analysis.

Lastly, the possibility of Kelvin-Helmholtz (K-H) type of instability at the interface of the jet
is considered. The critical wavenumber kc of the K-H instability for the air-water interface of
a sheet with finite thickness under the long wave approximation, derived from the dispersion
relationship, is

kc ≈ ρg (vg − vl)
2 /γ = ρg∆v2/γ (3.1)

where vg , vl and ρg are the fluid velocities for gas and liquid, and the density for gas, respectively.
Using kc the critical Weber number for the sheet can be calculated, Wec = 2πρl∆v2/γkc ≈ 1500.
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Figure 13. Coordinates and quantities in the rim-sheet system (left) and schematic representation of evolution of the

perturbations (right).

Since the Weber number for the observed velocity and length scales in the present experiments is
56.2 we can safely ignore K-H instability in the following analysis.

4. Linear stability analysis
In this section a linear stability analysis of the transverse disturbances in rim-sheet system is
performed. Based on the discussion of the previous section the fluid system will be treated as
being incompressible, inviscid and irrotational with no tangential shear on the interface. We
note that, by analogy with crown splashes [10,12], the capillary effect plays an important role
in the axial deformation of the rim. In the flip-through case there is an additional transverse
instability mode triggered through the undulations in the sheet and this may be coupled to the
rim instability, leading to breakup of the rim-sheet system.

(a) Governing equation

The model of the rim-sheet system, presented here, is based on mass and momentum conservation
for the both of the rim and fluid sheet of incompressible inviscid fluid, which is derived as an
extension of Agbaglah et al. [12] . While the axial stretching of the rim, due to the radial crown
expansion, decreases the amplitude of the perturbation [13], no such assumption can be made
here as the planar sheet is initially ejected from the two-dimensional wave crest without any
initial transverse stretching (Section 3 (f)).

The longitudinal oscillation of the sheet thickness, whose amplitude decreases with the
distance to the rim, have also been observed during retraction for low Ohnesorge number flows
[30,31]. As yet the presence of any longitudinal oscillation has not been confirmed in the present
experiments, however, the generation mechanism for the observed transverse variations in sheet
thickness may be interpreted as a re-orientation of capillary waves on a thin stretched sheet [20].
As this may modify the instability it should be included in the model of flip-through jets. Explicit
mass and momentum exchanges between the rim and thinning sheet are also provided in the
present model for describing the fully coupled dynamics of the rim and sheet system. Finally,
since the length-scale characterising the deformation process is very small gravitational effects
can be neglected.

The edge of the rising planar sheet, of uniform thickness h(x, t), is bounded by a rim,
with radius a(x, t), located at a vertical elevation of η(x, t). The horizontal and vertical fluid
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velocities of the rim (ur(x, t), vr(x, t)) and the film (uf (x, t), vf (x, t)) are defined as shown in
figure 13. The equations describing the mass and momentum conservation, based on a long-wave
approximation, are:

∂η

∂t
+ ur

∂η

∂x
= vr (4.1)

a
∂a

∂t
+

a2

2

∂ur
∂x

+ ura
∂a

∂x
=

h

2π

(
vf − vr

)
(4.2)

ρπa2
(
∂ur
∂t

+ ur
∂ur
∂x

)
= πγ

∂a

∂x
+ πγ

∂

∂x
a2

∂2a

∂x2
+ 2γ

∂η

∂x
+ ρh

(
vf − vr

) (
uf − ur

)
(4.3)

ρπa2
(
∂vr
∂t

+ ur
∂vr
∂x

)
= 2πγ

(
∂a

∂x

∂η

∂x
+ a

∂2η

∂x2

)
− 2γ + ρh

(
vf − vr

)2 (4.4)

where ρ is the density of the liquid and γ is the surface tension. The last terms of the right hand
side of equations (4.2) – (4.4) present mass and momentum fluxes of liquid entering the rim from
the sheet during the retraction [10].

Roisman et al. [10], Agbaglar et al. [12], all assume constant sheet thickness and velocity in
the previous studies for their work on the crown splash, this is an appropriate assumption in
describing the rim dynamics for spatially uniform and steady state of the sheet. Roisman [14]
introduced a constant velocity gradient on the undeformable free sheet to model the effect of
steady stretching on the rim instability. These previous studies examined a simplified rim model
assuming that the rim does not have an inverse effect on flow in the film [32]. However, in the
flip-through event, the presence of free rims may affect flow inside the sheet resulting in thinning
deformation (see figure 11). In this case, the sheet dynamics should be solved simultaneously
with the rim model (4.2) – (4.4) [32]. The mass and momentum conservation equations for a thin
inviscid liquid sheet [19,32] are:

∂h

∂t
+

∂hu

∂x
+

∂hv

∂y
= 0, (4.5)

∂hu

∂t
+

∂hu2

∂x
+

∂huv

∂y
= γ

∂

∂x
h
∂2h

∂x2
, and (4.6)

∂hv

∂t
+

∂huv

∂x
+

∂hv2

∂y
= 0. (4.7)

In the flip-through case, variable transverse motion of a thinning sheet has been observed (see
figure 11); consequently the sheet parameters h(x, t), uf (x, t), vf (x, t) are functions of time as
well as space (x) assuming vertically uniform flow in the sheet. As the mass flux from the sheet
to the rim in the retraction (right hand side of equation (4.2)) decreases mass in the entire sheet,
integrating (4.5) from y= 0 to η, the mass balance of the sheet yields

η

(
∂h

∂t
+ uf

∂h

∂x
+ h

∂uf
∂x

)
=−h

(
vf − vr

)
. (4.8)

In the same way, the momentum equations (4.6) and (4.7), vertically integrated from y= 0 to η,
represent the mechanical balance of inertia of the sheet, surface tension and the momentum flux
transfered from the sheet to the rim;

ρhη

(
∂uf
∂t

+ uf
∂uf
∂x

)
= γ

∂

∂x
hη

∂2h

∂x2
− ρh

(
vf − vr

) (
uf − ur

)
(4.9)

ρhη

(
∂vf
∂t

+ uf
∂vf
∂x

)
=−ρh

(
vf − vr

)2 (4.10)

Equations (4.8) – (4.10) represent the capillary behaviour of the thinning sheet and are fully
coupled with motion of the rim through flux exchanges of mass and momentum.



16

rspa.royalsocietypublishing.org
P

roc
R

S
oc

A
0000000

..........................................................

All the variables are nondimensionalised with the reference rim radius ar and capillary
time τ =

√
ρa3r/γ; x∗ = x/ar , t∗ =

√
γ/ρa3rt, η∗ = η/ar , a∗ = a/ar , h∗ = h/ar , (u∗r , v∗r , u∗f , v

∗
f ) =

(ur, vr, uf , vf )
√

ρar/γ. The resulting dimensionless form of the above equation system is:

∂η∗

∂t∗
+ u∗r

∂η∗

∂x∗
= v∗r (4.11)

a∗
∂a∗

∂t∗
+

a∗2

2

∂u∗r
∂x∗

+ u∗ra
∗ ∂a

∗

∂x∗
=

h∗

2π

(
v∗f − v∗r

)
(4.12)

πa∗2
(
∂u∗r
∂t∗

+ u∗r
∂u∗r
∂x∗

)
=

∂a∗

∂x∗
+ 2a∗

∂a∗

∂x∗
∂2a∗

∂x∗2
+ a2

∂3a∗

∂x∗3
+

2

π

∂η∗

∂x∗
+

h∗

π

(
v∗f − v∗r

) (
u∗f − u∗r

)
(4.13)

πa∗2
(
∂v∗r
∂t∗

+ u∗r
∂v∗r
∂x∗

)
= 2

(
∂a∗

∂x∗
∂η∗

∂x∗
+ a∗

∂2η∗

∂x∗2

)
− 2

π
+

h∗

π

(
v∗f − v∗r

)2 (4.14)

η∗
(
∂h∗

∂t∗
+ u∗f

∂h∗

∂x∗
+ h∗

∂u∗f
∂x∗

)
=−h∗

(
v∗f − v∗r

)
(4.15)

η∗
(
∂u∗f
∂t∗

+ u∗f
∂u∗f
∂x∗

)
=

1

h∗
∂h∗η∗

∂x∗
∂2h∗

∂x∗2
− η∗

∂3h∗

∂x∗3
−
(
v∗f − v∗r

) (
u∗f − u∗r

)
(4.16)

η∗
(
∂v∗f
∂t∗

+ u∗f
∂v∗f
∂x∗

)
=−

(
v∗f − v∗r

)2 (4.17)

This set of the equations (4.11) – (4.17) describes fluid motion of the coupled rim-sheet system
occurring in the flip-through process. They are used as the governing system of equations for the
stability analysis. Henceforth, the superscript ∗ is omitted for clarity.

(b) First order analysis

Initially a spatially independent flow which is uniform in the cross-sheet, x, direction is
considered. Such a system has a uniform rim of radius, a0(t), rim location, η0(t), and
rise velocity, vr0(t). It is attached to a uniform rising fluid sheet of thickness, h0(t),
with velocity, vf0(t). Introducing small perturbations to the base state (see figure 13 right)
gives η(x, t) = η0(t) + η1(x, t), a(x, t) = a0(t) + a1(x, t), ur(x, t) = ur1(x, t), vr(x, t) = vr0(t) +

vr1(x, t), h(x, t) = h0(t) + h1(x, t), uf (x, t) = uf1(x, t), and vf (x, t) = vf0(t) + vf1(x, t). It should
be noted that in this case, where there is no transverse stretching and the impact is driven by a
laterally uniform wave impact [4], there are no transverse base velocities for the rim or the sheet.

Substituting these variables into equations (4.11) – (4.17), the equation system for the first order
perturbations is given by

∂η1
∂t

= vr1 (4.18)

a0
∂a1
∂t

+ a1
∂a0
∂t

+
a20
2

∂ur1
∂x

=
h0
2π

(
vf1 − vr1

)
+

h1
2π

w0 (4.19)

a20
∂ur1
∂t

=
∂a1
∂x

+ a20
∂3a1
∂x3

+
2

π

∂η1
∂x

+
h0
π
w0
(
uf1 − ur1

)
(4.20)

a20
∂vr1
∂t

+ 2a0a1
∂vr0
∂t

= 2a0
∂2η1
∂x2

+ 2
h0
π
w0
(
vf1 − vr1

)
+

h1
π
w2
0 (4.21)

η1
∂h0
∂t

+ η0
∂h1
∂t

+ η0h0
∂uf1
∂x

=−h0
(
vf1 − vr1

)
− h1w0 (4.22)

η0
∂uf1
∂t

= η0
∂3h1
∂x3

− w0
(
uf1 − ur1

)
(4.23)

η1
∂vf0
∂t

+ η0
∂vf1
∂t

=−2w0
(
vf1 − vr1

)
(4.24)

where the relative vertical velocity for the base state of the rim and sheet motion are w0 = vf0 −
vr0.
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(c) Base flow

In the current analysis, the base solutions for the zeroth order variables at the initial state
of the system are considered, assuming that base flow changes much more slowly than the
perturbations. Consequently any temporal changes of the base state may be neglected. This, so-
called, frozen approximation has often been used for linear stability analysis with time-variant
base solutions [10,12]. In this case, equations (4.12) and (4.14) provides the relations of the initial
rim radius ai, rim velocity vri and sheet thickness hi;

a2i ȧi
2 =

h2i
4π2

w2
i (4.25)

a2i ˙vri =− 2

π
+

hi
π
w2
i (4.26)

where wi is the initial relative vertical velocity between vri and the sheet velocity vfi. Using
the above equations a relationship between the temporal change of the initial radius, ȧi, and the
acceleration of the rim, ˙vri can be found,

ȧi
2 =

hi
4π

(
˙vri +

2

πa2i

)
. (4.27)

In the same way the equations for the planar sheet may be derived from equations (4.15) and
(4.17),

ḣi
2
=−h2i

ηi
˙vfi. (4.28)

As both ȧi and ḣi in equations (4.27) and (4.28) are determined from the initial constant
parameters, ai, hi, ηi and ˙vri (which are frozen), we have

˙vfi =− π

hiηi

(
a2i ˙vri +

2

π

)
. (4.29)

There are thus four frozen quantities ai, hi, ˙vri and ηi which determine the base state of the system
and which are used as parameters in the current analysis. The equation system (4.18) – (4.24) may
be linearised with constant coefficients determined from the frozen parameters; a0 ≈ ai, h0 ≈ hi,
η0 ≈ ηi, vr0 ≈ vri, and vf0 ≈ vfi. It should be noted that the initial sheet length, ηi, is used as a
parameter to describe the degree of the thinning effect owing to the stretching of the sheet rather
than an exact measure of the initial sheet length.

(d) Solutions for perturbations

Introducing perturbational of the from

(η1, a1, vr1, ur1, h1, vf1, uf1) = (η′, a′, v′, u′r, h
′, v′f , u

′
f )e

σt+ikx (4.30)

where σ is the growth rate and k is the wavenumber, into (4.15) – (4.21) and solving gives:

ση′ − v′r = 0 (4.31)

a′ (σai + ȧi) +
ik

2
a2i u

′
r +

hi
2π

v′r −
hi
2π

v′f − wi

2π
h′ = 0 (4.32)

− 2ik

π
η′ + ik

(
k2a2i − 1

)
a′ +

(
σa2i +

hiwi

π

)
u′r −

hiwi

π
u′f = 0 (4.33)

2k2aiη
′ + 2ai ˙vria

′ +

(
σa2i +

2hiwi

π

)
v′r −

2hiwi

π
v′f − w2

i

π
h′ = 0 (4.34)

ḣiη
′ + (σηi + wi)h

′ − hiv
′
r + hiv

′
f + ikηihiu

′
f = 0 (4.35)

ik3ηih
′ − wiu

′
r + (σηi + wi)u

′
f = 0 (4.36)



18

rspa.royalsocietypublishing.org
P

roc
R

S
oc

A
0000000

..........................................................

˙vfiη
′ + (σηi + 2wi) v

′
f − 2wiv

′
r = 0. (4.37)

Writing this system in matrix form, as

MA= 0 (4.38)

where

M=



σ 0 0 −1 0 0 0

0 σai + ȧi ika2i /2 hi/2π −wi/2π 0 −hi/2π

−2ik/π ik
(
k2a2i − 1

)
σa2i + hiwi/π 0 0 −hiwi/π 0

2k2ai 2ai ˙vri 0 σa2i + 2hiwi/π −wi/π 0 −2hiwi/π

ḣi 0 0 −hi σηi + wi ikηihi hi
0 0 −wi 0 ik3ηi σηi + wi 0

˙vfi 0 0 −2wi 0 0 σηi + 2wi


(4.39)

and

A=
(

η′ a′ u′r v′r h′ u′f v′f

)T
. (4.40)

The derivatives of frozen parameters, ȧi, ḣi, ˙vri, ˙vfi, in M can be expressed in terms of four
parameters, ηi, ai, hi and wi by using equations (4.27) – (4.29). The determinant of M must be
zero to provide non-zero solutions;

det (M) = 0 (4.41)

which leads to the eigenvalue equation described by a polynomial of degree 7. The perturbations
grow in an unstable system when σ > 0, and attenuate when σ < 0. Multiple eigenvalues for an
identical wavenumber may be obtained as solutions of the polynomial equation, depending on
the initial frozen conditions of the system.

(e) Mechanical effects of a thinning film

Here we will discuss the effect of the thinning of the rising sheet on the dynamics of the rim-sheet
system. Thinning drives the deformation process of the flip-through jets observed in figures 2 and
7, which is distinct from that observed in crown splashes.

The initial sheet length ηi can be considered as a parameter describing the degree of thinning,
since the thickness of the whole sheet over length ηi is assumed to be uniformly reduced by the
transfer of mass to the growing rim in the space independent base state. Thus, the thickness of a
longer sheet undergoes less change for particular flux.

Assuming an infinitely long sheet, ηi ≫ h0, ḣi ≈ 0, ˙vfi ≈ 0, equations (4.35) – (4.37) provide
explicit relations for the perturbed quantities describing the rim and sheet;

h′ =
hiwiη

2
i k

4

(σηi + wi)
4 + ηik3

u′r ≈
hiwiη

2
i k

4

(wi + ηiσ)
4
u′r +O(k6) (4.42)

u′f =
(σηi + wi)

3 wi

(σηi + wi)
4 + ηik3

u′r ≈ u′r
wi

wi + σηi
+O(k3) (4.43)

v′f =
2wi

σηi + 2wi
v′r (4.44)

The perturbed sheet quantities u′f , v′f and h′ become negligible in the case where σηi ≫wi for
real positive σ, under these circumstances equations (4.31) – (4.34) reduce to the retraction based
rim instability model of Agbaglah et al. [12].
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In the special case of no momentum exchange between the rim and sheet, wi = 0 (or ˙vfi = 0),
equations (4.22) – (4.24) are reduced to be a closed system for the sheet;

∂h1
∂t

+ hi
∂uf1
∂x

= 0 (4.45)

∂uf1
∂t

− ∂3h1
∂x3

= 0 (4.46)

∂vf1
∂t

= 0 (4.47)

While equation (4.47) indicates constant vf1, equations (4.45) and (4.46) represent the dynamic
beam equations;

∂2h1
∂t2

+ hi
∂4h1
∂x4

= 0,
∂2uf1
∂t2

+ hi
∂4uf1
∂x4

= 0, (4.48)

which gives the dispersion relation ω2 = hik
4 for periodically oscillating capillary waves in x-

direction. This solution corresponds to symmetrical waves on a thin sheet at the long-wave limit
presented by Taylor [15], and that amplification of this type of capillary waves on a thinning
sheet is described by Longuet-Higgins [20] (see also figure 13). Since there is no growth of the
perturbation in this closed equation system for the sheet, no capillary contribution is provided to
the rim dynamics in this case of no sheet stretch.

The eigenvalue equation for (4.31) – (4.34) at this limit shows an RT instability mode will be
present, as follows:

a2i σ
4
RT + k2ai/2

(
3 + k2a2i

)
σ2
RT + k2

(
2 ˙vri/π − k2 + k4a2i

)
= 0 (4.49)

At the lowest wave number k→ 0, the positive eigenvalue is approximated by

σRT ≡ (2/π)1/4
(
±
√

− ˙vri/ai

)1/2
k1/2 +O(k3/2) (4.50)

In the same way, for ˙vri = 0, the eigenvalue for RP mode as k→ 0 is approximated by

σRP ≡ (2ai)
−1/2 k +O(k3) (4.51)

In another limit ηi → 0, the perturbed equation system (4.35) – (4.37) for the sheet is
approximated by

ḣiη
′ + wih

′ + hi
(
v′f − v′r

)
= 0 (4.52)

wi

(
u′f − u′r

)
= 0 (4.53)

˙vfiη
′ + 2wi

(
v′f − v′r

)
= 0 (4.54)

Using these equations the perturbed thickness h′ and the perturbed rim location η′ can be related:

h′ =
hi
2ηi

η′. (4.55)

With this relation, the rim-sheet system (4.31) – (4.37) is reduced to be the simple rim system with
a thinning rate of the sheet ḣi as a parameter of sheet stretch;

(σai + ȧi) a
′ +

ik

2
a2i u

′
r + ḣiη

′ = 0 (4.56)

− 2ik

π
η′ + ik

(
k2a2i − 1

)
a′ + σa2i u

′
r = 0 (4.57)(

2k2ai +
hi ˙vfi
π

+ σ2a2i +
wiḣi
2π

)
η′ + 2ai ˙vria

′ = 0 (4.58)

Roisman et al. [33] introduced the local velocity gradient in the sheet ∂vfi/∂y as a parameter
describing rate of stretching into the model of the rim behaviour. In the current model, the
gradient of sheet velocity is modelled as ∂vfi/∂y≈wi/ηi =−ḣi/hi. The approximated equations
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Figure 14. Growth rates of disturbances in the rim-sheet system as a function of the wavenumber in case ηi = 1.0× 107

and ai = 1.0 (circle plot), and ones obtained by the rim model by Agbaglah et al. [12] (line plot); (a) ˙vri = 0, (b) ˙vri =

−0.5.

(4.56) – (4.58) are consistent with the rim model of Roisman et al. [33] except the viscous shear
force which is ignored in the current model.

In the present experimental results we find transitional sheet dynamics, where a thick sheet is
ejected from the standing wave crest at high acceleration leading to rapid thinning as the sheet
elongates longitudinally (see figure 11). In this case the transitional sheet lengths are modelled
by the finite, moderate, range of ηi presenting a case which has not been analysed previously.
For finite moderate sheet lengths (with both thinning and capillary effects) more complex mass
and momentum exchanges between the rim and sheet induce multiple instability modes in the
rim-sheet system.

(f) Results

The unstable modes of the coupled rim-sheet system are first compared with the rim instability of
a crown splash. This comparison aims to identify the contributions of the sheet dynamics to the
behaviour of the splashing jet system.

As already discussed, the current model with no thinning effect (i.e. ηi →∞) asymptotes to
the rim of a crown splash [12]. The estimated growth rates with a very long fluid sheet, ηi =
1.0× 107, are completely consistent with the previous rim model for any initial rim conditions
(see figure 14). The models provide the fundamental feature of the rim stability; growth rate
with the most unstable wavenumber at k∼ 0.7, and destabilisation owing to decrease of hi and
˙vri. As hi → 0 there can be no flux exchange of mass and momentum between the rim and the

sheet, consequently the growth rate at the lowest wave number is proportional to k (equation
(4.51)) and thus follows the RP mechanism in case ˙vri = 0 (figure 14 a). In the case of a thin sheet
with negative acceleration ˙vri =−0.5(figure 14 b), the RT mode defines a steeper gradient of the
growth rate at the lowest wave number (as σ∝

√
k, see equation (4.50)). The agreement, in terms

of the growth rates changes, between the present and previous study gives confidence that the
presented rim-sheet model provides a reasonable description of both RP and RT mechanisms
responsible for triggering the rim deformation.

Multiple instability modes emerge in competing mechanisms between capillary, retraction
and sheet stretch mechanisms of the rim-sheet system, which are sensitive to the initial sheet
thickness and rim acceleration. The largest and second largest eigenvalues for the case of ηi = 10

and hi = 0.1 are shown in figure 15. While the wave number achieving the maximum growth
rate (k∼ 0.7) is identical with those in figure 14, the unstable range extends into the low wave
numbers. Roisman et al. [33] introduced the velocity gradient in the sheet, S = ∂vfi/∂y as a
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Figure 15. Growth rates of the rim-sheet system as a function of wave number for η=10, hi=0.1, ai=1.0; ˙vri ≤ 0 (left),

˙vri ≥ 0 (right). Filled and empty circles denote the first and second eigenvalues, respectively. η=10, hi=0.1.

Figure 16. Dependencies of the relative rim size to the growth rates of disturbances as a function of wavenumber at

˙vri = 0.0 and hi = 0.1; ηi = 1.0 (left), ηi = 10.0 (middle), ηi = 100.0 (right).

model of stretch effect to the rim stability of a crown splash. They found that destabilisation
of the rim at low wave numbers in 0.1≤ S ≤ 5.0, which is related to the weakening of the
capillary effects, is less pronounced for long waves. As ηi → 0 the present model approaches
that of Roisman et al. (2007), see Section 4 (e). In figure 15 the velocity gradient S ≈wi/ηi lies
in the range 0.32 to 0.54. This is within the range discussed by Roisman indicating that an
identical mechanism may be responsible for destabilising the long-wave motions. This can be
readily verified from the eigenvalues, σs, for equations (4.56) – (4.58) at k= 0 for the simplest case

of ˙vri = 0; σs =−ȧi/ai, and ±
√

−2hi ˙vfi − ḣivfi/
√
2πai. The eigenvalue σs takes real positive

value when the sheet thinning parameters ˙vfi < 0 and ḣi < 0, which clearly indicates unstable
laterally uniform response ( as k→ 0) on the stretched sheet regardless of surface tension. It is also
interesting to observe that while the first eigenvalues decrease with positive rim acceleration ˙vri
(figure 15 right), the second eigenvalues increases becoming positive, this results in two maximal
growth rates at k∼ 0.7 for the first eigenvalue and in low wave numbers of k < 0.5 for the
second one. This is relevant to the observed double spectrum peaks for the surface deformation
(figure 10).

We will now consider the relative importance of the capillary and stretch effects during the
retraction process on the stability of the rim-sheet system. While the long wave assumption is
not valid for shorter scale fluctuations, k > 1, the growth rates of features of the rim and sheet
associated with the largest eigenvalues (figure 16) may still be interpreted. For the case of high
thinning rate of the sheet (ηi = 1.0), the systems with small rims, ai ≤ 0.1, are unstable over
the whole range of wave numbers. Longuet-Higgins [20] showed the growth amplitude (ζ′) of
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Figure 17. Growth rates of the rim-sheet system as a function of wave number for ai=1.0; ˙vri =−0.5 (left), ˙vri = 0.0

(middle) and ˙vri = 0.5 (right), (a) ηi = 1.0, (b) ηi = 5.0, (c) ηi = 10.0 and (d) ηi = 100.0. Filled and empty circles

denote the first and second eigenvalues, respectively.

perturbed surface displacements for symmetric long waves on a thin sheet, with thickness 2h,
stretched in the direction perpendicular to wave propagation on the basis of conservation of wave
action is ζ′/h∝ h−1/4, indicating the relative amplitude grows on the stretched sheet regardless
of wave number. We have also confirmed larger growth rates for thinner sheets at high rate
of stretch. The sheet instability at the lowest wave number (amplifications of laterally uniform
perturbations) is owing to unsteady effect of the thinning sheet as discussed above, which may
results in rapid decrease of the perturbed sheet thickness along the neck of the lateral rim at
the initial stage of flip-through in figure 7 (a) – (c) (see also figure 2). The increase of rim size
ai contributes to stabilise the system especially in high wave numbers, since the thinning effect
relatively weakens (positive σs decreases with ai) and thus the capillary effect accounts for the
decay of the amplification rate in the regime of high wave numbers. As the sheet stretching
attenuates, the systems for any rim size are stabilised over the entire wave numbers especially
in the lowest wave numbers (see figure 16 middle and right).
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Figure 17 shows the comparisons of the growth rates as functions of the sheet thickness,
thinning rate and initial rim acceleration. In the case of high thinning rate, ηi = 1.0, the stretching
effect on the sheet governs the stability of the system, resulting in significant growth rates
over the entire long-wave regime, 0≤ k≤ 1, for (a) ˙vri =−0.5. It is interesting to find that the
positive second eigenvalue appears at the peak wave number of k∼ 0.5 in (a) ˙vri = 0.0, indicating
the emergence of another instability mode through coupled effects of the rim retraction and
sheet stretch. The presence of real positive first and second eigenvalues indicates instability
growths with two distinct time-scales for the perturbations at the identical wave number; that
is, simultaneous emergence of faster and slower amplifications for two instability modes, which
were never reported in the previous analyses for the crown splash. The two different time-
scales characterising capillary motions of the sheet τch and rim τcr , experimentally estimated
in Section 3 (f), may be relevant to the multiple instability growth modes. In (a) ˙vri = 0.5, the
second eigenvalue increases in proportion to wave number to be comparable with the first
eigenvalue at k∼ 0.6 regardless of the sheet thickness, which also indicates the two instability
modes simultaneously occurring in 0<k < 0.6, while no instability amplification is observed in
k > 0.6. With increase of ηi for ˙vri =−0.5, as the capillary effect becomes dominant, the growth
rate increases at k∼ 0.7 (see (b) and (c) ˙vri =−0.5). Two growth rate maxima are observed at
the lowest wave number and at k∼ 0.7 for the neutral rim acceleration with ηi= 5.0 and 10.0
(see (b) and (c) ˙vri = 0.0), indicating simultaneous growth of the perturbed fluid motions at the
two distinct length-scales. Since a thick sheet is insensitive to the capillary behaviour, the system
is stabilised with increasing hi for any cases, which may result in fundamental differences in
the deformation of a thicker jet formed at pre-breaking impact (top panel of figure 8) from the
flip-through case (figure 7). Figure 17 (d) ˙vri = -0.5 shows the similar features of the instability
growth to the case of no sheet stretch (figure 14 (b)), that is, RP and RT mechanisms destabilise
the perturbed rim without available stretch effect. In positive rim acceleration, ˙vri = 0.5, the
lowest wave number range containing two instability modes narrows with attenuation of the
sheet stretch (increasing ηi). The wavenumber selections for these multiple instability modes,
depending on transitions of the rim acceleration, sheet thickness and rim size, may occur during
the flip-through event.

5. Mechanisms of transverse deformation of the flip-through jets
Although the frozen approximation used in the stability analysis cannot provide fully
time-dependent stabilities throughout the event, the assumption of much faster growth of
perturbations than the base state deformation of the jet still allows the use of the growth rates
for analytical parameters corresponding to the experimental ones at sequential stages of the
flip-through (as shown in figure 7). Figure 18 shows the observed spectra for the transverse
deformation of the flip-through jets at the phase achieving the maximum value and the vertical
distributions of the observed rim acceleration ˙vri, which are non-dimensionalised with the same
characteristic length and time scales to the stability analysis ( rim radius ae and capillary time τcr ,
see Section 3 (f)). The wave numbers for the observed spectrum are explicitly compared with the
ones for the analytical instability growth rates for the corresponding ˙vri. In figure 18 (right), the
initial rim acceleration in the case of flip-through (x = 0.0 mm) decreases from ˙vri ∼+0.5 at z = 100
mm to ˙vri ∼ -0.5 at z = 200 mm owing to drag force and gravity. Therefore the rim accelerations,
˙vri= -0.5, 0.0 and 0.5, used in figure 17 cover the experimental range of the acceleration in the early

stage of flip-through. In the flip-through case (x= 0.0 mm) of figure 18 (left), a single spectral
peak initially appears at k∼ 0.5 (red broken line at z =100 mm), which subsequently evolves into
a wider width spectrum.We find that the peak position, kp1, moves to lower wave numbers with
the measurement level z; kp1 ∼ 0.5 at z= 100 mm, 0.4 at z= 150 mm, and 0.35 at z= 200 mm (see red
arrows in figure 18 left), and that the peak width extends toward lower wave numbers. Another
spectrum peak then emerges at kp2 ∼0.7 at z= 200 mm, forming double peak spectrum (red solid
line). In the quasi-flip-through, the identical wavenumber shift (kp1 ∼ 0.35 to 0.3, see black arrows)
and the width extension for the lower wavenumber peak are observed while the peak position for
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Figure 18. Dimensionless transverse wavenumber spectra of the integrated lengths for free-surfaces (left), and vertical

distributions of dimensionless rim acceleration (right).

the higher one (kp2 ∼ 0.7) is unchanged. These transitional features of the spectrum are relevant
to the wavenumber selections during the transitional base state as discussed bellow.

In the flip-through, at the level z ≤ 100 mm of figure 18 (right), the strong impact pressures
rapidly accelerate the up rushing planar sheet. Since the stretching, and consequent thinning,
of the sheet with positive acceleration ( ˙vri ∼ 0.5) governs the initial dynamics, the instability
growth for the base state may correspond to (a) ˙vri = 0.5 in figure 17. The dominant instability
modes occurring in the long-wave regime k≤ 0.6 may be associated with the observed prominent
spectrum in k∼ 0.4 – 0.6 at z = 100 mm. It should be noted that the observed spectrum for the
integrate length only reflects vertical displacement of the edges of jets not thickness (Section 3 (d))
while the analytical instability at the lowest numbers is relevant to long-scale variations of the
sheet thickness. This may cause discrepancies between the observed spectrum and the analytical
growth rates in low wave numbers. As the rim acceleration then decreases to zero at z =150 mm
before achieving ˙vri ∼−0.5 at z =200 mm (figure 18 right), the sheet stretch attenuates in the
transitional state corresponding to (a) – (c) ˙vri = 0.0 in figure 17. In these states with increasing
ηi, the capillary instability with the growth at k∼ 0.7 becomes the dominant mechanism for the
unstable rim-sheet behaviour, since the maximum growth rates at the lowest wave number decay
as do the second eigenvalues in the middle range. We also find the wavenumber shift for the
lower range of the maximal growth rates as the sheet stretch attenuates (ηi increases); the unstable
range of k < 0.65 for ηi = 1.0, k < 0.3 for ηi = 5.0, and k < 0.2 for ηi = 10.0. The variations of
the analytical unstable ranges suggest the attenuation of the sheet stretch in the decelerating
jets can attain the wavenumber shift of the spectrum peak, kp1, and the extension of the peak
width toward low wave numbers as the jet rises. Finally, the RP and RT instabilities govern the
perturbation growth in the retraction process under less effect of the sheet stretch (see figure 17
(c) or (d) ˙vri =−0.5), which achieves the most unstable wave number of k∼ 0.7 corresponding to
the higher one of the peak wave numbers (kp2) observed at z=200 mm in figure 18.

Although the current analysis does not explain large surface displacements beyond linear
perturbations, the wavenumber selections for the instability modes responding to sequential base
flow states consistently interpret a series of the deformations of the rim and the sheet at the
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early stage in figure 7. Laterally uniform thinning on the sheet along the neck of the rim first
emerges together with long-scale variations of the sheet thickness at about 1 – 2 cm intervals
(stripe patterns of the image brightness) owing to the sheet stretch at phases (a) and (b), which
corresponds to the initial instability growth in low wave numbers (figure 17 (a) ˙vri = 0.5). The
fully thinned sheet is then partially ruptured with the identical wavelength for the undulating
sheet thickness. The wavelength increases up to several cm in phases (c) and (d), owing to the
wavenumber shift. The fingers are formed at the intervals of less than 1 cm, corresponding
to the maximum capillary instability growth at k∼ 0.7, on the rim vertically undulating in
syncronisation with the long-scale sheet deformations.

On the other hand, there are apparent differences in the dominant wave numbers for pre-
breaking case (blue line in figure 18) and those in the flip-through event. This may be caused by
the modification of unstable behaviours in the relatively thick, initial, jet (which limits capillary
effects) and also through viscous effects at the wall contacting the liquid sheet. This maybe related
to fingering instability of a spreading film [25].

6. Conclusions
The unstable behaviour and transverse deformation of violent up rushing fluid jets generated by
a flip-trough event occurring when a steep breaking wave impacts on a vertical wall have been
characterised using image analysis. Regular waves generated in a flume, shoal and then break on
to a back-lit vertical wall, where the up rushing jet is captured with a high speed video camera.

Analysis of the video images shows that the up rushing jet is formed of a fluid sheet with a
free rim at the leading edge, similar to that observed in the well-known crown splash. The rim
undulates about the transverse axis to form organised regular cusps which are amplified and
eventually form finger jets.

On the other hand, we have found inherent behaviours of the rim bounded sheet that are
distinct from crown splashes. As the sheet extends from the standing wave crest it undergoes
rapid stretching and consequently thinning, forming transverse undulations in sheet thickness.
These undulations in the sheet are amplified by stretching and eventually rupture the sheet to
form regular vertical ligaments. The finger shaped rim sections connected to these ligaments
become detached from the main jet and break up to form spray. Computing the wave number
spectra of the transverse displacements of the flip-through jet shows two dominant wave
numbers.

A linear stability analysis of a model frozen, coupled, rim-sheet system has been performed.
In this analysis the thinning sheet is modelled using a sheet length parameter to represent the
stretching of the accelerating fluid sheet. A comparison of growth rates with respect to wave
numbers between the present model (with no stretching) and the results presented by Agbaglah
et al. [12], for rim instability under capillary and retraction dynamics, has been used to validate
the model.

The relative mechanical roles played by the stretching and capillary effects acting on the rim
on the stability of the fluid sheet are discussed in terms of linear perturbations. A system with a
small rim and a highly stretched sheet is shown to be unstable over the entire long-wave range.
According to Longuet-Higgins [20], the relative amplitude of symmetric capillary waves with
respect to thickness of a thin sheet (without a rim) stretched in the direction perpendicular to
propagation is proportional to -1/4 power of the thickness at the long-wave regime regardless of
wave number; in other words, the perturbed surface displacements is amplified on a thinning
sheet as a consequence of stretching, which supports the present analysis. The sheet stretch
induces the instability associated with the lowest wave number, resulting in laterally uniform
decrease in the sheet thickness along the rim, leading to rupture the sheet. As the rate of stretching
attenuates, capillary processes begin to dominate the dynamics of the rim-sheet system and to
stabilise the perturbed motion, especially at higher wave numbers, which asymptotes to RP and
RT instability modes for the rim retraction.
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Mechanisms to induce sequential transverse deformation of the rim-sheet system, leading to
the double peak spectrum form of the surface displacement, are discussed in terms of instability
growth defined by the analytical parameters corresponding to the experimental ones at sequential
stages of the flip-through.

In the initial stage of flip-through, where sheet dynamics governs the stability of the rim-sheet
system, two comparable positive eigenvalues appear in the low wave number range resulting
in large-scale variations in sheet thickness along the lateral rim. The presence of real positive
first and second eigenvalues indicates instabilities grow with two distinct time-scales at a given
wave number. Therefore these perturbations are amplified at different velocities defined by the
instability modes. As the rim decelerates owing to drag force and gravity and thus the stretch
attenuates, two maxima in growth rate are observed at the lowest wave numbers and at k∼ 0.7.
The low wave number range containing the growth rate maxima decreases with attenuation of
the sheet stretch. This wavenumber shift in the unstable range has a role to change in wavelength
of the sheet thickness and long-scale vertical displacement of the rim location. Finally the
capillary instability with the most unstable wave number of k∼ 0.7 governs the system on the
less stretch sheet with negative rim acceleration, which enhances short-scale rim deformations
leading to finger formation. The sequential variations of the instantaneous instability growths
for these multiple instability modes, depending on the sheet stretch, thickness, rim size and the
accelerations, determines the integral features of the displacements of the ascending flip-through
jets, resulting in the observed double peak spectrum.
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