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ABSTRACT 

This paper considers factors influencing the fabric of bimodal or gap-graded soils. Discrete element 

method simulations were carried out in which the volumetric fines content and the size ratio 

between coarse and fine particles were systematically varied. Frictionless particles were used during 

isotropic compression to create dense samples; the coefficient of friction was then set to match that 

of spherical glass beads.  The particle-scale data generated in the simulations revealed key size ratios 

and fines contents at which transitions in soil fabric occur. These transitions are identified from 

changes in the contact distributions and stress-transfer characteristics of the soils and by changes in 

the size of the void space between the coarse particles. The results are broadly in agreement with 

available experimental data on minimum void ratio and contact distributions. The results have 

implications for engineering applications including assessment of the internal stability of gap-graded 

soils in embankment dams and flood embankments.   
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1 INTRODUCTION  

Most soil mechanics theory for cohesionless soils has been developed from experiments using 

uŶifoƌŵlǇ gƌaded oƌ ͞ĐleaŶ͟ saŶds. Hoǁeǀeƌ, the presence of cohesionless fines (resulting in a gap-

graded material) is known to influence soil properties.  Prior research on this topic has typically 

empirically related the volumetric proportion of fines in the material (Ffine) to the macro-scale, 

overall, soil properties using physical tests (e.g. [1]).  The current study uses discrete element 

modelling [2] to extend consideration to the particle-scale.  A bimodal material is considered as this 

is the simplest type of gap-graded material and the interplay between the fine and coarse particles 

can be isolated from any effects of the gradation of sizes within either the fine or coarse fraction. 

 

Based on experimental observation of soils at low cohesionless fines contents, the contribution of 

the fine particles can be neglected and therefore the void ratio of the coarse particles only, termed 

the granular or skeleton void ratio, esk, can be used in place of void ratio, e, as a state variable [1]: 

 ��� =  �+ �೑��೐1− �೑��೐ (1) 

Thevanayagam et al. [3]  extended this concept to account for experimental evidence that at low 

fines contents the fine particles make a reduced but finite contribution towards shear strength. 

 

Skempton and Brogan [4] proposed that where fines do not fill the voids which form between the 

coarse particles in gap-graded materials, these loose fine particles carry a reduced effective stress. 

They proposed a stress-reduction factor, α, defined as the ratio of effective stress in the fines to the 

overall effective stress: 

 
fine  (2) 

where σ′fine is the effective stress transferred by the fines aŶd σ′ is effeĐtiǀe oǀeƌďuƌdeŶ stƌess.  In 

experiments α ĐaŶ ďe iŶfeƌƌed fƌoŵ peƌŵeaŵeteƌ testiŶg iŶ ǁhiĐh the hydraulic gradient at the 



onset of piping failure (ic) is observed.  Then α is estimated by combining Equation (1) with the 

hydraulic gradient obtained from Teƌzaghi’s theoƌǇ foƌ heaǀe at zeƌo effeĐtiǀe stƌess (ic,heave): 

heave,c

c

i

i
  (3) 

When α = 1, the stress is shared equally between the coarse and fine fractions. Li and Fannin [5] 

derived a generalized form of Equation 2 for the case where an external stress is applied. Shire et al. 

[6] compared α ǀalues calculated directly for virtual samples created using discrete element method  

(DEM) simulations with experimental data for equivalent physical samples; they concluded that   

Equation 3 gives reasonable estimates of α and that α depends on Ffine and packing density. 

 

Skempton and Brogan [4] identified two key fines contents:  

(i) S*, the critical fines content at which the fines just fill the voids between the coarse particles, 

aŶd ďeloǁ ǁhiĐh α < ϭ. “* ǁas estiŵated to lie between Ffine = 24% and 29% for dense and loose 

samples respectively.  

(ii) Smax, the fines content at which the fines separate the coarse particles from one another, 

which should be no higher than Ffine = 35% [4].   

When Ffine < “* the soil has aŶ ͞uŶdeƌfilled͟ faďƌiĐ, ǁheŶ “* < Ffine < Smax , the fabric is ͞filled͟ aŶd Ffine 

> Smax gives an ͞oǀeƌfilled͟ fabric, as shown schematically in Figure 1.  

The concepts of α and S* have implications for engineering practice and the current research was 

carried out to complement a broader study of the internal stability of cohesionless soils [7]. Internal 

stability describes the ability of the coarse fraction of a soil to prevent the erosion of the fines under 

seepage [8].   Kenney and Lau [9] defined three prerequisites for internal instability: (i) a primary 

matrix of coarse particles which transfers stresses; (ii) loose finer particles in the voids between the 

primary matrix, which do not carry effective stress and can be moved by seepage; (iii) the inter-void 

constrictions within the primary matrix must be large enough to allow the loose finer particles to be 

transported from void to void by seepage. Skempton and Brogan [4] found that when Ffine <  S* 

internal instability can initiate at lower hydraulic gradients than would be expected to cause failure 



by heave (i.e. α < 1). The effect of Ffine on internal stability has also been recently experimentally 

demonstrated by Sibille et al. [10].  In their DEM study Shire et al. [6] established a link between  

and the empirical Kézdi criterion for internal instability [11], which is based upon a size-ratio 

ďetǁeeŶ the Đoaƌse aŶd fiŶe paƌtiĐles. “hiƌe aŶd O’“ulliǀaŶ [12] also showed that there is a link 

between the Kézdi criterion and micro-scale parameters such as coordination number and To et al. 

[13] used DEM to study the effect of packing arrangement on the characteristics of the primary 

fabric. Other researchers have shown that, for a given void ratio, cohesionless fines contribute less 

per unit volume to shear strength, stiffness and liquefaction resistance than coarse particles [1, 3, 

14, 15]. 

 

This paper considers the effect of varying Ffine and the size-ratio between coarse and fine particles, χ 

= Dcoarse/Dfine, on the micro-scale properties of dense, homogeneous, isotropic collections of bimodal 

spheres using DEM. The paper examines the relationship between Ffine, χ and both the void ratio and 

sizes of voids between the coarse particles, following which the contact and stress distributions 

within the samples are analysed. The results are verified using available experimental data for 

bimodal materials. 

2 MODELLING 

2.1 Simulation approach and samples analysed 

The DEM simulations were carried out using a modified version of the open-source code Granular 

LAMMPS [16]. The samples were created by generating a cloud of non-contacting frictionless 

spheres at random locations within a periodic cell, which avoids boundary effects associated with 

walls. A Hertz-Mindlin contact model was used and the simulation input parameters are presented in 

Table 1. The samples were compressed isotropically and monotonically to a mean normal stress of p′ 

= 50 kPa. A servo-controlled algorithm was used to adjust the strain rate until this target stress was 

reached [17].  This approach generates samples with the densest possible packing at this stress level. 



These samples effectively have a relative density of 100%; enabling comparison with the 

experimental data on dense bimodal assemblies [18, 19], as discussed below.   

FolloǁiŶg isotƌopiĐ ĐoŵpƌessioŶ the ĐoeffiĐieŶt of fƌiĐtioŶ ǁas set to μ = Ϭ.ϯ, ǁhiĐh is 

approximately equal to the experimental value reported for spherical glass beads [20].  To ensure a 

stable state was achieved the siŵulatioŶs ǁeƌe teƌŵiŶated oŶĐe p′ aŶd the ĐooƌdiŶatioŶ Ŷuŵďeƌ 

(the average number of contacts per particle in the system), Z, remained unchanged for 20,000 

timesteps.  All the results presented here correspond to this end state. All the simulations were  

carried out in a gravity-free environment to allow the use of periodic boundaries, thus removing 

boundary effects [21], and allowing easy identification of those particles which participate in 

effective stress transfer through the sample. Further details of the simulation methodology are given 

in Shire [7].  

 

In selecting the samples for analysis, consideration was given to the range of Ffine and χ values that 

merited consideration.  Following the contribution of Skempton and Brogan, discussed above, the 

research specifically considered Ffine values about the critical fines content, i.e., Ffine = 20, 25, 30 and 

35%.  The definitions of  and S* are based on an assumption the fines can fit within the voids 

foƌŵed ďetǁeeŶ the Đoaƌse paƌtiĐles. Hoǁeǀeƌ, theƌe is a liŵit to the size ƌatio, χ = Dcoarse/Dfine, at 

which a fine particle (with diameter Dfine) can fit between coarse particles (with diameter Dcoarse), and 

below this limiting ratio granular materials cannot be considered to be gap-graded. Based on a 

consideration of mutually touching uniform circles, Lade et al. [18] suggested that at χ ≈ ϲ.5 a single 

fine particle can fit within the smallest possible constriction formed between three coarse particles. 

Ratios of χ ≈ ϲ  haǀe ďeeŶ adopted iŶ the defiŶitioŶ of ͞gap-gƌaded͟ ŵateƌials iŶ studies ĐoŶsideƌiŶg 

the effect  of non-plastic fines on soil behaviour (e.g. [3, 22, 23]). However, the smallest circle which 

ĐaŶ ďe iŶsĐƌiďed ďetǁeeŶ fouƌ ŵutuallǇ ĐoŶtaĐtiŶg ĐiƌĐles oĐĐuƌs at χ ≈ Ϯ.ϰ, aŶd this was taken as a 

loǁeƌ liŵit χ for gap-graded soils by Choo and Burns [24]. Both these limits are based on two-

dimensional considerations of inter-void constrictions. In three dimensions the largest sphere which 

can fit within the void body of the densest face centred cubic packing of uniform spheres (e = 0.35) 



oĐĐuƌs at χ ≈ ϰ.ϰϱ aŶd foƌ the looseƌ oƌthoƌhoŵďiĐ paĐkiŶg ;e = Ϭ.ϲϱͿ this oĐĐuƌs at χ ≈ Ϯ. It is Đleaƌ 

from these theoƌetiĐal ĐoŶsideƌatioŶs that foƌ χ ч Ϯ the ŵateƌial ĐaŶŶot ďe ĐoŶsideƌed gap-graded.  

BetǁeeŶ χ = Ϯ aŶd χ = ϲ theƌe Đould eǆist aŶ iŶteƌŵediate tǇpe of gap gƌaded ďehaǀiouƌ. This has 

been shown experimentally for the variation of void ratio by Yerazunis et al. [25]. Foƌ χ > ϲ, ǁheŶ the 

size ratio increases, the local increase in void ratio of the fines close to coarse particle surfaces 

becomes less significant [26] and the fine packings between the coarse particles will progressively 

densify so that ǁith iŶĐƌeasiŶg χ the critical content, S*, increases. Consideration of these earlier 

results motivated use of χ values of 2, 4, 6, 8 and 10 in the analyses.   

 

The 22 bimodal or binary samples analysed are summarised in Table 2. In each sample there were 

at least 100 coarse particles, and the total number of particles in the simulations ranged from 307 to 

54033. One simulation was carried out with Ffine = 50% and χ = ϰ to alloǁ ĐoŵpaƌisoŶ ǁith the 

experimental data of Pinson et al. [19], and one simulation was carried out with Ffine=0, i.e. with a  

monodisperse (uniform) size distribution in order to provide baseline data.  A parametric study was 

carried out in order to show that a representative element volume (REV) had been obtained, 

meaning there was no statistically-significant change in the results (e.g. in the connectivity 

distribution) with an increase in the number of particles within the periodic cell [7].  

  



 

2.2 Calculation of α 

To calculate  from the DEM data, the average stress tensor within a particle,
p

ij , was determined 

using the approach described in [27];  the mean particle stress is then   ii
pp

p 31 .For the 

isotropic stress state considered here, α is defiŶed iŶ teƌŵs of the ŵeaŶ ;effeĐtiǀeͿ Ŷoƌŵal stƌess, p′, 

for the whole sample: 





pN

p

pp
Vp

V
p

1

)(
1

'  (4) 

where Vp is particle volume and Np is the number of particles. The mean normal stress for the 

fines is: 

 




fineNp

p

pp

fineNp

pfine Vp
V

n
p

,

1,

)(
)1(

'  (5) 

where: n: sample porosity; Np,fine: number of fine particles and   is: 

 

α = p′fine  / p′ (6) 

 

3 RESULTS 

3.1 Analysis of void space 

 

As noted above, previous researchers have carefully considered how to calculate e in gap graded 

materials. The relationship between Ffine aŶd e is pƌeseŶted foƌ eaĐh χ ǀalue iŶ Figure 2. For the Ffine 

values presented here there is little overall variation of e with Ffine for a given size ratio.  For each χ a 

minimum void ratio can be identified (emin) and the Ffine at which emin is obtained decreases with 

iŶĐƌeasiŶg χ, in agreement with experimental observations [18].  



  McGeary [28] carried out experiments on bimodal mixtures of glass beads with Ffine varying 

between 10% and 50% to investigate the maximum densities that could be obtained; the data from 

these experiments was considered by Lade et al. [18]. The emin values for each χ ǀalue observed in 

Figure 2 are compared with the experimental data in Figure 3. There is good agreement between the 

siŵulatioŶs aŶd eǆpeƌiŵeŶts, although the DEM data giǀe a slightlǇ deŶseƌ paĐkiŶg at a giǀeŶ χ. This 

observed difference is to be expected as the DEM particles are perfectly spherical and frictionless 

(during the isotropic compression stage); physical glass ballotini deviate from this ideal [29].  As χ 

increases, the rate at which emin decreases reduces. Lade et al.  [18] concluded the relationship had a 

bi-linear shape, with a distiŶĐt ĐhaŶge iŶ the gƌadieŶt of the eǆpeƌiŵeŶtal data at χ ≈ ϲ.ϱ. The DEM 

data show a reduction in the gradient of the emin-χ plot ǁith iŶĐƌeasiŶg χ, ďut the ƌelatioŶship does 

not replicate the distinct bi-linear shape attibuted to the experimental data.  

Lade et al. [18] hypothesized that the change in gradient of the emin-χ plot at χ ≈ ϲ.ϱ oĐĐuƌs 

because the fines pack more efficiently between the coarse particles when the size ratio increases, 

as illustrated schematically in Figure 1. The void sizes between the coarse particles for the bimodal 

materials with Ffine>0 were determined by numerically removing the fines prior to void partitioning. 

Voids were identified using the Delaunay method proposed by Reboul et al. [30], which considers a 

void to be defined by the tetrahedra formed by a Delaunay tessellation of particle centers, as shown 

schematically in Figure 4. The diameter (size) of a void, Dvoid, is defined by the largest sphere which 

can be inscribed between the particles forming tetrahedra. The resultant coarse particle void size 

distributions (VSDs) for four bimodal samples are given on Figure 5. Figure 5 also includes the VSD 

for the monodisperse sample  and the these data agree with that of Bryant et al. [31] for a similar 

analysis of monodisperse spheres. The binary samples contain only 100 coarse particles and 

therefore have a less smooth distribution than the monodisperse sample, which contains 600 

particles.  Analytically known values of Dvoid for regular packings of monodisperse spheres (close-

packed cubical/hexagonal, body-centred cubical/tetragonal and orthorhombic) are also included for 

reference. 



The smallest voids in the random packing are Dvoid = 0.2245 Dcoarse, which is equal to the minimum 

void between the densest possible regular packings (close-packed cubical and hexagonal). However, 

the majority of the voids are larger than this, with most (~70%) falling within the range of Dvoid = 0.3 

to 0.5 Dcoarse. 15% of the voids have Dvoid > 0.5 Dcoarse. WheŶ χ = Ϯ,  Dfine = 0.5 Dcoarse, and therefore 

Dfine > Dvoid for the majority of the voids, meaning that the fines will not be able to sit between the 

coarse particles under reduced stress, confirming that materials with χ = Ϯ should not be considered 

to be gap-graded. As χ iŶĐƌeases, Dfine < Dvoid meaning single fines and collections of fines are able to 

fit more efficiently within voids. When the gap-ƌatio is laƌge ;χ = ϭϬͿ aŶd Ffine ≈ S* (Ffine = 25%) the 

void size distribution is similar to the sample containing no fines indicating that the coarse particles 

form a dense network very similar to that if there were no fines present. 

 

3.2 Contact density 

 

The extent to which the finer particles carry a reduced stress, i.e. the  value, is influenced by the 

contact network, and the connectivity (i.e. number of contacts per particle) of the finer particles. 

Pinson et al. [19] identified contacts between coarse and fine particles in bimodal packings of 

spheƌes ǁith χ = Ϯ aŶd ϰ usiŶg the liƋuid ďƌidge teĐhŶiƋue. The resultant connectivity data can be 

compared with the DEM data generated in this study.  The DEM samples are somewhat denser than 

the experimental samples. However, while the experimental void ratio was measured for the whole 

sample, connectivity was measured away from the sides of the container in order to avoid wall 

effects and therefore void ratio is probably overestimated in the experiments.  

The distributions of connectivity   for χ = Ϯ and 4 are given in Figure 6.  Figures 6(a) and (b) give 

the connectivity for fine to fine (Cfine-fine) and fine to coarse (Cfine-coarseͿ ĐoŶtaĐts ƌespeĐtiǀelǇ foƌ χ = Ϯ 

and  Ffine = 25%, 30% and 35% foƌ the DEM siŵulatioŶs.  EƋuiǀaleŶt data foƌ  χ = ϰ aƌe pƌeseŶted iŶ 

Figuƌes ϲ;ĐͿ aŶd;dͿ.  Foƌ ďoth χ ǀalues eǆpeƌiŵeŶtal data aƌe iŶĐluded in the Figures; for χ = 2 the 

experimental data considers   Ffine = 28%,  while experimental data for Ffine = 28% and 50% were 



aǀailaďle foƌ χ = ϰ.  In all  cases the experimental and DEM data show the same upper limits to the 

distribution of connectivities and the proportions of particles with 0 contacts are broadly similar for 

equivalent Ffine values. For χ = Ϯ  the experimental Cfine-fine distribution with Ffine = 28% is similar to the 

DEM distributions for Ffine = 30 and 35% (Figure 6(a)), although the experimental data has a greater 

proportion of particles with Cfine-fine > 4 and fewer with Cfine-fine = 0. The DEM sample with Ffine = 25% 

shows fewer fine to fine contacts per particle, specifically there are many more particles with Cfine-fine 

= 0 in this sample. The particles with Cfine-fine = 0 are likely to be either trapped between two coarse 

particles or isolated within the voids between the coarse particles. As shown in Figure 6(b), the 

experimental and DEM distributions of Cfine-coarse show good agreement for all three DEM samples 

despite the difference in void ratio.  

As shown in Figure 6(c) , for χ = 4 , Cfine-fine increases as Ffine attains and then exceeds the critical 

fines content at which the fines fill the voids. For Ffine = 50%, the Cfine-fine distributions are very similar 

for both experimental and DEM data. While the DEM data for Ffine = 25% and Ffine = 30% show far 

fewer fine to fine contacts per particle than the experimental data for Ffine = 28%, there is a close 

agreement between the experimental data for Ffine = 28% and the DEM data for Ffine = 35%.  

 

As well as looking at the connectivity data, it is useful to consider the overall coordination number, 

given as :  

Z = 2Nc  / Np (7) 

where Nc is the number of interparticle contacts in the system and Np is the number of particles in 

the system.  Figure 7(a) and Table 2 shoǁ the ǀaƌiatioŶ of ) ǁith χ and Ffine for each of the samples. 

For Ffine = 20% there is a steep reduction from Z  = ϱ.Ϭϰ at χ = Ϯ to ) = Ϭ.ϭϳ at χ = ϲ. In the DEM data Z 

< 1 is possible as gravity has been neglected. In a bimodal material the number of fine particles far 

exceeds the number of coarse particles, even when accounting for only a fraction of the total volume 

;ǁheŶ χ = ϭϬ, oŶe Đoaƌse paƌtiĐle has the saŵe ǀoluŵe as ϭϬϬϬ fine particles). This means that the 

coordination number is largely determined by contacts involving the fines. The reduction of Z 

ďetǁeeŶ χ = Ϯ aŶd χ = ϲ foƌ the Ffine = 20% material is evidence that the fines transition from being 



well connected to being predominantly unconnected and non-stress transmitting.  This supports the 

argument of Lade et al. [18] that as χ iŶĐƌeases, fines are better able to fit within voids and so play a 

reduced role in stress transfer.  

For Ffine ш Ϯϱ% theƌe is little ǀaƌiatioŶ of ) ǁith χ. This is ďeĐause the fiŶes ĐoŵpletelǇ fill the ǀoids 

between the coarse particles and so have many interparticle contacts, regardless of Ffine or χ. With 

reference to Skempton and Brogan [4], for materials at their highest relative density, the critical fines 

content S* at which fines just fill the voids between coarse particles occurs at Ffine ≈ Ϯϰ% and can be 

identified by an increase in Z with Ffine.  

3.3 Stress reduction in finer particles , α. 

Figure 7(b) and Table 2 show the variation of the stress-reduction factor, α, ǁith χ aŶd Ffine. In 

samples with Ffine ш ϯϬ%, α ≈ ϭ, iŶdiĐatiŶg that the Đoaƌse aŶd fiŶe paƌtiĐles ĐoŶtƌiďute appƌoǆiŵately 

equally to stress transfer. The saŵe is tƌue of saŵples ǁith χ = Ϯ ƌegaƌdless of Ffine, as the fines are 

unable to completely fit within the voids. For samples with Ffine = ϮϬ% aŶd χ ш ϲ, α ≈ Ϭ aŶd the fiŶes 

are completely loose within the voids and play almost no role in stress transfer, hence Ffine< S*.  

For the samples at Ffine = 25%, which is just above the critical fines content “*, α ƌeduĐes steeplǇ 

ǁith iŶĐƌeasiŶg χ. Comparing Figures 7(a) and (b), it can be seen that for Ffine = 25%, α falls ƌapidlǇ 

ǁith χ, ǁheƌeas ) does Ŷot. This suppoƌts that hǇpothesis that although fiŶes aƌe Ŷot ĐaƌƌǇiŶg the 

same proportion of stress as the coarse particles, they are still in contact with the coarse particles 

and therefore forming weak lateral force chains to support the main strong force chains [6, 32]. 

Although these fines are under low stress, they still perform an important supporting role to the 

more highly stressed particles and their removal, for example due to internal instability under 

seepage, could lead to the collapse of the stress-transferring matrix [6, 32].  

Figure 8(a) shows the relationship between the stress-ƌeduĐtioŶ faĐtoƌ, α, and the coarse to 

coarse coordination number, Zcoarse-coarse ([33]):  

Z
coarse-coarse

 = 2(Nc,coarse-coarse)   / Np,coarse (10) 



where Nc,coarse-coarse is the number of contacts between coarse particles, and Np,coarse is the number 

of coarse particles.  

The value Zcoarse-coarse < 4 has been highlighted on Figure 8(a), as when Zcoarse-coarse < 4 coarse 

particles cannot be considered to be forming a mechanically stable matrix on their own and must 

therefore be separated from one another by fines (i.e. be overfilled). Figure 8(a) shows that the fine 

aŶd Đoaƌse paƌtiĐles ĐaƌƌǇ appƌoǆiŵatelǇ eƋual stƌess ;i.e. α ≈ ϭͿ iŶ eǀeƌǇ saŵple ǁith )coarse-coarse < 4, 

confirming the hypothesis that overfilled samples must be internally stable. The stress-ƌeduĐtioŶ α 

values drop rapidly as Zcoarse-coarse increases beyond 4 and the coarse particles are able to form a 

stress-transmitting primary matrix, leaving fines transmitting little stress.  

Figure 8(b), considers the relationship between α aŶd the skeleton void ratio, esk, (Equation 1). 

When esk ш ecoarse,max, the experimental maximum void ratio for monodispersed spheres alone [34], 

the coarse particles must be separated from one another by fine partiĐles aŶd α ≈ ϭ. The esk = 

ecoarse,max condition was termed the limit void ratio by Salgado et al.  who found a distinct change in 

the stress-strain response of silty sands when this was exceeded. Considering effective stress 

transfer, when esk < ecoarse,max the coarse particles must be in contact with one another and therefore 

doŵiŶate stƌess tƌaŶsfeƌ, as shoǁŶ ďǇ α < ϭ. This effect becomes more prominent as esk reduces 

further below ecoarse,max. Considering both Figure 8(a) and (b), it is clear that even at low fines 

contents (20%) saŵples ǁith χ = Ϯ ĐaŶŶot foƌŵ a staďle faďƌiĐ Đoŵpƌised of Đoaƌse paƌtiĐles aloŶe, 

ǁheƌeas saŵples ǁith χ = ϰ foƌŵ an intermediate fabric in which the coarse particles transfer more 

stress than fine. 

 As noted above the void ratio distributions (Figure 5) suggest that foƌ laƌge χ ǀalues and when 

Ffine≈“* ;i.e. χ = ϭϬ aŶd Ffine=25% ), the coarse matrix is similar to a monodisperse material.   This is 

confirmed by the ǀeƌǇ loǁ stƌess iŶ the fiŶes ;α = Ϭ.ϬϵͿ. The high coordination number (Z = 5.35), 

suggests that this is just at the point where the fines fill the voids.   As Ffine increases to 30% the void 

diameters between the coarse particles increase noticeably as fines begin to separate them and the 

stress in the fines also increases to α = ϭ.ϬϮ. Foƌ the saŵples ǁith χ = Ϯ the coarse voids are 



significantly larger because, as discussed in Section 3.2, the fines are larger than the majority of the 

voids in the monodisperse sample. For these samples α ≈ ϭ.  

Thornton and Antony  [17] shoǁed that ĐoluŵŶs oƌ ĐhaiŶs of ͞stƌoŶg͟ ĐoŶtaĐt foƌĐes ;i.e. foƌĐes 

of above average magnitude) transfer almost all the deviatoric load through granular materials. It is 

therefore reasonable to take the probability of a fine particle forming part of a strong force chain, 

P(strong)fine as an indicator of the extent to which the finer particles form part of the load-

transferring matrix. For internal instability to occur the load-transferring matrix should be formed 

predominantly of coarse particles. Therefore the greater the extent to which the fines contribute to 

the load-transferring matrix, the higher the internal stability of the soil will be.   

The variation of P(strong)fine ǁith χ and Ffine is shown in Figure 9. The pattern is similar to the 

ƌelatioŶship ďetǁeeŶ α, χ aŶd Ffine presented in Figure 7(b), where for Ffine ш ϯϬ%, P(strong)fine > 0.5 

and therefore fines play a significant role in supporting the fabric of the samples. For samples with 

Ffine ч Ϯϱ%, P(strong)fine ƌeduĐes ǁith iŶĐƌeasiŶg χ as the fiŶes aƌe aďle to fit ŵoƌe effiĐieŶtlǇ in the 

voids and so are less likely to interact with the coarse particles, which dominate the strong force 

chains (for each sample the probability of a coarse particle forming part of a strong force chain is 

greater than 80%).  

This supports the hypothesis of Rahman et al. [22] that the role which cohesionless fines play in 

stƌess tƌaŶsfeƌ diŵiŶishes ǁith ďoth χ aŶd Ffine when Ffine < S*, (they refer to a threshold fines 

content equivalent to S*). For soils with χ = 2 the concept of a threshold fines content has little 

meaning.   For soils with χ ш ϰ care must be taken in defining this threshold content – when Ffine < S* 

the role of the fiŶes is pƌiŵaƌilǇ depeŶdeŶt oŶ χ, in particular for the range 4 < χ < 6 . However, for S* 

< Ffine < Smax the fines play a lesser role in stress transfer and this is depeŶdeŶt oŶ ďoth χ aŶd Ffine as 

shown in Figure 9 for Ffine = 25%. An added complication is also that the values of S* and Smax are 

density-dependent [6].   

 



4 CONCLUSIONS 

This paper has considered results from DEM simulations that investigated the effect of varying the 

cohesionless fines content and the size ratio between coarse and fine particles on the properties of 

dense bimodal materials. In particular the role of the fines in stress transfer has been studied, which 

has practical significance, for example when considering the internal stability of embankment dams.  

The stress-transfer and contact distributions in bimodal soils were shown to be ĐoŶtƌolled ďǇ χ aŶd 

Ffine and role of fines in stress transfer was  quantified by the stress-ƌeduĐtioŶ α-factor [4].  The 

following conclusions can be drawn from the work: 

(a) The DEM data are physically reasonable.  It was found that the minimum void ratio which can 

be obtained by bimodal samples falls as the size-ƌatio, χ = Dcoarse/Dfine increases, in agreement with 

experimental results presented by Lade et al. [18]. The connectivity distributions for fine-fine and 

fine-coarse contacts  obtained from DEM simulations are broadly similar to the experimental results 

of Pinson et al. [19].  

 (b) The size ratios (χ) for which a soil can be considered gap-graded was considered. Bimodal soils 

with a size ratio of χ ч Ϯ have stress transfer and coordination number characteristics that are similar 

to those for to uniform soils, as the fines cannot completely fit between the coarse particles. Fine 

aŶd Đoaƌse paƌtiĐles plaǇ aŶ appƌoǆiŵatelǇ eƋual ƌole iŶ stƌess tƌaŶsfeƌ ;α ≈ ϭͿ regardless of Ffine. 

Such soils should not be considered gap-graded in terms of stress-transmission.  

(c) Foƌ χ ш ϲ  particle-scale evidence is shown for two critical fines contents at which transitions in 

soil fabric occur: (i) S*, at which the fines just fill the voids between coarse particles can be seen by 

increase in the coordination number, Z; (ii)  Smax, where the fines begin to separate the coarse 

particles from one another is distinguished by a reduction in the coarse to coarse coordination 

number to Zcoarse-coarse < 4. At the macro-scale this transition can be demonstrated by the skeleton 

void ratio, esk, increasing above ecoarse,max.  Foƌ χ ш ϲ stƌess tƌaŶsfeƌ is depeŶdeŶt oŶ ďoth Ffine aŶd χ. IŶ 

particular: (i) when Ffine < “* the fiŶes plaǇ oŶlǇ a ŵiŶoƌ ƌole iŶ stƌess tƌaŶsfeƌ aŶd α ≈ Ϭ; (ii) when Ffine 



> Smax the Đoaƌse aŶd fiŶe plaǇ appƌoǆiŵatelǇ eƋual ƌoles aŶd α ≈ ϭ; (iii) when S* < Ffine < Smax an 

increase in Ffine leads to aŶ iŶĐƌease iŶ α, aŶd aŶ iŶĐƌease iŶ χ leads to a ƌeduĐtioŶ iŶ α.  

(d) For χ = 4 at low fines contents behaviour which is intermediate between χ = 2 and χ = 6 is 

observed, with fines playing a reduced but significant role in stress transfer.  

(e)When Ffine = 25% the fines have a similar coordination number to the samples with Ffine ш ϯϬ% 

ďut α is loǁeƌ. This shoǁs that the fiŶes plaǇ a suppoƌtiŶg ƌole to the Đoarse primary, stress-

transmitting, matrix.  

(f)The influence of Ffine aŶd χ oŶ α aŶd oŶ P;stƌoŶgͿfine, the probability of a fine particle forming 

part of a strong force chain, are similar.   

(g) Measurement of the void size distribution between the coarse particles shows that as more 

fine particles form part of the stress-transmitting matrix the size of voids between coarse particles 

iŶĐƌeases. WheŶ α ≈ Ϭ the ǀoid size distƌiďutioŶ ƌeduĐes to that foƌ a ŵoŶodispeƌse saŵple. This 

oĐĐuƌs ǁheŶ χ ш ϲ aŶd Ffine ч Ϯϱ%.  
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Parameter  Units Value 

Poisson’s ratio ʆ - 0.3 

Shear modulus G GPa 27.0 

Particle density ρ kg/mm³ 2.67x10
-6

 

Coefficient of Inter-

particle friction during 

isotropic compression 

ʅ - 0.0 

Coefficient of Inter-

particle friction for results 

ʅ - 0.3 

Table 1: Simulation input parameters 

 

Size ratio, Χ = 
Dcoarse/Dfine 

Fines 

content, Ffine 

(%) 

Number of 

particles 

Void ratio, e Coordination 

number, Z 

Stress-

reduction 

factor,  

1 0 600 0.573 6.03 N/A 

2 20 307 0.507 5.04 0.94 

25 367 0.495 5.22 0.97 

30 443 0.490 5.62 1.10 

35 531 0.480 5.72 1.06 

4 20 1694 0.332 1.48 0.41 

25 2230 0.327 5.10 0.86 

30 2843 0.337 5.54 1.05 

35 3552 0.351 5.75 1.17 

50 5008 0.394 5.94 1.12 

6 20 5588 0.256 0.17 0.27 

25 7288 0.256 5.68 0.56 

30 9358 0.276 5.80 1.07 

35 11750 0.294 5.87 1.13 

8 20 13338 0.253 0.05 0.00 

25 17211 0.227 5.67 0.31 

30 22043 0.247 5.89 1.00 

35 27713 0.269 5.93 1.16 

10 20 25376 0.259 0.03 0.00 

25 33520 0.211 5.35 0.09 

30 42959 0.231 5.88 1.02 

35 54033 0.255 5.92 1.16 

Table 2: Summary of simulations and results  



 

 

Figure 1. Evolution of fabric with fines content: (a) underfilled with large size ratio; (b) filled; (c) 

overfilled; (d) underfilled with small size ratio 

 

 

 

 

 

 

Figure 2. Variation of void ratio with Ffine and χ. 
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Figure 3. 

Variation of minimum void ratio with size ratio (considering all fines contents) 

 

 

 

 

Figure 4. Definition of void using Delaunay tessellation (after Reboul et al., 2008) 
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 Figure 5. Void size distribution for selected samples. Void defined by diameters of spheres inscribed 

within voids of DEM samples. Vertical dashed lines represent void diameters of regular packings: (1) 

and (3) close-packed cubical/hexagonal; (2) body-centered cubical/tetragonal ; (4) orthorhombic.  
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Figure 6. Cumulative distribution of connectivity for size ratio: χ = 2: ;aͿ fine to fine ĐontaĐts; ;ďͿ fine to Đoarse ĐontaĐts. χ = 4: ;Đ) fine to fine contacts; (d) 

fine to coarse contacts. Experimental data taken from Pinson et al. (1998). 
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Figure 7. Variation with size ratio, χ = (Dcoarse / Dfine) and finer fraction Ffine of: (a) coordination number, 
Z; (b) stress-reduction factor, α  
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Figure 8. Variation of stress-reduction α with (a) coarse-coarse coordination number; (b) coarse void 
ratio. ecoarse,max value for monodisperse glass beads taken from Cho et al. (2006).  
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Figure 9. Variation of probability of a fine particle forming part of strong force chain with size ratio and 

fines content.  
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