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ABSTRACT

This paper considers factors influencing the fabric of bimodal or gap-graded soils. Discrete element
method simulations were carried out in which the volumetric fines content and the size ratio
between coarse and fine particles were systematically varied. Frictionless particles were used during
isotropic compression to create dense samples; the coefficient of friction was then set to match that
of spherical glass beads. The particle-scale data generated in the simulations revealed key size ratios
and fines contents at which transitions in soil fabric occur. These transitions are identified from
changes in the contact distributions and stress-transfer characteristics of the soils and by changes in
the size of the void space between the coarse particles. The results are broadly in agreement with
available experimental data on minimum void ratio and contact distributions. The results have
implications for engineering applications including assessment of the internal stability of gap-graded

soils in embankment dams and flood embankments.
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1 INTRODUCTION

Most soil mechanics theory for cohesionless soils has been developed from experiments using
uniformly graded or “clean” sands. However, the presence of cohesionless fines (resulting in a gap-
graded material) is known to influence soil properties. Prior research on this topic has typically
empirically related the volumetric proportion of fines in the material (Ffn.) to the macro-scale,
overall, soil properties using physical tests (e.g. [1]). The current study uses discrete element
modelling [2] to extend consideration to the particle-scale. A bimodal material is considered as this
is the simplest type of gap-graded material and the interplay between the fine and coarse particles

can be isolated from any effects of the gradation of sizes within either the fine or coarse fraction.

Based on experimental observation of soils at low cohesionless fines contents, the contribution of
the fine particles can be neglected and therefore the void ratio of the coarse particles only, termed

the granular or skeleton void ratio, e, can be used in place of void ratio, e, as a state variable [1]:

_ e+ Ffine
€sk = 1~ Ffine (1)

Thevanayagam et al. [3] extended this concept to account for experimental evidence that at low

fines contents the fine particles make a reduced but finite contribution towards shear strength.

Skempton and Brogan [4] proposed that where fines do not fill the voids which form between the
coarse particles in gap-graded materials, these loose fine particles carry a reduced effective stress.
They proposed a stress-reduction factor, a, defined as the ratio of effective stress in the fines to the

overall effective stress:
r '
Ofype = A0 (2)

where o'fne is the effective stress transferred by the fines and o' is effective overburden stress. In

experiments a can be inferred from permeameter testing in which the hydraulic gradient at the



onset of piping failure (ic) is observed. Then a is estimated by combining Equation (1) with the

hydraulic gradient obtained from Terzaghi’s theory for heave at zero effective stress (ic heave):

=" (3)

lc,heave

When a = 1, the stress is shared equally between the coarse and fine fractions. Li and Fannin [5]
derived a generalized form of Equation 2 for the case where an external stress is applied. Shire et al.
[6] compared a values calculated directly for virtual samples created using discrete element method
(DEM) simulations with experimental data for equivalent physical samples; they concluded that

Equation 3 gives reasonable estimates of a and that a depends on Fsne and packing density.

Skempton and Brogan [4] identified two key fines contents:

(i) S*, the critical fines content at which the fines just fill the voids between the coarse particles,
and below which a < 1. $* was estimated to lie between Fgne = 24% and 29% for dense and loose
samples respectively.

(ii) Smax, the fines content at which the fines separate the coarse particles from one another,
which should be no higher than Fgne = 35% [4].

When Ffine < S* the soil has an “underfilled” fabric, when S* < Fsne < Smax , the fabric is “filled” and Ffine
> Siax gives an “overfilled” fabric, as shown schematically in Figure 1.

The concepts of a and S* have implications for engineering practice and the current research was
carried out to complement a broader study of the internal stability of cohesionless soils [7]. Internal
stability describes the ability of the coarse fraction of a soil to prevent the erosion of the fines under
seepage [8]. Kenney and Lau [9] defined three prerequisites for internal instability: (i) a primary
matrix of coarse particles which transfers stresses; (ii) loose finer particles in the voids between the
primary matrix, which do not carry effective stress and can be moved by seepage; (iii) the inter-void
constrictions within the primary matrix must be large enough to allow the loose finer particles to be
transported from void to void by seepage. Skempton and Brogan [4] found that when Fgpe < S*

internal instability can initiate at lower hydraulic gradients than would be expected to cause failure



by heave (i.e. a < 1). The effect of Fsne On internal stability has also been recently experimentally
demonstrated by Sibille et al. [10]. In their DEM study Shire et al. [6] established a link between a
and the empirical Kézdi criterion for internal instability [11], which is based upon a size-ratio
between the coarse and fine particles. Shire and O’Sullivan [12] also showed that there is a link
between the Kézdi criterion and micro-scale parameters such as coordination number and To et al.
[13] used DEM to study the effect of packing arrangement on the characteristics of the primary
fabric. Other researchers have shown that, for a given void ratio, cohesionless fines contribute less
per unit volume to shear strength, stiffness and liquefaction resistance than coarse particles [1, 3,

14, 15].

This paper considers the effect of varying Fsne and the size-ratio between coarse and fine particles, x
= Dcoarse/ Dfine, ON the micro-scale properties of dense, homogeneous, isotropic collections of bimodal
spheres using DEM. The paper examines the relationship between Fy,e X and both the void ratio and
sizes of voids between the coarse particles, following which the contact and stress distributions
within the samples are analysed. The results are verified using available experimental data for

bimodal materials.

2 MODELLING

2.1 Simulation approach and samples analysed

The DEM simulations were carried out using a modified version of the open-source code Granular
LAMMPS [16]. The samples were created by generating a cloud of non-contacting frictionless
spheres at random locations within a periodic cell, which avoids boundary effects associated with
walls. A Hertz-Mindlin contact model was used and the simulation input parameters are presented in
Table 1. The samples were compressed isotropically and monotonically to a mean normal stress of p’
= 50 kPa. A servo-controlled algorithm was used to adjust the strain rate until this target stress was

reached [17]. This approach generates samples with the densest possible packing at this stress level.



These samples effectively have a relative density of 100%; enabling comparison with the
experimental data on dense bimodal assemblies [18, 19], as discussed below.

Following isotropic compression the coefficient of friction was set to p = 0.3, which is
approximately equal to the experimental value reported for spherical glass beads [20]. To ensure a
stable state was achieved the simulations were terminated once p' and the coordination number
(the average number of contacts per particle in the system), Z, remained unchanged for 20,000
timesteps. All the results presented here correspond to this end state. All the simulations were
carried out in a gravity-free environment to allow the use of periodic boundaries, thus removing
boundary effects [21], and allowing easy identification of those particles which participate in
effective stress transfer through the sample. Further details of the simulation methodology are given

in Shire [7].

In selecting the samples for analysis, consideration was given to the range of Frne and x values that
merited consideration. Following the contribution of Skempton and Brogan, discussed above, the
research specifically considered Fyne values about the critical fines content, i.e., Frine = 20, 25, 30 and
35%. The definitions of a and S* are based on an assumption the fines can fit within the voids
formed between the coarse particles. However, there is a limit to the size ratio, X = Dcoarse/Drine, at
which a fine particle (with diameter Dsine) can fit between coarse particles (with diameter Dearse), and
below this limiting ratio granular materials cannot be considered to be gap-graded. Based on a
consideration of mutually touching uniform circles, Lade et al. [18] suggested that at x = 6.5 a single
fine particle can fit within the smallest possible constriction formed between three coarse particles.
Ratios of x = 6 have been adopted in the definition of “gap-graded” materials in studies considering
the effect of non-plastic fines on soil behaviour (e.g. [3, 22, 23]). However, the smallest circle which
can be inscribed between four mutually contacting circles occurs at x = 2.4, and this was taken as a
lower limit x for gap-graded soils by Choo and Burns [24]. Both these limits are based on two-
dimensional considerations of inter-void constrictions. In three dimensions the largest sphere which

can fit within the void body of the densest face centred cubic packing of uniform spheres (e = 0.35)



occurs at X = 4.45 and for the looser orthorhombic packing (e = 0.65) this occurs at x = 2. It is clear
from these theoretical considerations that for x < 2 the material cannot be considered gap-graded.
Between x = 2 and x = 6 there could exist an intermediate type of gap graded behaviour. This has
been shown experimentally for the variation of void ratio by Yerazunis et al. [25]. For x > 6, when the
size ratio increases, the local increase in void ratio of the fines close to coarse particle surfaces
becomes less significant [26] and the fine packings between the coarse particles will progressively
densify so that with increasing x the critical content, S*, increases. Consideration of these earlier

results motivated use of x values of 2, 4, 6, 8 and 10 in the analyses.

The 22 bimodal or binary samples analysed are summarised in Table 2. In each sample there were
at least 100 coarse particles, and the total number of particles in the simulations ranged from 307 to
54033. One simulation was carried out with Fgne = 50% and x = 4 to allow comparison with the
experimental data of Pinson et al. [19], and one simulation was carried out with Fgne=0, i.e. with a
monodisperse (uniform) size distribution in order to provide baseline data. A parametric study was
carried out in order to show that a representative element volume (REV) had been obtained,
meaning there was no statistically-significant change in the results (e.g. in the connectivity

distribution) with an increase in the number of particles within the periodic cell [7].



2.2 Calculation of a

To calculate o from the DEM data, the average stress tensor within a particle, O_'Up , was determined

using the approach described in [27]; the mean particle stress is then pp =(1/3)5Pii.For the

isotropic stress state considered here, a is defined in terms of the mean (effective) normal stress, p’,

for the whole sample:
1 &
p==2(p"V") (4)
Vo3
where V* is particle volume and Nj is the number of particles. The mean normal stress for the
fines is:

(1 _ n) Np, fine

p' ine:— (pPVI’) 5
! ZNp,ﬁneVP Z ( )

p=l

where: n: sample porosity; Ny fine: Number of fine particles and ais:

a:p’fine /P' (6)

3 RESULTS

3.1 Analysis of void space

As noted above, previous researchers have carefully considered how to calculate e in gap graded
materials. The relationship between Fsne and e is presented for each x value in Figure 2. For the Ffine
values presented here there is little overall variation of e with Fsne for a given size ratio. For each x a
minimum void ratio can be identified (emin) and the Fgne at which enn is obtained decreases with

increasing X, in agreement with experimental observations [18].



McGeary [28] carried out experiments on bimodal mixtures of glass beads with Fsne varying
between 10% and 50% to investigate the maximum densities that could be obtained; the data from
these experiments was considered by Lade et al. [18]. The en, values for each x value observed in
Figure 2 are compared with the experimental data in Figure 3. There is good agreement between the
simulations and experiments, although the DEM data give a slightly denser packing at a given x. This
observed difference is to be expected as the DEM particles are perfectly spherical and frictionless
(during the isotropic compression stage); physical glass ballotini deviate from this ideal [29]. As x
increases, the rate at which e, decreases reduces. Lade et al. [18] concluded the relationship had a
bi-linear shape, with a distinct change in the gradient of the experimental data at x = 6.5. The DEM
data show a reduction in the gradient of the emin-x plot with increasing x, but the relationship does
not replicate the distinct bi-linear shape attibuted to the experimental data.

Lade et al. [18] hypothesized that the change in gradient of the emin-x plot at x = 6.5 occurs
because the fines pack more efficiently between the coarse particles when the size ratio increases,
as illustrated schematically in Figure 1. The void sizes between the coarse particles for the bimodal
materials with Frne>0 were determined by numerically removing the fines prior to void partitioning.
Voids were identified using the Delaunay method proposed by Reboul et al. [30], which considers a
void to be defined by the tetrahedra formed by a Delaunay tessellation of particle centers, as shown
schematically in Figure 4. The diameter (size) of a void, Dysq, is defined by the largest sphere which
can be inscribed between the particles forming tetrahedra. The resultant coarse particle void size
distributions (VSDs) for four bimodal samples are given on Figure 5. Figure 5 also includes the VSD
for the monodisperse sample and the these data agree with that of Bryant et al. [31] for a similar
analysis of monodisperse spheres. The binary samples contain only 100 coarse particles and
therefore have a less smooth distribution than the monodisperse sample, which contains 600
particles. Analytically known values of D,uq for regular packings of monodisperse spheres (close-
packed cubical/hexagonal, body-centred cubical/tetragonal and orthorhombic) are also included for

reference.



The smallest voids in the random packing are Dyeig = 0.2245 Deoarse, Which is equal to the minimum
void between the densest possible regular packings (close-packed cubical and hexagonal). However,
the majority of the voids are larger than this, with most (~70%) falling within the range of Dyeig = 0.3
t0 0.5 Dcoarse. 15% of the voids have Dyoig > 0.5 Deoarse. When X = 2, Dsine = 0.5 Deoarse, and therefore
Dfine > Dyoig for the majority of the voids, meaning that the fines will not be able to sit between the
coarse particles under reduced stress, confirming that materials with x = 2 should not be considered
to be gap-graded. As ¥ increases, Dsine < Dvoig meaning single fines and collections of fines are able to
fit more efficiently within voids. When the gap-ratio is large (x = 10) and Fgne = S* (Ffine = 25%) the
void size distribution is similar to the sample containing no fines indicating that the coarse particles

form a dense network very similar to that if there were no fines present.

3.2 Contact density

The extent to which the finer particles carry a reduced stress, i.e. the a value, is influenced by the
contact network, and the connectivity (i.e. number of contacts per particle) of the finer particles.
Pinson et al. [19] identified contacts between coarse and fine particles in bimodal packings of
spheres with x = 2 and 4 using the liquid bridge technique. The resultant connectivity data can be
compared with the DEM data generated in this study. The DEM samples are somewhat denser than
the experimental samples. However, while the experimental void ratio was measured for the whole
sample, connectivity was measured away from the sides of the container in order to avoid wall
effects and therefore void ratio is probably overestimated in the experiments.

The distributions of connectivity for x = 2 and 4 are given in Figure 6. Figures 6(a) and (b) give
the connectivity for fine to fine (C"*"®) and fine to coarse (C™*°"*%) contacts respectively for x = 2
and Fsne = 25%, 30% and 35% for the DEM simulations. Equivalent data for x = 4 are presented in
Figures 6(c) and(d). For both x values experimental data are included in the Figures; for x = 2 the

experimental data considers Frne = 28%, while experimental data for Frne = 28% and 50% were



available for x = 4. In all cases the experimental and DEM data show the same upper limits to the
distribution of connectivities and the proportions of particles with O contacts are broadly similar for
equivalent Fne values. For y = 2 the experimental C""™" distribution with Fne = 28% is similar to the
DEM distributions for Ffne = 30 and 35% (Figure 6(a)), although the experimental data has a greater
proportion of particles with C""*™ > 4 and fewer with C"*™ = 0. The DEM sample with Ffne = 25%

shows fewer fine to fine contacts per particle, specifically there are many more particles with ¢

fine-fine

= 0 in this sample. The particles with C = 0 are likely to be either trapped between two coarse

particles or isolated within the voids between the coarse particles. As shown in Figure 6(b), the

experimental and DEM distributions of C"®2"

show good agreement for all three DEM samples
despite the difference in void ratio.

As shown in Figure 6(c) , for x = 4, C""™ increases as Fane attains and then exceeds the critical
fines content at which the fines fill the voids. For Fine = 50%, the C""™ distributions are very similar
for both experimental and DEM data. While the DEM data for Fgne = 25% and Fgne = 30% show far

fewer fine to fine contacts per particle than the experimental data for Fsne = 28%, there is a close

agreement between the experimental data for Fsne = 28% and the DEM data for Fgne = 35%.

As well as looking at the connectivity data, it is useful to consider the overall coordination number,

given as :
Z=2N. /N, (7)

where N is the number of interparticle contacts in the system and N is the number of particles in
the system. Figure 7(a) and Table 2 show the variation of Z with x and Ff, for each of the samples.
For Fine = 20% there is a steep reduction fromZ =5.04atx=2toZ=0.17 atx =6. In the DEM data Z
< 1 is possible as gravity has been neglected. In a bimodal material the number of fine particles far
exceeds the number of coarse particles, even when accounting for only a fraction of the total volume
(when x = 10, one coarse particle has the same volume as 1000 fine particles). This means that the
coordination number is largely determined by contacts involving the fines. The reduction of Z

between x = 2 and x = 6 for the Fgne = 20% material is evidence that the fines transition from being



well connected to being predominantly unconnected and non-stress transmitting. This supports the
argument of Lade et al. [18] that as ¥ increases, fines are better able to fit within voids and so play a
reduced role in stress transfer.

For Ffine 2 25% there is little variation of Z with x. This is because the fines completely fill the voids
between the coarse particles and so have many interparticle contacts, regardless of Ffne or X. With
reference to Skempton and Brogan [4], for materials at their highest relative density, the critical fines
content S* at which fines just fill the voids between coarse particles occurs at Fsne = 24% and can be

identified by an increase in Z with Fne.

3.3 Stress reduction in finer particles , a.

Figure 7(b) and Table 2 show the variation of the stress-reduction factor, a, with x and Ffe. In
samples with Frne = 30%, a = 1, indicating that the coarse and fine particles contribute approximately
equally to stress transfer. The same is true of samples with x = 2 regardless of Fyne, as the fines are
unable to completely fit within the voids. For samples with Fsne = 20% and x 2 6, a = 0 and the fines
are completely loose within the voids and play almost no role in stress transfer, hence Ffine< S*.

For the samples at Fne = 25%, which is just above the critical fines content S*, a reduces steeply
with increasing x. Comparing Figures 7(a) and (b), it can be seen that for Frne = 25%, a falls rapidly
with x, whereas Z does not. This supports that hypothesis that although fines are not carrying the
same proportion of stress as the coarse particles, they are still in contact with the coarse particles
and therefore forming weak lateral force chains to support the main strong force chains [6, 32].
Although these fines are under low stress, they still perform an important supporting role to the
more highly stressed particles and their removal, for example due to internal instability under
seepage, could lead to the collapse of the stress-transferring matrix [6, 32].

Figure 8(a) shows the relationship between the stress-reduction factor, a, and the coarse to
coarse coordination number, Z#"¢%¢ ([33]):

grearsecoarse — 5 (N¢ coorse-coorse) / Np,coarse ( 0 )



where N¢ coarse-coarse IS the number of contacts between coarse particles, and Ny coarse is the number

of coarse particles.

CcOoarse-coarse CcOoarse-coarse

The value Z < 4 has been highlighted on Figure 8(a), as when Z < 4 coarse
particles cannot be considered to be forming a mechanically stable matrix on their own and must
therefore be separated from one another by fines (i.e. be overfilled). Figure 8(a) shows that the fine
and coarse particles carry approximately equal stress (i.e. a = 1) in every sample with 2™ < 4,
confirming the hypothesis that overfilled samples must be internally stable. The stress-reduction a

COATSECoaBE increases beyond 4 and the coarse particles are able to form a

values drop rapidly as Z
stress-transmitting primary matrix, leaving fines transmitting little stress.

Figure 8(b), considers the relationship between a and the skeleton void ratio, e, (Equation 1).
When eg > ecoarse max, the experimental maximum void ratio for monodispersed spheres alone [34],
the coarse particles must be separated from one another by fine particles and a = 1. The ey =
€coarsemax CONdition was termed the limit void ratio by Salgado et al. who found a distinct change in
the stress-strain response of silty sands when this was exceeded. Considering effective stress
transfer, when eq < ecoarse,max the coarse particles must be in contact with one another and therefore
dominate stress transfer, as shown by a < 1. This effect becomes more prominent as e reduces
further below ecoarsemax- Considering both Figure 8(a) and (b), it is clear that even at low fines
contents (20%) samples with x = 2 cannot form a stable fabric comprised of coarse particles alone,
whereas samples with x = 4 form an intermediate fabric in which the coarse particles transfer more
stress than fine.

As noted above the void ratio distributions (Figure 5) suggest that for large x values and when
Feine=S™ (i.e. X = 10 and Fe=25% ), the coarse matrix is similar to a monodisperse material. This is
confirmed by the very low stress in the fines (a = 0.09). The high coordination number (Z = 5.35),
suggests that this is just at the point where the fines fill the voids. As Fgne increases to 30% the void

diameters between the coarse particles increase noticeably as fines begin to separate them and the

stress in the fines also increases to a = 1.02. For the samples with x = 2 the coarse voids are



significantly larger because, as discussed in Section 3.2, the fines are larger than the majority of the
voids in the monodisperse sample. For these samples a = 1.

Thornton and Antony [17] showed that columns or chains of “strong” contact forces (i.e. forces
of above average magnitude) transfer almost all the deviatoric load through granular materials. It is
therefore reasonable to take the probability of a fine particle forming part of a strong force chain,
P(strong)sne a@s an indicator of the extent to which the finer particles form part of the load-
transferring matrix. For internal instability to occur the load-transferring matrix should be formed
predominantly of coarse particles. Therefore the greater the extent to which the fines contribute to
the load-transferring matrix, the higher the internal stability of the soil will be.

The variation of P(strong)sne With x and Fgne is shown in Figure 9. The pattern is similar to the
relationship between a, x and Ff,e presented in Figure 7(b), where for Frne = 30%, P(strong)fine > 0.5
and therefore fines play a significant role in supporting the fabric of the samples. For samples with
Frine < 25%, P(strong)sne reduces with increasing x as the fines are able to fit more efficiently in the
voids and so are less likely to interact with the coarse particles, which dominate the strong force
chains (for each sample the probability of a coarse particle forming part of a strong force chain is
greater than 80%).

This supports the hypothesis of Rahman et al. [22] that the role which cohesionless fines play in
stress transfer diminishes with both x and Fgne When Frne < S*, (they refer to a threshold fines
content equivalent to S*). For soils with x = 2 the concept of a threshold fines content has little
meaning. For soils with x > 4 care must be taken in defining this threshold content — when Fgpe < S*
the role of the fines is primarily dependent on ¥, in particular for the range 4 < x < 6 . However, for S*
< Ffine < Smax the fines play a lesser role in stress transfer and this is dependent on both x and Fgne as
shown in Figure 9 for Ffne = 25%. An added complication is also that the values of S* and Sy are

density-dependent [6].



4 CONCLUSIONS

This paper has considered results from DEM simulations that investigated the effect of varying the
cohesionless fines content and the size ratio between coarse and fine particles on the properties of
dense bimodal materials. In particular the role of the fines in stress transfer has been studied, which
has practical significance, for example when considering the internal stability of embankment dams.
The stress-transfer and contact distributions in bimodal soils were shown to be controlled by x and
Fine and role of fines in stress transfer was quantified by the stress-reduction a-factor [4]. The

following conclusions can be drawn from the work:

(a) The DEM data are physically reasonable. It was found that the minimum void ratio which can
be obtained by bimodal samples falls as the size-ratio, X = Dcoarse/Dsine inCreases, in agreement with
experimental results presented by Lade et al. [18]. The connectivity distributions for fine-fine and
fine-coarse contacts obtained from DEM simulations are broadly similar to the experimental results

of Pinson et al. [19].

(b) The size ratios (x) for which a soil can be considered gap-graded was considered. Bimodal soils
with a size ratio of x < 2 have stress transfer and coordination number characteristics that are similar
to those for to uniform soils, as the fines cannot completely fit between the coarse particles. Fine
and coarse particles play an approximately equal role in stress transfer (a = 1) regardless of Fe.
Such soils should not be considered gap-graded in terms of stress-transmission.

(c) Forx = 6 particle-scale evidence is shown for two critical fines contents at which transitions in
soil fabric occur: (i) S*, at which the fines just fill the voids between coarse particles can be seen by
increase in the coordination number, Z; (ii) Smax, Where the fines begin to separate the coarse
particles from one another is distinguished by a reduction in the coarse to coarse coordination

coarse-coarse

number to Z < 4. At the macro-scale this transition can be demonstrated by the skeleton
void ratio, ey, increasing above ecoarse max- FOr X = 6 stress transfer is dependent on both Ffne and x. In

particular: (i) when Fne < S* the fines play only a minor role in stress transfer and a = 0; (ii) when Fine



> Smax the coarse and fine play approximately equal roles and a = 1; (iii)) when S* < Ffine < Smax an
increase in Ffne leads to an increase in a, and an increase in x leads to a reduction in a.

(d) For x = 4 at low fines contents behaviour which is intermediate between x =2 and x = 6 is
observed, with fines playing a reduced but significant role in stress transfer.

(e)When Ffine = 25% the fines have a similar coordination number to the samples with Fgpe = 30%
but a is lower. This shows that the fines play a supporting role to the coarse primary, stress-
transmitting, matrix.

(f)The influence of Fsne and x on a and on P(strong)sne, the probability of a fine particle forming
part of a strong force chain, are similar.

(g) Measurement of the void size distribution between the coarse particles shows that as more
fine particles form part of the stress-transmitting matrix the size of voids between coarse particles
increases. When a = 0 the void size distribution reduces to that for a monodisperse sample. This

occurs when x = 6 and Ffne < 25%.

5 REFERENCES

1. Salgado, R., Bandini, P., Karim, A.: Shear Strength and Stiffness of Silty Sand. J. Geotech. Geoenvironmental Eng.
126, 451-462 (2000).

2. Cundall, P.A., Strack, O.D.L.: A discrete numerical model for granular assemblies. Géotechnique. 29, 47-65
(1979).
3. Thevanayagam, S., Shenthan, T., Mohan, S., Liang, J.: Undrained Fragility of Clean Sands, Silty Sands, and Sandy

Silts. J. Geotech. Geoenvironmental Eng. 128, 849-859 (2002).

4. Skempton, A.W., Brogan, J.M.: Experiments on piping in sandy gravels. Géotechnique. 44, 449—-460 (1994).

5. Li, M., Fannin, R.J.: A theoretical envelope for internal instability of cohesionless soil. Géotechnique. 62, 77-80
(2011).

6. Shire, T., O’Sullivan, C., Hanley, K.J., Fannin, RJ., O’Sullivan, C.: Fabric and Effective Stress Distribution in

Internally Unstable Soils. J. Geotech. Geoenvironmental Eng. 140, (2014).



10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

Shire, T.: Micro-scale Modelling of Granular Filters, http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.602299,
(2014).

ICOLD: Bulletin on internal erosion of dams, dikes and their foundations: Volume 1., Paris (2015).

Kenney, T.C., Lau, D.: Internal stability of granular filters: Reply. Can. Geotech. J. 23, 420-423 (1986).

Sibille, L., Marot, D., Sail, Y.: A description of internal erosion by suffusion and induced settlements on
cohesionless granular matter. Acta Geotech.

Kézdi, A.: Soil physics: Selected topics. Elsevier, Amsterdam, Netherlands (1979).

Shire, T., O’Sullivan, C.: Micromechanical assessment of an internal stability criterion. Acta Geotech. 8, 81-90
(2013).

To, H., Torres, S., Scheuermann, A.: Primary fabric fraction analysis of granular soils. Acta Geotech. 10, 375-387
(2014).

Lade, P. V, Yamamuro, J.A.: Effects of nonplastic fines on static liquefaction of sands. Can. Geotech. J. 34, 918—
928 (1997).

Minh, N.H., Cheng, Y.P., Thornton, C.: Strong force networks in granular mixtures. Granul. Matter. 16, 69-78
(2013).

Plimpton, S.: Fast parallel algorithms for short-range molecular dynamics. ] Comput Phys. 117, 1-19 (1995).

Thornton, C., Antony, S.: Quasi-static deformation of particulate media. Philos. Trans. R. Soc. A Math. Phys. Eng.
Sci. 356, 2763—-2782 (1998).

Lade, P. V., Liggio, C.D., Yamamuro, J.A.: Effects of Non-Plastic Fines on Minimum and Maximum Void Ratios of
Sand. Geotech. Test. J. 21, 336—-347 (1998).

Pinson, D., Zou, R.P., Yu, A.B., Zulli, P., McCarthy, M.J.: Coordination number of binary mixtures of spheres. J.
Phys. D. Appl. Phys. 31, 457-462 (1999).

Gonzalez, D.B.: Numerical and Experimental Investigation Into the Behaviour of Granular Materials Under
Generalised. (2009).

Huang, X., Hanley, K.J., O’Sullivan, C., Kwok, F.C.Y.: Effect of sample size on the response of DEM samples with a
realistic grading. Particuology. 15, 107-115 (2014).

Rahman, M.M,, Lo, S.R., Gnanendran, C.T.: On equivalent granular void ratio and steady state behaviour of loose
sand with fines. Can. Geotech. J. 45, 1439-1456 (2008).



23.

24.

25.

26.

27.

28.

29.

30.

31

32.

33.

34.

Ueda, T., Matsushima, T., Yamada, Y.: Effect of particle size ratio and volume fraction on shear strength of binary
granular mixture. Granul. Matter. 13, 731-742 (2011).

Choo, H., Burns, S.E.: Shear wave velocity of granular mixtures of silica particles as a function of finer fraction,
size ratios and void ratios. Granul. Matter. 17, 567-578 (2015).

YERAZUNIS, S., CORNELL, S.W., WINTNER, B.: Dense Random Packing of Binary Mixtures of Spheres. Nature. 207,
835—-837 (1965).

Dias, R.P., Teixeira, J.A., Mota, M.G., Yelshin, A.l.: Particulate Binary Mixtures: Dependence of Packing Porosity on
Particle Size Ratio. Ind. Eng. Chem. Res. 43, 7912—-7919 (2004).

Potyondy, D.O., Cundall, P.A.: A bonded-particle model for rock. Int. J. Rock Mech. Min. Sci. 41, 1329-1364
(2004).

Mcgeary, R.K.: Mechanical Packing of Spherical Particles. J. Am. Ceram. Soc. 44, 513-522 (1961).

Cavarretta, ., O’Sullivan, C., lbraim, E., Lings, M., Hamlin, S., Wood, D.M.: Characterization of artificial spherical
particles for DEM validation studies. Particuology. 10, 209-220 (2012).

Reboul, N., Vincens, E., Cambou, B.: A statistical analysis of void size distribution in a simulated narrowly graded
packing of spheres. Granul. Matter. 10, 457-468 (2008).

Steven L. Bryant, C.L.M.E.G.: Critical Grain-Size Parameters for Predicting Framework and “Floating” Grains in
Sediments. J. Sediment. Res. 79, 817-830 (2009).

Tordesillas, A., Zhang, J., Behringer, R.: Buckling force chains in dense granular assemblies: physical and numerical
experiments. Geomech. Geoengin. 4, 3—16 (2009).

Minh, N.H., Cheng, Y.P.: A DEM investigation of the effect of particle-size distribution on one-dimensional
compression. Géotechnique. 1-10 (2012).

Cho, G.-C., Dodds, J., Santamarina, J.C.: Particle Shape Effects on Packing Density, Stiffness, and Strength: Natural
and Crushed Sands. J. Geotech. Geoenvironmental Eng. 132, 591-602 (2006).



Parameter Units Value

Poisson’s ratio - 0.3

Shear modulus GPa 27.0

Particle density kg/mm?3 2.67x10°

Coefficient ~ of  Inter- - 0.0

particle friction during

isotropic compression

Coefficient ~ of  Inter- - 0.3

particle friction for results

Table 1: Simulation input parameters

Size ratio, X = | Fines Number of Void ratio, e | Coordination | Stress-

Deoarse/ Dfine content, Fs,e | particles number, Z reduction
(%) factor, a
0 600 0.573 6.03 N/A

2 20 307 0.507 5.04 0.94
25 367 0.495 5.22 0.97
30 443 0.490 5.62 1.10
35 531 0.480 5.72 1.06

4 20 1694 0.332 1.48 0.41
25 2230 0.327 5.10 0.86
30 2843 0.337 5.54 1.05
35 3552 0.351 5.75 1.17
50 5008 0.394 5.94 1.12

6 20 5588 0.256 0.17 0.27
25 7288 0.256 5.68 0.56
30 9358 0.276 5.80 1.07
35 11750 0.294 5.87 1.13

8 20 13338 0.253 0.05 0.00
25 17211 0.227 5.67 0.31
30 22043 0.247 5.89 1.00
35 27713 0.269 5.93 1.16

10 20 25376 0.259 0.03 0.00
25 33520 0.211 5.35 0.09
30 42959 0.231 5.88 1.02
35 54033 0.255 5.92 1.16

Table 2: Summary of simulations and results
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Figure 1. Evolution of fabric with fines content: (a) underfilled with large size ratio; (b) filled; (c)
overfilled; (d) underfilled with small size ratio
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