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A REMARK ON GLOBAL WELL-POSEDNESS OF THE DERIVATIVE

NONLINEAR SCHRÖDINGER EQUATION ON THE CIRCLE

RAZVAN MOSINCAT AND TADAHIRO OH

Abstract. In this note, we consider the derivative nonlinear Schrödinger equation on the
circle. In particular, by adapting Wu’s recent argument to the periodic setting, we prove
its global well-posedness in H

1(T), provided that the mass is less than 4π. Moreover, this
mass threshold is independent of spatial periods.

1. Introduction

In this note, we consider global well-posedness of the following derivative nonlinear
Schrödinger equation (DNLS) on TL := R/(LZ) ≃ [0, L):

{

i∂tu+ ∂2xu = i∂x(|u|
2u)

u|t=0 = u0 ∈ H1(TL),
(x, t) ∈ TL × R. (1.1)

The equation (1.1) is known to be completely integrable and thus possesses an infinite
sequence of conservation laws. For our analysis, the following conservation laws play an
important role:

Mass: M(u) =

ˆ

TL

|u|2dx, (1.2)

Hamiltonian: H(u) = Im

ˆ

TL

uuxdx+
1

2

ˆ

TL

|u|4dx, (1.3)

Energy: E(u) =

ˆ

TL

|ux|
2dx+

3

2
Im

ˆ

TL

uuuuxdx+
1

2

ˆ

TL

|u|6dx. (1.4)

Let us briefly go over the known well-posedness results on T, i.e. with L = 1. Herr [5]

proved local well-posedness of (1.1) in H
1

2 (T). He also proved global well-posedness in
H1(T), under the assumption that the mass is less than 2

3 .
1 In the low regularity setting,

Win [10] applied the I-method [2, 3] and proved global well-posedness of (1.1) in Hs(T),
s > 1

2 , provided that mass is sufficiently small. 2 Our main interest in this note is to improve

the mass threshold for global well-posedness of (1.1) in the smooth setting, i.e. in H1(TL).
On R, Hayashi-Ozawa [4] proved global well-posedness of (1.1) in H1(R), provided that

mass is less than 2π. By the sharp Gagliardo-Nirenberg inequality due to Weinstein [9]:

‖f‖L6(R) ≤
4

π2
‖∂xf‖

1

3

L2(R)
‖f‖

2

3

L2(R)
,

2010 Mathematics Subject Classification. 35Q55.
Key words and phrases. derivative nonlinear Schrödinger equation; global well-posedness; Gagliardo-

Nirenberg inequality.
1. As pointed out in [5, Remark 6.1], this mass threshold 2

3
is not sharp. In view of the corresponding

result [4] on R, it is likely that the mass threshold can be improved to 2π within the framework of [5].
2. In [10], the mass threshold was not quantified in a precise manner. See, for example, [10, Lemma 3.4].
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this smallness of mass guarantees that the energy E(u) remains coercive and controls the

Ḣ1(R)-norm of a solution. Thus, this situation is analogous to that for the focusing quintic
nonlinear Schrödinger equation (NLS). 3 On the one hand, there is a dichotomy between
global well-posedness and finite time blowup solutions for the focusing quintic NLS on R,
where the mass threshold is given by the mass of the ground state. On the other hand,
DNLS has a much richer structure such as complete integrability and the question of global
well-posedness/finite time blowup solutions for large masses has been open for decades.
Recently, Wu [11, 12] made a progress in this direction. In particular, he proved global
well-posedness of (1.1) on R for masses less than 4π. Our main result states that global
well-posedness of (1.1) in the periodic setting also holds with the same mass threshold 4π.

Theorem 1.1. Let L > 0. Then, the derivative nonlinear Schrödinger equation (1.1) on

TL is globally well-posed in H1(TL), provided that the mass is less than 4π.

Theorem 1.1 improves the known mass threshold in [5] for global well-posedness in H1(T).
Moreover, note that the mass threshold 4π is independent of the period L.

The question of global well-posedness/finite time blowup solutions for larger masses
(≥ 4π) remains open on both R and TL. It is worthwhile to note that (1.1) possesses finite
time blowup solutions under the Dirichlet boundary condition on intervals and the half line
R+ = [0,∞), if E(u) < 0 (under some extra conditions). See [8, 11].

The proof of Theorem 1.1 is based on Wu’s argument [12]. On the one hand, the following
sharp Gagliardo-Nirenberg inequality:

‖f‖L6(R) ≤ CGN‖∂xf‖
1

9

L2(R)
‖f‖

8

9

L4(R)
(1.5)

plays an important role in [12]. Here, the optimal constant CGN is given by CGN =

3
1

6 (2π)−
1

9 . See Agueh [1]. On the other hand, (1.5) does not hold on TL and thus we
need to consider a variation of (1.5) suitable for our application on TL. Moreover, the
gauge transform in the periodic setting introduces extra terms in the conservation laws
that we need to control.

2. Proof of Theorem 1.1

In this section, we present the proof of Theorem 1.1. Note that Theorem 1.1 follows once
we prove the following proposition for all sufficiently small δ > 0.

Proposition 2.1. Let L, δ > 0. Then, (1.1) on TL is globally well-posed in H1(TL) provided

that the mass is less than 4π
(

1 + 2δ
5L

)−2
.

The remaining part of this note is devoted to the proof of Proposition 2.1.
We first establish the following version of the Gagliardo-Nirenberg inequality on TL

which incorporates the sharp constant from (1.5). The proof is a simple adaptation of the
argument in Lebowitz-Rose-Speer [6].

Lemma 2.2. Let δ > 0. Then, we have

‖f‖L6(TL) ≤ CGN

(

1 +
2δ

5L

)
2

9
(

‖∂xf‖
2
L2(TL)

+
2

δL
1

2

‖f‖2L4(TL)

)
1

18

‖f‖
8

9

L4(TL)
. (2.1)

for f ∈ H1(TL).

3. Note that both DNLS and the focusing quintic NLS on R are mass-critical.
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Proof. Let f ∈ H1(TL) ⊂ C(TL). By periodicity, we assume that

|f(0)| = |f(L)| ≤ L− 1

4 ‖f‖L4(TL) (2.2)

without loss of generality. Let F be an extension of f on [0, L] to R such that (i) suppF ⊂
[−δ, L+δ] and (ii) F linearly interpolates 0 and f(0) on [−δ, 0] and f(L) and 0 on [L,L+δ].
Then, by a direct calculation, we have

‖f‖6L6(TL)
≤ ‖F‖6L6(R), (2.3)

‖F‖4L4(R) ≤ ‖f‖4L4(TL)
+

2δ

5
|f(0)|4 ≤

(

1 +
2δ

5L

)

‖f‖4L4(TL)
, (2.4)

‖∂xF‖
2
L2(R) ≤ ‖∂xf‖

2
L2(TL)

+ 2
|f(0)|2

δ
≤ ‖∂xf‖

2
L2(TL)

+
2

δL
1

2

‖f‖2L4(TL)
. (2.5)

Then, the desired estimate (2.1) follows from (1.5) with (2.3), (2.4), and (2.5). �

Next, we briefly go over the gauge transform associated to (1.1) with a general parameter
β ∈ R. The gauge transform for DNLS was first introduced by Hayashi-Ozawa [4] in the
non-periodic setting. Herr [5] adapted the gauge transform (with β = 1) to the periodic
setting, exhibiting remarkable cancellations of certain resonances.

Given f ∈ H1(TL), let I(f) denotes the mean-zero antiderivative of |f |2. Then, we define
Gβ : H1(TL) → H1(TL) by Gβ(f) := e−iβI(f)f. With a slight abuse of notations, we also
use Gβ to denote a map: C([−T, T ] : H1(TL)) → C([−T, T ] : H1(TL)) by

Gβ(u) := e−iβI(u)u.

Given a local-in-time solution u ∈ C([−T, T ] : H1(TL)) to (1.1), the conservation of mass
allows us to define

µ = µ(u) :=
1

L
M(u) =

1

L

ˆ

TL

|u|2dx,

independent of time. We then define

v(x, t) := Gβ(u)(x, t) = Gβ(u)(x − 2βµt, t), (2.6)

A straightforward computation shows that v satisfies

i∂tv + ∂2xv = 2(1 − β)i|v|2vx + (1− 2β)iv2vx + βµ|v|2v + β(12 − β)|v|4v − ψ(v)v, (2.7)

where

ψ(v) :=
β

L

(
ˆ

TL

2 Im(vvx) +
(3

2
− 2β

)

|v|4
)

v + β2µ2.

It follows from (2.6) that M(v) is conserved for (2.7). Moreover, the conservation laws
H(u) and E(u) in (1.3) and (1.4) for (1.1) yield the following conservation laws for (2.7):

H(v) = Im

ˆ

TL

vvxdx+

(

1

2
− β

)
ˆ

TL

|v|4dx+ Lβµ2, (2.8)

E(v) =

ˆ

TL

|vx|
2dx+

(

3

2
− 2β

)

Im

ˆ

TL

vvvvxdx+

(

β2 −
3

2
β +

1

2

)
ˆ

TL

|v|6dx

+ 2β Im

ˆ

TL

vvxdx+ β

(

3

2
− 2β

)

µ

ˆ

TL

|v|4dx+ Lβ2µ3. (2.9)

See, for example, the computations in [7]. It is worthwhile to note that H(v) is not a
Hamiltonian for (2.7) in general. In establishing well-posedness, the gauge transform with
β = 1 played an important role [4, 5, 10]. For our purpose, we set β = 3

4 in the following so
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that the second term in (2.9) is not present, and let G := G
3

4 . In particular, it follows from
(2.8) and (2.9) with the conservation of µ = µ(v) := L−1M(v) that the following quantity

E(v) :=

ˆ

TL

|vx|
2dx−

1

16

ˆ

TL

|v|6dx+
3

8
µ

ˆ

TL

|v|4dx. (2.10)

is conserved for (2.7), where v = G(u).
Now, we move onto the proof of Proposition 2.1. The proof follows closely to that in [12].

By time reversibility, we restrict our attention to positive times. For notational simplicity,
we suppress the domain of integration TL with the understanding that all the norms are
taken over TL. First, recall that Herr’s local well-posedness result [5] yields a simple blowup
alternative; either (i) the solution u to (1.1) exists globally or (ii) there exists a finite time
T∗ such that limt↑T∗

‖u(t)‖
Ḣ1 = ∞.

Fix δ > 0. We argue by contradiction. Suppose that there exists a solution u to (1.1)

such that M(u) < 4π
(

1 + 2δ
5L

)−2
but limt↑T∗

‖u(t)‖Ḣ1 = ∞ for some finite time T∗ > 0.
Let v = G(u) be the corresponding solution to (2.7). Since the gauge transform G in (2.6)
is continuous on C([−T, T ] : H1), our assumption implies that there exists a sequence

{tn}n∈N ⊂ R+ such that limn→∞ ‖v(tn)‖Ḣ1 = ∞ while M(v) = M(u) < 4π
(

1 + 2δ
5L

)−2
.

Then, it follows from the conservation of E(v) that

‖v(tn)‖L6 → ∞, (2.11)

as n→ ∞.
As in [12], we define {fn}n∈N by

fn =
‖v(tn)‖

4
L4

‖v(tn)‖3L6

.

Then, we have the following lemma.

Lemma 2.3. Let L, δ > 0. Then, we have

2C
− 9

2

GN

(

1 +
2δ

5L

)−1

+ εn ≤ fn ≤M(v)
1

2 , (2.12)

where εn = εn(L, δ) → 0 as n→ ∞. In particular, ‖v(tn)‖L4 → ∞ as n→ ∞.

Proof. The upper bound in (2.12) follows from Hölder’s inequality. Then, it follows from
the upper bound in (2.12) and (2.11) that

γn :=

(

2

δL
1

2

−
3

8
µ‖v(tn)‖

2
L4

)

‖v(tn)‖
2
L4

‖v(tn)‖6L6

−→ 0, (2.13)

as n→ ∞. By Lemma 2.2 with (2.10), we have

fn ≥ C
− 9

2

GN

(

1 +
2δ

5L

)−1
(

‖∂xv(tn)‖
2
L2 +

2

δL
1

2

‖v(tn)‖
2
L4

)− 1

4

‖v(tn)‖
3

2

L6

= 2C
− 9

2

GN

(

1 +
2δ

5L

)−1(

1 + 16
E(v)

‖v(tn)‖6L6

+ 16γn

)− 1

4

. (2.14)

Then, the lower bound in (2.12) follows from (2.11), (2.13), and (2.14) with the conservation
of E(v). The second claim follows from (2.11) and (2.12). �
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In the following, we use the conservation of the momentum P (v) defined by

P (v) := H(v)−
3

4L
M(v)2 = Im

ˆ

TL

vvxdx−
1

4

ˆ

TL

|v|4dx.

In order to exploit the momentum, we consider modulated functions φn(x, t) = eiαnxv(x, t)
for some non-zero αn ∈ 2πZ/L (to be chosen later). On the one hand, we have

P (v) +
1

4

ˆ

TL

|v|4dx = Im

ˆ

TL

vvxdx = −
1

2αn

E(φn) +
αn

2
M(v) +

1

2αn

E(v). (2.15)

On the other hand, by Lemma 2.2 with (2.10) and (2.13), we have

E
(

(φn(tn)
)

≥ −(ηn + γn)‖v(tn)‖
6
L6 (2.16)

where ηn is defined by

ηn :=
1

16
−

(

1 +
2δ

5L

)−4

C−18
GN f

−4
n . (2.17)

Case 1: ηn + γn ≤ 0 for infinitely many n.
In this case, we simply set αn = 2π

L
. Then, for those values of n with ηn + γn ≤ 0, it

follows from (2.15) and (2.16) with (2.13) that

1

4
‖v(tn)‖

4
L4 ≤

L

4π
(ηn + γn)‖v(tn)‖

6
L6 − P (v) +

π

L
M(v) +

L

4π
E(v)

≤ −P (v) +
π

L
M(v) +

L

4π
E(v).

Then, from the conservation of M , P , and E , we conclude that ‖v(tn)‖L4 = O(1). This is
a contradiction to Lemma 2.3.

Case 2: ηn + γn > 0 for all sufficiently large n.
In this case, we choose

αn :=
2π

L

[ L

2π

(

M(v)−1(ηn + γn)
)

1

2 ‖v(tn)‖
3
L6

]

+
2π

L
∈

2πZ

L
,

where γn and ηn are as in (2.13) and (2.17). Here, [x] denotes the integer part of x. Then,
from (2.15) and (2.16), we have

1

4
‖v(tn)‖

4
L4 ≤

(

M(v)(ηn + γn)
)

1

2 ‖v(tn)‖
3
L6 − P (v) +

π

L
M(v) +

1

2αn
E(v).

Then, by Lemma 2.3, (2.11), (2.13), and (2.17) along with the conservation of M , P , and
E , we obtain

f6n ≤M(v)f4n − 16

(

1 +
2δ

5L

)−4

C−18
GN M(v) + o(1) (2.18)

as n→ ∞. Arguing as in [12], we see that (2.18) is impossible if

M(u) =M(v) < 4π

(

1 +
2δ

5L

)−2

.

This completes the proof of Proposition 2.1 and hence the proof of Theorem 1.1.

Acknowledgment. The authors would like to thank Sebastian Herr and Yifei Wu for
helpful comments.
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