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Abstract Most models of rational action assume that all possible states and
actions are pre-defined and that preferences change only when beliefs do. But
several decision and game problems lack these features, calling for a dynamic
model of preferences: preferences can change when unforeseen possibilities
come to light or when there is no specifiable or measurable change in belief.
We propose a formally precise dynamic model of preferences that extends an
existing static model (Boutilier et al, 2004). Our axioms for updating prefer-
ences preserve consistency while minimising change, like Hansson’s (1995). But
unlike prior models of preference change, ours supports default reasoning with
partial preference information, which is essential to handle decision problems
where the decision tree isn’t surveyable. We also show that our model avoids
problems for other models of preference change discussed in Spohn (2009).
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1 Introduction

Standard decision and game theory encode preferences with a static, pre-
defined and complete reward function, assigning each end state of the game
or decision problem (and sometimes intermediate states too) a numerical re-
ward (Simon, 1955). In such models, to change these “intrinsic” preferences
is simply to change the game or decision problem, and analyzing preference
change as a logic of change to one’s decision problem involves defining a game
or decision problem over games. Spohn (2009) shows that such an approach
is flawed, because it cannot distinguish between intuitively different decision
problems. It also doesn’t address preference change when agents discover un-
foreseen possibilities or when their beliefs don’t change.

This paper develops an axiomatic theory of preference change that ad-
dresses problems with prior models and that we hope will be of use in analyzing
game and decision problems. Our model of preference change, like Hansson’s
(1995), resembles an AGM model for belief change (Alchourrón et al, 1985):
updating old preferences with new ones preserves consistency while minimis-
ing change. But unlike Hansson (1995), we analyze logical interactions between
preferences and beliefs, an essential feature for decision and game theory. Our
model crucially exploits default reasoning with partial preference information
in contrast to Hansson (1995); Liu (2008, 2011); van Benthem et al (2009).
We show that the problems motivating our account require this.

Section 2 uses natural decision problems to motivate a dynamic rather
than a static utility function. Section 3 evaluates existing dynamic models of
preferences, and uses that to come up with a set of desiderata, as described
in section 4. We present our formal model in section 5. Section 5.4 shows how
our model avoids Spohn’s problems for other models of preference change.

2 Motivation: example decision problems

Strict preference is an asymmetric, transitive and irreflexive relation for an
agent over outcomes, which include actions (e.g., to buy a car) and states (e.g.,
to own a car). Preferences can be intrinsic or extrinsic (Spohn, 2009). Intrinsic
preferences are not based on other considerations. So you can prefer states that
are inconsistent with reality or impossible to achieve; e.g., you might prefer to
be healthy even though you’re terminally ill. The reward function of decision
theory captures intrinsic preferences: it specifies the extent to which the agent
finds a state attractive without regard to their beliefs about whether the state
is achievable or what subsequent states are reachable from it.

Extrinsic preferences depend on beliefs: if X is preferred to Y because
the agent believes that X makes achieving some other desirable outcome Z
more likely, then X is extrinsically preferred to Y . For example, you could
prefer eating fish over meat not because you like fish better but because you
believe avoiding meat will help lower your cholesterol. Decision and game
theory capture extrinsic preferences via expected utility (Bellman, 1957): the
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expected utility of an action sequence a is the weighted average of the reward
at each state s′ that is reachable via a, with each weight being determined
by a probabilistic belief model P (s′|a, e) of how likely s′ is if a is performed
given the evidence e, possibly complicated by a discounting factor that takes
into account how long it takes to achieve the reward. Actions that maximize
expected utility reflect a trade off between what agents intrinsically prefer and
what they believe they can achieve. Expected utilities are rightly dynamic: as
an agent’s observations e change, so do the beliefs P (s′|a, e) and hence also
the expected utilities. But for classical theories, extrinsic preferences change
only when beliefs do and intrinsic preferences don’t change. We’ll show this
isn’t always the right picture.

2.1 Extrinsic preferences aren’t always computable

In game theory, players should play an equilibrium strategy, which specifies a
strategy for each player from which no player would unilaterally deviate—i.e.,
each player expects at least as good a payoff from their own strategy as any
other strategy they could adopt, assuming that all the other players adhere to
their specified strategies (Savage, 1954). Equilibrium strategies thus depend
on the preferences of every agent.

In many games an agent doesn’t know the preferences of others, an uncer-
tainty that game theory models via a probability distribution over the possible
types of the other players, each type being associated with a complete, static
reward function. All algorithms for identifying optimal actions, like backward
induction (Shoham and Leyton-Brown, 2009, p.119) or approximate solutions
like Monte Carlo Tree Search (MCTS) (Browne et al, 2012), require agents
to know all possible states, actions and player types—any hidden information
must be a foreseen possibility. For some games, however, agents may start out
unaware of all possible player types. If so, then even if the (intrinsic) rewards
over end states are known, agents cannot exploit backward induction or MCTS
because these methods require the hypothesis space to be complete and pre-
defined. Not knowing what is possible is more serious than not knowing the
true value from a known set of possibilities, for which well known solutions
exist—we’ll call games where the agent doesn’t know all possibilities games of
strongly incomplete information.

The set of possible player types may be unknown because the agent doesn’t
know all the possible actions other players contemplate. Some win-lose board
games that involve negotiations have this feature (e.g., The Settlers of Catan;
see catan.com for its rules). The game tree is non-surveyable because there
are an unbounded number of possible trades: agents can promise a particular
future move under arbitrary conditions as a part of the trade (e.g., If you
trade clay for wood now, I will give you wheat when I get it but only if you
don’t block me). Since negotiations make the game tree non-surveyable, play-
ers must optimize on a subpart of it. But they don’t know which subparts
the other players isolate for performing their calculations. Thus the game is
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strongly incomplete: the players lack complete knowledge of the set of possible
player types, because they do not know which actions are a part of the oppo-
nents’ decision problem. Such games call for a dynamic function from states
to preferences because players must adapt the state space they optimize over
when something unforeseen happens (Degremont et al, 2014): in our Settlers
example, an agent needs to optimize his reaction to an unforeseen trade offer.
So agents must defeasibly infer preferences over intermediate states and have
ways of revising them when justified by the evidence.

2.2 Intrinsic preferences can change

Section 2.1 showed that standard algorithms for optimization don’t handle
all changes to extrinsic preferences exhibited in games of strongly incomplete
information. Here, we show such games must support changes to intrinsic
preferences too (Hansson, 1995). Suppose that an agent has never heard of
nor tasted turmeric. And suppose that initially she isn’t all that keen on soup
and would rather eat fish. One day she has a soup that she finds delicious.
She asks about its ingredients and so discovers turmeric, to which she takes
an immediate liking. Importantly, her intrinsic preferences change: she finds
turmeric goes well with soup but not with fish, and she would rather have soup
with turmeric than fish (with or without turmeric). Now there are possible end
states in her decision problem of which she was initially unaware (i.e., states
where she eats soup with turmeric), and these states turn out to be most
preferred. Crucially, the new reward function is more than an extension of the
old one—in our example, all states where the agent eats fish initially had a
higher reward than those where she eats soup, but now eating fish has a lower
reward than eating soup unless turmeric isn’t available.

Desires and preferences are parasitic on beliefs in that one can’t desire
an object if one has no idea of that object; there is no de re desire without
de re beliefs (Asher, 1987; Heim, 1992). Agents must thus formulate their
preferences over new concepts as and when they’re discovered and not before,
and in doing so they may revise (and not merely extend) existing preferences
over the already known possibilities.

Arguably, this is preference revision triggered by belief change—i.e. the dis-
covery of unforeseen possibilities (unawareness logics (e.g., Modica and Rus-
tichini (1999)) might be useful here). But existing game or decision theoretic
models like Markov Decision Processes (MDPs) (Bellman, 1957) don’t han-
dle this sort of belief change. The MDP’s variables and dependencies don’t
change over time; but in our example, the discovery of novel state descriptions
leads the agent to update her belief model to include new random variables
and/or new values for existing variables and/or revised dependencies. In other
words, the language for describing the decision problem has changed. MDPs
also characterize intrinsic preferences with a static reward function. But in our
example, discovering novel options prompts the agent to revise her intrinsic
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preferences: the initial global preference for fish over soup is retracted. MDPs
don’t capture this sort of preference dynamics either.

Agents can also change their (intrinsic) preferences in the absence of any
new discovery or belief change. Suppose that an agent A prefers to smoke
rather than not to smoke. Let the propositional variable s stand for “A smokes”
and s its negation, and let � be the preference relation: so s � s. Moreover,
A may prefer a peaceful and healthy life (p) over a non-peaceful life in which
her friends nag her (p). So p � p. But A also believes that s (defeasibly)
implies p—i.e., the two global preferences for s and p cannot be reconciled,
given the beliefs. So suppose A decides to that p is more important to her than
s. That is, A’s preference for p over p is unchanged, but she abandons the
global preference s � s for a derivative or conditional one: given p, she prefers
s; but if p is false, then she would prefer s—she still craves a cigarette. Now
suppose A changes even further. After months of not smoking, A’s desire to
smoke has changed to an aversion to smoke. That is, A replaces her conditional
preference for smoking with a global preference s � s. The change from the
conditional preference for s to a global one for s is an example of intrinsic
preference change without rational deliberation, knowledge discovery or belief
change. A change in taste may be responsible for this preference change, borne
perhaps from a change in habits. Other examples include: people who become
vegetarians for health reasons, who miss bacon at first but who over time lose
their taste for it; and children who change their tastes as they mature.

3 Motivation: Existing work on preference change

Previous work has classified preference change according to its etiology—
e.g., preference change due to a change in belief or taste or the environment
(Bradley, 2007; Lang and van der Torre, 2008). The focus of this paper is
not what causes one to adopt a new preference, but rather how one updates
existing preferences with a new preference, whatever its cause.

Spohn (2009) describes a general approach to modeling preference change
involving global decision models, which construct a decision (or game) over a
set of decisions (or games). He argues that almost all received models of prefer-
ence change can be articulated this way, but he also criticizes the approach by
showing that these models don’t discriminate between certain decision prob-
lems where intuitively the optimal actions differ.

A global decision model is like a normal decision tree except that in addition
to chance and end nodes and actions that link nodes, it contains also agent
nodes, with each agent node being the root of a different local decision model.
The local decision trees can differ in their set of actions, the actions’ likely
outcomes, and the rewards of the end states. Varying the rewards corresponds
to intrinsic preference change. The outcome of an action can be a chance
node, agent node or end node, and so a global model can represent foreseen
preference change, with the agents choosing actions that affect the type of



6 Anäıs Cadilhac et al.

agent they will be (it cannot deal with unforeseen preference change of the
kind we discussed in section 2).

One of Spohn’s minimal pair of decision problems that form the basis of
his criticism of global decision models involves intrinsic preference change. In
both of his scenarios, the agent forms a preference at an initial time, and
he can either decide to act on it (pre-empting future ‘agents’ with perhaps
distinct preferences from performing actions) or he can wait and see whether
time changes his preference. In the holiday scenario, the player p starts with
a preference to go on holiday (b1 ) over not going (b2 ). But first, p must choose
between booking the holiday immediately (a1 ), or waiting until the next morn-
ing (a2 ), in which case there’s only a 50% chance that p will still think that b1
is worth the price. There is no objective way of deciding which of a1 vs. a2 is
optimal. But intuitively, it seems reasonable for p to mistrust his excitement
now (especially given the cost) and to sleep on it; i.e., a2 is intuitively optimal.

In the second, market scenario, p is at a market and believes that the goods
on offer are never worth the money that the hawkers demand, nor even the
price demanded at the end of a long bargaining process. So initially, the agent
prefers not to buy (b1 ) over buying (b2 ). However, the hawkers are persistent
and p must either close his mind to their offers (a1 ) and thus stick to his initial
preference for b1 , or p listens to them (a2 ) and risks, with a 50% chance, being
talked into preferring b2 over b1 . This time, intuitively the optimal action is
to ignore the hawkers; i.e., a1 is optimal over a2 . But the holiday and market
scenarios have isomorphic global decision models—see Figure 1. This provides
insufficient information for distinguishing their diverging optimal strategies.

0

1 2 3

C

1 0 1 0 0 1

a1 a2

50%

b1 b2 b1 b2 b1 b2

Fig. 1 The global decision model for the holiday and market scenarios. Agent nodes are
square and chance nodes are round.

The moral we draw from Spohn’s discussion is that global decision models
have an inherent problem: they don’t offer direct rewards on intermediate
nodes, particularly the agent nodes. Thus, they cannot encode the intuition
that to act optimally you should be an agent that’s not impulsive. In both
stories, to avoid impulsive behavior is a global intrinsic preference: but this is
a property of the type of agent one is, not a property of the end states one



Preference Change 7

might end up in. The preference for a1 vs. a2 is dependent on this global
preference: for the holiday scenario, if you want to avoid acting on impulse,
then prefer a1 over a2 ; for the market, avoiding impulse yields a preference
for a2 over a1 . Global decision models don’t express such dependencies, and
don’t express intrinsic preferences for particular agent types at all. Assigning
preferences to intermediate nodes will be a feature of our partial models of
preference.

There are several modal characterisations of preference change (Liu, 2008,
2011; van Benthem et al, 2009). They define preference orders over a fixed set
of final, independent outcomes, and so they don’t address the problem that
Spohn points to, although in principle they could. But modeling preference
change when an unforeseen possibility is discovered is problematic in these
frameworks. Since Liu’s dynamic operations change the ordering over a fixed
set of outcomes but cannot change the set of outcomes, it can handle preference
change due to discovering an unforeseen possibility only through interaction
with a model of belief that doesn’t validate full introspection (i.e., ¬Bφ doesn’t
entail B¬Bφ). Liu (2008, 2011) provides a such a belief model but its inter-
action with intrinsic preference change isn’t fully explored. Furthermore, the
theory puts very high informational demands on the person who is modeling
the unaware agent: that person must know all possibilities in advance (even if
the agent they are modeling does not), and this isn’t always feasible or practi-
cal. For instance, section 2 discussed game trees that aren’t enumerable—here,
this would lead to a non-enumerable set of possible orderings over all possible
states.

To address these problems we use partial models of preference and a proof
theory that supports defeasible inference. Our approach allows an agent to
make inferences about action without being aware of all possible outcomes,
and it naturally allows preferences to order intermediate states in a game or
decision. Defeasible inference can handle this level of ‘ignorance’ because it
provides a way of expressing concise preference statements and using them to
predict optimal actions even when there are an unbounded (and unknown) set
of exceptions to such preference statements.

In section 5, we use defeasible inference to construct and to exploit pref-
erence models in decision making. Our method is simpler than Liu’s: agents
(defeasibly) optimize their behavior with respect to a relatively small and inex-
pressive preference model that uses only those factors that the agents are aware
of and believe are relevant. The agents will add further possible options only
when current evidence suggests that they are needed for behaving optimally.
Such an approach is inherently defeasible: we saw in section 2 several examples
where new observable information is inconsistent with the existing preference
model, making retraction necessary to preserve consistency—a consistent pref-
erence relation being important for the model to have any predictive power at
all (see section 4). In section 5.4 we’ll see how partial preference models and
defeasible reasoning can distinguish the optimal behaviors in Spohn’s holiday
and market examples.
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Grüne-Yanoff and Hansson (2009) discuss several models of preference
change, focussing on whether they preserve consistency. Hansson (1995) takes
an AGM style approach to revising preferences: one retracts a minimal amount
of existing preferences to make it consistent with new information. Hansson’s
model countenances the discovery of new preferences over previously unknown
options, and so his account doesn’t fit into the general approach afforded by
global decision models. On the other hand, it also doesn’t do everything that a
global decision model or the other modal approaches such as Liu’s (2008) can
do: it does not model the interaction between beliefs and preferences at all,
and so it cannot model classic decision problems, where extrinsic preferences
change because beliefs do. Our approach to preference change follows Hansson
in preserving consistency of the preference relation (see section 4) and adopt-
ing an AGM style approach to preference change. But we aim to handle both
extrinsic and intrinsic preference change.

Andréka et al (2002) offer a complex theory of preference amalgamation
and change using the notion of prioritized graphs. They offer a very interesting
algebraic treatment for combining preference orders and modeling preferential
entailment. But their definitions presuppose a fixed set of outcomes. They
also do not investigate the interaction between belief and preference change,
though their notion of refinement could be highly relevant to a problem of
revision as argued in Liu (2008, 2011).

To summarize, several existing theories advocate preference change in the
absence of any belief change. But these theories either do not handle decision
problems involving the discovery of unforeseen outcomes (Spohn, 2009; Liu,
2008, 2011; van Benthem et al, 2009) or they don’t model any interaction
between preference and belief change (Hansson, 1995). Furthermore, none of
these models support defeasible reasoning with partial models of preference,
which, we’ve argued, is an irreducible feature of decision making in complex
games or games of strongly incomplete information. The next sections provide
a formally precise model of preference change that fills these gaps.

4 Modeling Preference Change: Desirable Features

Sections 2 and 3 suggest five desirable features of a symbolic model of prefer-
ence change. First, it must allow agents to construct representations of other
players’ preferences from observing what they do, and this representation must
be conducive to decision making. We call this desideratum intelligibility.
Game theory satisfies this desideratum via the posterior probability distribu-
tion over player types, which gets updated via observable evidence. But in
games of strongly incomplete information an agent may not know the set of
possible player types—a required element of the “intelligibility” calculations in
game theory. We want a model of preference change that achieves intelligibility
even in games of strongly incomplete information.

The second desideratum concerns reasoning about one’s own preferences
as well as those of others. The logic should support inferences about how pref-
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erences may persist, vanish or change as agents acquire or forget information
about their situation. Even one’s own preference information may be partial
when, for instance, one has incomplete information about the possible end
states. We therefore need to support default reasoning with partial infor-
mation about preferences, and this partial representation of preferences must
evolve as the agent’s model of the state space evolves.

Third, following all prior work on preference change, we must guarantee
that the preference relation is consistent. This is necessary for predicting op-
timal behavior: an inconsistent preference relation entails any preference or-
dering and so renders any behavior optimal. Fourth, following Hansson (1995),
we want preference change to be conservative: one minimally retracts the old
preferences required to restore consistency with the new information, so that
preferences generally persist over time. Finally, conservativeness is balanced
by a notion of entropy: the smoking example and Spohn’s (2009) examples
show that preferences can change without conscious reflection.

CP-nets (Boutilier et al, 2004), a compact representation of preferences and
their dependencies, offer a suitable starting point for building a theory that
meets these desiderata. Cadilhac et al (2011) have shown that representing
a partial model of preferences via CP-net descriptions achieves intelligibility.
They specify axioms for updating one’s model of the opponents’ preferences
on the basis of what they say in conversation. Section 5 deepens these results,
providing update rules for revising one’s own preferences as well as those of
others by observing what they do, not just what they say. By making the up-
date rules similar to those in AGM belief revision (Alchourrón et al, 1985), we
make preference revision consistent and conservative. The preference depen-
dencies that are an inherent component of CP-nets provide an elegant way to
encode the analogue to entrenchment in AGM belief revision; they adjudicate
among alternative minimal changes to preferences Our view of revision also
provides a consistent model of entropy—i.e., where preferences change without
rational deliberation or belief change.

5 A Formal Model of Preference Change

In this section, we describe how we use CP-nets. We supply axioms that up-
date and revise partial preference models for cases where change comes about
because of a revision in belief, or from discovering new possible states or op-
tions that were not initially a part of the decision problem at all, or simply
from changing taste independently of beliefs entirely.

5.1 A brief introduction to CP-nets and partial CP-nets

CP-nets (Boutilier et al, 2004) offer a compact representation of preferences.
Similar to Bayes nets (Pearl, 1988), which are graphical models exploiting
probabilistic conditional independence to provide a compact representation
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of a joint probability distribution, CP-nets are graphical models that exploit
conditional preferential independence to provide a compact representation of
the preference order over all outcomes.

More formally, let V be a finite set of propositional variables, which defines
the set of possible outcomes 2V . Then a preference relation � is a reflexive and
transitive binary relation on 2V with strict preference � defined in the usual
way (i.e., o � o′ but o′ 6� o). An agent is indifferent between two outcomes,
written o ∼ o′, if o � o′ and o′ � o. Definition 1 defines conditional preference
independence and Definition 2 defines CP-nets: the idea is that the graphical
component G of a CP-net specifies for each variable X its parent variables
Pa(X) that affect the agent’s preferences over the values of X, such that X is
conditionally preferentially independent of V \ ({X} ∪ Pa(X)) given Pa(X).

Definition 1 Let V be a set of propositional variables, each variable X i being
linked to a domain D(X i). Let {X,Y, Z} be a partition of V . X is condition-
ally preferentially independent of Y given Z if and only if ∀z ∈ D(Z),
∀x1 , x2 ∈ D(X) and ∀y1 , y2 ∈ D(Y ) we have: x1y1 z � x2y1 z iff x1y2 z �
x2y2 z.

Definition 2 Let V be a set of propositional variables. NV = 〈G, T 〉 is a CP-
net on V , where G is a directed graph over V , and T is a set of Conditional
Preference Tables (CPTs) with indifference. That is, T = {CPT(X j ): X j ∈
V }, where CPT(X j ) specifies for each combination of values of the parent
variables p ∈ 2Pa(X j ) either p : xj � xj , p : xj � xj or p : xj ∼ xj where the
¯̄ symbol sets the variable to false.

Let’s illustrate these definitions with a simple example. Suppose an agent
prefers to go from Paris to Hong Kong by day rather than overnight. If she
takes an overnight trip, she prefers a nonstop flight, but if she goes by day she
prefers a flight with a stop. The CP-net is in Figure 2. The variable T stands
for the period of travel: D(T ) = {td , tn}, where td is a day trip and tn is a
night one. The variable S stands for the stops: D(S) = {s, s} where s is a trip
with stops and s is one without.

T

S

CPT(T) = td � tn

CPT(S) =
td : s � s

tn : s � s

Fig. 2 Travel CP-net

The logic for inferring the preference order over all outcomes from a CP-net
consists of two ranked principles. The primary principle is that violating more
preference statements is worse than violating fewer of them. The secondary
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principle is that violating a preference of something on which your other pref-
erences depend is worse than violating dependent preferences. The preference
order over outcomes that follows from Figure 2 is:

(td ∧ s) � (td ∧ s) � (tn ∧ s) � (tn ∧ s) (1)

For instance, td ∧ s is preferred to tn ∧ s because of the logic’s secondary
principle: they each violate exactly one preference statement (td : s � s ∈
CPT (S) and td � tn ∈ CPT (T ) respectively), but by the secondary principle
violating a statement in CPT (T ) is worse because T is a parent to S.

The linear forward sweep algorithm computes optimal outcomes for acyclic
CP-nets. Forward sweep instantiates variables following an order compatible
with the graph, choosing for each variable (one of) its preferred values given
the value of the parents. An iterated application of the algorithm, where one
removes from the sample space the outcome that was identified as preferred
in the last iteration, yields the relative preferences over all outcomes (see (1)).

Cadilhac et al (2011) develop a language for (partially) describing CP-nets
so as to model partial preferences. Each formula of this language is a partial
description of a complete CP-net. For instance, the description language for-
mula y1 , . . . yn : x � x(CPT (X)) is satisfied by any complete CP-net N iff
CPT(X) ∈ TN contains the entry p : x � x, where y1 , . . . , yn are conjuncts
in p (so in N , {Y i , 1 ≤ i ≤ n} ⊆ Pa(X)). A CP-net description DN is a set
of such formulas, and N |= DN just in case N satisfies each formula in DN .
Thus a partial CP-net DN defines a partial preference order over outcomes.
DN may entail neither o � o′ nor o′ � o, making o and o′ incomparable until
DN is refined into a more specific description. The description language itself
has axioms for � (transitive and asymmetric) and ∼ (transitive, symmetric
and reflexive) together with the usual axioms for propositional logic and so
delivers a notion of theorem hood ` that we use below.

Cadilhac et al (2011) provide rules to update and revise one’s partial CP-
net model of agents’ preferences given what they say in conversation. The type
of dialogue act that an agent performs says how to update the old (partial)
model of their declared preferences with newly declared preferences. The rules
allow an existing partial CP-net to be revised rather than extended to reflect
the effects of corrective speech acts. For instance, in dialogue (1), from the
Verbmobil corpus (Muller and Kasper, 2000), the dialogue move (1c) corrects
(1ab)—the preference stated initially, to meet on Thursday, is replaced with
a preference not to meet on this day.

(1) a. A: how about, Thursday afternoon, at one?
b. B: that would be good for me,
c. A: oh wait, that says two thirty, not twelve thirty.

so, we can not meet that Thursday.

We forego the details of the rules here because modeling preference dy-
namics via evidence from dialogue isn’t sufficient. Cadilhac et al (2011) don’t
claim such rules affect one’s own CP-net; even if they did preference change
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also happens when information is acquired from non-verbal actions like tasting
turmeric for the first time. So we now provide a more general model of prefer-
ence dynamics, which abstracts over the nature of the evidence that prompted
the change in belief and/or the acquisition of a new preference.

5.2 CP-net revision when beliefs change

We start by addressing the problem of how belief change can trigger preference
change, particularly extrinsic preference change. One way to avoid preference
revision, whatever the change in beliefs, would be to make each preference
statement conditional on a unique underspecified condition. Thus as beliefs
change, different equations in the (partial) CP-net become operative. For in-
stance in dialogue (1), A’s declared preference in (1a) for meeting on Thursday
is made dependent on an underspecified context C, say, while the declared pref-
erence in (1c) to meet on a day other than Thursday is made dependent on a
different underspecified context C′. These (conditional) preference declarations
are mutually consistent. But a relation between C and C′ is needed, if we are
to use such contexts in inference and decision making. We don’t know how to
do this in a plausible and efficient way.

Our alternative approach allows belief change that is exogenous to CP-nets
to trigger revision to the CP-net. The general idea is this: if the agents’ beliefs
change, then they may revise extrinsic preference statements in their CP-net,
that exist only in service to some parent goal. However, while CP-nets have
the great advantage of representing dependencies between preferences explic-
itly and assigning preferences to intermediate states and actions (a desirable
feature for handling Spohn’s scenarios, for instance), this makes an explicit dis-
tinction between intrinsic and extrinsic preferences difficult. The agents can
choose to retain a preference for an outcome o even if they come to believe
that o is unlikely or even impossible. After all, retaining intrinsic preferences
is rational because what is currently deemed unachievable may later become
achievable (especially in dynamic environments with chance moves by nature).
Nevertheless, no rational agents should act to achieve something that they
deem unachievable.

Using CP-nets thus calls for a double interaction between preferences and
beliefs. First, agents tentatively adjust their CP-net to reflect their changing
beliefs. But since the CP-nets retain intrinsic preferences, even if their fulfil-
ment is unlikely, identifying an optimal action requires the agents to ‘filter
out’ from the preference order entailed by the CP-net alone those outcomes
that, according to the agents’ exogenous beliefs, are unreachable.

Let’s look at the first step: i.e., CP-net change due to belief change. We
assume a standard Bayesian belief model and convert the qualitative (partial)
CP-net into a numeric utility function. That is, the current CP-net description
NV , defined over variables V that in turn determines the set of (currently
distinguishable) outcomes O, is mapped to a utility function u : O → IR that
satisfies the following two constraints for all o1 , o2 ∈ O: (i) if o1 ∼ o2 then
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u(o1 ) = u(o2 ), and (ii) if o1 � o2 then u(o1 ) ≥ u(o2 ). These constraints on
u suffice to ensure that u is consistent with the logic of the CP-net NV , but
there is an unbounded number of such functions u. We’ll return to this issue
shortly. But first, we consider how an agent can use u and the updated beliefs
P (O|e) to check whether (extrinsic) preferences should change: the expected
utilities are now u(o)P (o|e) rather than u(o), for o ∈ O.

The rule Extrinsic Preference Change below captures the intuition
that an existing derivative preference, which is in service to a goal x, normally
changes when newly observed evidence e yields a revised belief about the most
likely way of achieving x:

Extrinsic Preference Change: Let the utility of an outcome description p,
where p is a formula expressed with the vocabulary V of the (partial) CP-
net NV , be defined as the average utility of the specific outcomes o that
satisfy p. That is:

u(p) = def

∑
{u(o) : o ∈ O and o ` p}
|o : o ∈ O and o ` p|

Suppose x is a goal, and the agent’s partial CP-net NV includes the pref-
erence statement x : a � a′ (so u(x ∧ a) > u(x ∧ a′)). Suppose that given
evidence e, the belief model satisfies the following two conditions:
(a) P (x|a′, e) > P (x|e) (i.e., the agent believes, given the evidence, that

a′ contributes to achieving x); and
(b) u(x∧ a′)P (x∧ a′|e) > u(x∧ a)P (x∧ a|e) (i.e., the inequality over the

two expected utilities has changed).
Then normally, on observing e, the agent updates her CP-net description
with a new preference x : a′ � a, which replaces the old preference x : a �
a′ (we’ll see shortly how our formal definitions of preference revision entail
that x : a � a′ is retracted when updating with the new preference).

This update principle yields (extrinsic) preference change in a CP-net as a
result of belief change. For instance, suppose you want to go shopping (i.e.,
the goal is shop), and to do this you would rather take the car than the
bus. That is, your initial (partial) CP-net includes the conditional preference
statement shop : car � bus. But before setting out, you observe evidence e
that all the car parks are full. In fact, your relative preference u for using the
car over the bus to go shopping, together with your updated beliefs are such
that u(shop ∧ car)P (shop ∧ car|e) is less than u(shop ∧ bus)P (shop ∧ bus|e).
Then normally, you replace shop : car � bus with the new extrinsic preference
shop : bus � car.

It is important to stress that the above principle says that revision normally
occurs as opposed to always occurs. An agent may decide that even though
the expected utilities of a and a′ have changed their relative order, a is still
preferred to a′. This is a sort of induced intrinsic preference change—that
is, the agent is free to pick an alternative utility function u′ that (i) like
u, is consistent with the initial partial CP-net NV (and in particular, with
x : a � a′), while (ii) ensuring that condition (b) is no longer satisfied with the
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updated beliefs. This alternative, of choosing a utility function to articulate
one’s initial preferences so as to make revision unnecessary in the context of
the new belief, is consistent and compensates both for the fact that CP-nets
don’t distinguish intrinsic from extrinsic preferences and for the fact that they
express which outcomes are more preferred, but not by how much.

This brings us to the second interaction of beliefs with preferences. Since
the agents can choose not to revise their CP-net when beliefs change—intrinsic
preferences needn’t change even when they’re deemed unachievable—the agents
must consider the extraneous belief model as well as the CP-net when decid-
ing how to act. They should not try to achieve goals that they believe to be
unachievable. To illustrate this step simply, we add to the description logic
` a modal operator B, where the formula Bap means that agent a assigns p
a sufficiently high probability (Pearl, 1988). We make B KD45, and we also
assume that our logic supports default reasoning, with a nonmonotonic con-
sequence relation |∼; so an agent can come to believe a proposition in the
absence of evidence to the contrary. An agent uses the logic of CP-nets to or-
der the outcomes, and then uses her beliefs to filter out from that ordering any
outcomes that are doxastically improbable: that is, whenever all of the agent
a’s observations Γ support an inference that Γ |∼Ba¬p, then any outcome o
that entails p is removed from the preference ordering. This is captured in the
definition of CP-solution (Asher and Lascarides, 2013):
Definition 3 Let G be a game, represented as a joint CP-net (one for each
player). Then CP-solutiona(φ,G) holds iff:
1. a is a player in the game G; and
2. o ` φ for every belief-compliant optimal outcome o of G: i.e., where Γ in-

cludes all the background axioms of belief (including domain-level axioms)
and the relevant premises about players in G, Γ |∼/ Ba¬o and for any out-
come o′ that is strictly more optimal for a in G than o, Γ |∼ Ba¬o′.
The optimal outcome according to the preferences in a CP-net alone might

thus be different from the CP-solution that takes extraneous beliefs into ac-
count, and we assume agents act on their CP-solutions. This approach, like
that of classical decision theory, is rich enough to capture a situation where
an agent’s most preferred outcome is (currently) deemed by her to be im-
probably hard to achieve, while at the same time ensuring that the decision
making is rational: agents will not attempt to achieve the impossible simply
because they wish for it. Moreover, as beliefs change, so does the CP-solution
even if the CP-net does not change. Finally, if the exogenous model of beliefs
and intentions incorporates an axiom that intentions are dropped once they’re
achieved (Bratman, 1987), then agents won’t plan to achieve preferences that
are already believed to be true.

5.3 CP-net consistency when adding new preferences

Cadilhac et al’s (2011) rules for updating a CP-net with a new preference don’t
necessarily preserve consistency. If the original CP-net contains x1 � x2 and
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x2 � x3 then x1 � x3 is added to it via transitivity. If this is then updated
with the preference x3 � x1 , Cadilhac et al’s rules do only a local revision: only
x1 � x3 is retracted. So the result yields x1 � x1 via transitivity, which vio-
lates irreflexivity. Local revision is not a problem for their intended domain of
application, namely dialogue, because speakers control for contradictions. But
updating with a new preference generated from more general (i.e., non-verbal)
evidence needs to guarantee the consistency of the CP-net (recall section 4 for
motivation).

If the partial preference model is updated with a new preference that is
consistent with it, then simply adding the new preference is unproblematic.
The challenge is to define update with a new preference that is inconsistent
with the existing preferences. To ensure that the updated model is consistent,
we need some notion of preference revision. Following the AGM approach to
belief revision (Alchourrón et al, 1985), we define preference revision as a
sequence of two operations: downdating the existing preferences to a maximal
subset that is consistent with the new preference, followed by adding the new
preference to the result (so new preferences take priority over old ones).

One difficulty for belief revision is how to downdate a belief model when
there is more than one maximal subset of old beliefs that are consistent with
the new one. To handle this all theories exploit some notion of entrenchment
(e.g., Gärdenfors and Makinson (1988)): a transitive, binary relation on propo-
sitions where “p is more entrenched than q” means that agents are more re-
luctant to give up their belief in p than in q (all else being equal). Intuitively,
more entrenched propositions are more useful in deliberation; e.g., p is a natu-
ral law whereas q is a contingent fact. So when there’s a choice, agents favour
downdating old beliefs to the the maximal subset where fewer entrenched
propositions are removed. Defining belief entrenchment involves causality and
epistemic explanatory power, both notoriously difficult concepts to analyse.

Since we’re making preference revision analogous to AGM belief revision,
we also need a concept analogous to entrenchment, to help an agent decide
which maximal subset of old preferences to retain. Fortunately, unlike the
modal logic of belief, CP-nets have an explicit partial order—the graphical
model—that suggests a natural solution for this problem. Recall that CP-nets
define which variables influence the preferences over other variables. In effect,
the structure of the CP-net defines which preferences are global and which
are derivative. So we can regiment the intuition that the fewer factors there
are that compel us to have a particular preference, the more entrenched it is
and the less prepared we are to give it up (unless failure to do so results in
abandoning more preferences overall). This priority for removing derivative
preferences over global ones aligns with the secondary principle in the logic of
CP-nets for inferring the preference order over all outcomes: i.e., it is worse to
violate a preference on variables over which your other preferences depend.

Accordingly, we form a partial order over the outcomes defined by a CP-
net that reflects the extent to which agents would be prepared to give up
their preference for one outcome as compared to giving up their preference for
another. If the agents’ preferences for outcomes oi and oj are dependent on
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each other, then the agent is equally reluctant to give up either of them. On
the other hand, if the preference for oi depends on a superset of the factors on
which the preference for oj depends, then the agents are more reluctant to give
up their preferences for oj . We call this partial order the preference surrender
value or psv (we use the term surrender, an antonym of entrenchment, because
we’ll assign numeric psvs to outcomes where the higher the number, the more
inclined one is to give up a preference for it). Definition 4 defines the partial
order psv in two steps. First, it detects cyclically dependent outcomes in the
CP-net NV and constrains their psvs to be equal. This forms a partition over
outcomes. Then it assigns elements in each partition a numeric psv value: the
lower the number the less one is inclined to give up the preference.

Definition 4 Variables X,Y ∈ NV are said to encode cyclically dependent
preferences if X is an ancestor of Y and Y is an ancestor of X in the graphical
component of N . The partial order preferential surrender value (or psv)
over the variables V in a CP-net NV is defined as follows:

1. For V ′ ⊆ V such that NV |V ′ describes cyclically dependent preferences
over V ′, we say that psvNV

(oi) = psvNV
(oj ) for all oi , oj ∈ V ′ (so oi and

oj are state descriptions that assign specific values to each of the variables
in V ′).

2. With V thus partitioned into equivalence classes of cyclically dependent
outcomes, we assign each equivalence class a numeric preference surrender
value or psv as follows:
– For V 0 ⊆ V such that V 0 is an equivalence class of outcomes such that

all preference statements in NV about outcomes in V 0 depend only on
elements in V 0 or none at all, we set psvNV (oi) = 0, for all oi ∈ V 0

– For any V n , n 6= 0, such that V n is an equivalence class of outcomes
in NV , for all oi ∈ V n we set

psvNV
(oi) = 1+maxoj∈V n ,x∈V {psv(x):x is a parent of oj and x /∈ V n}

Suppose a (perhaps partial) CP-net N is updated with a new preference
statement φ : R(t, t′), where R ∈ {≺,�,∼}. To maintain consistency, one first
checks whether N ’s transitive closure entails φ : R(t, t′), where φ : R(t, t′) is
equivalent to t ≺ t′ ∨ t ∼ t′ if R(t, t′) is t � t′. If so, then we must change or
reset formulae in N so that the result together with φ : R(t, t′) is consistent.
Following earlier discussion, the ranking in Definition 5 favours those resets
with the fewest changes to preferences of any outcomes, and more changes to
outcomes with a larger psv than a smaller psv.

Definition 5 The >-ranking over Resets is defined as follows:
Resetn(N ) > Resetm(N ) iff

– Resetn(N ) resets fewer equations in N than Resetm(N ); or
– they reset the same number of equations, and:

min{PSV(o): R(o,o’) is reset by Resetn(N) } > min {PSV(o): R(o,o’) is
reset by Resetm(N)}
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We can now stipulate that during preference revision, any downdating is
restricted to Resets of N that are consistent with the new preference and >-
maximal. We obtain the following definition where ∗ is the revision operator
(N ∗ φ means that φ is added to N and at the same time other statements
are removed if this is needed to ensure that the resulting CP-net is consistent)
and + is the expansion operator (N + φ means that φ is added to N without
checking the consistency: nothing is removed).

Definition 6 The preference revision N ∗ φ is defined as follows:

N ∗ φ =


⋂
{Reseti(N ):Reseti(N ) is > −maximal and

Reseti(N ) + φ consistent}+ φ, if φ is consistent
⊥ otherwise

We illustrate Definition 6 by updating the partial CP-net (2) with c � a:

CPT (X) = a � b
b � c

(2)

All preferences in the CP-net (2) have rank 0 because its only variable X,
whose domain is {a, b, c} has rank 0. So there are two minimal resets of (2)
that are consistent with c � a, given in (3) and (4):

CPT (X) = a � b
c � b

(3)
CPT (X) = b � a

b � c
(4)

In words, (3) retains a � b and resets b � c to c � b, whereas (4) retains b � c
and resets a � b to b � a. Since their intersection is empty, updating (2) with
c � a yields only the new information c � a.

On the other hand, consider CP-net (5) with two variables X1 and X2

whose domains are D(X1 ) = {a, a} and D(X2 ) = {b, c, d}. Updating this
CP-net with a : d ≺ c leaves a ≺ a and the preferences dependent on a intact.

CPT (X1 ) = a ≺ a
CPT (X2 ) = a : b ≺ c

a : c ≺ d
a : c ≺ b
a : b ≺ d

(5)

Lemma 1, which follows from Definition 6, shows that preference revision
is relatively well-behaved.

Lemma 1

1. Success: φ ∈ N ∗ φ (and so trivially N ∗ φ |= φ).
2. Inclusion: N ∗ φ ⊆ N + φ (that is, the deductive or transitive closure of
N ∗ φ is contained in that of N + φ).

3. Vacuity: If ¬φ /∈ N and φ is consistent, then N ∗ φ = N + φ.
4. Consistency: N ∗ φ is consistent if φ is consistent.
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5. Extensionality: If ` φ↔ ψ, then N ∗ φ = N ∗ ψ.

Our result lacks AGM belief revision constraint of Closure, but we don’t
want this because we reason with partial descriptions of preferences. It is a
fact of life that preference information is usually incomplete; we are interested
in the process of reasoning with incompleteness. Our model for preference
change differs from Hansson’s (1995) in this respect too: Hansson only consid-
ers preferences that refer to complete alternatives (i.e., to elements of a set of
mutually exclusive alternatives). CP-nets also have the advantage of provid-
ing a notion of importance among the preferences thanks to the dependency
structure—we’ve used this to guide revision to the most preferred ways of
minimally changing the old preferences to preserve consistency with the new
ones. This sort of guidance is exogenous to Hansson’s model.

Definition 6 handles all the types of intrinsic preference change detailed in
sections 2 (see section 5.4). It has the consistency and conservativity proper-
ties discussed in section 4. Our model of preferences also has the property of
intelligibility. Intelligibility relies on (a) updating the model of other agents’
preferences based on observing what they do and (b) using this to support
decision making. We achieve (a) because Definition 6 provides the means to
consistently update one’s existing model of another agent’s preferences with
any new preference that’s inferrable from observing his or her latest action.
We achieve the second objective because partial CP-nets have a semantics
that’s defined in terms of complete CP-nets, where the latter support a logic
for identifying the optimal action (recall Definition 3 from section 5.2). So we
can also predict the agent’s optimal actions from our partial model: one sim-
ply completes the partial model of preferences by defaulting to indifference for
the preference information that is missing entirely, and one uses the resulting
complete representation to infer what decision the agent will make next.

Finally, preference revision is relatively simple in this framework assuming
that the options over which preferences are defined are logically independent
and finite. Most decision problems involve logically independent outcomes, and
our induction of partial CP-nets from behavior ensures that the options are
finite. Our definition of revision and of ranking depend just on the structure
of the CP-net constructed. Testing for consistency over logically independent
outcomes involves computing the transitive closure for the relation, which
is doable in low polynomial time. The number of consistent revisions to be
considered leads in the worst case to an exponential factor in the revision
process, but preference revision is thus decidable.

5.4 Formal analyses of sample decision problems

Let us now return to the scenarios of preference change from section 2. In
the turmeric example, the agent learns of a new possibility, expressed via a
new state description: the vocabulary the agent uses to describe the decision
problem NV changes from V to V ′ where V ⊂ V ′. For example, suppose that
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the agent initially prefers to eat fish over soup and prefers coffee to tea. His or
her initial vocabulary V consists of two variables: D for the drink with domain
D(D) = {coffee, tea}; and M for the meal with domain D(M) = {fish, soup}.
The (partial) CP-net NV is (6):

CPT (D) = coffee � tea
CPT (M) = fish � soup

(6)

We will now illustrate different effects on preference revision with different
examples of discovery; i.e., different V ′.

Suppose first that the preferences over V ′ \ V are independent from those
over V (see Definition 1): that is, for all t ∈ V ′ \ V , a, b ∈ V if t ∧ a �
t ∧ b then t ∧ a � t ∧ b. Then, it is immediate from Definition 6 that all
prior preferences in NV persist in NV ′ . For instance, if the agent discovers
chocolate, extending V to a new vocabulary V ′ = V ∪ C where the domain
D(C) = {chocolate, chocolate}, and the agent adopts the new preference is
chocolate � chocolate, then by Definition 6 the preferences in (6) persist in the
updated preferences (7):

CPT (D) = coffee � tea
CPT (M) = fish � soup
CPT (C) = chocolate � chocolate

(7)

Now suppose that there are preferences in V that are dependent on the
new preferences in V ′ \ V . For example, suppose the agent discovers wine
and turmeric such that V ′ contains two new variables: W for the wine with
domain D(W ) = {white wine, red wine}; and T for turmeric with domain
D(T ) = {turmeric, turmeric}. Suppose that the agent prefers white wine
with fish, but red wine with soup, and also now prefers soup over fish when-
ever turmeric is available, and prefers turmeric over turmeric, whatever the
circumstances. Then according to Definition 6, updating the CP-net (6) with
this new preference information yields the CP-net (8):

CPT (D) = coffee � tea
CPT (T ) = turmeric � turmeric
CPT (M) = turmeric : soup � fish

turmeric : fish � soup
CPT (W ) = fish : white wine � red wine

soup : red wine � white wine

(8)

Definition 6 entails that old preferences that are independent of new ones (like
coffee and tea) are retained. Likewise, it entails that new variables (e.g., W )
that are dependent on old ones don’t trigger revision to existing preferences.
But if the old variables are dependent on the new ones (like M , which now
depends on T ), update is more complex because inconsistency may result
between the existing preferences and the new one. Computing the update
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involves exploring the recursive structure of the CP-net. The simplest case is
where NV is without dependencies, binary comparisons only, no indifference
and:

t ∈ V ′ \ V, a, b ∈ V with a � b ∈ NV but t: b � a ∈ NV ′

The question is: should the preferences in NV ′ also shift to b � a, given t? Of
course they can, but this is equivalent to a shift in preferences among a and
b within NV itself, because (x ∧ t:φ) ∧ (x ∧ t:φ) is semantically equivalent
to x:φ. In other words, the agent’s preference change between a and b would
in this case be independent of the new vocabulary (or discovery) t, instead
being preference change within the “smaller” vocabulary V (and hence holds
within a domain of fewer possibilities). But the new preference information in
our example does not invoke such an intrinsic preference change on the old
vocabulary; it only specifies how the preferences among fish and soup change
when the (newly discovered) turmeric is available. Accordingly, Definition 6
yields the CP-net (8), where the old preference for fish over soup is retained
in the context turmeric.

More generally, for any CP-net NV with no indifference, Lemma 2 (which
follows immediately from Definition 6) specifies a general effect of updating
with new preferences expressed in an extended vocabulary V ′ ⊃ V :

Lemma 2 Equations in NV persist within NV ′ where V ⊆ V ′ for all pairs of
outcomes o1 , o2 where psv(o1 ),psv(o2 ) > psv(t), for all t ∈ V ′ \ V . Further,
if x:R(o1 , o2 ) and x ∧ t:R(o1 , o2 ), then x ∧ t:R(o1 , o2 ).

Introducing indifference complicates matters, because given t: o1 � o2 ∈
NV ′ and o1 ≺ o2 ∈ NV , it is still possible to have t: o1 ∼ o2 in NV ′ . But
that means that we just slightly weaken Lemma 2 to account for indifference:

If x:R(o1 , o2 ) and x ∧ t:R(o1 , o2 ), then x ∧ t:R(o1 , o2 ) ∨ o1 ∼ o2

Next, let’s reconsider the smoking example, modeled with two Boolean
variables S (smoking) and P (peaceful life). The agent starts with a belief
that s (smoking) normally implies p (a non-peaceful life) and the CP-net (9):

CPT (S) = s � s
CPT (P ) = p � p

(9)

CP-solutions (see definition 3) captures the agent’s moral dilemma: the most
preferred outcome s ∧ p is belief-filtered out, and neither s nor p are a part
of any CP-solution because neither of them is entailed by all optimal belief
compliant states (which are s ∧ p and s ∧ p). Now suppose the agent adopts
the new preference p : s � s. According to Definition 6, updating (9) with this
entails that the preference for s in the context p is retained:

CPT (P ) = p � p
CPT (S) = p : s � s

p : s � s
(10)
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The agent then changes preferences again, and updates (10) with s � s (i.e.,
a global aversion to smoking). This yields (11) by Definition 6.

CPT (P ) = p � p
CPT (S) = s � s

(11)

Finally, we reconsider Spohn’s (2009) examples holiday and market that
posed problems for standard decision theory (see section 3). As suggested
earlier, implicit in Spohn’s formulation is the idea that the agent should not
be impulsive: his decision to buy should be the result of deliberation that is
as objective as he can make it. While the global decision models cannot make
this explicit because you cannot attach rewards directly to the kind of agent
you are, we can make it explicit in our model: we introduce a variable R, where
D(R) = {reason, reason}. The agent also has (intrinsic) preferences over the
variable B, where D(B) = {buy, buy}.

These two stories also involve extrinsic preferences. For the holiday sce-
nario, the variable W takes the value that the agent wait before deciding
whether to buy the product, or not wait (wait). For the market scenario, the
variable L takes the value that the agent listen to the hawker before deciding
whether to buy, or not listen (listen). The holiday scenario is then captured
with the initial partial CP-net in (12):

CPT (R) = reason � reason
CPT (B) = buy � buy
CPT (W ) = reason ∧ buy : wait � wait

(12)

In words, when an agent wants to be reasonable and also wants to (currently)
buy the product, he prefers to wait to see if he changes his mind. After waiting,
either the preferences over B stay the same, or there is a preference change:
the partial CP-net (13) results from updating via Definition 6 the CP-net (12)
with the new preference buy � buy:

CPT (R) = reason � reason
CPT (B) = buy � buy
CPT (W ) = reason ∧ buy : wait � wait

(13)

In contrast, the market scenario has the following initial partial CP-net:

CPT (R) = reason � reason
CPT (B) = buy � buy
CPT (L) = reason ∧ buy : listen � listen

(14)

This makes listen optimal, and so the hawker has no opportunity to manipu-
late these preferences. These analyses show that we can better predict optimal
action in the face of foreseen preference change. We don’t represent all pos-
sible choices in all possible present and future states, but rather only current
preferences, which get updated according to subsequent evidence. In contrast,
Spohn’s model has no downdating or revision of a preference model.
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6 Conclusions and Future Work

This paper has described decision and game problems for which a static and
pre-defined reward function isn’t sufficient for reasoning about rational action.
First, there are practical problems in games where all possible ways of getting
from the current state to an end state aren’t surveyable. Static, pre-defined
preferences are also untenable on conceptual grounds, because one can be
playing a game while at the same time discovering its hypothesis space, and
preference change can stem from a change in taste in the absence of any
discovery or belief change. We agreed with Spohn (2009) that global decision
models don’t always provide sufficiently rich information for identifying the
optimal strategies.

We proposed a logically precise model of preference change that extends
and refines CP-nets, a compact and qualitative representation of preferences.
To handle the agents discovering new possible states and actions during the
course of their actions and deliberations, we introduced CP-net descriptions:
a partial model of preferences that can subsequently be added to or updated.
Indeed, the vocabulary for describing the game can be extended. We then de-
fined preference update and showed that it preserves consistency. The explicit
encoding in CP-nets of dependencies among preferences guides the revision
process. The result is a model of preference revision similar to an AGM model
of belief revision (Alchourrón et al, 1985). We applied this model to the moti-
vating examples from section 2. We showed how it complements earlier research
about preference change and in particular we demonstrated how it overcomes
Spohn’s (2009) criticisms of global models of dynamic preferences.

This work addresses reasoning about rational action in a context where
preferences change in the absence of any specifiable or measurable belief change.
In future work, we plan to devise algorithms, both precise and approximate, for
computing preference update and the revised optimal strategies that result.
We believe that the resulting computational model of dynamic preferences,
when integrated with a computational model of dynamic belief, will provide
a powerful tool for studying decision and game problems for which standard
models of rational action do not provide a satisfactory solution.
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