

Edinburgh Research Explorer

Blame and Coercion: Together Again for the First Time

Citation for published version:
Siek, J, Thiemann, P & Wadler, P 2015, Blame and Coercion: Together Again for the First Time. in 36th
annual ACM SIGPLAN conference on Programming Language Design and Implementation: Portland OR
13-17 June 2015. ACM, pp. 425-435. DOI: 10.1145/2737924.2737968

Digital Object Identifier (DOI):
10.1145/2737924.2737968

Link:
Link to publication record in Edinburgh Research Explorer

Document Version:
Peer reviewed version

Published In:
36th annual ACM SIGPLAN conference on Programming Language Design and Implementation

General rights
Copyright for the publications made accessible via the Edinburgh Research Explorer is retained by the author(s)
and / or other copyright owners and it is a condition of accessing these publications that users recognise and
abide by the legal requirements associated with these rights.

Take down policy
The University of Edinburgh has made every reasonable effort to ensure that Edinburgh Research Explorer
content complies with UK legislation. If you believe that the public display of this file breaches copyright please
contact openaccess@ed.ac.uk providing details, and we will remove access to the work immediately and
investigate your claim.

Download date: 05. Apr. 2019

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Edinburgh Research Explorer

https://core.ac.uk/display/77045439?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://doi.org/10.1145/2737924.2737968
https://www.research.ed.ac.uk/portal/en/publications/blame-and-coercion-together-again-for-the-first-time(37f6aa35-66d7-466b-a1e9-8b2fed64c5b7).html

Blame and Coercion:
Together Again for the First Time

Jeremy Siek
Indiana University, USA

jsiek@indiana.edu

Peter Thiemann
Universität Freiburg, Germany

thiemann@informatik.uni-freiburg.de

Philip Wadler
University of Edinburgh, UK

wadler@inf.ed.ac.uk

Abstract
C#, Dart, Pyret, Racket, TypeScript, VB: many recent languages
integrate dynamic and static types via gradual typing. We sys-
tematically develop three calculi for gradual typing and the rela-
tions between them, building on and strengthening previous work.
The calculi are: λB, based on the blame calculus of Wadler and
Findler (2009); λC, inspired by the coercion calculus of Hen-
glein (1994); λS inspired by the space-efficient calculus of Her-
man, Tomb, and Flanagan (2006) and the threesome calculus of
Siek and Wadler (2010). While λB is little changed from previous
work, λC and λS are new. Together, λB, λC, and λS provide a co-
herent foundation for design, implementation, and optimisation of
gradual types.

We define translations from λB to λC and from λC to λS. Much
previous work lacked proofs of correctness or had weak correctness
criteria; here we demonstrate the strongest correctness criterion
one could hope for, that each of the translations is fully abstract.
Each of the calculi reinforces the design of the others: λC has a
particularly simple definition, and the subtle definition of blame
safety for λB is justified by the simple definition of blame safety
for λC. Our calculus λS is implementation-ready: the first space-
efficient calculus that is both straightforward to implement and easy
to understand. We give two applications: first, using full abstraction
from λC to λS to validate the challenging part of full abstraction
between λB and λC; and, second, using full abstraction from λB
to λS to easily establish the Fundamental Property of Casts, which
required a custom bisimulation and six lemmas in earlier work.

Categories and Subject Descriptors F.3.3 [Logics and meaning
of programs]: Studies of Program Constructs—Type structure

Keywords Blame, lambda calculus, gradual typing

1. Introduction
Contracts and blame. Findler and Felleisen (2002) introduced two
seminal ideas: higher-order contracts to monitor adherence to a
specification, and blame to indicate which of two parties is at fault
if the contract is violated. In particular, at higher-order a contract
allocates blame to the environment if it supplies an incorrect ar-

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
PLDI’15, June 13–17, 2015, Portland, OR, USA.
Copyright c© 2015 ACM 978-1-4503-3468-6/15/06. . . $15.00.
http://dx.doi.org/10.1145/—

gument or to the function if it supplies an incorrect result. Blame
characterises correctness: one cannot guarantee that a contract in-
terposed between typed and untyped code will not be violated,
but one can guarantee that if it is violated then blame allocates to
the untyped code, a result first established by Tobin-Hochstadt and
Felleisen (2006).

Findler and Felleisen’s innovation led to a bloom of others.
Siek and Taha (2006) introduced gradual typing; Flanagan (2006)
introduced hybrid typing, later implemented in Sage (Gronski et al.
2006); Ou et al. (2004) integrated simple and dependent types.
These systems built crucially on contracts, and all used a similar
translation from a source language to an intermediate language of
explicit casts. Alas, they ignored blame. Wadler and Findler (2009)
restored blame to this intermediate language and formalised it as as
the blame calculus. They established blame saftey, a generalisation
of the correctness criterion for contracts: given a cast between a
less-precise and a more-precise type, blame always allocates to the
less-precisely typed side of the cast—“Well-typed programs can’t
be blamed”.

Space-efficient coercions. A naive implementation of contracts
(or the blame calculus) suffers space leaks. Two mutually recursive
procedures where the recursive calls are in tail position should
run in constant space; but if one of them is statically typed and
the other is dynamically typed, the mediating casts break the tail
call property, and the program requires space proportional to the
number of calls.

Herman et al. (2007, 2010) proposed a solution to this problem
based on the coercion calculus of Henglein (1994). Alas, they
also ignoring blame. Their calculus represents casts as coercions.
When two coercions are applied in sequence, they are composed
and normalised. The height of the composition of two coercions is
bounded by the heights of the two original coercions; the size of
a coercion in normalised form is bounded if its height is bounded,
ensuring that computation proceeds in bounded space. However,
normalising coercions requires that sequences of compositions are
treated as equal up to associativity. While this is not a difficult
problem in symbol manipulation, it does pose a challenge when
implementing an efficient evaluator.

Siek and Wadler (2010) proposed an alternative solution. At
first, they also ignored blame. They observed that any cast factors
into a downcast from the source to a mediating type, followed by
an upcast from the mediating type to the target—called a threesome
because it involves three types. Two successive threesomes collapse
to a single threesome, where the mediating type is the greatest
lower bound of the two original mediating types. The height of the
greatest lower bound of two types is bounded by their heights; and
the size of a type is bounded if its height is bounded, again ensuring
that computation proceeds in bounded space.

Siek and Wadler (2010) then restored blame by decorating the
mediating type with labels that indicate how blame is to be allo-

cated, and showed decorated types are in one-to-one correspon-
dence with normalised coercions. A recursive definition computes
the meet of the two decorated types (or equivalently the composi-
tion of the two corresponding coercions); it is straightforward to
calculate, avoiding the associativity problem of coercions.

However, the notation for decorated types is far from transpar-
ent. Siek reports that Tanter attempted to implement Gradualtalk
with threesomes, but found it too difficult. Wadler reports that while
preparing a lecture on threesomes a few years after the paper was
published, he required several hours to puzzle out the meaning of
his own notation, ⊥mGp. Eventually, he could only understand it
by relating it to the corresponding coercion—a hint that coercions
may be clearer than threesomes once blame is involved.

Hence we have two approaches: Herman et al. (2007, 2010) is
easy to understand, but hard to compute; Siek and Wadler (2010) is
easy to compute, but hard to understand. Garcia (2013) attempted to
ameliorate this tension by starting with the former and deriving the
latter. However, the derivation necessarily contains all the confus-
ing notation of Siek and Wadler while also introducing additional
notations of its own, notably, a collection of ten supercoercions.
By design, his derived definition of composition matches Siek and
Wadler’s original and so is no easier to read.

Much previous work lacked proofs of correctness or had weak
correctness criteria. Herman et al. (2007, 2010) give no proof re-
lating their calculus to others for gradual typing. Siek and Wadler
(2010) establish that a term in the blame calculus converges if and
only if its translation into the threesome calculus converges, but
they do so only at the top level (Kleene equivalence: roughly, con-
textual equivalence without the context).

Our approach. We establish new foundations for gradual typing
by considering a sequence of calculi and the relations between
them: λB, based on the blame calculus of Wadler and Findler
(2009); λC, inspired by the coercion calculus of Henglein (1994);
λS, inspired by the space-efficient calculus of Herman et al. (2007,
2010) and the threesome calculus of Siek and Wadler (2010). While
λB is little changed from previous work, the other two are new.

The two new calculi are based on ideas so simple it is surprising
no one thought of them years ago. For λC, the novel insight is
to present a computational calculus as close as possible to the
original coercion calculus of Henglein (1994). For λS, the novel
insight is to restrict coercions to a canonical form and write out
the algorithm that composes two canonical coercions to yield a
canonical coercion.

Henglein (1994) explored optimisation of coercions, but re-
markably neither he nor anyone else has written down the obvious
reduction rules for evaluating a lambda calculus with coercions, as
we have done here with λC. The result is a pleasingly simple cal-
culus, close to correct by construction.

Our translation from λB into λC resembles many in the litera-
ture; it compiles casts into coercions. We show that this translation
is a lockstep bisimulation, where a single reduction step in λB cor-
responds to a single reduction step in λC, giving a close correspon-
dence between the two calculi. There are several subtleties in the
design of λB, but essentially none in the design of λC, and that the
two run in lockstep suggests that both designs are correct.

A key property of the blame calculus is blame safety—“Well-
typed programs can’t be blamed”. Surprisingly, no previous work
considers whether translations preserve blame safety. Here we
show that blame safety is preserved by translations between cal-
culi, and, as a pleasant consequence, that the subtle definition of
blame safety for λB is justified by the straightforward definition of
blame safety for λC.

Our reverse translation from λC to λB is novel. We observe that
a single coercion must translate into a sequence of casts, because a
coercion may contain many blame labels but a cast contains only

one. The challenge is to show that translating from λC to λB and
back again yields a term contextually equivalent to the original.
This, together with the bisimulation, establishes the strongest cor-
rectness criterion one could hope for, full abstraction: translation
from λB to λC preserves and reflects contextual equivalence.

For λS we isolate a novel grammar corresponding to coercions
in canonical form. Canonical forms are unique, and in one-to-one
correspondence with normal forms. We present a simple recursive
function that takes two coercions in canonical form, s and t, and
returns their composition in canonical form, s # t. Validating the
correctness of this definition against Henglein’s original rules is
straightforward. As with threesomes, it avoids the problems of
associativity previously attached to using coercions; but because
it is based on coercions, it avoids the problems of decoding the
meaning of the decorated types attached to threesomes.

Translation from λC to λS is straightforward, but establishing
its correctness is the most challenging result in the paper. The
difficulty is that λC breaks compositions into simpler components,

M〈c ; d〉 −→M〈c〉〈d〉,
while λS assembles simpler components into compositions,

M〈s〉〈t〉 −→M〈s # t〉.
(As explained in Sections 3 and 4, c, d range over coercions and
s, t over space-efficient coercions,M〈c〉 denotes the application to
term M of coercion c, and similarly for M〈s〉.) We introduce a re-
lation between terms of λC and λS and show it is a bisimulation. In
this case the bisimulation is not lockstep: one step in λC may corre-
spond to many in λS, and vice-versa. Siek and Wadler (2010) estab-
lish a bisimulation similar to the one here, but our development is
simpler because it uses coercions rather than decorated types, and
because it uses λC as an intermediate step. Because the mapping
of λS back to λC is simply an inclusion, the bisimulation easily
establishes full abstraction of the translation from λC to λS.

Outline. Sections 2–4 systematically consider λB, λC, and λS.
For each caclulus we introduce its syntax, type rules, and reduction
rules; and we establish type safety and blame safety. In Sections 3–
4, for each calculus we also consider translations to and from the
previous calculus, show the translations preserve type and blame
safety, and demonstrate a bisimulation and full abstraction.

In Section 5, we observe that full abstraction often makes it
easy to establish equivalences in λB or λC, because equivalent
terms in those calculi translate into one and the same term in λS.
In particular, we exploit full abstraction between λC and λS to
establish the key lemma required to show full abstraction between
λB and λC. We also exploit full abstraction between λB and λS
to establish The Fundamental Theorem of Casts, which required
a custom bisimulation and six lemmas in Siek and Wadler (2010).
Section 6 discusses related work, including a survey of how gradual
typing is used in practice. Section 7 concludes.

2. Blame Calculus
Figure 1 defines the blame calculus, λB. This section reprises
results from Wadler and Findler (2009), Siek and Wadler (2010),
and Ahmed et al. (2011). Additional motivation and examples can
be found in Wadler (2015).

Blame calculus is based on simply-typed lambda calculus, stan-
dard constructs of which are shown in gray. LetA,B,C range over
types. A type is either a base type ι, a function type A→ B, or the
dynamic type ?. Let G,H range over ground types. A ground type
is either a base type ι or the function type ? → ?. The dynamic
type satisfies the domain equation

? ∼= ι+ (?→ ?)

so each value of dynamic type belongs to one ground type.

Syntax
A,B,C ::= ι | A→ B | ?
G,H ::= ι | ?→ ?

L,M,N ::= k | op(~M) | x | λx:A.N | L M |

M : A
p

=⇒ B | blame p

V,W ::= k | λx:A.N | V : A→ B
p

=⇒ A′ → B′ |

V : G
p

=⇒ ?

E ::= � | E [op(~V ,�, ~M)] | E [� M] | E [V �] |

E [� : A
p

=⇒ B]

Compatible A ∼ B

ι ∼ ι
A ∼ A′ B ∼ B′
A→ B ∼ A′ → B′ A ∼ ? ? ∼ B

Term typing Γ `B M : A
Γ `M : A A ∼ B

Γ ` (M : A
p

=⇒ B) : B Γ ` blame p : A

Reduction M −→B N

E [op(~V)] −→ E [[[op]](~V)]

E [(λx:A.N) V] −→ E [N [x:=V]]

E [V : ι
p

=⇒ ι] −→ E [V]

E [(V : A→ B
p

=⇒ A′ → B′) W] −→

E [(V (W : A′
p

=⇒ A)) : B
p

=⇒ B′]

E [V : ?
p

=⇒ ?] −→ E [V]

E [V : A
p

=⇒ ?] −→ E [V : A
p

=⇒ G
p

=⇒ ?]

if A 6= ?,A 6= G,A ∼ G

E [V : ?
p

=⇒ A] −→ E [V : ?
p

=⇒ G
p

=⇒ A]

if A 6= ?,A 6= G,A ∼ G

E [V : G
p

=⇒ ?
q

=⇒ G] −→ E [V]

E [V : G
p

=⇒ ?
q

=⇒ H] −→ blame q if G 6= H

E [blame p] −→ blame p if E 6= �

Embedding dynamically typed λ-calculus dMe
dke = k : ι

p
=⇒ ? if k : ι

dop(~M)e = op(d ~Me : ~?
~p

=⇒ ~ι) : ι
p

=⇒ ? if op : ~ι→ ι

dxe = x

dλx.Ne = (λx: ? . dNe) : ?→ ?
p

=⇒ ?

dL Me = (dLe : ?
p

=⇒ ?→ ?) dMe

Figure 1. Blame calculus (λB)

Types A and B are compatible, written A ∼ B, if either is the
dynamic type, if they are both the same base type, or they are both
function types with compatible domains and ranges. Every type is
either the dynamic type or compatible with a unique ground type.
Two ground types are compatible if and only if they are equal.

Lemma 1 (Grounding).

1. If A 6= ?, there is a unique G such that A ∼ G.
2. G ∼ H iff G = H .

Incompatibility is the source of all blame: casting a type into the
dynamic type and then casting out at an incompatible type allocates
blame to the second cast.

Let p, q range over blame labels. To indicate on which side
of a cast blame lays, each blame label p has a complement p.
Complement is involutive, p = p.

Let L,M,N range over terms. Terms are those of simply-typed
lambda calculus, plus casts and blame. Each operator op on base
types is specified by a total meaning function [[op]] that preserves
types: if op : ~ι→ ι and ~k : ~ι, then [[op]](~k) = k with k : ι.

Typing, reduction, and safety judgments are written with sub-
scripts indicating to which calculus they belong, except we omit
subscripts in figures to avoid clutter. We write Γ `B M : A to indi-
cate that in type environment Γ term M has type A. Type rules for
simply-typed lambda calculus are standard and omitted. The type
rule for casts is straightforward:

Γ `B M A ∼ B
Γ `B (M : A

p
=⇒ B) : B

If termM has typeA and typesA andB are compatible then a cast
of M from A to B is a term of type B. The cast is decorated with
a blame label p. We abbreviate a pair of casts

(M : A
p

=⇒ B) : B
q

=⇒ C as M : A
p

=⇒ B
q

=⇒ C.

A term blame p has any type.
Every well-typed term not containing blame has a unique type:

if Γ ` M : A and Γ ` M : A′ and M does not contain a subterm
of the form blame p, then A = A′.

If a cast from A to B decorated with p allocates blame to p
we say it has positive blame, meaning the fault lies with the term
contained in the cast; and if it allocates blame to p we say it has
negative blame, meaning the fault lies with the context containing
the cast.

Let V,W range over values. A value is a constant, a lambda
abstraction, a cast of a value from function type to function type, or
a cast of a value from ground type to dynamic type. Let E range
over evaluation contexts, which are standard, and include casts
in the obvious way. We write M −→B N to indicate that term
M steps to term N . For any reduction relation −→, we write its
reflexive and transitive closure as −→∗.

The first two rules are standard (and not repeated in subse-
quent figures). A cast from a base type to itself leaves the value
unchanged. A cast of a function applied to a value reduces to a
term that casts on the domain, applies the function, and casts on the
range; to allocate blame correctly, the blame label on the cast of
the domain is complemented, corresponding to the fact that func-
tion types are contravariant in the domain and covariant in the range
(Findler and Felleisen 2002; Wadler and Findler 2009). A cast from
type ? to itself leaves the value unchanged. AssumeA is neither the
dynamic type ? nor a ground type, andG is the unique ground type
compatible with A; then a cast from A to ? factors into a cast from
A to G followed by a cast from G to ?, and a cast from ? to A fac-
tors into a cast from ? to G followed by a cast from G to A. A cast
from a ground typeG to type ? and back to the same ground typeG
leaves the value unchanged. A cast from a ground type G to type ?
and back to an incompatible ground type H allocates blame to the
label of the outer cast. (Why the outer cast? This choice traces back
to Findler and Felleisen (2002), and reflects the idea that we always
hold an injection from ground type to dynamic type blameless, but
may allocate blame to a projection from dynamic type to ground
type.)

Two rules have side conditions A 6= ?,A 6= G,A ∼ G. The
condition implies that G = ? → ?, so we could rewrite the rules
replacing G by ? → ?. We use the given form because it is more

Subtype A <: B

ι <: ι
A′ <: A B <: B′

A→ B <: A′ → B′
A <: G
A <: ?

Positive subtype A <:+ B

ι <:+ ι

A′ <:− A B <:+ B′

A→ B <:+ A′ → B′ A <:+ ?

Negative subtype A <:− B

ι <:− ι

A′ <:+ A B <:− B′

A→ B <:− A′ → B′ ? <:− B

A <:− G

A <:− ?

Naive subtype A <:n B

ι <:n ι
A <:n A

′ B <:n B
′

A→ B <:n A
′ → B′ A <:n ?

Safe cast (A
p

=⇒ B) safeB q

A <:+ B

(A
p

=⇒ B) safe p

A <:− B

(A
p

=⇒ B) safe p

p 6= q p 6= q

(A
p

=⇒ B) safe q

Figure 2. Subtyping and blame safety

compact, and it adapts if we permit other ground types, such as
product G = ?× ?.

The following lemma will prove useful later.

Lemma 2 (Failure). If A 6= ?, A ∼ G, and G 6= H , then

V : A
p1=⇒ G

p2=⇒ ?
p3=⇒ H

p4=⇒ B −→∗ blame p3

Embedding dMe takes terms of dynamically-typed lambda cal-
culus into the blame calculus. The embedding introduces a fresh
label p for each cast.

Type safety is established via preservation and progress.

Proposition 3 (Type safety, Wadler and Findler (2009)).

1. If `B M : A and M −→B N then `B N : A.
2. If `B M : A then either

(a) there exists a term N such that M −→B N , or
(b) there exists a value V such that M = V , or
(c) there exists a label p such that M = blame p.

The same will hold, mutatis mutandis, for λC and λS.
Type safety does not rule out blame as a result. How to guaran-

tee blame cannot arise in certain circumstances is the subject of the
next section.

2.1 Blame Safety
Figure 2 presents four different subtyping relations and defines
safety for blame calculus.

Why do we need four different subtyping relations? Each has
a different purpose. Relation A <: B characterizes when a cast
A =⇒ B never yields blame; relations A <:+ B and A <:− B
characterize when a castA =⇒ B cannot yield positive or negative
blame, respectively; and relationA <:n B characterizes when type
A is more precise than type B. All four relations are reflexive and

transitive, and subtyping, positive subtyping, and naive subtyping
are antisymmetric.

The first three subtyping relations are characterised by con-
travariance. A cast from a base type to itself never yields blame.
A cast from a function type to a function type never yields positive
blame if the cast of the arguments never yields negative blame and
if the cast of the results never yields positive blame; and ditto with
positive and negative reversed; as with casts, each rule is contravari-
ant in the function domain and covariant in the function range. A
cast from ground type to dynamic type never yields blame. A cast
to dynamic type never yields positive blame, while a cast from dy-
namic type never yields negative blame.

Naive subtyping is characterised by covariance. A base type is
as precise as itself, precision of function types is covariant in both
the domain and range of functions, and the dynamic type is the least
precise type.

These four relations are closely connected: ordinary subtyping
decomposes into positive and negative subtyping, which can be
reassembled to yield naive subtyping, almost like a tangram.

Lemma 4 (Tangram, Wadler and Findler (2009)).

1. A <: B iff A <:+ B and A <:− B.
2. A <:n B iff A <:+ B and B <:− A.

A cast from A to B decorated with p is safe for blame label q,

(A
p

=⇒ B) safeB q,

if evaluation of the cast can never allocates blame to q. The three
rules reflect that ifA <:+ B the cast never allocates positive blame,
ifA <:− B the cast never allocates negative blame, and a cast with
label p never allocates blame other than to p or p. Safety extends
to terms in the obvious way: M safeB q if every cast in M is safe
for q. Blame safety is established via a variant of preservation and
progress.

Proposition 5 (Blame safety, Wadler and Findler (2009)).

1. If M safeB q and M −→B N then N safeB q.
2. If M safeB q then M 6−→B blame q.

The same will hold, mutatis mutandis, for λC and λS.

2.2 Contextual Equivalence
Contextual equivalence is defined as usual. Evaluating a term may
have three outcomes: converge, allocate blame to p, or diverge. Two
terms are contextually equivalent if they have the same outcome in
any context.

Let C range over contexts. A context is an expression with a sin-
gle hole in any position. Write M↑B if M diverges; coinductively,
M↑B if M −→B N and N↑B.

Definition 6 (Contextual equivalence). Two terms are contextually
equivalent, M ctx

=B N , if for any context C, either

1. both converge, C[M] −→∗B V and C[N] −→∗B W , for some
values V and W .

2. both blame the same label, C[M] −→∗B blamep and C[N] −→∗B
blame p, for some label p, or

3. both diverge, C[M]↑B and C[N]↑B.

The same will apply, mutatis mutandis, for λC and λS.

3. Coercion Calculus
Figure 3 defines the coercion calculus, λC. Our coercions corre-
spond to those of Henglein (1994), except that a coercion from dy-
namic type to ground type is decorated with a blame label, as in
Siek and Wadler (2010), and we add a coercion ⊥GpH , similar to

Syntax

c, d ::= idA | G! | G?p | c→ d | c ; d | ⊥GpH

L,M,N ::= k | op(~M) | x | λx:A.N | L M |M〈c〉 | blame p
V,W ::= k | λx:A.N | V 〈c→ d〉 | V 〈G!〉

E ::= � | E [op(~V ,�, ~M)] | E [� M] | E [V �] | E [�〈c〉]

Coercion typing c : A =⇒ B

idA : A =⇒ A

G! : G =⇒ ? G?p : ? =⇒ G
c : A′ =⇒ A d : B =⇒ B′

(c→ d) : A→ B =⇒ A′ → B′

c : A =⇒ B d : B =⇒ C
(c ; d) : A =⇒ C

A 6= ? A ∼ G G 6= H

⊥GpH : A =⇒ B

Term typing Γ `C M : A

Γ `M : A c : A =⇒ B
Γ `M〈c〉 : B Γ ` blame p : A

Reduction M −→C N

E [V 〈idA〉] −→ E [V]

E [(V 〈c→ d〉) W] −→ E [(V (W 〈c〉))〈d〉]

E [V 〈G!〉〈G?p〉] −→ E [V]

E [V 〈G!〉〈H?
p〉] −→ blame p if G 6= H

E [V 〈c ; d〉] −→ E [V 〈c〉〈d〉]

E [V 〈⊥GpH〉] −→ blame p

E [blame p] −→ blame p if E 6= �

Safe coercion c safeC q

idA safe q G! safe q

p 6= q

G?p safe q

c safe q d safe q

c→ d safe q

c safe q d safe q

c ; d safe q

p 6= q

⊥GpH safe q

Height ||c||

||idA|| = 1 ||c→ d|| = max(||c||, ||d||) + 1

||G!|| = 1 ||c ; d|| = max(||c||, ||d||)

||G?p|| = 1 ||⊥GpH || = 1

Figure 3. Coercion calculus (λC)

Fail in Herman et al. (2007, 2010). Our type rules and definition
of height are well-known; our reduction rules and all results in this
section are new.

Blame labels and types are as in λB. Let c, d range over coer-
cions. We write c : A =⇒ B to indicate that c coerces values of
typeA to typeB. Our type rules follow Henglein (1994). The iden-
tity coercion at type A is written idA. Injection from ground type
G to dynamic type is writtenG!, and projection from dynamic type
to ground type G is written G?p. The latter is decorated with a la-

bel p, to which blame is allocated if the projection fails. A function
coercion c→ d coerces a function A→ B to a function A′ → B′,
where c coerces A′ to A, and d coerces B to B′. This construct is
contravariant in the domain coercion c and covariant in the range
coercion d. The composition c ; d coerces A to C, where c coerces
A to B, and d coerces B to C. The fail coercion ⊥GpH represents
the result of a failed coercion from ground type G to ground type
H , and is introduced because it is essential to the space-efficient
representation described in the following section.

Terms of the calculus are as before, except that we replace casts
by application of a coercion, M〈c〉. The typing rule is straightfor-
ward:

Γ `C M : A c : A =⇒ B

Γ `C M〈c〉 : B

If termM has typeA, and c coercesA toB, then application toM
of c is a term of type B.

Every well-typed coercion not containing failure has a unique
type: if c : A =⇒ B and c : A′ =⇒ B′ and c does not contain a
coercion of the form⊥GpH thenA = A′ andB = B′. Conversely,
distinct coercions may have the same type: for example, id? and
G?p ;G! both have type ? =⇒ ?.

Values and evaluation contexts are as in the blame calculus, with
casts replaced by corresponding coercions. We write M −→C N
to indicate that term M steps to term N . The identity coercion
leaves a value unchanged. A coercion of a function applied to a
value reduces to a term that coerces on the domain, applies the
function, and coerces on the range. If an injection meets a matching
projection, the coercion leaves the value unchanged. If an injection
meets an incompatible projection, the coercion fails and allocates
blame to the label in the projection. (Here it is clear why blame falls
on the outer coercion: the inner coercion is an injection and has no
blame label, while the outer is a projection with a blame label.)
Application of a composed coercion applies each of the coercions
in turn.

A coercion c is safe for blame label q, written c safeC q, if ap-
plication of the coercion never allocates blame to q. The definition
is pleasingly simple: a coercion is safe for q if it does not mention
label q.

Height of a coercion is as in Herman et al. (2007, 2010), and
will be used in Section 4.

Type and blame safety and contextual equivalence for λC are
as in λB. Propositions 3 and 5 and Definition 6 apply mutatis
mutandis.

3.1 Relating λB to λC
The relation between λB and λC is presented in Figure 4. In this
section, we let M,N range over terms of λB and M ′, N ′ range
over terms of λC.

We write
|A p

=⇒ B|BC = c

to indicate that the cast on the left translates to the coercion on the
right. The translation is designed to ensure there is a lockstep bisim-
ulation between λB and λC. The translation extends to terms in the
obvious way, replacing each cast by the corresponding coercion.

We write
|c|CB = Z

to indicate that the coercion on the left translates to the sequence
of casts on the right. Here Z ranges over sequences of casts. As
defined in Figure 4, we write Z → B (respectively B → Z) to
replace in Z each source or target type A by A→ B (respectively
B → A), we write Z to reverse the sequence Z and complement
all the blame labels, and we write Z ++ Z′ to concatenate two
sequences Z and Z′, where the last type of one sequence must
match the first of the other. In the clause for c → d, the right-hand

Blame to coercion (λB to λC) |A p
=⇒ B|BC = c

|ι p
=⇒ ι|BC = idι

|A→ B
p

=⇒ A′ → B′|BC = |A′ p
=⇒ A|BC → |B p

=⇒ B′|BC

|? p
=⇒ ?|BC = id?

|G p
=⇒ ?|BC = G!

|A p
=⇒ ?|BC = |A p

=⇒ G|BC ;G! if A 6= ?,A 6= G,A ∼ G

|? p
=⇒ G|BC = G?p

|? p
=⇒ A|BC = G?p ; |G p

=⇒ A|BC if A 6= ?,A 6= G,A ∼ G

Coercion to blame (λC to λB) |c|CB = Z

|idA|CB = []

|G!|CB = [G
•

=⇒ ?]

|G?p|CB = [?
p

=⇒ G]

|c→ d|CB = (|c|CB → B) ++ (A′ → |d|CB)

where c→ d : A→ B =⇒ A′ → B′

|c ; d|CB = |c|CB ++ |d|CB

|⊥GpHA=⇒B |
CB = [A

•
=⇒ G,G

•
=⇒ ?, ?

p
=⇒ H,H

•
=⇒ B]

where if

Z = [A1
p1=⇒ A2, · · ·, Am

pm
=⇒ Am+1]

Z′ = [Am+1
pm+1
=⇒ Am+2, · · ·, Am+n

pm+n
=⇒ Am+n+1]

then

Z → B = [A1→B
p1=⇒ A2→B, · · ·, Am→B

pm
=⇒ Am+1→B]

B → Z = [B→A1
p1=⇒ B→A2, · · ·, B→Am

pm
=⇒ B→Am+1]

Z = [Am+1
pm
=⇒ Am, · · ·, A2

p1=⇒ A1]

Z ++ Z′ = [A1
p1=⇒ A2, · · ·, Am+n

pm+n
=⇒ Am+n+1]

Figure 4. Relating λB to λC

side can be taken as either

(|c|CB→B) ++ (A′→|d|CB) or (A→|d|CB) ++ (|c|CB→B′),

equivalently. We write ⊥GpHA=⇒B to indicate that ⊥GpH is used as
a cast from A to B. This is an informal notation, with the extra
information easily recovered by type inference. We choose not
to use ⊥GpHA=⇒B as a formal notation throughout, since it would
complicate the definition of # in Section 4. We write • as a blame
label in casts where the label is irrelevant because the cast cannot
allocate blame. The translation extends to terms in the obvious way,
replacing each coercion by the corresponding sequence of casts.

As a first step justifying this definition, we observe several
contextual equivalences for λC.

Lemma 7 (Equivalences). The following hold in λC.

1. M〈id〉 ctx
=C M

2. M〈c ; d〉 ctx
=C M〈c〉〈d〉

3. M〈c→ d〉 ctx
=C M〈(c→ id) ; (id→ d)〉

4. M〈c→ d〉 ctx
=C M〈(id→ c) ; (d→ id)〉

Proof of this lemma is deferred to Section 5.1, where we apply a
new technique that makes the proof straightforward.

Translating from λC to λB and back again is the identity, up to
contextual equivalence.

Lemma 8 (Coercions to blame). If M ′ is a term of λC then
||M ′|CB|BC ctx

=C M
′.

The subtle definition of positive and negative subtyping is jus-
tified by the correspondence to the coercion calculus. It is not too
surprising that the definition is sound (safety in B implies safety in
C), but it is surprising that the definition is also complete (safety in
C implies safety in B).

Lemma 9 (Positive and negative subtyping).

1. A <:+ B iff |A p
=⇒ B|BC safeC p.

2. A <:− B iff |A p
=⇒ B|BC safeC p.

(The full proof is in the supplementary material.)
It follows immediately that translation from λB to λC preserves

type and blame safety.

Proposition 10 (Preservation, λB to λC).

1. If Γ `B M : A then Γ `C |M |BC : A.
2. If M safeB q then |M |BC safeC q.

The translation from λB to λC is a bisimulation. The bisimula-
tion is lockstep: a single step in λB corresponds to a single step in
λC, and vice versa.

Proposition 11 (Bisimulation, λB to λC).
Assume `B M : A and `C M

′ : A and |M |BC = M ′.

1. IfM−→BN thenM ′−→CN
′and|N |BC=N ′ for some N ′.

2. IfM ′−→CN
′ thenM−→BN and|N |BC=N ′ for some N .

3. If M = V then M ′ = V ′ and |V |BC = V ′ for some V ′.
4. If M ′ = V ′ then M = V and |V |BC = V ′ for some V .
5. If M = blame p then M ′ = blame p.
6. If M ′ = blame p then M = blame p.

Translation from λB to λC is fully abstract.

Proposition 12 (Fully abstract, λB to λC). If M and N are terms
of λB then M ctx

=B N iff |M |BC ctx
=C |N |BC.

4. Space-efficient Coercion Calculus
Figure 5 defines the space-efficient coercion calculus, λS. Space-
efficient coercions correspond to coercions in a canonical form. All
results in this section are new.

Blame labels and types are as in λB and λC. Space-efficient co-
ercions follow a specific, three-part grammar. There is one space-
efficient coercion for each equivalence class of coercions with re-
spect to the equational theory of Henglein (1994). The grammar
has been chosen to facilitate the definition of a recursive composi-
tion operator, that takes two canonical coercions and computes the
canonical coercion corresponding to their composition.

Let s, t range over space-efficient coercions, i range over inter-
mediate coercions, and g, h range over ground coercions. Space-
efficient coercions are either the identity coercion at dynamic type
id?, a projection followed by an intermediate coercion (G?p ;i), or
just an intermediate coercion i. An intermediate coercion is either
a ground coercion followed by an injection (g ;G!), just a ground
coercion g, or the failure coercion ⊥GpH . A ground coercion is an
identity coercion of base type idι or a function coercion s→ t. Let
f range over identity-free coercions, which play a role in reduction.

Syntax

s, t ::= id? | (G?p ; i) | i

i ::= (g ;G!) | g | ⊥GpH

g, h ::= idι | (s→ t)

f ::= (G?p ; i) | (g ;G!) | ⊥GpH | (s→ t)

L,M,N ::= k | op(~M) | x | λx:A.N | L M |M〈t〉 | blame p
U ::= k | λx:A.N

V,W ::= U | U〈s→ t〉 | U〈g ;G!〉
E ::= F | F [�〈f〉]

F ::= � | E [op(~V ,�, ~M)] | E [� M] | E [V �]

Composition s # t = r

idι # idι = idι

(s→ t) # (s′ → t′) = (s′ # s)→ (t # t′)
id? # t = t

(g ;G!) # id? = g ;G!

(G?p ; i) # t = G?p ; (i # t)
g # (h ;H!) = (g # h) ;H!

(g ;G!) # (G?p ; i) = g # i

(g ;G!) # (H?
p ; i) = ⊥GpH if G 6= H

⊥GpH # s = ⊥GpH

g #⊥GpH = ⊥GpH

Reduction M −→S N

E [(U〈s→ t〉) V] −→ E [(U (V 〈s〉))〈t〉]

F [U〈idι〉] −→ F [U]

F [U〈id?〉] −→ F [U]

F [M〈s〉〈t〉] −→ F [M〈s # t〉]

F [U〈⊥GpH〉] −→ blame p

E [blame p] −→ blame p if E 6= �

Figure 5. Space-efficient coercion calculus (λS)

The source of an intermediate coercion is never the dynamic
type. Source and target of a ground coercion are never the dynamic
type, and both are compatible with the same unique ground type.

Lemma 13 (Source and Target).

1. If i : A =⇒ B then A 6= ?.
2. If g : A =⇒ B then A 6= ? and B 6= ? and there exists a

unique G such that A ∼ G and G ∼ B.

Terms of the calculus are as in λC, except that we restrict co-
ercions to space-efficient coercions. The key idea of the dynamics,
as in Herman et al. (2007, 2010) and Siek and Wadler (2010), is
to combine and normalize adjacent coercions, which ensures space
efficiency. Ensuring adjacent coercions are combined requires we
adjust the notion of value and evaluation context. Let U range
over uncoerced values and V,W range over values, where an un-
coerced value contains no top-level coercion and a value at most
one top-level coercion. Let E range over contexts and F range over
coercion-free contexts, where no context applies two coercions in

succession, each applied coercion is identity free, and a coercion-
free context does not have a coercion application innermost. Re-
duction of a term that is a cast must occur in a cast-free context.
These adjustments ensure that if a term contains two coercions in
succession in an evaluation context, then those coercions are com-
posed before other reductions occur. The other reduction rules are
straightforward.

If space-efficient coercions s and t are the canonical form of
coercions c and d, then s # t is the canonical form of c ; d. We
establish the termination of composition by observing that the sum
of the sizes of the arguments gets smaller at each recursive call.
Further the correctness of each equation in the definition is easily
justified by the equational theory of Henglein (1994).

Height is preserved by composition.

Proposition 14 (Height). ||s # t|| ≤ max(||s||, ||t||).

A space-efficient coercion contains at most two compositions
(check the grammar), so a space-efficient coercion bounded in
height is also bounded in size.

Type and blame safety and contextual equivalence are as in λB.
The definition of blame safety from Figure 3, Propositions 3 and 5,
and Definition 6 apply mutatis mutandis.

4.1 Relating λC to λS
The translation from λC to λS is presented in Figure 6. In this
section, we let M,N range over terms of λC and let M ′, N ′ range
over terms of λS.

We write

|c|CS = s

to indicate that the coercion on the left translates to the space-
efficient coercion on the right. The translation extends to terms
in the obvious way, replacing each coercion by the corresponding
space-efficient coercion.

The inverse translation

|s|SC = c

is trivial, since each space-efficient coercion is a coercion.
Translating λC to λS preserves type and blame safety.

Proposition 15 (Preservation, λC to λS).

1. If Γ `C M : A then Γ `S |M |CS : A.
2. If M safeC q then |M |CS safeS q.

Dynamics of λC and λS differ in that the former breaks up
compositions, while the latter combines them. In Figure 6, we
define a bisimulation ≈ that relates λC to λS. Rules in grey make
the relation a congruence; rules (i), (ii), (iii) relate a sequence
of zero or more coercion applications to a single space-efficient
coercion application. Consider the sequence of reductions in λC.

(V 〈c1 → d1〉〈c2 → d2〉) W (a)
−→C ((V 〈c1 → d1〉) (W 〈c2〉))〈d2〉 (b)
−→C (V (W 〈c2〉〈c1〉))〈d1〉〈d2〉 (c)

If V ≈ V ′, W ≈ W ′, |ci|CS = si, and |di|CS = ti, these two
reductions relate to a single reduction in λS.

(V 〈(s2 # s1)→ (t1 # t2)〉) W (d)
−→S (V (W 〈s2 # s1〉)〈t1 # t2〉 (e)

Here (a) ≈ (d) via (i) once and (ii) twice; and (b) ≈ (d) via (i)
once, (ii) once, and (iii) once; and (c) ≈ (e) via (i) once and (ii)
twice in both the domain and the range.

Relation ≈ is a bisimulation. It is not lockstep: a single step in
λC corresponds to zero or more steps in λS, and vice versa.

Coercions to space-efficient (λC to λS) |c|CS = s

|id?|CS = id?

|idι|CS = idι

|idA→B |CS = |idA|CS → |idB |CS

|G?p|CS = G?p ; |idG|CS

|G!|CS = |idG|CS ;G!

|c→ d|CS = |c|CS → |d|CS

|c ; d|CS = |c|CS # |d|CS

|⊥GpH |CS = ⊥GpH

Bisimulation between λC and λS M ≈CS M
′

k ≈ k
~M ≈ ~M ′

op(~M) ≈ op(~M ′) x ≈ x

M ≈M ′
λx:A.M ≈ λx:A.M ′

L ≈ L′ M ≈M ′
L M ≈ L′ M ′

blame p ≈ blame p

M ≈M ′ `M : A |idA|CS = s

M ≈M ′〈s〉
(i)

M ≈M ′〈s〉 |c|CS = t

M〈c〉 ≈M ′〈s # t〉
(ii)

M ≈ (L′〈r〉) (M ′〈s〉) |d|CS = t

M〈d〉 ≈ (L′〈r # (s→ t)〉) M ′
(iii)

Figure 6. Relating λC to λS

Proposition 16 (Bisimulation, λC to λS).
Assume `C M : A and `S M

′ : A and M ≈M ′.

1. If M−→CN then M ′−→∗SN ′ and N≈N ′ for some N ′.
2. If M ′−→SN

′ then M−→∗CN and N≈N ′ for some N .
3. If M = V then M ′ −→∗S V ′ and V ≈ V ′ for some V ′.
4. If M ′ = V ′ then M −→∗C V and V ≈ V ′ for some V .
5. If M = blame p then M ′ = blame p.
6. If M ′ = blame p then M = blame p.

(The full proof is in the supplementary material.)
Terms relate to their translations by ≈.

Proposition 17. M ≈ |M |CS.

Translation from λC to λS is fully abstract.

Proposition 18 (Fully abstract, λC to λS). If M and N are terms
of λC then M ctx

=C N iff |M |CS ctx
=S |N |CS.

5. Applications
Full abstraction considerably eases some proofs. In this section, we
use it to demonstrate two useful results, Lemma 7 from Section 3.1,
which justifies the translation | · |CB, and the Fundamental Law of
Casts from Siek and Wadler (2010).

5.1 Lemma 7
Lemma 7 from Section 3.1 is used to justify the design of | · |CB,
the mapping from λC back to λB. We repeat the lemma here, with
some additional clauses.

Lemma 19 (Equivalences). The following hold in λC.

1. M〈id〉 ctx
=C M

2. M〈c ; d〉 ctx
=C M〈c〉〈d〉

3. M〈c ; id〉 ctx
=C M〈c〉 ctx

=C M〈id ; c〉
4. M〈(c→ d) ; (c′ → d′)〉 ctx

=C M〈(c′ ; c)→ (d ; d′)〉
5. M〈c→ d〉 ctx

=C M〈(c→ id) ; (id→ d)〉
6. M〈c→ d〉 ctx

=C M〈(id→ c) ; (d→ id)〉

Proof. Part 1 follows from M〈id〉 −→C M , part 2 is similar, and
part 3 follows from parts 1 and 2. Part 4 is more interesting. Let
|c|CS = s, |d|CS = t, |c′|CS = s′ and |d′|CS = t′. Applying | · |CS

to each side of the equation gives

(s→ t) # (s′ → t′)
ctx
=S (s′ # s)→ (t # t′)

which holds immediately from the definition of #. Then part 4
follows because |·|CS reflects contextual equivalence, the backward
part of Proposition 18. Part 5 follows from

c→ d
ctx
=C (id ; c)→ (id ; d)

ctx
=C (c→ id) ; (id→ d)

which follows from parts 3 and 4. Part 6 is similar.

Typically, one might be tempted to prove a result such as
Lemma 7 by introducing a custom bisimulation relation—indeed,
that is how we first attempted to demonstrate it. Eventually we
realised that we could show terms equivalent in λC by mapping
them into λS and exploiting full abstraction. Instead of introducing
a custom bisimulation relation, all of the “heavy lifting” is done by
bisimulation ≈ from Figure 6 and by Proposition 16.

Full abstraction from λC to λS does not depend of full abstrac-
tion from λB to λC, so there is no circularity.

5.2 Fundamental Property of Casts
As a second application, we show how to establish the Fundamental
Property of Casts, Lemma 2 of Siek and Wadler (2010), which
asserts that a single cast is contextually equivalent to a pair of
casts. We will do so by mapping two terms of λB to contextually
equivalent terms of λS.

First, we define a notion of pointed type.

S, T ::= ι | S → T | ? | ⊥

We extend naive subtyping to include pointed types by setting
⊥ <:n T , for all T . Meet of two types is a pointed type, A&B =
T . The meet of two types is their greatest lower bound with respect
to naive subtyping, <:n.

Take |− |BS to be the composition of |− |BC and |− |CS. We first
establish one simple lemma, which follows immediately by case
analysis on A, B, and C.

Lemma 20. If A&B <:n C then

|A p
=⇒ B|BS = |A p

=⇒ C|BS # |C p
=⇒ B|BS

The fundamental property follows immediately by full abstrac-
tion from λB to λC and λC to λS.

Lemma 21 (Fundamental Property of Casts). Let M be a term of
λB. If A&B <:n C then

M : A
p

=⇒ B
ctx
=B M : A

p
=⇒ C

p
=⇒ B

Siek and Wadler (2010) establish the same result with more
difficulty: they require a custom bisimulation and six lemmas.

6. Related Work
This section provides an in-depth comparison to the work of Siek
and Wadler (2010), Greenberg (2013), and Garcia (2013), then
summarizes systems that use gradual typing and other relevant
work.

6.1 Relation to Siek and Wadler (2010)
Siek and Wadler (2010) use threesomes of the form

〈T P⇐= S〉 s

where s is a term, S, T are types, and P is a labeled type that indi-
cates how blame is allocated if the cast fails. Here is the grammar
for labeled types:

p, q ::= l | ε
P,Q ::= Bp | P →p Q | ? | ⊥lGp

Their l,m range over blame labels (our p, q), their p, q range over
optional blame labels, their P,Q range over labeled types, their B
ranges over base types (our ι), and their G,H range over ground
types (our G,H). The meaning of a labeled type is subtle as it de-
pends on whether each label is present or not. For example, their
⊥lGε corresponds to our ⊥GpH , while their ⊥lGm correspond to
ourG?q ;⊥GpH (taking their l,m to correspond to our p, q, respec-
tively). Their paper includes a translation L−M from threesomes to
coercions.

If our space-efficient coercions s, t correspond to their labeled
types P,Q, then s # t corresponds to Q ◦ P (note the reversal!),
defined as follows.

Bq ◦Bp = Bp

P ◦ ? = P

? ◦ P = P

QHm ◦ PGp = ⊥mGp if G 6= H

Q ◦ ⊥mGp = ⊥mGp

⊥mGq ◦ PGp = ⊥mGp

⊥mHl ◦ PGp = ⊥lGp if G 6= H

(P ′ →q Q′) ◦ (P →p Q) = (P ◦ P ′)→ (Q′ ◦Q)

Here PGp means that labelled type P is compatible with ground
type G and that p is the topmost optional blame label in P . The
correctness of these equations is not immediate. For instance, in the
penultimate line why do PGp and ⊥mHl compose to yield ⊥lGp?
Perhaps the easiest way to validate the equations is to translate to
coercions using L−M, then check that the left-hand side normalises
to the right-hand side. In contrast, our definition of # (Figure 5) is
easily justified by the equational theory of Henglein (1994).

6.2 Relation to Greenberg (2013)
Greenberg (2013) considers a sequence of calculi CAST, NAIVE,
and EFFICIENT, roughly corresponding to our λB, λC, and λS.
Unlike us, he includes refinement types, but omits blame; and he
formulates correctness in terms of logical relations rather than full
abstraction.

His EFFICIENT resembles our λS, in that it defines a compo-
sition operator that serves the same purpose as our #. He writes
c1 ∗ c2 ⇒ c3 to indicate that the composition of c1 and c2 is equiv-
alent to c3. The rules to compute c1 ∗ c2 compose the right-most
primitive coercion of c1 with the left-most primitive coerection of

c2, then recursivley compose the result with what is left of c1 and
c2. For example, here is the rule for composing function coercions.

c21 ∗ c11 ⇒ c31
c12 ∗ c22 ⇒ c32

c1 ∗ (c31→c32) ; c2 ⇒ c

c1 ; (c11→c12) ∗ (c21→c22) ; c2 ⇒ c

His definition is recursive but not a structural recursion, and prov-
ing it total is challenging, requiring four pages. In contrast, our def-
inition is a structural recursion, and totality is straightforward.

6.3 Relation to Garcia (2013)
Garcia (2013) observes that coercions are easier to understand
while threesomes are easier to implement, and shows how to de-
rive threesomes from coercions through a series of correctness-
preserving transformations. To accomplish this, he defines super-
coercions and gives their meaning in terms of a translation N (−)
to coercions.

N (ιP) = ιP

N (Faill) = Fail
l

N (Faill1Gl2) = Fail
l1 ◦G?l2

N (G!) = G!

N (G?l) = G?l

N (G?l!) = G! ◦G?l

N (c̈1 → c̈2) = N (c̈1)→ N (c̈2)

N (c̈1 !→ c̈2) = (?→ ?)! ◦ (N (c̈1)→ N (c̈2))

N (c̈1→?
l c̈2) = (N (c̈1)→ N (c̈2)) ◦ (?→ ?)?l

N (c̈1!→?
lc̈2) = (?→ ?)! ◦ (N (c̈1)→ N (c̈2)) ◦ (?→ ?)?l

His l ranges over blame labels (our p, q), his ι is the identity co-
ercion (our id), his P ranges over atomic types (either a base type
or the dynamic type), his Faill is a failure coercions (our ⊥GpH),
and his c̈ ranges over supercoercions. Garcia (2013) derives a re-
cursive composition function for supercoercions but the definition
was too large to publish as there are sixty pairs of compatible su-
percoercions. In contrast, our definition fits in ten lines.

6.4 Systems that use Gradual Typing
Racket (formerly Scheme) supports dynamic and static typing and
higher-order contracts with blame (Flatt and PLT 2014). Racket
permits contracts to be written directly. Typed Racket inserts con-
tracts that allocate blame when dynamically typed code fails to
conform to the static types declared for it (Tobin-Hochstadt and
Felleisen 2008). Racket has an extensive and well-tested implemen-
tation of contracts, but does not support space-efficient contracts.
Racket is the source, via Findler and Felleisen (2002), of the rule
for casting functions in λB (the fourth reduction rule in Figure 1).

Pyret has limited support for gradual typing (Patterson et al.
2014). Pyret checks that a first-order value (such as integer) con-
forms to its declaration, but only checks that a higer-order value is
a function, not that it conforms to its declared parameter and re-
sult types. Pyret does not implement any equivalent of the rule for
casting functions in λB.

Dart provides support for gradual typing with implicit casts to
and from type dynamic (Bracha and Bak 2011; ECMA 2014). Dart
does not provide full static type checking; its type checker aims
to warn of likely errors rather than to ensure lack of failures. In
checked mode, Dart performs a test at every place that a value
can be assigned to a variable and raises an exception if the value’s
type is not a subtype of the variable’s declared type. Dart does not
implement any equivalent of the rule for casting functions in λB.

C# type dynamic and VB type Object play a role similar to
our type ?, with the compiler introducing first-order casts as needed
(Bierman et al. 2010; Feigenbaum 2008). These languages do not
have higher-order structural types, only nominal types, so the pro-
grammer must manually construct explicit wrappers to accomplish
what would amount to a higher-order cast. C# and VB do not im-
plement any equivalent of the rule for casting functions in λB.

TypeScript provides interface declarations that allow users to
specify types for an imported JavaScript module or library (Hejls-
berg 2012). The DefinitelyTyped repository contains over 150 such
declarations for a variety of popular JavaScript libraries (Yankov
2013). TypeScript is not concerned with type soundness, which it
does not provide (Bierman et al. 2014), but instead exploits types
to provide better prompting in Visual Studio, for instance to to pop-
ulate a pulldown menu with well-typed methods that might be in-
voked at a given point. The information supplied by interface
declarations is taken on faith; failures to conform to the declaration
are not reported. Typescript does not implement any equivalent of
the rule for casting functions in λB.

Several systems explore how to modify TypeScript to restore
various forms of type safety.

Safe TypeScript is a refinement of TypeScript that guarantees
type safety by adding run-time type information (RTTI) to values
of dynamic type any (Rastogi et al. 2015). It introduces the notion
of erased types that cannot be coerced to any. Erased types are
used to communicate with external libraries that are unaware of
RTTI. Furthermore, subtyping of function types is restricted to
never manipulate RTTI, avoiding the need for wrappers that may
change the object identity. Safe Typescript does not implement any
equivalent of the rule for casting functions in λB.

StrongScript (Richards et al. 2015) extends TypeScript’s op-
tional types with concrete types. A concrete type is a (nominal)
class type which is statically checked and which is protected by
compiler-generated casts against its less strictly typed context. The
main goals of this work are compatibility with TypeScript and en-
abling the generation of efficient code for concretely typed parts
of a program. Blame tracking is an optional feature that may be
disabled to avoid run-time overhead. StrongScript relies upon an
equivalent of the rule for casting functions in λB.

Microsoft has funded Wadler and a PhD student to build a tool,
TypeScript TNG, that uses blame calculus to generate wrappers
from TypeScript interface declarations. The wrappers monitor
interactions between a library and a client, and if a failure occurs
then blame will indicate whether it is the library or the client that
has failed to conform to the declared types. TypeScript TNG relies
upon an equivalent of the rule for casting functions in λB.

Initial results on TypeScript TNG appear promising, but there is
much to do. We need to assess how many and what sort of errors
are revealed by wrappers, and measure the overhead wrappers
introduce. It would be desirable to ensure that generated wrappers
never change the semantics of programs (save to detect more errors)
but aspects of JavaScript (notably, that wrappers affect pointer
equality) make it difficult to guarantee noninterference; we need
to determine to what extent these cases are an issue in practice.
The current design of TypeScript TNG is not space-efficient, and
implementing a space-efficient version and measuring its effect
would be interesting future work.

6.5 Other Relevant Work
Abadi et al. (1991) study an early notion of type Dynamic. Floyd
(1967) and Hoare (1969) introduce reasoning about programs with
pre- and post-conditions and Meyer (1988) popularises checking
them at runtime under the name contracts. Findler and Felleisen
(2002) introduce higher-order contracts for functional languages.

Tobin-Hochstadt and Felleisen (2006) formalize the interaction
between static and dynamic typing at the granularity of modules
and prove a precursor to blame safety. Matthews and Findler (2007)
define an operational semantics for multi-language programs with
static (ML) and dynamic (Scheme) components. Gronski et al.
(2006) present Sage, a gradually-typed language with refinement
types. Dimoulas et al. (2011, 2012) develop criteria for judging
blame tracking strategies. Disney et al. (2011) extend contracts with
temporal properties. Strickland et al. (2012) study contracts for
mutable objects. Thiemann (2014) takes first steps towards gradual
typing for session types.

Hinze et al. (2006) design an embedded DSL for contracts with
blame assignment in Haskell. Chitil (2012) develops a lazy version
of contracts for Haskell. Greenberg et al. (2010) study dependent
contracts and the translation between latent and manifest systems.
Benton (2008) introduces ‘undoable’ cast operators, to enable a
failed cast to report an error at a more convenient location. Swamy
et al. (2014) present a secure embedding of the gradually typed
language TS? into JavaScript.

Siek et al. (2009) explore design choices for cast checking and
blame tracking in the setting of the coercion calculus. Ahmed et al.
(2011) extend the blame calculus to include parametric polymor-
phism. Siek and Garcia (2012) define a space-efficient abstract ma-
chine for the gradually-typed lambda calculus based on coercions.
Siek et al. (2015) propose the gradual guarantee as a new criteria
for gradual typing, characterizing how changes in the precision of
type annotations may change a program’s static and dynamic se-
mantics. Wadler (2015) surveys work on the blame calculus.

7. Conclusion
Findler and Felleisen (2002) introduced higher-order contracts, set-
ting up a foundation for gradual typing; but they observed a prob-
lem with space efficiency. Herman et al. (2007, 2010) restored
space efficiency; but required an evaluator to reassociate parenthe-
ses. Siek and Wadler (2010) gave a recursive definition of composi-
tion that is easy to compute; but the correctness of their definition is
not transparent. Here we provide composition that is easy to com-
pute and transparent. At last, we are in a position to implement
space-efficient contracts and test them in practice.

When Siek and Wadler (2010) was published we thought we
had discovered a solution that was easy to implement and easy to
understand. Only later did we realise that it was not quite so easy as
we thought! We believe this next step is a significant improvement.
For us, the lesson is clear: no matter how simple your theory, strive
to make it simpler still!

Acknowledgments
Thanks to Shayan Najd, Michael Greenberg, and the PLDI refer-
ees for comments. Siek acknowledges NSF Grant 1360694. Wadler
acknowledges EPSRC Programme Grant EP/K034413/1 and a Mi-
crosoft Research PhD Scholarship.

References
M. Abadi, L. Cardelli, B. Pierce, and G. Plotkin. Dynamic typing in a

statically typed language. ACM Trans. Prog. Lang. Syst., 13(2):237–268,
April 1991.

A. Ahmed, R. B. Findler, J. G. Siek, and P. Wadler. Blame for all. In
Principles of Programming Languages (POPL), pages 201–214, 2011.

N. Benton. Undoing dynamic typing (declarative pearl). In J. Garrigue and
M. Hermenegildo, editors, Functional and Logic Programming, volume
4989 of Lecture Notes in Computer Science, pages 224–238. Springer
Berlin Heidelberg, 2008.

G. Bierman, E. Meijer, and M. Torgersen. Adding dynamic types to C#.
In European Conference on Object-Oriented Programming, ECOOP’10.
Springer-Verlag, 2010.

G. M. Bierman, M. Abadi, and M. Torgersen. Understanding TypeScript.
In European Conference on Object-Oriented Programming (ECOOP),
pages 257–281, 2014.

G. Bracha and L. Bak. Dart, a new programming language for structured
web programming. Presentation at GOTO conference, Oct. 2011.

O. Chitil. Practical typed lazy contracts. In Proceedings of the 17th ACM
SIGPLAN International Conference on Functional Programming, ICFP
’12, pages 67–76, New York, NY, USA, 2012. ACM.

C. Dimoulas, R. B. Findler, C. Flanagan, and M. Felleisen. Correct blame
for contracts: no more scapegoating. In Proceedings of the 38th annual
ACM SIGPLAN-SIGACT symposium on Principles of programming lan-
guages, POPL ’11, pages 215–226, New York, NY, USA, 2011. ACM.

C. Dimoulas, S. Tobin-Hochstadt, and M. Felleisen. Complete monitors for
behavioral contracts. In ESOP, 2012.

T. Disney, C. Flanagan, and J. McCarthy. Temporal higher-order contracts.
In Proceedings of the 16th ACM SIGPLAN international conference on
Functional programming, ICFP ’11, pages 176–188, New York, NY,
USA, 2011. ACM.

ECMA. Dart Programming Language Specification, 2nd edition, December
2014.

L. Feigenbaum. Walkthrough: Dynamic programming in Visual Basic 10.0
and C# 4.0, Dec. 2008.
http://blogs.msdn.com/b/vbteam/archive/2008/12/17/
walkthrough-dynamic-programming-in-visual-basic-10-0-
and-c-4-0-lisa-feigenbaum.aspx.

R. B. Findler and M. Felleisen. Contracts for higher-order functions. In
International Conference on Functional Programming (ICFP), pages
48–59, Oct. 2002.

C. Flanagan. Hybrid type checking. In Principles of Programming Lan-
guages (POPL), Jan. 2006.

M. Flatt and PLT. The Racket reference 6.0. Technical report, PLT Inc.,
2014. http://docs.racket-lang.org/reference/index.html.

R. W. Floyd. Assigning meanings to programs. In Symposium in Applied
Mathematics, volume 19, pages 19–32, 1967.

R. Garcia. Calculating threesomes, with blame. In International Conference
on Functional Programming (ICFP), pages 417–428, 2013.

M. Greenberg. Manifest Contracts. PhD thesis, University of Pennsylvania,
Nov. 2013.

M. Greenberg, B. C. Pierce, and S. Weirich. Contracts made manifest. In
Principles of Programming Languages (POPL) 2010, 2010.

J. Gronski, K. Knowles, A. Tomb, S. N. Freund, and C. Flanagan. Sage:
Hybrid checking for flexible specifications. In Scheme and Functional
Programming Workshop (Scheme), pages 93–104, Sept. 2006.

A. Hejlsberg. Introducing TypeScript. Microsoft Channel 9 Blog, Oct.
2012.

F. Henglein. Dynamic typing: Syntax and proof theory. Sci. Comput.
Programming, 22(3):197–230, 1994.

D. Herman, A. Tomb, and C. Flanagan. Space-efficient gradual typing. In
Trends in Functional Programming (TFP), Apr. 2007.

D. Herman, A. Tomb, and C. Flanagan. Space-efficient gradual typing.
Higher-Order and Symbolic Computation, 23:167–189, 2010.

R. Hinze, J. Jeuring, and A. Löh. Typed contracts for functional program-
ming. In M. Hagiya and P. Wadler, editors, Proceedings of the Eighth In-
ternational Symposium on Functional and Logic Programming (FLOPS
2006), volume 3945 of Lecture Notes in Computer Science, pages 208–
225. Springer Berlin / Heidelberg, Apr. 2006.

C. A. R. Hoare. An axiomatic basis for computer programming. Commun.
ACM, 12(10):576–580, Oct. 1969.

J. Matthews and R. B. Findler. Operational semantics for multi-language
programs. In Principles of Programming Languages (POPL), pages 3–
10, Jan. 2007.

B. Meyer. Object-Oriented Software Construction. Prentice Hall, 1988.
X. Ou, G. Tan, Y. Mandelbaum, and D. Walker. Dynamic typing with de-

pendent types. In IFIP International Conference on Theoretical Com-
puter Science, pages 437–450, Aug. 2004.

D. Patterson, J. G. Politz, and S. Krishnamurthi. Pyret Language Reference.
PLT, Brown University, 5.3.6 edition, 2014.
http://www.pyret.org/docs/.

A. Rastogi, N. Swamy, C. Fournet, G. M. Bierman, and P. Vekris. Safe
& efficient gradual typing for TypeScript. In S. K. Rajamani and
D. Walker, editors, Proceedings of the 42nd Annual ACM SIGPLAN-
SIGACT Symposium on Principles of Programming Languages, POPL
2015, Mumbai, India, January 15-17, 2015, pages 167–180. ACM, 2015.

G. Richards, F. Z. Nardelli, and J. Vitek. Concrete types for TypeScript.
In European Conference on Object-Oriented Programming, ECOOP’15.
Springer-Verlag, 2015.

J. G. Siek and R. Garcia. Interpretations of the gradually-typed lambda
calculus. In Scheme and Functional Programming Workshop, 2012.

J. G. Siek and W. Taha. Gradual typing for functional languages. In Scheme
and Functional Programming Workshop (Scheme), pages 81–92, Sept.
2006.

J. G. Siek and P. Wadler. Threesomes, with and without blame. In Principles
of Programming Languages (POPL), pages 365–376, 2010.

J. G. Siek, R. Garcia, and W. Taha. Exploring the design space of higher-
order casts. In European Symposium on Programming, ESOP, pages
17–31, Mar. 2009.

J. G. Siek, M. M. Vitousek, M. Cimini, and J. T. Boyland. Refined criteria
for gradual typing. In Summit on Advances in Programming Languages
(SNAPL), May 2015.

T. S. Strickland, S. Tobin-Hochstadt, R. B. Findler, and M. Flatt. Chap-
erones and impersonators: run-time support for reasonable interposition.
In Conference on Object Oriented Programming Systems Languages and
Applications, OOPSLA ’12, 2012.

N. Swamy, C. Fournet, A. Rastogi, K. Bhargavan, J. Chen, P.-Y. Strub,
and G. Bierman. Gradual typing embedded securely in javascript. In
ACM Conference on Principles of Programming Languages (POPL),
Jan. 2014.

P. Thiemann. Session types with gradual typing. In M. Maffei and E. Tu-
osto, editors, Trustworthy Global Computing - 9th International Sym-
posium, TGC 2014, Rome, Italy, September 5-6, 2014. Revised Selected
Papers, volume 8902, pages 144–158. Springer, 2014.

S. Tobin-Hochstadt and M. Felleisen. The design and im-
plementation of typed scheme. In Principles of Program-
ming Languages (POPL), pages 395–406, 2008. . URL
http://doi.acm.org/10.1145/1328438.1328486.

S. Tobin-Hochstadt and M. Felleisen. Interlanguage migration: From scripts
to programs. In Dynamic Languages Symposium (DLS), pages 964–974,
Oct. 2006.

P. Wadler. A complement to blame. In Summit on Advances in Program-
ming Languages (SNAPL), May 2015.

P. Wadler and R. B. Findler. Well-typed programs can’t be blamed. In
European Symposium on Programming (ESOP), pages 1–16, Mar. 2009.

B. Yankov. Definitely typed repository, 2013.
https://github.com/borisyankov/DefinitelyTyped.

