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bSchool of Informatics,University of Edinburgh,Edinburgh,Scotland,EH8 9AB, UK

Abstract

Mission reliability of a system depends on specific criteria for mission suc-

cess. To evaluate the mission reliability of some mission systems that do

not need to work normally for the whole mission time, two types of mission

reliability for such systems are studied. The first type corresponds to the

mission requirement that the system must remain operational continuously

for a minimum time within the given mission time interval, while the second

corresponds to the mission requirement that the total operational time of the

system within the mission time window must be greater than a given value.

Based on Markov renewal properties, matrix integral equations are derived

for semi-Markov systems. Numerical algorithms and a simulation procedure

are provided for both types of mission reliability. Two examples are used for

illustration purposes. One is a one-unit repairable Markov system, and the

other is a cold standby semi-Markov system consisting of two components.

By the proposed approaches, the mission reliability of systems with time
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redundancy can be more precisely estimated to avoid possible unnecessary

redundancy of system resources.

Keywords: mission reliability, system, Markov, semi-Markov, algorithm,

simulation

1. Introduction

In engineering applications, there exist many systems designed to sup-

port the accomplishment of critical missions. For example, during a space

flight mission, it is necessary to use the spaceflight telemetry, tracking, and

control (TT&C) system [1] to provide connection between the spacecraft and

facilities on the ground, and to ensure that the spacecraft performs its mis-

sion correctly. Often, to avoid the risk of mission failure or waste of TT&C

resources, space system engineers are interested in quantitatively assessing

the mission reliability of the TT&C system which will support a planned

spaceflight, so they can make reasonable decisions about the system design

before practical execution of the mission.

Mission reliability of a system is the probability of successful completion of

a stated mission by the system deployed in a given environment. Depending

on different criteria of mission success, mission reliability may be defined more

specifically. In some engineering applications, a mission must be successfully

accomplished within a given time interval. Taking TT&C systems as an

example, since the spacecraft orbits the earth, the time for which it is passing

overhead a ground facility is limited to a specific interval (called the time

window), so the facility can only provide TT&C services within this time

window. However, for the mission to be successful, sometimes the system

2



does not need to work normally for the whole time window. In this paper,

we identify two specific cases. In the first case, to ensure mission success, the

system needs only remain operational for a time period greater than a certain

value within the mission time window. For example, to accomplish certain

remote control instruction injection operations on a spacecraft, the ground

facility only needs to function normally for a short period of time while

the spacecraft passes over. We call this type of mission reliability, mission

reliability of type I. In the second case, we require that the total sum of the

system’s operational periods within the given time window is greater than a

given value. We call the mission reliability of this kind mission reliability of

type II. For a TT&C system, if the mission is to transfer a certain amount

of onboard data, as long as the total sum of transmission time is sufficient,

the mission will be regarded as successfully completed.

Although there are papers on mission reliability for special systems of one

mission phase [2][3], most existing literature on mission reliability focuses on

phased-mission systems (PMS) that have multiple phases [4][5][6]. However,

a commonly adopted assumption in existing research work is that for the

mission to succeed in a phase, the system must remain operational through-

out the whole time of the phase[3][7]. Recent theoretical research work on

PMS has mainly focused on two fields. One is on the improvement of compu-

tational efficiency[8][9][7]; another is on modelling and analysis methods of

various kinds of PMS with special features, such as demand-based PMS[10],

PMS with common-cause failures [11][12], propagagted failures [13] and im-

perfect coverage [14]. For the two cases considered in our paper, if we apply

the assumption that the system must remain operational throughout the
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whole time of the phase, we can only get a conservative estimate of the real

mission reliability, because the assumption is stricter than really necessary.

This is only acceptable if the mission time interval is short enough. For some

TT&C services, the required TT&C task time may be just several minutes.

For a low earth orbit (LEO) satellite, since the time of passing overhead a

ground station (i.e. the time window) is of about the same magnitude, the er-

rors due to such an assumption are insignificant. However, for some medium

earth orbit (MEO) satellites or if inter-satellite links are used, the time win-

dow can be as long as several hours and the adoption of this assumption

in mission reliability evaluation will unavoidably lead to serious underesti-

mation of the real value, and may result in unnecessary redundancy in the

deployment of expensive TT&C resources. Therefore, more precise modelling

and solution methods are needed in such situations.

To the best of our knowledge, little previous research has been done on

these two types of mission reliability. The first type was studied for the first

time in [15], and a numerical method was given for its calculation based on

the probabilities of mission success in mutually exclusive cases and order

statistics. However, in that paper the system under study was restricted to

a one-unit system with both exponential failure and repair times.

By a Markov system we mean a system whose behaviour can be described

by its state evolution over a time horizon, and at any moment the future

behaviour of the system, given its current state, is independent of its past

history. A semi-Markov system is a generalization of a Markov system [16].

Compared with a Markov system, the main feature of a semi-Markov system

is that the time required for each successive state transition can be a non-
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exponential random variable, which may depend on both its current state

and the next state to be visited.

Whilst we believe our type I and type II mission reliability measures to be

novel, a similar measure has previously appeared in the literature as interval

reliability [17][18], remaining probability [19] or interval availability [20]. In-

terval reliability is defined as the probability that a system will work normally

for a specific time interval of given length without failure given that it begins

to work at a fixed start moment. Barlow gave a general formula for comput-

ing interval reliability by use of a renewal property [18] and obtained its limit

solution as time tends to infinity. It has been shown that for repairable semi-

Markov systems, either a double Laplace transform or an integral equation

approach can be used to obtain interval reliability [2]. For semi-Markov sys-

tems with general state space (not limited to finite or countable state space),

in both continuous time and discrete time cases, Markov renewal equations

(MRE) can be built to give the formulae of interval reliability and its limiting

expression [20][21][22].

However, interval reliability is defined only for a fixed interval time hori-

zon, whereas our mission reliability of type I is defined for a mission that can

be executed in an interval that is not prescribed prior to the mission, within a

given mission time window. Moreover, by definition, the meaning of interval

reliability is totally different from that of mission reliability of type II.

In this paper, we define two types of mission reliability. Furthermore, for

the general case of semi-Markov systems, by the renewal property of semi-

Markov processes, we derive matrix integral equations and provide numerical

algorithms for calculating these two types of mission reliability.
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The remainder of this paper is organized as follows. Section 2 introduces

the equations for sojourn time distributions of semi-Markov systems, and

gives numerical methods for their solution. Section 3 establishes the integral

matrix equations for mission reliability of type I . Section 4 is devoted to mis-

sion reliability of type II: a group of matrix integral equations is derived, and

algorithms are provided for their solution. Section 5 presents a simulation

procedure for estimating both types of mission reliability for semi-Markov

systems. Two numerical examples are developed to verify our proposed an-

alytical solution methods, and the results are compared with simulation. In

the last section, some concluding remarks are given.

2. Sojourn Time Distributions

2.1. Semi-Markov Systems

Suppose we have a system whose state changes only at discrete time

moments and takes values in a finite space S. Let Sn denote the time of

nth state transition, n ≥ 0, and the corresponding state of the system is Zn.

Assume the sequence {(Zn, Sn), n ≥ 0} is a Markov renewal sequence [23],

define N(t) = sup{n ≥ 0 | Sn ≤ t}, then the state of the system at time t

will be Y (t) = ZN(t), which is a continuous time semi-Markov process (SMP)

[23][24]. In this case, the system is defined as a semi-Markov system.

For convenience, we will use Yt, Y to denote Y (t), {Yt, t ≥ 0} respectively

in the sequel.

For any i, j ∈ S, let

Kn
i,j(t) = P{Zn+1 = j, Sn+1 − Sn ≤ t | Zn = i}.
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In this paper, we only consider time-homogeneous semi-Markov systems.

So, we can define the semi-Markov kernel of Y as Q(t) = [qi,j(t)], where

qi,j(t) =

K
0
i,j(t) i 6= j

0 i = j

∀i, j ∈ S (1)

Notice that we assume that the system already has a minimal representation

[23], so all Markov renewal moments represent real state transitions, which

is why in equation (1) we define qi,i(t) ≡ 0,∀i ∈ S.

Suppose S is partitioned into U and D, where U is the set of up states, in

which the system is operational, and D is the set of down states, in which the

system has failed and is under repair. Hence from a reliability point of view,

the state of the system alternates between U and D during system evolution.

For convenience, we will also use U,D to denote the tuples of the corre-

sponding sets of state;

U = (u1, u2, . . . , u|U |)

D = (d1, d2, . . . , d|D|)

where, |U |, |D| stand for the number of elements in the corresponding sets .

2.2. Equations for Sojourn Time Distributions

For later use, here we introduce the main results by Csenki [2] [25] about

the sojourn time of a semi-Markov system before it makes a state transition.

Let ku,d(t) denote the distribution function of the sojourn time of the

system holding in state u ∈ U before first entering or re-entering into down

state d ∈ D, and kd,u(t) denote the distribution function of the sojourn time
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of the system holding in state d ∈ D before first entering or re-entering up

state u ∈ U .

Thus, letting KUD(t) = [ku,d(t)]u∈U,d∈D, KDU(t) = [kd,u(t)]d∈D,u∈U , the

following system of integral equations can be established [2][25].

KUD(t) =

∫
[0,t]

QUU(dw)KUD(t− w) +QUD(t) (2)

KDU(t) =

∫
[0,t]

QDD(dw)KDU(t− w) +QDU(t) (3)

The above equations are derived by Csenki [2] based on renewal argu-

ments. For instance, ku,d(t) can be obtained as the sum of the following two

parts:

• the probability that the system first enters or re-enters state s ∈ U, s 6=

u from state u ∈ U at time w < t, and then from state s first enters or

re-enters state d ∈ D within time length t− w.

• the probability that the system first enters or re-enters state d ∈ D

before time t.

Therefore, we have

ku,d =
∑
s∈U
s6=u

∫
[0,t]

ks,d(t− w)qu,s(dw) + qu,d(t)

The matrix form of this will give equation (2). Equation (3) can be

derived similarly.

Furthermore, letting H(t) = KUD(t), L(t) = QUD(t), and

J(t) = QUU(t) (4)
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equation (2) can be rewritten in matrix form as

H(t) =

∫
[0,t]

J(dw)H(t− w) + L(t) (5)

Analogously, letting H(t) = KDU(t), L(t) = QDU(t), and

J(t) = QDD(t) (6)

equation (3) can also be rewritten as (5).

2.3. Algorithm for Sojourn Time Distributions

To solve (5), we can use the two-point trapezoidal rule for computing

Stieltjes integrals [2][26] as follows∫ b

a

f(x)dg(x) ≈ 1

2

n−1∑
k=0

[f(xk) + f(xk+1)][g(xk+1)− g(xk)] (7)

where [a, b] is divided into n segments of equal length.

Assume [0, t] is equally divided into n intervals by wi = iδ, i ∈ {0, 1, . . . , n},

δ = 1
n
t, namely

0 = w0 < w1 < · · · < wn−1 < wn = t (8)

then, by equation (7), approximately, (5) has the form

H(nδ) =
1

2

n−1∑
i=0

[J((i+ 1)δ)− J(iδ)]

× [H((n− i)δ) +H((n− i− 1)δ)] + L(nδ)

(9)

Based on the definition of Q in (1), we can verify that J(0) = 0 in (4),(6).

Therefore, from (5), we have initial conditions: H(0) = L(0) = J(0) = 0.

In what follows, it will be convenient to denote H(iδ), J(iδ), L(iδ) as Hi,

Ji, Li, i = 0, 1, . . ., respectively.
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Consequently, (9) can be written as

Hn =
1

2

n−1∑
i=0

(Ji+1 − Ji)(Hn−i +Hn−i−1) + Ln. (10)

By which, Hn can be calculated recursively [2].

3. Mission reliability of Type I

3.1. Equations for Mission Reliability

Suppose a mission requires the minimum operational time Td within time

window [0, T ]. Assume that x is a Markov renewal time, then we define

RI
u(x, t) : the probability that there is an operational time span greater than

or equal to Td within [x, t], and the system enters into state u ∈ U

immediately after x.

RI
d(x, t) : the probability that there is an operational time span greater than

or equal to Td within [x, t], and the system enters into state d ∈ D

immediately after x.

Suppose the length of the system’s first operational time span is w, by

renewal theory, we have

RI
u(0, t) =

∑
d∈D

∫ ∞
0

[
Iw≥Td + Iw<TdR

I
d(w, t)

]
ku,d(dw)

=
∑
d∈D

[∫ ∞
Td

ku,d(dw) +

∫ Td−0

0

RI
d(w, t)ku,d(dw)

]
=
∑
d∈D

[∫ ∞
Td

ku,d(dw) +

∫ Td−0

0

RI
d(0, t− w)ku,d(dw)

] (11)

with the condition RI
u(0, t) = 0 ∀t < Td.
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In the same way, letting the length of Y ’s first down time span be w, we

obtain

RI
d(0, t) =

∑
u∈U

∫ ∞
0

RI
u(w, t)kd,u(dw)

=
∑
u∈U

∫ t−Td

0

RI
u(0, t− w)kd,u(dw)

(12)

where the upper bound of the integral becomes t− Td because RI
u(w, t) = 0

when t−w < Td, by definition. The initial condition is RI
d(0, t) = 0 ∀t ≤ Td.

In matrix form, (11) can be rewritten as

RI
U(0, t) =

∫ ∞
Td

KUD(dw)1D +

∫ Td−0

0

KUD(dw)RI
D(0, t− w)

=

∫ Td−0

0

KUD(dw)RI
D(0, t− w) + JU

(13)

where 1D is the column vector of ones corresponding to the dimension of

KUD, and

JU =

∫ ∞
Td

KUD(dw)1D = KUD(∞)1D −KUD(Td)1D

Similarly, the matrix form of (12) is

RI
D(0, t) =

∫ t−Td

0

KDU(dw)RI
U(0, t− w) (14)

Letting H(t) = RI
U(0, t), H̄(t) = RI

D(0, t), and

K(t) = KUD(t) (15)

K̄(t) = KDU(t) (16)

we can write (13) and (14) as

H(t) =

∫ Td−0

0

K(dw)H̄(t− w) + JU (17)

H̄(t) =

∫ t−Td

0

K̄(dw)H(t− w) (18)
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respectively, with boundary conditions

H(t) =

JU t = Td

0 t < Td

and H̄(t) = 0 t ≤ Td .

3.2. Calculation of Mission Reliability

Suppose the initial state distribution of the system is π = (πU , πD). Let

δ be the step for the discretization of the time horizon.

Assume d = arg mini |iδ − Td|, n = arg mini |iδ − t|, and approximat-

ing (17),(18) by (7), we get :

Hn =
1

2

d−1∑
i=0

Gi

(
H̄n−i + H̄n−i−1

)
+ JU (19)

H̄n =
1

2

n−d−1∑
i=0

Ḡi (Hn−i +Hn−i−1) (20)

where

Gi = Ki+1 −Ki (21)

Ḡi = K̄i+1 − K̄i (22)

The above equations can be solved by iterations.

In summary, the solution procedure for mission reliability of type I may

consist of the following main steps:

Step 1. Solve equation (5) for KUD(t), KDU(t) by solving (10).

Step 2. Using the obtained results, solve (17),(18) for RI
U(0, t), RI

D(0, t) by

solving (19) and (20).

Step 3. Compute the mission reliability of type I as

(πU , πD)

RI
U(0, T )

RI
D(0, T )
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4. Mission Reliability of Type II

4.1. Equations for Mission Reliability

Suppose a mission requires that the sum of the operational time spans be

greater than a given value Tσ within mission time window [0, T ].

Define RII
u (x, t, σ) to be the probability that the system starts from state

u ∈ U at time x, and the total length of the operational time spans is greater

than or equal to σ within time window [x, t].

By the above definition, we have

RII
u (0, t, σ)

=
∑
d∈D

∫ ∞
0

[
Iw≥σ + Iw<σR

II
d (w, t, σ − w)

]
ku,d(dw)

=
∑
d∈D

[ ∫ ∞
σ

ku,d(dw) +

∫ σ−0

0

RII
d (w, t, σ − w)ku,d(dw)

]
By the renewal property of semi-Markov processes, it follows that

RII
u (0, t, σ) =

∑
d∈D

[ ∫ ∞
σ

ku,d(dw)

+

∫ σ−0

0

RII
d (0, t− w, σ − w)ku,d(dw)

] (23)

Similarly, define RII
d (x, t, σ) as the probability that the system starts from

state d ∈ D at time x, and the total length of the operational time spans is

greater than σ within time window [x, t]. We have

RII
d (0, t, σ) =

∑
d∈D

∫ ∞
0

RII
u (w, t, σ)kd,u(dw)

=
∑
d∈D

∫ t−σ

0

RII
u (0, t− w, σ)kd,u(dw)

(24)
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where the upper bound of the integral is changed to t−σ because if w > t−σ,

RII
u (0, t− w, σ) will become zero by its definition.

In matrix notation, (23) and (24) become

RII
U (0, t, σ) =

∫ σ−0

0

KUD(dw)RII
D (0, t− w, σ − w) + J(σ) (25)

RII
D (0, t, σ) =

∫ t−σ

0

KDU(dw)RII
U (0, t− w, σ) (26)

respectively, where

J(σ) =

∫ ∞
σ

KUD(dw)1D = KUD(∞)1D −KUD(σ)1D

and 1U ,1D are the column vectors of ones with lengths |U |, |D| respectively.

Let H(t, σ) = RII
U (0, t, σ), H̄(t, σ) = RII

D (0, t, σ), then (25), (26) can be

rewritten as

H(t, σ) =

∫ σ−0

0

K(dw)H̄(t− w, σ − w) + J(σ) (27)

H̄(t, σ) =

∫ t−σ

0

K̄(dw)H(t− w, σ) (28)

respectively, where K, K̄ are defined by (15), (16). The initial conditions are

H(t, 0) = 1 ∀t ≥ 0 H(t, σ) = 0 ∀t < σ

H(t, σ) = J(σ) ∀t = σ H̄(t, σ) = 0 ∀t ≤ σ

4.2. Algorithm for Solving Equations

Suppose that [0, t] is divided by points wi, i = 0, 1, . . . , n into n segments

of equal length, 0 = w0 < w1 < · · · < wn = t, and m = arg mini |iδ − σ|.

Using similar notation as for mission reliability of Type I, by approxima-

tion using (7), equations (27), (28) can be rewritten as

Hn,m =
1

2

m−1∑
i=0

[
Gi(H̄n−i,m−i + H̄n−i−1,m−i−1)

]
+ Jm (29)
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H̄n,m =
1

2

n−m−1∑
i=0

[
Ḡi(Hn−i,m +Hn−i−1,m)

]
n,m = 1, 2, . . . (30)

where Jm = J(mδ) = J(wm), and Gi, Ḡi are defined by (21), (22).

Equations (29), (30) can be solved by iteration.

4.3. Calculation of Mission Reliability

Assume that the mission time window is [0, T ], and the minimum total

operational time is Tσ, the initial state distribution is π = (πU , πD). Set a

large enough n for the discretization of the time horizon, as we do for (8).

Based on the previous results, we can now give the main steps for obtain-

ing mission reliability of type II:

Step 1. Solve equation (5) for KUD(t), KDU(t) by solving equation (10).

Step 2. Using the obtained results, solve (27), (28) forRII
U (0, t, σ), RII

D (0, t, σ)

in the form of equations (29), (30).

Step 3. Compute the mission reliability of type II as

(πU , πD)

RII
U (0, T, Tσ)

RII
D (0, T, Tσ)


5. Simulation and Numerical Study

To illustrate and verify our approach, we study two example systems and

give a simulation procedure. All the algorithms and the simulation procedure

have been coded in Python 3, and run on a Macbook Air laptop with an Intel

1.3GHz processor and 4GB of memory.
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5.1. Simulation Procedure

Let Q = [qi,j] be the semi-Markov kernel of the system under study; then

the transition probability matrix of the embedded Markov chain, P = [pij],

is defined as

pi,j = lim
t→∞

qi,j(t) ∀i, j ∈ S (31)

Let Ts1,s2 be the time the system has spent in state s1 since it last entered

s1 prior to jumping to state s2. Then the sojourn time distribution matrix

W (t) = [ws1,s2(t)] is defined as [24]:

ws1,s2(t) = P{Ts1,s2 ≤ t}

= P{Sn+1 − Sn ≤ t | Xn = s1, Xn+1 = s2}

=


qs1,s2 (t)

ps1,s2
ps1,s2 > 0

1 ps1,s2 = 0

(32)

The simulation procedure to estimate both types of mission reliability for

a semi-Markov system is given below (see [16]).

Algorithm 1 MissionReliabilitySim

Step 1. (Initialization) Assume Tm is the mission time, and Td, Tσ are the

minimum operational times corresponding the mission requirements

for mission reliability of type I and type II respectively.

Let the total number of simulation runs be Nsim; let the two lists

simRs1, simRs2 for storing the results of simulation runs both be

set initially as empty lists.

Step 2. (Loops to collect simulation results) For k = 1, 2, . . . , Nsim, do

1) Get the result of one simulation run, rs1, rs2, by calling function
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OneRunSim (see Algorithm 2 given below).

rs1 = ‘Success’/rs1 =‘fail’ means that the type I mission is suc-

cessful/failed respectively. Similarly, rs2 = ‘Success’/rs2 = ‘fail’

corresponds to the success/failure of the type II mission in the cur-

rent run.

2) Append rs1 to simRs1, and rs2 to simRs2.

Step 3. (Estimating mission reliabilities)

1) Count the number of items with value ‘Success’ in simRs1, denote

it as ns1.

2) Count the number of of items with value ‘Success’ in simRs2,

denote it as ns2.

3) Type I mission reliability is estimated as R = ns1/Nsim.

4) Type II mission reliability is estimated as R = ns2/Nsim.

Algorithm 2 OneRunSim

Step 1. (Initialization) Set s0 as the initial state, current simulation time

t = 0, let s1 := s0, and set the list of operational spans, Lu, to be

the empty list.

Step 2. (Sampling the next state) Select the next state to visit from s1 by the

sampling result according to transition probability matrix P defined

by (31).

Step 3. (Sampling the sojourn time) If state s2 is selected, then a sojourn

time Ts1,s2 is sampled from the distribution ws1,s2(t) defined by (32).

Step 4. (Recording operational time interval) Let tw = t+ Ts1,s2 , (note that

for a semi-Markov system, the system will remain in s1 until the end

of its holding time Ts1,s2) and do
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1) If tw < Tm

if s1 ∈ U append Ts1,s2 to Lu, doing appropriate merging if

they are consecutively connected operational spans.

set t := tw, s1 := s2

return to Step 2.

2) If tw ≥ Tm

if s1 ∈ U append tw − Tm to Lu, doing appropriate merging

with previous span if they are consecutively connected operational

spans.

Step 5. (Judgement of mission success)

1) Search Lu to check each of its items; if there exists an item in Lu

that is greater than Td, then set rs1 :=‘Success’, otherwise, rs1 :=

‘fail’.

2) Let Lσ be the total sum of the length of all the items in Lu; if

Lσ ≥ Tσ then rs2 := ‘Success’, otherwise, rs2 := ‘fail’.

3) return rs1, rs2.

5.2. One Unit System

Now, we take as example the one-unit system studied in [15]. For this

system, the life time and repair time are both assumed to follow exponential

distributions, with failure rate λ = 1/60, repair rate µ = 1/10. The mission

time window is [0, 100], within which, for mission reliability of type I, the

minimum required operational time is 60 time units. In addition, we assume

that for mission reliability of type II, the minimum required total operational

time is also 60 time units.

With the above assumptions, the mission reliability of type I was obtained
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as 0.53347 using the analytical method presented in [15] (we have corrected

errors in [15], so the result here differs).

For this system, let U = {1}, D = {0}, where 1 denotes the working

state, and 0 denotes the down state (i.e. under repair).

This system is obviously a Markov system (therefore a special case of a

semi-Markov system); its semi-Markov kernel can be easily built as

Q =

QUU QUD

QDU QDD

 =

 0 1− e−λAt

1− e−µAt 0


The initial state distribution is π = (1, 0).

By (31), (32), we have

P =

0 1

1 0


W (t) =

 1 1− e−λAt

1− e−µAt 1


Using our simulation procedure, with the given parameters, we obtained

estimates of both types of mission reliability for this system. Table 1 shows

selected estimated values of mission reliability with different numbers of sim-

ulation runs, where for convenience, we use the following notation:
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NR: number of simulation runs.

RU1: mission reliability of type I;

system starts in operational state.

RU2: mission reliability of type II;

system starts in operational state.

RD1: mission reliability of type I;

system starts in down state.

RD2: mission reliability of type II;

system starts in down state.

PT : simulation processing time in seconds.

Table 1: Estimated mission reliabilities by simulation

NR RU1 RD1 RU2 RD2 PT

10000 0.537 0.475 0.951 0.878 1.49

100000 0.532 0.478 0.953 0.877 13.08

200000 0.532 0.480 0.953 0.875 26.05

250000 0.532 0.479 0.953 0.875 32.98

300000 0.533 0.478 0.953 0.875 39.09

390000 0.533 0.477 0.952 0.876 51.78

We also used the analytical models and algorithms presented in this pa-

per, setting δ = 100/120. By solving the systems of linear equations for

mission reliability of both types, we obtain RU1 = 0.533, RD1 = 0.478,

RU2 = 0.952, RD2 = 0.876. The total computer processing time is 30.2944

seconds with 15 numerical iterations.

We can see that the results of mission reliability of type I match well
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with the results obtained using the analytical method in [15]. Comparing

the derived results with the results obtained via simulation we see very good

agreement. Due to the numerical imprecision introduced by discretization in

solving the integral equations and in running simulation, we consider that the

difference between them is sufficiently small to be considered insignificant.

In addition, we can understand that with Td = Tσ, mission reliability of

type II is higher than mission reliability of type I. The mission reliability of

type II is defined as the probability that the total length of operational time

of the system within the mission time window is no less than the given value,

while the mission reliability of type I is defined as the probability that there

is a operational time span within the mission time window whose length is no

less than a given value. Therefore, the condition of mission reliability of type

I is more stringent than that of mission reliability of type II. So, mission

reliability of type II is higher than that of type I provided the required

time length is the same. Moreover, for both types of mission reliability, the

reliability corresponding to when the system starts from the operational state

is higher than that corresponding to when the system starts from the down

state.

By setting different required operational lengths Td, Tσ, Table 2 gives the

obtained mission reliabilities and processing times (in seconds).

We can see from Table 2 that for the method in Ref.[15], the computa-

tional time PT decreases as the required time length Td (Tσ) increases. This

is because the probability of mission success in each mutually exclusive case

will decrease fast enough to make the numerical integration involved converge

quickly. For the simulation method of this paper, the processing times PT are
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Table 2: Reliabilities and processing times of different Td (Tσ)

Td/Tσ RU1 30 60 90

Method RU1 0.9487 0.5335 0.2362

of Ref.[15] PT 130.9950 94.5621 56.1107

RU1 0.9485 0.5333 0.2356

Simlation RD1 0.9219 0.4773 0.1439

(390,000 RU2 0.9986 0.9523 0.5120

runs) RD2 0.9937 0.8762 0.2526

PT 54.2361 53.5522 54.1446

RU1 0.9486 0.5334 0.2361

Analytical RD1 0.9219 0.4779 0.1448

Method RU2 0.9985 0.9515 0.5119

RD2 0.9935 0.8758 0.2520

PT 16.5478 30.2944 35.1067

approximately the same. This is because no matter how large the required

time length is, the same number of samples are needed for the simulation.

For the analytical method of this paper, we can observe that the processing

time PT becomes longer if the required time length increases, mainly due to

an increase in the number of terms m of equations (29) and (30) in com-

puting the mission reliability of type II. Finally, it can be seen that there

are no significant differences in the accuracy of the mission reliabilities with

different required time lengths for all these methods, as the reliability results

are sufficiently close to each other.
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5.3. Cold Standby System

Suppose we have a cold standby system with perfect switching [27]. We

assume that the system consists of two components, A and B, and the switch-

ing between components always works without failure. A is on-site repairable.

However, B is not repairable on-site. Assume that the times to failure of A

and B are independent. For each component, the failure and repair times

are also independent. Furthermore, the failure time of B follows an expo-

nential distribution with rate λB = 1/30. The repair time of A follows an

exponential distribution with rate µA = 1/10, and its failure time follows

a two-parameter Weibull distribution [16] with distribution function GA(t)

given as

GA(t) = P (T ≤ t) = 1− exp

(
−
(
t

η

)β)
(33)

where η = 60, β = 2.0.

We assume that once A fails, it will immediately be under repair. More-

over, the switchover time is negligible. For instance, once component A fails,

if B is in the standby state, then B will be put into service, and the re-

pair of A starts immediately. After A has been repaired, it will enter into

the standby state if B is in the working state. Otherwise, A will enter the

working state immediately.

The state transitions of the system are shown in Fig. 1, where fA, fB

denote the failure of A and B respectively, and rA denotes the repair of A,

and the states are indexed using integers, explained as follows:
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state 1: A is working(w), and B is in standby(b).

state 2: A is down(d) and under repair, B is working(w).

state 3: A is down and under repair(d), B is down(d).

state 4: A is in standby(b), B is working(w).

state 5: A is working(w), and B is down(d).

1

w,b

2

d,w

3

d,d

4

b,w

5

w,d

fA

fB

rA

rA
fB

fA

Figure 1: State transition of the example cold standby system

It can be easily concluded that all state transitions correspond to Markov

renewal moments. Therefore, the system is identified as semi-Markov with

the above 5 states. For this system, U = {1, 2, 4, 5}, and D = {3}.

From above, we can get the elements of the semi-Markov kernel as

q1,2(t) = P{A fails up to t} = GA(t)

q2,4(t) = P{A’s repair is finished by t and

B does not fail by that time}

=
µA

µA + λB

(
1− e−(µA+λB)t

)
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q2,3(t) = P{B fails before t and

A’s repair does not finish by that time}

=
λB

µA + λB

(
1− e−(µA+λB)t

)
q4,5(t) =P{B fails by time t} = 1− e−λBt

q3,5(t) =P{A”s repair is finished by t} = 1− e−µAt

q5,3(t) =P{A fails by t} = GA(t)

So, the semi-Markov kernel is

QUU =
1−GA(t) GA(t) 0 0

0 e−(µA+λB)t µA
µA+λB

(
1− e−(µA+λB)t

)
0

0 0 eλBt 1− e−λBt

0 0 0 1−GA(t)



QUD =


0

λB
µA+λB

(
1− e−(µA+λB)t

)
0

GA(t)


QDU =

[
0 0 0 1− e−µAt

]
QDD =

[
0
]
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By (31), (32), we have

P =

PUU PUD

PDU PDD

 =



0 1 0 0 0

0 0 µA
µA+λB

0 λB
µA+λB

0 0 0 1 0

0 0 0 0 1

0 0 0 1 0



W (t) =

WUU(t) WUD(t)

WDU(t) WDD(t)



=



1 GA 1 1 1

1 1 1− e−(µA+λB)t 1 1− e−(µA+λB)t

1 1 1 1− e−λBt 1

1 1 1 1 GA(t)

1 1 1 1− e−µAt 1


The results obtained by simulation and by analytical algorithms are given

in Table 3. The number of simulation runs is 400,000, and the computer

processing time is 136.023 seconds. For numerical solution, the discretization

interval length is δ = 100/120 = 0.8333, number of iterations is 15, and

the computer processing time is 107.436 seconds. In Table 3, the following

notation is used for convenience.

St: the starting state of the system.

R1: mission reliability of type I.

R2: mission reliability of type II.

Sim: results by simulation method.

Ana: results by solving equations.
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Table 3: Comparison of mission reliabilities

St R1(Sim) R1(Ana) R2(Sim) R2(Ana)

1 0.864 0.865 0.995 0.996

2 0.675 0.675 0.978 0.978

4 0.713 0.712 0.991 0.991

5 0.457 0.457 0.979 0.979

3 0.414 0.414 0.916 0.917

From Table 3, we can see that there is good agreement between the re-

sults obtained by the two approaches, considering the numerical precision of

simulation and solution of the integral equations.

In this example, we have used a Weibull distribution for the failure time

of component A. Note that if we set β = 1 in equation (33), the Weibull

distribution becomes an exponential distribution with rate λ = 1/η; that

is, the same distribution as the one-unit system in the first example of this

section. Moreover, from Fig. 1, we see that if the system starts in either

state 3 or state 5, the behavior of this system will be exactly the same as

the one-unit system in the first example with corresponding starting states.

Consequently, the results of mission reliability should be the same. We have

confirmed this observation with numerical results obtained setting β = 1.

6. Conclusions

Based on mission requirements in engineering applications, we have pre-

sented two new reliability measures for mission systems under generalized

operational time requirements within a given mission time window. One
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measure is for the case when the mission requires a minimum operational

time interval. The other measure is for the case when the mission requires the

sum of operational time to be greater than a given value. For semi-Markov

systems, matrix integral equations for calculating both types of mission reli-

ability have been derived and numerical solution algorithms were presented.

By the results of this paper, we can more precisely evaluate the mission relia-

bility to reduce unnecessary redundancy of system resources for such mission

systems.

Since a Markov system is a special case of a semi-Markov system, the

results can be easily applied to mission systems consisting of multiple com-

ponents if all of them have exponential failure and repair time distributions.

However, careful checking of the semi-Markov properties are often necessary

to ensure a system under study is really semi-Markov. Therefore, it will be

useful in future research work to give a systematic approach to identifying

an embedded semi-Markov process for systems with typical structures.
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