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Bi-criterion procedures to support logistics

decision making: cost and uncertainty

February 5, 2015

Abstract

In practical decision making, one often is interested in solutions

that balance multiple objectives. In this study we focus on generating

efficient solutions for optimization problems with two objectives and a

large but finite number of feasible solutions. Two classical approaches

exist, being the constraint method and the weighting method, for

which a specific implementation is required for this problem class.

This paper elaborates specific straightforward implementations and

applies them to a practical allocation problem, in which transportation

cost and risk of shortage in supplied livestock quality are balanced.

The variability in delivered quality is modelled using a scenario-based

model that exploits historical farmer quality delivery data. The be-

haviour of both implementations is illustrated on this specific case,

providing insight in i.) the obtained solutions, ii.) their computational

efficiency. Our results indicate how efficient trade-offs in bi-criterion

problems can be found in practical problems.
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1 Problem description

In the optimization of business and logistic processes one is frequently faced

with conflicting objectives. Specifically, in the meat processing chain, we are

not only dealing with logistics costs, but also with large variety in product

quality, market segments, and processing options. Differences in farmer pro-

duction and breeding systems result in variation in quality features such as

carcass weight, fat layer thickness, and lean meat percentage [Perez et al.,

2009], whereas market segments vary with respect to preferred quality fea-

tures [Grunert, 2006] (e.g. Japan prefers fat meat, Greece prefers light and

lean carcasses). Rijpkema et al. [2013] describe an allocation problem where

a decision maker is confronted with variability in delivered quality. For this

problem, a model is presented where one of the objectives is to minimize

the expected shortage with respect to a demanded product quality, whereas

the other objective is the minimization of transportation cost. The structure

of the model implies a bi-criterion model with a finite, but large number

of decision alternatives. In so-called bi-criterion problems, the set of non-

dominated solutions presents the optimal trade-offs between both objectives,

and is called the Pareto set or trade-off curve. These non-dominated solu-

tion sets are typically known to be quasiconcave in their objectives, i.e. there

is a diminishing marginal rate of substitution between both objectives, see
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Geoffrion [1967].

There are basically three approaches to find non-dominated solutions for

this problem type, being i.) the multiobjective simplex method, ii.) the

constraint method, and iii.) the weighting method [Romero and Rehman,

2003]. As the applicability of the multiobjective simplex method is limited

to very small-sized problems, its practical usefulness is restricted [Romero

and Rehman, 2003]. We therefore do not consider this method here. In the

constraint method, first introduced by Marglin [1967], non-dominated solu-

tions are obtained by optimizing a single objective while restricting the other.

In the weighting method, first introduced by Zadeh [1963], non-dominated

solutions are obtained by optimizing multiple objectives simultaneously (e.g.

[Lofti et al., 2011]). The weighting method will find extreme efficient points

[Romero and Rehman, 2003], sometimes called supported efficient solutions

Hansen [1979]. The constraint method may also find so-called interior effi-

cient points.

The bi-criterion planning problem under consideration has a specific char-

acteristic: the number of feasible solutions is large but finite. The correspond-

ing research question is: how to generate sets of solutions that represent the

efficient trade-off between two objectives for this type of bi-criterion problem?

Recently several prodedures have been described in literature to generate ef-

ficient solutions of integer programming problems for a larger number of

objectives where all coefficients have integer values (or can be transformed

to them), see Lokman and Köksalan [2013], Mavrotas and Florios [2013],

Ozlen et al. [2014], Zhang and Reimann [2014]. In the problem we consider

this is not necessarily the case. To find efficient solutions for this problem
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type we present two simple and efficient procedures based on the original

ideas of weigthing and the constraint method. The first is based on the con-

straint method and iteratively changes which objective is constrained and

which objective is optimized. A similar approach for integer problems has

originally been investigated in Chalmet et al. [1986]. The second procedure

is based on the weighting method, using a systematic iterative procedure

to vary the adopted weight. The procedure is similar to the approach pre-

sented by Cohon et al. [1979]. For a comparison of other procedures on a

practical case, we refer to Tóth et al. [2006]. The effectiveness of the two

procedures is showcased by the practical allocation problem and differences

in computational efficiency and obtained solution sets are discussed.

This paper is organised as follows. In Section 2, a practical bi-criterion

problem that has the typical characteristics we are interested in is presented.

Section 3 introduces the two procedures to generate sets of efficient solutions

for this problem type. They are elaborated with instances of the practical

case in Section 4. Section 5 summarizes the findings.

2 A livestock allocation model

The type of problem we study in this paper has a large but finite number

of feasible solutions and two conflicting objectives for a single stakeholder.

The practical case we are interested in concerns an allocation problem faced

by a large meat processing company. For this planning problem, Rijpkema

et al. [2013] present a stochastic programming model to reduce service level

violations in supplied livestock quality. In this paper we do not consider
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service levels, but instead focus on minimizing the expected shortfall from

demanded quality. The adopted model indices, data, and variables used in

this allocation model can be found in Table 1.

A meat processing company allocates livestock batches from I farms (with

i = 1, . . . , I) to J slaughterhouses (with j = 1, . . . , J) and tries to limit

logistics costs f1 of allocation plan X, determined by

f1(X) =
I∑
i=1

J∑
j=1

Xijaidij, (1)

subject to
I∑
i=1

Xijai ≤ cj j = 1, . . . , J, (2)

J∑
j=1

Xij = 1 i = 1, . . . , I, (3)

Xij ∈ {0, 1} i = 1, . . . , I, j = 1, . . . , J. (4)

Equation 2 sets a limit on slaughterhouse capacity, and Equation 3 and 4

ensure that each livestock batch is allocated to a single slaughterhouse.

In the practical problem, the meat processor distinguishes 12 carcass qual-

ity classes. For the illustration of the procedures, we consider only the de-

mand for a single carcass quality class at slaughterhouse j, and we use hj to

denote the number of demanded carcasses in this quality class at slaughter-

house j. Although using more classes for the ilustration does not complicate

the model, it allows us to systematically vary the demanded amount. The

meat processor would like to ensure that demand for this quality class is

fulfilled. However, the fraction of animals that individual farmer i delivers

5



in the specific quality class reveals a certain variability, which we denote by

random variable ζi. We define Sj(X) as the expected shortfall from demand

hj at slaughterhouse j given allocation plan X, with

Sj(X) = Eζ [(hj −
I∑
i=1

Xijζiai)
+]. (5)

The decision maker would like to limit both logistics costs f1 and the sum of

the expected shortfall Sj(X) from demand hj at all J locations. The expected

shortfall Sj(X) is based on modelling possible outcomes of uncertain fraction

ζi using historical farmer delivery data. This historical information consists

of quality data available from L previous deliveries, for each of the I farmers.

For the model of stochastic fraction ζi the support is the set of observed

fractions, where each element has the same probability of 1/L on occurrence.

Assuming independence between the farmers defines an outcome space with

N = LI possible outcomes ξin, where ξin denotes the fraction of animals

farmer i delivers in the quality class under scenario n. Each of these possible

outcomes has a probability 1/N = (1/L)I . Using this stochastic model, the

expected shortfall Sj(X) is defined by

Sj(X) =

∑N
n=1(hj −

∑I
i=1Xijξinai)

+

N
. (6)

The decision maker would like to find an allocation plan X with a limited

total expected shortage f2 at all J slaughterhouses, defined by

f2(X) =
J∑
j=1

Sj(X). (7)
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As the number of possible outcomes N is, even for relatively small number

of farmers I and historical observations L, very large, this MILP model only

has a theoretical meaning. In scenario-based modeling (see e.g. Birge and

Louveaux [1997]) it is usual to consider a finite subset with a limited number

(e.g. N = 5000) of samples Ξn = (ξ1n, ξ2n, . . . , ξIn) of the possible outcomes

of the random variable. This allows us to approximate the performance of

solution X in objective f2.

We now have a scenario-based allocation model that has two objectives

(f1(X) and f2(X)) and a large but finite number of feasible solutions X

in the allocation problem defined by Equations 2, 3, and 4. As the reader

may imagine, there is a trade-off between the logistics costs f1 and expected

shortfall of demand f2. It is therefore important to find solutions that balance

levels of both objective f1 and f2, for which two procedures are elaborated

in Section 3.

Table 1: Model indices, data and variables of livestock allocation problem

Indices
i farm index, i = 1, . . . , I
j slaughterhouse index, j = 1, . . . , J
n scenario-number, n = 1, . . . , N
Data
ai animals delivered by farmer i in number of animals.
dij transportation costs from farm i to slaughterhouse j in € per animal
cj processing capacity of slaughterhouse j in number of animals
hj demand for carcass quality class at slaughterhouse j in number of animals
ζi fraction of animals from farmer i in the quality class
ξin fraction of animals from farmer i in the quality class under scenario n
Ξn realisation of farmer fraction deliveries under scenario n
Variables
Xij allocation of animals from farm i to slaughterhouse j
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3 Bi-criterion algorithms

In bi-criterion problems, a decision maker would like to determine the trade-

off between two objectives by obtaining a complete overview of solutions that

are non-dominated with respect to objectives f1 and f2. This can be done by

generating a subset X of non-dominated solutions of the finite set of feasible

plans. The corresponding objective values f1(X), f2(X) for X ∈ X form

a Pareto front. We present two procedures to efficiently generate a Pareto

front for this problem type, i.e. a problem with two objectives and a large

but finite number of feasible solutions. Section 3.1 presents a strategy based

on the constraint method, whereas the procedure presented in Section 3.2

is based on the weighting method. Section 3.3 discusses the difference of

these straightforward implementations with recent studies on specific multi-

objective integer programming from literature literature.

3.1 A constraint method procedure

Algorithm 1 (in: problem data, K. out: Set X of efficient solutions in f1f2.

ϕ2 = min{f2(X)} lowest value f2
X = argmin{f1(X), f2(X) ≤ ϕ2} store first solution

F1 = min{f1(X)} lowest value f1
X = X ∪ argmin{f2(X), f1(X) ≤ F1} add second solution

F2 = f2(X) value objective f2
ε = F2−ϕ2

K
min gap objective f2

while F2 > ϕ2 + ε
F1 = min{f1(X), f2(X) ≤ F2 − ε} Pareto objective value f1
Y = argmin{f2(X), f1(X) ≤ F1},X = X ∪ Y store new solution

F2 = f2(Y ) Pareto value objective f2
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In this section, a procedure based on the constraint method is presented

to find non-dominated solutions X in f1f2 for problems with a large but

finite number of feasible solutions. In the constraint method, one objective

is minimized (e.g. min{f1(X)}) whereas the other objective is restricted (e.g.

f2(X) ≤ F2 − ε). By iteratively changing the objective that is constrained

and the objective that is minimized, a set of non-dominated solutions is

generated. The obtained solutions may include both extreme efficient points

and interior efficient points. Algorithm 1 describes the procedure to obtain

a set X of solutions X that are non-dominated in f1f2.

The symbols used in Algorithm 1 can be found in Table 2. The decision

maker needs to set parameter K, which denotes an upper bound to the

number of obtained solutions. If a high value for K is used, a large number of

non-dominated solutions might be found, which will require a large number

of iterations and therefore much computational effort. If, however, a low

value for parameter K is used interesting solutions might be missed. As

there is a finite number of feasible solutions, there is a certain value of K for

which all non-dominated solutions will be found.

Table 2: Symbols used in Algorithm 1

K upper bound to the number of obtained solutions
ϕ2 lower bound objective value f2
F1 pareto objective value f1
F2 pareto objective value f2
ε minimum gap in objective f2 between two consecutive solutions
Y solution that is temporarily stored
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3.2 A weighting method procedure

This section presents a procedure based on the weighting method to find non-

dominated solutions X in f1f2 for problems with a large but finite number of

feasible solutions. The objective of the weighting method is to simultaneously

minimize both f1 and f2, that is

min{f1(X) + wf2(X)}, (8)

where weight w denotes the number of units of f1 a decision maker is willing

to trade in to reduce the level of f2 with one unit. Algorithm 2 describes a

procedure to gather a set X of solutions X that is non-dominated in f1f2. In

Algorithm 2 we initially minimize objective f1(X) and f2(X) separately, and

store the obtained solutions as X1 and X2. The following step is to determine

the value of trade-off w for which X1 and X2 have the same objective function

value according to

w =
f1(X2)− f1(X1)

f2(X1)− f2(X2)
. (9)

The solution we obtain by using weight w in Equation 8 will be either a

new one, or it will be a solution we have found before. If we find either X1

or X2 we can conclude that solutions X1 and X2 are optimal with respect to

weight w, and we stop the search for alternative solutions. If a new solution is

found, we can conclude that solutions X1 and X2 are not optimal for weight

w. In that case we store the new solution as X3, and restart the procedure to

assess whether there are values of w corresponding to other extreme efficient

points of the Pareto front other than X1, X2, and X3. The procedure in
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Algorithm 2 (in: problem data. out: Set X of extreme efficient solutions

Determine X1 = argmin{f1(X)} and X2 = argmin{f2(X)}
X = {X1, X2} store resulting solutions

Set k = 2, t = 3, wt = f1(X2)−f1(X1)
f2(X1)−f2(X2)

while k < t iteration < nr scheduled iterations

k = k + 1 increment current iteration counter

Xk = argmin{f1(X) + wkf2(X)}
if Xk 6∈ X if new solution is found

XLB = argmin
X∈X

(f1(Xk)− f1(X))

wt+1 = f1(Xk)−f1(XLB)
f2(XLB)−f2(Xk)

new weight w below wk

XUB = argmin
X∈X

(f1(X)− f1(Xk))

wt+2 = f1(XUB)−f1(Xk)
f2(Xk)−f2(XUB)

new weight w above wk

t = t+ 2 increment scheduled iteration counter

X = X ∪Xk store new solution

Algorithm 2 will find all extreme efficient solutions for positive values of w

(i.e. 0 ≥ w ≥ ∞). The symbols adopted in Algorithm 2 can be found in

Table 3.

If a decision maker is able to indicate a weight range where an optimal

trade-off between objective f1 and f2 is expected she may determine X1 and

X2 using Equation 8 with a lower and an upper bound for w instead. This

may reduce the required computational effort.

Table 3: Symbols used in Algorithm 2

Indices
k current iteration counter
t total iteration counter
Data
w maximum allowed increase in objective f1 to reduce objective f2 with one unit
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3.3 Comparison with other algorithms

Recently many specific algorithms have been developed and investigated

for multi-objective integer programming. In general, the newly proposed

schemes are more and more sophisticated elaborations of the classical ap-

proaches in an attempt to capture all non-dominated solutions also for the

case of more than two objectives. Recently Lokman and Köksalan [2013]

extended the earlier work of Sylva and Crema [2004], where every found effi-

cient point generates more constraints and binary variables extending the IP

problem to be solved at each iteration considerably. Lokman and Köksalan

[2013] propose a shortcut for that guaranteeing to reach all non-dominated

points, whereas the presented Algorithm 1 simply generates a subset in the

classical ε-constraint sense where solutions differ at least the preset accuracy

ε in one of the objectives. Needless to say that this target requires far less

steps from an optimization problem that does not increase in size.

Mavrotas and Florios [2013] and [Zhang and Reimann, 2014] elaborate

further on the augmented ε-contraint method that is designed to deal with

many objectives in an integer programming environment. Essential is the

idea that the problem is converted in a problem with integer coefficients,

such that the step sizes can be taken as one. It uses the characteristic that

in fact the number of values for each objective is finite as long as the integer

programming problem has a finite number of solutions. It requires weighting

slacks and determination of step sizes for each objective. The approach is far

more elaborated than a straightforward constraint method for two objectives.

Ozlen et al. [2014] present a new version of an earlier algorithm that is

based on the constraint method combined with lexicographical optimization
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of many objectives. The method aims at generating Pareto points for a

problem where all objecive vector coefficients have integer value. This means

that the step size ε is implicitly taken as one. The problem we would like to

solve does not fall necessarily in this class of problems. Another difference

with their algorithm is that Algorithm 1 never has to solve an infeasible

subproblem.

Non of the mentioned modern algorithms aim at generating all extreme

non-dominated points as Algorithm 2 does. The problem we aim to generate

the efficient plans for does not necessarily contain integer valued coefficients.

For the described logistic problem this would be a hard assumption given that

thousands of quality data are used. Algorithm 1 does not take implicit step

sizes of 1 and does not necessarily aim at generating all efficient solutions.

It aims at supporting decisions by providing a trade-off curve of the two

objectives.

4 Computational illustration

In this section, we illustrate the behaviour of both procedures presented in

Section 3 using the livestock allocation problem presented in Section 2. The

parameter settings used in this allocation problem can be found in Table 4.

The solutions generated by both the constraint method procedure (Algorithm

1) and the weighting method procedure (Algorithm 2) in objective f1 and

f2 are depicted in Figure 1. The complete solution sets are presented in

Subfigure 1(a), whereas Subfigure 1(b) presents a small subset of obtained

solutions. The data presented in Figure 1 are obtained for demand h1 = 250,
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Table 4: Parameter settings used in computational illustration
Parameter Value Definition

I 72 number of farmers supplying livestock
J 5 number of slaughterhouses receiving livestock
L 45 number of observations for each farmer
N 5000 number of samples in optimization
dij 0.133 to 4.33 livestock transportation costs in € per animal
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Figure 1: Sets of non-dominated solutions obtained using both procedures

whereas a value of K = 1000 is used in the constraint method.

We now vary the demand parameter hj in order to observe the effect

on the set of non-dominated solutions. For clarity of presentation, we only

present the solution set obtained using the weighting method procedure in

Figure 2. A similar set of solutions can be obtained using the contraint

method procedure as well. To provide insight in the performance and com-

putational efficiency of both procedures, performance data for both proce-

dures is provided in Table 5. In this table we present performance data of

solutions obtained using a.) the constraint method procedure with K = 10,

b.) the constraint method procedure with K = 1000, and c.) the weighting
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method procedure. In Figure 1 we observe that, following Romero and
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Figure 2: Pareto fronts obtained using the weighting method procedure for
variations of h1

Table 5: Optimization details for both procedures
Constraint method procedure Weighting method procedure

K = 10 K = 1000
h1 # of points Total time # of points Total time # of points Total time
210 7 5.21 41 32.07 20 14.58
230 7 6.52 57 62.25 24 30.23
250 9 10.71 69 113.19 29 126.50
270 10 11.96 87 192.26 29 67.08
290 9 14.86 112 348.57 29 67.66

Rehman [2003], the weight method procedure finds all extreme efficient so-

lutions of the Pareto front, whereas the constraint method procedure may

find both extreme efficient and interior efficient solutions. Figure 2 can be

used by decision makers that want to assess i.) what impact variations in

demand level hj have on both objectives, ii.) the trade-off between logis-

tics costs and expected shortage for each fixed demand level. From Figure

1 and Table 5 we learn that i.) selecting a low K will improve computa-

tional efficiency, but may lead to missing interesting points, particularly in

15



the lower f2 region, and ii.) selecting a high K will reduce the likelihood

of missing non-dominated solutions (ultimately to the point where all non-

dominated solutions will be found), but will increase required computational

effort. Furthermore we observe from data in Table 5 that finding solutions

becomes increasingly difficult for higher levels of demand hj.

5 Discussion and conclusion

This paper develops two practical procedures derived from concepts of multi-

criteria decision making to obtain sets of non-dominated solutions problems

that have i.) two conflicting objective functions, and ii.) a large but finite

number of feasible solutions. The performance and efficiency of both proce-

dures is elaborated for a practical decision making problem where livestock

batches need to be allocated to slaughterhouses. In this allocation problem

both logistics costs and deviations from demanded livestock quality features

are to be minimized. The livestock quality that will be supplied is modelled

using a scenario-based approach using historical data on livestock quality

delivered by individual farmers. The modelling results indicate that the pre-

sented procedures effectively i.) find sets of non-dominated solutions in both

objective f1 and f2, ii.) provides insight in the trade-off between objective

f1 and f2.
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