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Abstract

Range expansions are a ubiquitous phenomenon, leading to the spatial spread of genetic,

ecological, and cultural traits. While some of these traits are advantageous (and hence se-

lected), other, non-selected traits can also spread by hitchhiking on the wave of population

expansion as it advances. Understanding current patterns of diversity, and predicting and

controlling the effects of future range expansions, requires us to understand how the spread

of a hitchhiking trait is coupled to the wave of advance of its host population. Here, we

use a coupled Fisher-KPP framework to describe the spread of a horizontally-transmitted

hitchhiking trait within a population as it expands. We extend Fisher-KPP wave theory to

the coupled system to predict how the hitchhiking trait spreads as a wave within the ex-

panding population. We show that the speed of this trait wave is controlled by an intricate

coupling between the tip of the population and trait waves. Our analysis yields a new speed

selection mechanism for coupled waves of advance, and reveals the existence of previously

unexpected speed transitions. Among other applications, our results may be relevant to un-

derstanding patterns of parasite prevalence in colonizing animal populations, and the spread

of horizontally-transmitted antibiotic resistance within expanding bacterial populations.
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The expansion of a population into a new spatial territory, known as a range expansion,

is an important and fundamental process in evolution, ecology and anthropology. Range

expansions are driven by selection for advantageous traits, whether these be genetic, eco-

logical, technological or cultural. However, they typically lead to the concomitant spread of

other traits, which may not be advantageous but spread by “hitchhiking” with the selected

trait. Understanding spatial patterns of genetic, ecological, and cultural diversity requires

us to understand how the spread of a hitchhiking trait is coupled to the wave of advance of

its host population.

The wave of advance model was introduced by Fisher (Fisher 1937) to describe the spread

of an advantageous gene within a spatially extended population, and was used independently

by Kolmogorov, Petrovsky and Piskunov (Kolmogorov et al. 1937) to describe general

growth and diffusion processes, and by Skellam (Skellam 1951) in the ecological context of

the invasion of new territory by a colonizing species. This model describes the advance of a

population in space with the following equation, which we denote the Fisher-KPP (F-KPP)

equation:
∂u

∂t
= D

∂2u

∂x2
+ αu(K − u) (1)

where x denotes position and t time and u(x, t) is the population density. In this model,

population expansion arises from a balance between diffusion of individuals in space (with

diffusion constant D), and local growth (with maximum population density or carrying

capacity K and linear growth rate αK). This equation has extremely broad biological

relevance (Ammerman and Cavalli-Sforza 1971, van den Bosch et al. 1992, Mollinson 1991,

Young and Bettinger 1995, Hethcote 2000, Murray 2004, Ackland et al. 2007, Rouzine et

al. 2008, Barrett-Freeman et al. 2008, Greulich et al. 2012), and is also important in other

fields including applied mathematics (McKean 1975, Merkin and Needham 1989, Merkin

and Needham 1993, van Saarloos 2003), statistical physics (Derrida and Spohn 1988, Brunet

and Derrida 1997) and computer science (Majumdar and Krapivsky 2002, Majumdar and

Krapivsky 2003). The F-KPP equation predicts that the population advances as a traveling

wave with a well-defined speed given by v∗ = 2
√

αDK for a wide class of initial conditions.

This wave speed is determined by a mathematically subtle speed selection principle that

depends critically on the population dynamics at the very tip of the wave, as well as the

initial condition, and that has been a topic of discussion for more than half a century

4



(Kolmogorov et al. 1937, McKean 1975, Larson 1978, van Saarloos 2003).

Space

Po
pu

la
tio

n 
de

ns
ity

 

Tip

Front

A

Space

Po
pu

la
tio

n 
de

ns
ity

v
c

v
tot

B

FIG. 1: Propagation of single and coupled F-KPP waves. (a): A population described by the

F-KPP equation advances as a traveling wave. The speed of the main part of the wave (the

“front”) depends critically on the details of the profile in the tip region, far ahead of the front. (b):

The scenario investigated in this study. The sub-populations of individuals with and without the

horizontally-transmitted trait are shown in blue and orange, respectively. The total population

advances as an F-KPP wave, with speed vtot = 2
√

αDK, while the sub-population with the trait

also advances as a wave, which lags behind the wave of the total population.

Spatial expansion can have important effects on the genetic structure of a population. In

particular, range expansions are often associated with genetic bottlenecks, in which the pop-

ulation of the newly colonized territory is descended from only a few “pioneer” individuals.

The resulting spatial patterns of genetic diversity can be used to infer information about

past population expansions (Manica et al. 2007, Atkinson 2011). Recent work (Klopfstein
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et al. 2006, Hallatschek et al. 2007, Excoffier and Ray 2008, Hallatschek and Nelson 2008,

Excoffier et al. 2009, Hallatschek and Nelson 2009, Korolev et al. 2010) has focused on

the amplification of genetic drift at the low-density fronts of expanding populations, strik-

ingly demonstrated in experiments with neutral, fluorescently labelled strains of bacteria

and yeast (Hallatschek et al. 2007, Hallatschek and Nelson 2009). Range expansion may

also favour the maintenance of cooperative traits, both by enrichment of cooperators at the

front and by allowing them to outrun non-cooperative cheats (Sen Datta et al. 2013).

Population expansions are often accompanied by the spread of non-selected traits which

hitchhike with those that are advantageous. These traits may be genetic variants (alleles)

which are vertically transmitted and can be gained and lost by mutation or recombination

(Maynard Smith and Haigh 1974, Barton 1998, Barton 2000, Etheridge et al. 2006). How-

ever hitchhiking traits can also be infections, cultural variants or genetic elements that are

transmitted horizontally between individuals (Fagan et al. 2002, Bar-David et al. 2006,

Ackland et al. 2007). Important examples include parasites carried by an invading popula-

tion, which may have catastrophic consequences for the native species (Prenter et al. 2004,

Bar-David et al. 2006), or, in some cases be used as a means to control the invaders (Fagan

et al. 2002); and horizontal gene transfer within spatially structured bacterial communities

which presents dangers for the spread of antibiotic resistance, but also opportunities for

bioremediation (Molin and Tolker-Nielsen 2003, Fox et al. 2008).

The classic case of genetic hitchhiking for vertically-transmitted alleles in well-mixed

populations has been the topic of a large body of theory (Maynard Smith and Haigh 1974,

Barton 1998, Barton 2000, Etheridge et al. 2006). Recently, extensions of this work have

shown that spatial structure can have non-trivial effects, typically decreasing the frequency

of global selective sweeps that lead to hitchhiking but also possibly favouring hitchhiking by

allowing local sweeps (Barton 2000, Barton et al. 2013). For horizontally-transmitted traits,

the focus of studies so far has mainly been on maintenance of directly selected (or neutral)

traits within well-mixed (Lipsitch et al. 1995, Bergstrom et al. 2000) or spatially structured

(Krone et al. 2007, Court et al. 2013) populations. The situation in which a horizontally-

transitted trait spreads in a population by hitchhiking on selection for a different trait has

been addressed in specific ecological and cultural contexts (Fagan et al. 2002, Bar-David et

al. 2006, Ackland et al. 2007), but baseline theoretical results remain lacking.

In this paper, we present a baseline model for the spread of a horizontally-transmitted
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hitchhiking trait within the wave of advance of an expanding population. Extending

Fisher-KPP wave theory to model the coupled waves of advance of the population and the

hitchhiking trait, we uncover a new speed selection mechanism which leads to a nontrivial

result (our equation (7)) for the speed of advance of the hitchhiking trait. We find that

population expansion can significantly affect the speed at which a trait spreads within the

population. Our analysis also reveals the existence of abrupt, initial-condition-dependent

transitions in the speed of waves of invading traits.

Background: Fisher-KPP wave theory

We begin by reviewing the main results of F-KPP theory for expanding populations. The

standard F-KPP equation (1) has traveling wave solutions of the form u(x, t) = U(x − vt).

At large times the population asymptotically expands in a wave of constant shape which

moves at a constant speed v. A detailed analysis (Kolmogorov et al. 1937, McKean 1975,

Larson 1978) reveals that the wave speed v is governed by a simple selection principle

which forms the basis of F-KPP wave theory: if the initial profile decays more steeply than

u(x, 0) ∼ e−λ∗x, where λ∗ = v∗/2D, then v = v∗ = 2
√

αDK; whereas if u(x, 0) decays less

steeply than e−λ∗x then v > v∗ .

For future reference we review how this result can be understood in a simple way by

examining the dynamics of the leading edge of the wave where u ≪ 1 (Fig. 1). Then the

linearised version of (1)
∂u

∂t
= D

∂2u

∂x2
+ αKu (2)

exhibits traveling wave solutions with possible velocities v ≥ v∗. The full time-dependent

solution of this linearized equation beginning from exponentially decaying initial conditions

u(x, t = 0) = exp(−λx) for x > 0 can be constructed (van Saarloos 2003). The solution

reveals two different, large-time asymptotic regimes (see Supporting Information): the

front of the wave (Fig. 1 a) travels with the marginal speed v∗; whereas the tip of the

wave travels with a higher speed v(λ) = Dλ + αK/λ determined by the initial profile. If

λ > λ∗ = v∗/(2D) the crossover point between the two regimes moves faster than the front

and asymptotically the wave travels with speed v∗. However, if λ < λ∗ the front catches

up with the crossover point and the wave speed is then determined by v(λ) > v∗. Thus

for suitably steep initial conditions the marginal speed v∗ is selected. The fact that the
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behaviour of the wave at its very tip is crucial in determining its speed has important

implications for systems with noise or discrete cutoffs at the tip (Brunet and Derrida 1997,

Brunet and Derrida 2001, Hallatschek 2009, Hallatschek 2011).

Hitchhiking on a wave of advance: coupled F-KPP equations

To model the spread of a horizontally-transmitted hitchhiking trait within an expanding pop-

ulation, we extend the F-KPP framework to consider the dynamics of two sub-populations:

sub-population A which carries the trait, and sub-population B which does not. Both sub-

populations diffuse in space and replicate, competing for resources. To model horizontal

transmission, we suppose that contact between individuals of types A and B can result in

both individuals becoming type A. The trait is also lost at a constant rate. Because our

aim is to present a baseline model, we assume that there are no fitness differences between

the two sub-populations, i.e. that they have equal diffusion constants, growth rates and

carrying capacities. Our model is described by the following set of equations:

∂NA

∂t
= D

∂2NA

∂x2
+ αNA(K − NT) − βNA + γNANB

∂NB

∂t
= D

∂2NB

∂x2
+ αNB(K − NT) + βNA − γNANB , (3)

where NA(x, t) and NB(x, t) are the densities of the sub-populations with and without the

trait, NT = NA + NB is the total population density, and D, K and α are defined as before.

The new parameters γ and β control the rates of horizontal transmission and loss of the

trait, respectively; these processes exchange individuals between the two subpopulations.

There are three homogeneous density, steady-state solutions of Eqs. (3) which in terms

of (NT , NA) read: (0, 0) (no population); (K, 0) (population contains no trait carriers) and

(K,K − β/γ) (coexistence of trait and non-trait subpopulations). The last solution is only

physical (i.e. has positive densities) if γ ≥ β/K i.e. if the rate of horizontal transmission is

high enough that the trait can be sustained in the population. In addition to this condition

on γ we shall also restrict the parameter values to γ < α so that

α > γ > β/K . (4)

The range (4) corresponds to an intermediate transmission rate of the trait, relevant, for

example, to the spread of chronic diseases in a colonizing population (Bar-David et al. 2006).
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Summing the two equations (3) gives a standard F-KPP equation:

∂NT

∂t
= D

∂2NT

∂x2
+ αNT(K − NT) , (5)

thus the total population advances as a wave, at constant speed vtot = 2
√

αDK, determined

by the F-KPP speed selection principle (as long as the initial condition decays steeply

enough).

To determine the qualitative phenomenology we studied Eqs (3) numerically (see Sup-

porting Information for details). Our simulations (Fig. 1b) reveal that the sub-population of

individuals carrying the trait also advances as a traveling wave (which we denote the “trait

wave”), but which has a slower speed than that of the total population. Thus the trait

spreads in space as the population advances, but it lags behind the advancing population.

In this paper, we analyze the speed of advance of this “trait wave”, and show that it is con-

trolled by an intricate coupling between the population densities of the two subpopulations

at the very tips of the two waves.

An analysis of the linear stability (see Supporting Information) of the three homogeneous

fixed point solutions (NT , NA) reveals that under conditions (4), (0, 0) is unstable, (K, 0) is

a saddle point (one stable and one unstable direction) and (K,K − β/γ) is stable. Thus

the observed coupled travelling wave solutions correspond to solution (0, 0) being invaded

by solution (K, 0) (population without trait), and, in turn, solution (K, 0) being invaded

by solution (K,K − β/γ) (the coexisting state).

Spread of a trait in an established population

As a point of comparison, we begin with the well-studied case where a horizontally-

transmitted, neutral, trait invades an already established population. In this case, the total

population NT is equal to the carrying capacity K throughout the domain. Setting NT = K

in Eq. (3) leads to a single F-KPP equation for the spread of the trait:

∂NA

∂t
= D

∂2NA

∂x2
+ γNA

(

K −
β

γ
− NA

)

. (6)

Thus, the trait invades an existing population as a traveling wave with amplitude K − β/γ

and speed vs = 2
√

D(γK − β) predicted by the F-KPP speed selection principle (assuming

a sufficiently steep initial condition for sub-population A). Fig. 2 (upper panels) shows

numerical simulation results for this scenario.
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FIG. 2: Invasion of the trait wave into established and expanding populations. The upper panels

show numerical simulation results (see Supporting Information) for a trait which invades an already

established population, i.e. with initial condition NB = NT = K for x > 0, while the lower panels

show results for invasion of an expanding population, i.e. with initial condition NB = NT = 0 for

x > 0. The simulation parameters are identical in the two simulations (K = 1, D = 1, α = 1, β =

0.08 and γ = 0.1). In each case, the right panel shows wave profiles at several different times (the

times plotted are the same in the upper and lower panels), while the left panel tracks the position

of the wave front as a function of time. The trait wave invades the established population as an

F-KPP wave with speed vs. It also invades the expanding population as a wave, but with a faster

speed vc, which eventually transitions to vs.

The trait spreads faster in an expanding population

We now use our model to investigate what happens when a horizontally-transmitted

trait invades a population as it expands (Fig. 1b). Fig. 2 (lower panels) shows numerical

simulation results, for the same parameter set, but this time starting with the spatial

domain initially empty. These simulations clearly show that, after an initial transient (not

visible in Fig. 2), the trait advances as a traveling wave whose front moves at a speed vc
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that is greater than the speed vs at which it invades an already established population –

but still less than the speed vtot of the total population wave. This rapid rate of invasion is

maintained for a long time (many times the generation time, given by ∼ (αK)−1). At very

long times, when the total population wave is very far ahead of the trait wave, the speed of

the trait wave reverts to vs (Fig. 2).

Distinctive features of the trait wave

Based on our understanding of the standard F-KPP wave, we expect the speed of the trait

wave to be determined by the dynamics close to the tip. We therefore make a detailed study

of this region: Fig. 3(a) shows the profiles of the total population wave and the trait wave,

during the time period when the front of the trait wave is moving forward at speed vc.

We first zoom in on the region ahead of the total population wave, as indicated by the

rightmost circle in Fig. 3(a). Fig. 3(b) shows that the profiles of both the total population

and the sub-population with the trait decay exponentially (note the logarithmic scale on

the vertical axis). In this tip region, we can make an analytical prediction for the speed

vtip at which the tip of the trait wave advances. Because both NA and NB are very small,

with NA ≪ NT, we can linearize Eq.(3) to give ∂NA/∂t = D(∂2NA/∂x2) + NA(αK − β).

Then the standard speed selection principle outlined earlier implies that the marginal speed

vtip = 2
√

D(αK − β) is selected and NA(x) ∼ exp [−vtip(x − vtipt)/2D]. This prediction is

verified by tracking the speed of the very tip of the trait wave in our numerical simulations.

Our simulations also show that vtip > vc – thus, as for the standard F-KPP wave, the tip of

the trait wave advances at a faster speed than its front.

Next, we inspect the trait wave further back in its profile, at the point where it overlaps

with the front of the total population wave. This point, shown by the leftmost circle in

Fig. 3(a), lies well ahead of the front of trait wave, so that the density of the sub-population

with the trait is still very small. Close inspection of our numerical simulations reveals

that the trait wave profile has a distinctive “kink” which coincides with the front of the

total population wave. This kink, shown in Fig. 3(c), advances with the front of the total

population wave: i.e. its speed is vtot = 2
√

αDK and its position at time t is x∗ = vtott. As

the trait wave front falls behind the total population wave front the trait population density

at the kink decreases.

To summarize, while the trait advances as a traveling wave with speed vc, the dynamics
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FIG. 3: Detailed features of the profile of the trait wave. Panel (a) shows profiles of the trait

wave (blue) and the total population wave (red, dashed), during the time when the trait wave is

advancing at speed vc. Panel (b) zooms in on the region at the very tip of the two waves (indicated

by the right-most circle in panel (a)). Here both profiles decay exponentially (note the log scale on

the vertical axis), and the tip of the trait wave advances at speed vtip = 2
√

D(αK − β). Panel (c)

zooms in on the region of space corresponding to the front of the total population wave (indicated

by the left circle in panel (a)), where the trait wave population density is still low. A distinct

kink is observed in the trait wave profile NA(x), due to coupling with the total population wave.

This kink advances at the speed of the front of the total population wave vtot = 2
√

αDK. The

trait population density at the kink decreases in time, as the trait wave front falls behind the total

population wave front. Panel (c) also illustrates the change of coordinate system used to match

the asymptotic solutions to the left and right of the kink.

at its tip, where the population density is very small, is rather complex. The tip itself
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moves forward at speed vtip = 2
√

D(αK − β), but behind the tip the trait wave profile

has a kink created by coupling to the front of the total population wave; this kink ad-

vances at speed vtot = 2
√

αDK. The relative magnitudes of these speeds are vtot > vtip > vc.

Speed selection mechanism for the trait wave

We can obtain an analytic expression for the speed vc at which the trait invades an expanding

population, by matching asymptotic expansions for the profile of the trait wave on either

side of the kink.

Ahead of the kink, we define a coordinate zR = x−vtott which measures the distance from

the kink (Fig. 3(c)). Following the result of our earlier analysis of the tip of the trait wave, we

expect the profile in this region to decay as NA(zR, t) ∼ exp[−vtip(zR + (vtot − vtip)t)/(2D)].

Behind the kink, the trait wave advances at speed vc. We expect the trait wave profile to

increase exponentially with distance behind the kink, so we write NA(zL, t) ∼ exp[−at+bzL],

where zL = vtott−x measures the distance from the kink and a and b are unknown constants

such that vc = vtot−a/b. By demanding that our two asymptotic expressions must match at

the kink: i.e. NA(zR = 0, t) = NA(zL = 0, t), we can determine the constant a = vtip(vtot −

vtip)/(2D). To find the remaining constant b, we linearize Eq. (3) in the region behind the

kink, where the total population is large (NT ≈ K), but the amplitude of the trait wave is

still small (NA ≪ 1). This gives ∂NA/∂t = D(∂2NA/∂x2) + NA(γK − β). Substituting in

our exponential ansatz for NA(zL, t) gives b = (1/(2D))
(

vtot ±
√

(vtot − vtip)2 + v2
tip − v2

s

)

.

In order for the inside of the square root to be positive, we need the second condition of (4),

α > γ.

This calculation results in two solutions for the speed vc of the trait wave, corresponding

to the positive and negative square roots in the expression for b. It turns out that the

positive square root gives a speed vc which is greater than the speed of the tip vtip, so we

discard that solution. Taking the negative square root, we arrive at the following expression

for the speed of the trait wave:

vc = vtot −
vtip(vtot − vtip)

vtot −
√

(vtot − vtip)2 + v2
tip − v2

s

(7)
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which can be written in terms of the parameters of the model as

vc

2
√

D
=

√
αK −

β − αK +
√

αK(αK − β)
√

αK −
√

(3α − γ)K − β − 2
√

αK(αK − β)
. (8)

Fig. 4 shows that this prediction is in excellent agreement with our simulation results.
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FIG. 4: Analytical prediction, and simulation results, for the speed vc of the trait wave as it

invades an expanding population. The black lines show the analytical result, Eq (8), while the red

circles show simulation results for the trait wave speed and the black crosses show the approximate

result, Eq. (9). Except where otherwise indicated on the horizontal axis, the parameters are

D = α = K = 1.0, γ = 0.1, and β = 0.08. For comparison, the blue lines show the speed of the

total population wave vtot = 2
√

αDK, while the purple lines show the speed of the trait wave as

it invades an established population, vs = 2
√

D(γK − β).

The implications of our result can be understood by noting that in many scenarios we

expect that β ≪ αK. This can occur either through a low trait loss rate β, or a high growth

rate or carrying capacity. Expanding to first order in β/(αK) leads to a simple expression
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for the speed of invasion of the trait:

vc

vtot

≈ 1 −
β

2γK

[

1 +
√

1 − (γ/α)
]

. (9)

Eq. (9) demonstrates that, as we might expect, traits that are poorly transmitted (small γ)

or easily lost (large β) will lag further behind the main population wave. Importantly, our

result also predicts that as the carrying capacity of the population increases, the relative

amount by which the trait lags behind the main population wave should decrease. This

implies that horizontally-transmitted hitchhiking traits (such as parasites or horizontally

transmitted genetic elements) should be found relatively closer to the advancing front in

populations with a high carrying capacity, compared to those with a lower carrying capacity.

Our analysis also provides a simple prediction for how much the invasion by the trait is

speeded up in an advancing population compared to an established one - i.e. the ratio vc/vs.

Expanding for large K (K ≫ β/γ and γ < α) we find that

vc

vs

≈
(

α

γ

)1/2 [

1 −
β

2γK

(

1 −
γ

α

)1/2
]

. (10)

For large carrying capacity K, relation (10) reduces to vc/vs ≈ (α/γ)1/2 . Thus we

expect the spread of a trait in an expanding population to be significantly faster than

in an existing population if the birth rate is high and the transmission rate of the trait is low.

Speed transitions

Interestingly, our simulations also show that horizontally-transmitted hitchhiking traits can

undergo abrupt transitions in wave speed (see e.g. Fig. 2, lower panels). These transitions

have their origin in the intricate coupling between the trait wave and the total population

wave in their tip regions.

Slowing down transition due to wave decoupling

Although the trait wave initially advances at speed vc, Fig. 2 shows that eventually it

undergoes a slowing-down transition, with a final speed vs that equals the speed at which it

would invade an established population. Careful inspection of our simulations reveals that

this transition occurs when the kink in the trait wave profile (Fig. 3(c)) overtakes its tip -

defining the tip as the point at which the density of the trait becomes unresolvable in our

numerical simulations. Such a transition is inevitable since the kink advances faster than
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FIG. 5: Initial-condition dependent speeding-up transition. Panel (a) shows the starting point for

a simulation in which the spatial domain is initially partially occupied by individuals which do not

carry the trait. Here, the initial condition is NB = NT = K for 0 < x < d and NB = NT = 0

for x > d. The subpopulation density NB(x) is shown in orange; NA(x) is shown in blue. Panel

(b) tracks the position of the front of the trait wave as this simulation proceeds. Initially, the

trait wave advances at speed vs = 2
√

D(γK − β) (as for invasion of an established population).

The wave then undergoes an abrupt transition to the faster wave speed vc (as given in Eq. (8)).

Eventually, the waves become decoupled and the speed reverts to vs.

the tip (the tip moves at vtip = 2
√

D(αK − β) while the kink advances at vtot = 2
√

DαK).

When the kink overtakes the tip, the two waves become decoupled at the level of precision

of our simulations, and the trait wave behaves as if it were invading an already established

population. The time at which this transition happens will of course depend on the details

of the initial conditions for the simulations, and on the level of resolution of the tip.

However we can predict that this time will scale inversely with the difference in these two

speeds, which, for β/(αK) ≪ 1, is approximately β
√

D/(αK).

Initial condition-dependent speeding up transition
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Our simulations also reveal that under some circumstances the trait wave can also undergo

abrupt speeding-up transitions. Fig. 5 shows an example. Here, the spatial domain is

partially colonized at the start of the simulation; the region 0 < x < d is occupied by

individuals which do not carry the trait, while the rest of the domain is empty (Fig. 5, top

panel). During the simulation, the population expands to fill the rest of the domain, while

at the same time the trait invades the expanding population.

Fig. 5 (lower panel) tracks the advance of the front of the trait wave in this simulation.

Initially, the trait wave front advances at speed vs, as if it were invading a fully established

population. However, the wave of invasion then makes an abrupt speeding-up transition to

the faster speed vc. This transition from vs to vc has its origin in the evolution of the profile

of the trait at the start of the simulation. This profile is initially sharp (in our simulations

it is a step function). Starting from this steep initial condition, the trait wave develops a

tip which, as in standard F-KPP wave theory, advances faster than the wave front (Sherratt

1998a, van Saarloos 2003). Initially this trait wave tip is far behind the front of the total

population wave and the trait wave behaves as if it is invading a fully-colonized environment,

moving at speed vs. However, after some time the tip of the trait wave overtakes the

front of the total population wave, and the waves become coupled. At this point, the

profile of the trait wave develops a kink, and, following the speed selection mechanism

outlined above, its front speed increases to vc. Fig. 5 (lower panel) also shows that the wave

speed eventually changes back to vs, in a slowing-down transition of the type discussed above.

Are the observed phenomena biologically relevant?

The fundamental prediction of our theoretical analysis is that a horizontally-transmitted

trait can invade an expanding population significantly faster than it would invade an already

established population, but always at a speed slower than the expanding population front.

Does this prediction still hold for parameter sets corresponding to real biological scenar-

ios? To test this, we take as a model scenario the invasion of a semi-solid agar matrix by

an expanding population of non-motile bacteria which undergo horizontal gene transfer by

conjugation. This scenario mimicks the contamination of foodstuff by bacteria (Wimpenny

et al. 1995, Wilson et al. 2002), and also relates to recent experiments on genetic segrega-

tion during range expansion (Hallatschek et al. 2007, Hallatschek and Nelson 2009). The
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FIG. 6: Numerical simulation results for a parameter set representing the invasion of an agar

matrix by a population of non-motile Escherichia coli bacteria undergoing horizontal gene transfer

by plasmid conjugation. The parameters used were D = 1µm2/s, K = 10−2 cells/µm3, α =

3.85 × 10−2µm3/cell/s, γ = 2.8 × 10−4µm3/cell/s and β = 0.5γK. Panel (a): Trajectories of

the front positions of the wave of cells without the trait (red squares) and the trait wave (blue

circles). Initially, the spatial domain is empty except at its very edge where the two populations

take their steady-state values. At early times, the two waves travel together as the travelling

wave profiles are established. Thereafter, the trait wave invades the expanding population at the

speed vc predicted by our theory, which is significantly faster than the speed vs with which it

would invade an established population (vc, vs and vtot are indicated by the blue, black and red

solid lines, respectively). Panel (b): population density of the trait wave at the kink: i.e. at the

position of the front of the total population wave (see Figure 3(c)). The trait population density

at the kink decreases in time approximately exponentially as the trait wave falls behind the total

population wave, but remains significant over the timescale of our simulation (note the log scale

on the vertical axis). For reasons of computational speed, these simulations were carried out using

standard Euler integration rather than the operator splitting method used in our other calculations

(see Supporting Information).

diffusion constant of a non-motile bacterium such as Escherichia coli in liquid medium is

D ≈ 1µm2/s (Berg 1983), and the carrying capacity in rich medium is K ≈ 1010 cells/ml

(which is equivalent to 10−2 cells/µm3). E. coli has a doubling time in rich medium of about
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30 minutes, so that αK = (ln 2)/30 per minute (or alternatively α = 3.85×10−2µm3/cell/s).

The rate of transfer of genetic material (plasmids) by conjugation has been estimated for

some strains of E. coli as γ = 10−12ml/cell/hour (Simonsen et al. 1990) (or equivalently

γ = 2.8×10−4µm3/cell/s). Bacterial plasmid loss rates are highly variable (Summers, 2009).

We choose the rate of loss of the horizontally transmitted trait β = 0.5γK, such that in a

steady-state, homogeneous population, half the cells are trait carriers.

Fig.6a shows the results of numerical simulations using these parameter values. In these

simulations, after an initial transient period, the population advances as two waves, with the

wave of trait-carriers (blue circles) lagging behind that of the non-trait carriers (red squares).

The speed at which the wave of trait-carrying cells invades the advancing population is

indeed well-predicted by our analytical expression for vc, Eq. (8), which, for this parameter

set, is greater than the speed vs at which the trait wave would invade an already established

population, by a factor of 8.3. Fig.6b shows the population density of trait-carriers, at the

position of the front of the total population wave - i.e. the height of the “kink” in the trait

wave (see Fig. 3c). This decreases in time as the trait wave falls behind the total population

wave. However, over the time period of our simulation, the population density at the kink

remains significant.

In real populations, individuals are of course discrete entities; this leads to a finite

lower cutoff for the population density. The fact that, in our continuous simulations, the

population density at the kink remains significant for long times (Fig.6b), suggests that our

results may be robust to the effects of such a cutoff. To investigate this in more detail, we

repeated the simulations of Fig.6, but introducing a cutoff for both the trait-carrying and

non-trait carrying subpopulations, at a population density of 1 cell per ml. Fig.7 shows the

resulting trajectories for the waves of the two subpopulations. As well as the theoretical

speeds vc, vs and vtot, we also indicate the speed vs,cut at which the trait population invades

an already established population, in simulations with the cutoff. Measuring the speed of

the trait wave at time 7 days, we find that the trait invades the expanding population 7.2

times faster than it invades the established population. The key prediction of our theory

thus still holds in the presence of the cutoff. Fig.7 also shows, however, that the actual

magnitude of the trait wave speed is lower than vc in the simulations with the cutoff -

suggesting that corrections to our theory will be needed to account quantitatively for the

effects of population discreteness.
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FIG. 7: The effect of a discrete cutoff, for simulations of the invasion of an agar matrix by non-

motile E. coli bacteria undergoing horizontal gene transfer by plasmid conjugation. The parameters

used were as in Figure 6, but with the addition of a cutoff in population density at 1 cell/ml = 10−12

cells/µm3. In our simulations, subpopulation densities smaller than this value were set to zero.

The figure shows the trajectories of the front positions of the wave of cells without the trait (red

squares) and the trait wave (blue circles). Initially, the spatial domain is empty except at its

very edge where the two populations take their steady-state values. After the initial transient

(during which the steady state wave profiles are established), the trait wave invades the expanding

population at a speed faster than the predicted speed vs for invasion of an established populationm

but slower than the predicted speed vc. Also indicated is the speed vs,cut at which the trait invades

an established population in simulations with the same cutoff; this corresponds closely with vs. As

in Figure 6, these simulations were carried out using standard Euler integration.

Discussion

The spread of a population in space, and the accompanying spread of genetic, ecological

and cultural traits, is a ubiquitous biological phenomenon; correspondingly, the speed se-

lection principle of F-KPP wave theory, which describes the spatial advance of population

waves, is one of the most important results in mathematical biology. In this paper, we have

presented a baseline model, consisting of coupled F-KPP waves, to describe the spread of

a horizontally-transmitted trait within an advancing population. Our results show that in

this case, a different speed selection mechanism controls the speed at which the trait in-
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vades the expanding population. We have derived an analytic expression (7) for the speed

of the trait wave, which reduces to a simple form in the biologically relevant case where

the carrying capacity is large. We find that under some circumstances, the trait can invade

an expanding population significantly faster than it would spread in a population that is

already established. The mechanism underlying this speed-up is that the front of the total

population wave creates a kink in the tip region trait wave profile, which couples the two

waves at their tips; matching asymptotic solutions on either side of the kink leads to the

speed selection mechanism. We also reveal the possibility of abrupt transitions in speed in

coupled waves of advance. For a parameter set corresponding to invasion of a semi-solid

matrix by a population of Escherichia coli bacteria undergoing horizontal gene transfer by

conjugation, our theory and simulations suggest that invasion of an expanding population

by a horizontally transmitted gene may occur about 8 times faster than invasion of an al-

ready established population. While this is a crude model (for example in reality the rate

of conjugation may depend on the growth rate (Merkey et al. 2011)), it does indicate that

our results may indeed be biologically relevant.

An important consideration is the robustness of our results to noise. In real populations,

stochastic fluctuations due to births and deaths of individual organisms are inevitable, and

can play an important role at the tips of F-KPP waves where population densities are low

(Brunet and Derrida 1997, Brunet and Derrida 2001, Hallatschek 2009, Hallatschek 2011).

For standard F-KPP waves, finite size effects at the tip of the wave are known to cause a

significant correction to the wave speed (Brunet and Derrida 1997). In our model, the kink

in the trait wave (which plays a key role in determining its speed) occurs behind the tip,

but in the region where the population density of individuals with the trait is still low. In

our simulations of Fig.6, the trait population density at the kink remains significant over

long times, suggesting that the kink, and the consequent coupling between the waves, would

probably survive in the presence of weak noise. This conclusion is also borne out by the

fact that we still observe faster invasion of an expanding population than an established one

when we include a discrete cutoff (Fig.7). However, the cutoff does significantly affect the

speed of the trait wave; likewise in the presence of noise, we would expect the correction of

the total population wave speed to carry through into the speed of the trait wave. We hope

to study these corrections in more detail in future work.

Coupled systems of reaction-diffusion equations provide a rich source of interesting dy-
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namical behavior, from models for infection dynamics, through spatially coupled autocat-

alytic chemical reaction systems (Merkin and Needham 1993), to advancing fronts of osil-

latory predator-prey systems (Sherratt 1998b, Sherratt et al. 2009). From a mathematical

perspective, for systems of coupled F-KPP waves, the phenomenon of “anomalous spread-

ing”, in which coupling between two populations influences the wave speeds, has been recog-

nized in several examples of systems of coupled F-KPP equations (Weinberger et al. 2007,

Holzer and Scheel 2012, Holzer 2012). These examples are more complex than the model

studied here, in that the diffusion and growth parameters for the two populations are not

identical, and the coupling terms are not symmetric. Our study therefore provides a base-

line for understanding speed selection in coupled F-KPP waves in general. The asymptotic

matching approach presented here should prove useful in understanding these more complex

models. Indeed, as a first step towards introducing the effects of selection for or against

the horizontally-transmitted trait, we have simulated a version of our model in which we

allow the growth rate α to differ between the two sub-populations. We find that for small

growth-rate differences the qualitative results described here remain unchanged (see Sup-

porting Information). Another interesting extension would be to the case where the external

environment is spatially heterogeneous; here the range of the “host” population is limited,

but may be extended by mutation (Holt and Gomulkiewicz 1997, Kirkpatrick and Barton

1997, Waclaw et al. 2010, Greulich et al. 2012) or, potentially, by selection for horizontally-

transmitted traits.

In conclusion, understanding existing spatial patterns of genetic, ecological or cultural

traits, and predicting and controlling the consequences of future population expansions,

are important goals for both evolution and ecology. Many of these expansions involve the

hitchhiking of horizontally-transmitted traits. The model presented here, while clearly

simplistic, reveals important phenomena associated with the spread of traits within

expanding population waves, and with coupled systems of F-KPP waves in general, and

should provide a basis on which to build more complex and detailed models.
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