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THE ENDPOINT MULTILINEAR KAKEYA THEOREM VIA THE

BORSUK–ULAM THEOREM

ANTHONY CARBERY AND STEFÁN INGI VALDIMARSSON

Abstract. We give an essentially self-contained proof of Guth’s recent end-
point multilinear Kakeya theorem which avoids the use of somewhat sophis-
ticated algebraic topology, and which instead appeals to the Borsuk–Ulam
theorem.

1. Introduction

The multilinear Kakeya problem was introduced in [1], and its study began in
earnest in [2], where the natural conjecture was established up to the endpoint.
Working in Rn, we suppose that we are given n transverse families T1, . . . , Tn of
1-tubes, which means that each T ∈ Tj is a 1-neighbourhood of a doubly-infinite
line in Rn with direction e(T ) ∈ Sn−1, and that the directions e(T ) for T ∈ Tj all
lie within a small fixed neighbourhood (depending only on the dimension n) of the
j’th standard basis vector ej .

The question is whether for each q ≥ 1/(n− 1) we have the inequality

∫

Rn

(
∑

T1∈T1

aT1
χT1

(x) · · ·
∑

Tn∈Tn

aTn
χTn

(x)

)q

dx ≤ Cn,q

(
∑

T1∈T1

aT1
· · ·

∑

Tn∈Tn

aTn

)q

for nonnegative coefficients aTj
. In [2] this was proved for each q > 1/(n− 1) using

a heat-flow technique which, because of certain error terms arising, did not apply
at the endpoint q = 1/(n − 1). (For further background on this problem consult
[2].)

More recently, Guth in [10] established the endpoint case q = 1/(n− 1) using com-
pletely different techniques motivated in part by the polynomial method used by
Dvir [9] to solve the finite field Kakeya set problem, but which also relied upon
a fairly heavy dose of algebraic topology, and which were therefore perhaps a lit-
tle intimidating to the analyst or combinatorialist. In particular, Guth used the
technology of cohomology classes, cup products and the Lusternik–Schnirelmann
vanishing lemma in establishing his result. We believe that the endpoint multilinear
Kakeya theorem is of such significance and importance that a proof free of these
techniques should be available, and so the purpose of this paper is to provide an
argument leading to Guth’s result which does not rely upon such sophisticated al-
gebraic topology, but whose input is instead the Borsuk–Ulam theorem. It is hoped
therefore that this paper might lead to further exploitation of Guth’s techniques
in a more flexible setting. (For some recent works applying the multilinear Kakeya
perspective in other contexts, see [3], [4] and [6].)
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2 ANTHONY CARBERY AND STEFÁN INGI VALDIMARSSON

The Borsuk–Ulam theorem, while topological in nature, nevertheless has many
proofs accessible to the analyst – see for example [12], and also [7] for a recent such
proof. (See Section 5 below for its statement.) The use of the Borsuk–Ulam theorem
in the context of Kakeya theorems is by now natural, as it can be considered as
a topological analogue of the elementary linear-algebraic statement that there are
no linear injections T : V → W if V and W are finite-dimensional vector spaces
with dim V > dim W ; this was a key element of Dvir’s solution [9] of the finite
field Kakeya problem. It also features explicitly in Guth’s warm-up discussion to
the full result of [10].

In order to proceed, we place matters in a more general context which does not
impose conditions on the directions of the tubes, nor requires the level of multi-
linearity to equal the dimension of the underlying euclidean space. Thus we now
suppose that we are given d arbitrary families of 1-tubes T1, . . . , Td in Rn, where
d ≤ n. For v1, . . . vd ∈ Rn let v1 ∧ · · · ∧ vd denote the unsigned (i.e. nonnegative)
d-dimensional volume of the parallelepiped whose sides are given by the vectors
v1, . . . , vd.

Theorem 1 (The Multilinear Kakeya Theorem). Let 2 ≤ d ≤ n. Then there exists

a constant Cd,n such that if T1, . . . , Td are families of 1-tubes in Rn, we have

(1)

∫

Rn

(
∑

T1∈T1

aT1
χT1

(x) · · ·
∑

Td∈Td

aTd
χTd

(x) e(T1) ∧ · · · ∧ e(Td)

)1/(d−1)

dx

≤ Cd,n

(
∑

T1∈T1

aT1
· · ·

∑

Td∈Td

aTd

)1/(d−1)

.

(The case d = 2 is of course trivial.)

The situation where the level of multilinearity is less than the ambient euclidean
dimension was already addressed in [2], where once again the result was established
up to the endpoint. The incorporation of the factor e(T1) ∧ · · · ∧ e(Td) on the
left-hand side is natural in view of the affine-invariant formulation of the Loomis–
Whitney inequality, and was considered in Section 7 of [5], where Theorem 1 was
first proved. Indeed, when d = n, the statement of Theorem 1 is affine-invariant.1

A variant of Theorem 1 where lines are replaced by algebraic curves of bounded
degree was also proved in [5] (and can likewise be established by replacing Guth’s
original argument for Theorem 2 below by that of the current paper). On the other
hand, the results of [2] have a somewhat more general scope in so far as they apply

1The multilinear Kakeya theorem can also be cast in the following equivalent form when d = n.
For a unit vector ω ∈ Rn let Πω denote the hyperplane in Rn which is perpendicular to ω and
which contains the origin. Let πω : Rn → Πω be the orthogonal projection map. Then for
nonnegative gj we have

∫

Rn





∫

Sn−1

. . .

∫

Sn−1





n
∏

j=1

gj(ωj , πωj
x)



ω1 ∧ · · · ∧ ωn dσ(ω1) . . . dσ(ωn)





1/(n−1)

dx

≤ Cn

n
∏

j=1

(

∫

Sn−1

∫

Πωj

gj(ωj , ξ)dξdσ(ωj )

)1/(n−1)

.
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to 1-neighbourhoods of k-planes for arbitrary k, rather than just 1-neighbourhoods
of lines, i.e. tubes, as in the present discussion.

The principal notion that Guth employs in proving the endpoint theorem is that
of the visibility vis (Z) of a hypersurface Z ⊆ R

n – see Section 3 below for the
definition, which differs from Guth’s in so far as in our treatment it (roughly)
scales as does (n − 1)-dimensional Hausdorff measure Hn−1 – and the centrepiece
of Guth’s argument is the following result:

Theorem 2. Given a nonnegative function M defined on the lattice Q of unit cubes

of Rn, there exists a non-zero polynomial p such that

deg p ≤ Cn



∑

Q∈Q

M(Q)n




1/n

and such that if we set Z = Zp = {x ∈ Rn : p(x) = 0}, then for all Q ∈ Q we

have

vis (Z ∩Q) ≥ CnM(Q).

It is in the proof of this result that Guth uses algebraic-topological techniques,
and the main contribution of the present paper is to provide a proof of Theorem
2 which does not use such topological machinery, but is instead a consequence of
the Borsuk–Ulam theorem. (In fact, in our proof of Theorem 2, we do not use the
Borsuk–Ulam theorem per se but instead an equivalent Lusternik–Schnirelmann
type covering statement. See Section 5.) On the other hand, we must acknowledge
that many of the arguments and constructions of the present paper are inspired by
those of Guth’s approach.

In view of the connection between visibility and (n − 1)-dimensional Hausdorff
measure, and as a warm-up to our proof of Theorem 2, we indicate how the Borsuk–
Ulam theorem can be used to establish the following morally weaker variant of
Theorem 2.

Proposition 1. Given a finitely supported function M defined on the lattice Q
of unit cubes of Rn and taking nonzero values in [1,∞), there exists a non-zero

polynomial p such that

deg p ≤ Cn


∑

Q∈Q

M(Q)n




1/n

and such that for all Q ∈ Q

Hn−1 (Z ∩Q) ≥ CnM(Q).

Proof. Break up each Q into ∼ M(Q)n congruent subcubes S; note that altogether
we have ∼

∑
Q M(Q)n small cubes S of various sizes. Consider the map

F : p 7→

{∫

{p>0}∩S

1−

∫

{p<0}∩S

1

}

S

defined on the vector space Pk of polynomials of degree at most k in n real variables,
which has dimension ∼ kn. Clearly F is continuous, homogeneous of degree 0 and
odd.
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So we can think of F as

F : SN → R
J

where N ∼ kn and J ∼
∑

Q M(Q)n.

So provided N ≥ J – which we can arrange if k ∼
(∑

Q M(Q)n
)1/n

– the Borsuk–

Ulam theorem tells us that F vanishes at some p. This means that the zero set Z
of p exactly bisects each S.

Now if S is a subcube of Q, S will have volume ∼ M(Q)−n and diameter ∼ M(Q)−1

and hence any bisecting surface will meet it in a set of (n−1)-dimensional measure&
M(Q)−(n−1). This will be true for each of the M(Q)n disjoint S’s whose union is Q,
so Z will meet Q in a set of (n−1)-dimensional measure & M(Q)n×M(Q)−(n−1) =
M(Q), as was needed. �

In the proof we used the “geometrically obvious” fact that a hypersurface bisecting
the unit cube must have large surface area inside the cube. For a discussion of
this in the context of the unit ball, see Lemma 11 in the Appendix. Note that in
the statements of both Theorem 2 and Proposition 1, a polynomial has the desired
properties if and only if any non-zero scalar multiple of it does; for this reason we
may choose to search for a suitable polynomial within the unit sphere of the class
of polynomials of a given degree.

Proposition 1 is morally weaker than Theorem 2 because not only does it place
stronger conditions on M , but more importantly, in many situations of interest, we
have vis (Z ∩Q) ≤ CnHn−1 (Z ∩Q) – see (7) below.

On an informal level, the fundamental difference between the proof of Theorem 2
and that of Proposition 1 is that, roughly speaking, we no longer chop each cube
Q into ∼ M(Q)n congruent subcubes, but we instead select, for each Q, an ellipsoid

E(Q) of volume ∼ M(Q)−n, so that ∼ M(Q)n translates of E(Q) essentially tessel-
late Q. However the shape and orientation of the ellipsoid E(Q0) will depend not
only on the value of M(Q0) but on the whole ensemble {M(Q)}Q, and is in effect
an output of the Borsuk–Ulam theorem at the same time as it produces the desired
polynomial. At the risk of over-simplifying matters, we now give an informal exam-
ple which illustrates why, if we want the broad thrust of the proof of Proposition
1 to work in the context of Theorem 2, the shape of the ellipsoid selected must

depend on the totality of the function M(Q). This example may be safely ignored
on a first reading of the paper.

Informal example. Let n = 2 and consider the function M(Q) which is supported
on a row of N unit cubes centred at (k − 1/2, 1/2) for 1 ≤ k ≤ N , and takes the

value N1/2 on each of these cubes. Then
(∑

Q M(Q)2
)1/2

= N . Consider the

polynomial

p(x) = (x1 − 1) . . . (x1 −N) · (x2 − 1/2N)(x2 − 3/2N) . . . (x2 − (2N − 1)/2N)

which has degree 2N , and let Z denote its zero set. For a subset Z ′ ⊆ Z of Z, and
for eachQ2 in the support ofM , consider the projections counted with multiplicities

2In this example we assume that the right-hand edge of a rectangle belongs to the rectangle
while the left-hand edge does not.
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of Z ′ ∩ Q, in the directions of the two standard basis vectors e1 and e2; let their
total lengths be a1(Z

′ ∩Q) and a2(Z
′ ∩Q) respectively, and let

W (Z ′ ∩Q) := {a1(Z
′ ∩Q)a2(Z

′ ∩Q)}1/2

be their geometric mean. Now it transpires that the quantity W (Z ′ ∩Q) is closely
related to vis(Z ′ ∩Q) – see Section 3 below – and we shall pretend (for the rest of
this example) that W really is the visibility. Note that if Z1 and Z2 are disjoint
subsets of Z ∩Q we have3

W (Z1 ∪ Z2) ≥ W (Z1) +W (Z2).

Now a1(Z ∩ Q) = 1 and a1(Z ∩ Q) = N so that W (Z ∩ Q) = N1/2. We consider
whether it is possible to break up each Q into rectangles Rj of area 1/N so that

if p bisects each rectangle then we can deduce that N1/2 = W (Z ∩ Q) by using
W (Z ∩Q) ≥

∑
j W (Z ∩Rj).

Firstly, we could break up Q into subcubes Rj of side N
−1/2. Now for all Rj except

those which meet the right-hand edge of Q we shall have W (Z ∩Rj) = 0, while for

those which do meet the right hand edge of Q we have W (Z ∩Rj) = N−1/4, which

only gives W (Z ∩Q) ≥
∑

j W (Z ∩Rj) = N1/4; this is not adequate.

Next, we could try breaking up Q into vertical rectangles Rj of sides 1/N×1. Only
the rectangle R0 meeting the right-hand edge of Q will have a non-zero value of
W (Z ∩Rj), and W (Z ∩R0) = 1, giving W (Z ∩Q) ≥

∑
j W (Z ∩Rj) = 1, which is

even worse.

Finally, we could try breaking up Q into horizontal rectangles Rj of sides 1× 1/N .

In this case each W (Z ∩ Rj) = N−1/2, resulting in the desired W (Z ∩ Q) ≥∑
j W (Z ∩Rj) ≥ N1/2.

So only the third decomposition into horizontal rectangles is compatible with our
needs. Once we have accepted that the polynomial p above is more or less “canon-
ical” for this M , we are essentially forced to break up each Q into horizontal rect-
angles of sides 1× 1/N in order for our strategy to be successful. Crucially, observe
that this decomposition reflects the global shape of the function M : if the support
of M had been along the x2-axis we would have had to instead decompose each
Q into vertical rectangles. The decomposition must therefore be aligned with the
“global profile” of M . �

To simplify the constructions in the proof we actually stop just short of fully devel-
oping the moral outline given above. In fact we do not spend any time constructing
ellipsoids at the scale ∼ M(Q)−n which would be needed to really nail down the
zero set of the polynomial we get from the Borsuk–Ulam theorem. Instead we let
ourselves be satisfied with finding a good polynomial p with zero set Zp which satis-
fies a given lower bound on the visibility vis (Zp∩Q) for all cubes Q. This we get by
constructing ellipsoids for all bad polynomials, which are those polynomials whose
zero sets have visibility less than desired on some cube. Using these ellipsoids we
show that the bad polynomials cannot cover the unit sphere in the space of poly-
nomials and in this way we see that there must be a good polynomial, which gives
the lower bounds mentioned above. Herein lies the reason for using the covering

3The corresponding property for visibility fails.
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statement instead of the Borsuk–Ulam theorem itself. This very informal outline
is developed more fully in Section 6.

For completeness, we also indicate in the following sections how Theorem 1 follows
from Theorem 2, so that we give what is in essence a fully self-contained proof of
Theorem 1 (subject to the appeal to the Borsuk–Ulam theorem). Throughout, C
and c will denote generic constants which depend only on the dimension n and the
degree of multilinearity d ≤ n; P . Q and P & Q mean P ≤ CQ and P ≥ CQ
respectively, and P ∼ Q means both P . Q and P & Q.

Acknowledgements: Both authors would like to thank Jon Bennett and Jim
Wright for many illuminating conversations on the topics of this paper, and helpful
remarks on early drafts of it. The first author would like to thank Larry Guth for
sharing his insights into the philosophy behind the endpoint multilinear Kakeya
theorem in Hyderabad in August 2010.

2. A Preliminary reduction

Recall that we have collections Tj , 1 ≤ j ≤ d, of 1-tubes T in Rn with directions
e(T ) ∈ Sn−1. Let Q denote the lattice of unit cubes in Rn.

Proposition 2. In order to prove Theorem 1, it suffices to establish the following

assertion: for every finitely supported nonnegative function M : Q → R satisfying∑
Q M(Q)n = 1, there exist nonnegative functions Sj : Q × Tj → R such that for

all Tj ∈ Tj with Tj ∩Q 6= ∅,

(2) e(T1) ∧ · · · ∧ e(Td)M(Q)n ≤ CS1(Q, T1) . . . Sd(Q, Td)

and, for all j and all Tj ∈ Tj

(3)
∑

Q :Tj∩Q6=∅

Sj(Q, Tj) ≤ C.

Proof. Firstly, if we can find Sj as in the statement of the proposition, homogeneity
dictates that for every finitely supported nonnegative function M : Q → R there
exist nonnegative functions Sj : Q×Tj → R such that for all Tj ∈ Tj with Tj∩Q 6= ∅,

(4) e(T1) ∧ · · · ∧ e(Td)M(Q)n ≤ CS1(Q, T1) . . . Sd(Q, Td)



∑

Q

M(Q)n




(n−d)/n

and, for all j and all Tj ∈ Tj

(5)
∑

Q :Tj∩Q6=∅

Sj(Q, Tj) ≤ C


∑

Q

M(Q)n




1/n

.

Secondly, we note that by the l1 nature of the right hand side in Theorem 1, we
may assume that the sets Tj are finite and that all the coefficients aTj

are equal to
1.

For a unit cube Q let

F (Q) =
∑

Tj∈Tj with Tj∩Q6=∅

e(T1) ∧ · · · ∧ e(Td).
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It then suffices to prove
∑

Q

F (Q)1/(d−1) ≤ C (#T1 . . .#Td)
1/(d−1)

.

Let M(Q)n = F (Q)1/(d−1) = F (Q)(1/(d−1)−1/d)d, so that
∑

Q

F (Q)1/(d−1) =
∑

Q

F (Q)1/dM(Q)n/d

=
∑

Q


 ∑

Tj∈Tj with Tj∩Q6=∅

e(T1) ∧ · · · ∧ e(Td)




1/d

M(Q)n/d

=
∑

Q




∑

Tj∈Tj with Tj∩Q6=∅

e(T1) ∧ · · · ∧ e(Td) M(Q)n




1/d

≤ C
∑

Q




∑

Tj∈Tj with Tj∩Q6=∅

S1(Q, T1) . . . Sd(Q, Td)



∑

Q

M(Q)n




(n−d)/n



1/d

= C
∑

Q




d∏

j=1

∑

Tj∈Tj with Tj∩Q6=∅

Sj(Q, Tj)




1/d

∑

Q

M(Q)n




(n−d)/dn

≤ C

d∏

j=1


∑

Q

∑

Tj∈Tj with Tj∩Q6=∅

Sj(Q, Tj)




1/d
∑

Q

M(Q)n




(n−d)/dn

= C

d∏

j=1


 ∑

Tj∈Tj

∑

Q with Tj∩Q6=∅

Sj(Q, Tj)




1/d
∑

Q

M(Q)n




(n−d)/dn

≤ C

d∏

j=1

(#Tj)
1/d



∑

Q

M(Q)n




1/n

∑

Q

M(Q)n




(n−d)/dn

= C
d∏

j=1

(#Tj)
1/d



∑

Q

F (Q)1/(d−1)




1/d

where the inequalities follow from (4), Hölder’s inequality and (5) respectively.
Rearranging, we obtain


∑

Q

F (Q)1/(d−1)




(d−1)/d

≤ C

d∏

j=1

(#Tj)
1/d

,

from which the result follows. �

Interestingly, the line of argument here can be reversed in certain circumstances:
assuming that the special case of the multilinear Kakeya theorem for transverse



8 ANTHONY CARBERY AND STEFÁN INGI VALDIMARSSON

families of tubes Tj holds, it follows that for all M one can find Sj satisfying (4)
and (5). See [8] for more details.

3. Directional surface area and visibility

We follow Guth [10] and Bourgain–Guth [5] in defining the functions Sj and es-
tablishing their desired properties (2) and (3). In order to do this some geometric
notions are required. We first recall the notion of directional surface area (termed
“directed volume” by Guth) of a hypersurface Z ⊆ Rn in the direction of a unit
vector e. If the element of surface area of Z is denoted by dS = dHn−1|S , and e is
a unit vector, the element of the component of surface area of Z perpendicular to
e is |e · n(x)|dS(x) where n(x) is the unit normal at x (which is assumed to make
sense for Hn−1–almost every x ∈ Z). Thus the directional surface area of Z in

the direction e ∈ Sn−1 is defined as

surfe(Z) =

∫

Z

|e · n(x)| dS(x).

If Z is given by the graph of a function Γ : Ω ⊆ Rn−1 → R above the hyperplane
xn = 0, then its directional surface area in the direction en is simply the (n − 1)-
dimensional area of Ω. If Z is given by disjoint graphs of functions above the
hyperplane xn = 0 then its directional surface area in the direction en is just∫
Rn−1 J(y) dy where J(y) is the number of times the line through y parallel to
en passes through Z. These considerations lead immediately to Guth’s “cylinder
estimate”:

Lemma 1 (Guth’s cylinder estimate). If T is a 1-tube in Rn and Z = {x : p(x) =
0} is the zero hypersurface of a non-zero polynomial p of degree at most k, then

surfe(T )(Z ∩ T ) ≤ Ck.

Secondly, we associate a fundamental centrally-symmetric convex body K(Z) to a
hypersurface Z. Indeed, with B denoting the unit ball of Rn, define

(6) K(Z) := {u ∈ B : surfû(Z) ≤ 1/|u|}.

Here û is the unit vector in the direction of u. (Notice that if Z is such that
surfe(Z) ≥ 1 for all unit vectors e, then the requirement that u lie in B is superflu-
ous.) It is clear that K(Z) is symmetric. To see that it is in fact convex, note that
u satisfies surfû(Z) ≤ 1/|u| if and only if

∫
Z |u · n| dS ≤ 1; this condition is clearly

retained under convex combinations of u’s. We then define 4 the visibility of Z as

vis(Z) := (vol K(Z))
−1/n

.

Note that since K(Z) ⊆ B we always have vis(Z) ≥ C.

The next lemma allows us to relate visibilty to geometric means of directional
surface areas.

4Guth’s definition of visibility is the n’th power of the one given here, but we find the current
definition more natural for three reasons: firstly it allows us to emphasise the “Ln”-aspect of the
statement of Theorem 2 which, at least when n = d, is no coincidence, and is a reflection of the
fact that the optimal Lp estimate for the linear Kakeya problem in Rn is conjectured to be at
p = n; secondly it scales roughly as does (n−1)-dimensional Hausdorff measure which permits the
comparison with Proposition 1; and thirdly, in the theory of finite-dimensional Banach spaces, if

K is a convex body in isotropic position, the quantity (vol K)−1/n arises naturally as its isotropic
constant.
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Lemma 2. Suppose that for all unit vectors e ∈ Rn we have 1 . surfe(Z) . D. If

v1, . . . , vd, (1 ≤ d ≤ n) are unit vectors, then

(v1 ∧ · · · ∧ vd)
1/n

vis(Z) ≤ CD(n−d)/n (surfv1(Z) . . . surfvd(Z))
1/n

.

Proof. We may assume that {v1, . . . , vd} is linearly independent and we extend it to
a basis {v1, . . . , vn} where vd+1, . . . , vn are mutually orthogonal unit vectors which
are also orthogonal to the span of {v1, . . . , vd}.

Since surfe(Z) & 1 for all e, we have that ±cvj/ surfvj (Z) ∈ K(Z) for all j, so that
by convexity of K(Z)

vol K(Z) ≥ C v1 ∧ · · · ∧ vn

n∏

j=1

surf vj (Z)−1

= C v1 ∧ · · · ∧ vd

d∏

j=1

surf vj (Z)−1
n∏

j=d+1

surf vj (Z)−1

≥ CD−(n−d) v1 ∧ · · · ∧ vd

d∏

j=1

surf vj (Z)−1,

from which the result follows. �

It is not hard to show that under the assumption that surfe(Z) & 1 for all e,

vis(Z) ∼
n∏

j=1

surfej (Z)1/n

where e1, . . . , en are the principal directions of the John ellipsoid associated toK(Z)
(i.e. the ellipsoid of maximal volume contained in K(Z) – see [11]) and hence

(7) vis(Z) ∼ inf
{fj} approx orthonormal

n∏

j=1

surffj (Z)1/n

where we say that the unit vectors f1, . . . , fn are “approximately orthonormal” if
their wedge product satisfies f1 ∧ · · · ∧ fn ≥ cn for a suitable dimensional constant
cn. By the arithmetic-geometric mean inequality the right-hand side of (7) is in
turn dominated by Hn−1(Z). This shows in particular that Theorem 2 is morally
stronger than Proposition 1.

The John ellipsoid E of a symmetric convex body K satisfies E ⊆ K ⊆ n1/2E, and
combining the latter inclusion with Lemma 1 we obtain:

Lemma 3. Let p be a non-zero polynomial such that for some unit vector e,
surfe(Zp ∩Q) . 1. Then

vis(Zp ∩Q)n/(n−1) ≤ C deg p.

Proof. Let E be the John ellipsoid associated to K(Zp ∩ Q) and let l1 ≥ l2 ≥
· · · ≥ ln be the lengths of the principal axes of E. Let A = vis(Zp ∩ Q). By

hypothesis and the fact that K(Zp ∩ Q) ⊆ n1/2E, we have l1 & 1. Moreover we

have (l1 . . . ln)
−1/n ∼ A, so l2 . . . ln . A−n and therefore ln . A−n/(n−1). So if en is

the direction with which ln is associated, we have that surfen(Zp ∩Q) & An/(n−1).

The cylinder estimate now gives deg p & An/(n−1). �
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In order to deal with a continuity issue later in the argument (in Lemma 10 of
Section 9), we need (as does Guth) to define variants of the directional surface area
and visibility which are continuous functionals of Z = Zp when the polynomial p is
allowed to vary. In view of the fact that the class of polynomials with the desired
properties for Theorem 2 is invariant under multiplication by non-zero scalars, it
is natural to consider the unit sphere of the class Pk of polynomials of degree at
most k in n real variables. Indeed, Pk is a vector space of dimension ∼ kn, and so
its unit sphere P∗

k is homeomorphic to SN where N = N(k) ∼ kn. So with k fixed,
we allow p to vary within P∗

k .
5 The continuity property needed is most simply

achieved by replacing surfe(Z) for surfaces of the form Z = Zp ∩ U (where p ∈ S
N

and U is open in Rn) by surfe,ε(Z) which we define as the average of surfe(Z
′) with

Z ′ = Zp′ ∩ U over p′ in a ball of radius ε centred at p in SN . From this we define
Kε(Z) and visε(Z) in analogy to K(Z) and vis(Z). In the argument we will have
to choose ε sufficiently small so that these entities behave in certain ways similarly
to the unmollified versions.

It is a routine matter to verify that Kε(Z) is convex and that the three lemmas
of this section hold with these mollified variants. To be precise, fixing k and the
associated definitions of surfe,ε(Z), Kε(Z) and visε(Z) as above for P∗

k , we have,
(with implicit constants independent of ε > 0):

Lemma 4. If T is a 1-tube in Rn and Z = {x : p(x) = 0} is the zero hypersurface

of a polynomial p ∈ P∗
k , then for all ε > 0,

surfe(T ),ε(Z ∩ T ) ≤ Ck.

Lemma 5. Suppose that p ∈ P∗
k and that Z = Zp ∩ U as above. Also suppose

that for some ε > 0 and all unit vectors e ∈ Rn we have 1 . surfe,ε(Z) . D. If

v1, . . . , vd, (1 ≤ d ≤ n) are unit vectors, then,

(v1 ∧ · · · ∧ vd)
1/n

visε(Z) ≤ CD(n−d)/n (surfv1,ε(Z) . . . surfvd,ε(Z))
1/n

.

Lemma 6. Suppose p ∈ P∗
k is such that for some ε > 0 and some unit vector e,

surfe,ε(Zp ∩Q) . 1. Then

visε(Zp ∩Q)n/(n−1) ≤ Ck.

The reader may wish to proceed with the unmollified variants in mind on a first
reading.

4. Application of the main result to multilinear Kakeya

The version of Theorem 2 that we will actually need is:

Theorem 3. Given a nonnegative function M : Q → R, there exists a nonnegative

integer k, a polynomial p ∈ P∗
k and an ε > 0 such that

k ≤ C


∑

Q

M(Q)n




1/n

5From now on we shall use the notations P∗

k and SN where N = N(k) interchangeably, the
former when we are thinking of individual polynomials, the latter when continuity and topological
considerations are foremost.
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and such that for all Q ∈ Q

visε(Zp ∩Q) ≥ CM(Q).

(Note that since it is always the case that visε(Zp ∩ Q) & 1, the latter condition
has content only for those Q with M(Q) & 1.)

In this section we show how this result implies the conditions of Proposition 2,
that is, given a finitely supported nonnegative function M : Q → R satisfying∑

Q M(Q)n = 1, there exist nonnegative functions Sj : Q × Tj → R such that (2)

and (3) hold.

Given such a finitely supported nonnegative function M(Q) with
∑

Q M(Q)n = 1,

we defineM0(Q) = λM(Q) for some λ ≫ 1 which is required to satisfy λ ≥ M(Q)−n

for all Q in the support of M . Apply Theorem 3 with data M0 to obtain a k, a
p ∈ P∗

k and an ε > 0 such that

(8) k ≤ Cλ

and

(9) visε(Zp ∩Q) ≥ CλM(Q).

Using (8), (9) and our requirement on λ, we have

k ≤ Cλ = Cλn/(n−1)λ−1/(n−1)

≤ C

(
visε(Zp ∩Q)

M(Q)

)n/(n−1) (
M(Q)−n

)−1/(n−1)

= C visε(Zp ∩Q)n/(n−1).

Using Lemma 6 we deduce that for all cubes Q in the support of M and all unit
vectors e we have surfe,ε(Zp∩Q) & 1.6 This in turn will permit us to apply Lemma 5
(relating visibility to geometric means of directional surface areas) below.

We turn to the verification of (3). By Lemma 4 and (8) we have, for all e ∈ Sn−1,

(10) surfe,ε(Zp ∩Q) ≤ Cλ

and moreover

(11)
∑

Q :Q∩Tj 6=∅

surfe(Tj),ε(Zp ∩Q) ≤ C surfe(Tj),ε(Zp ∩ T̃j) ≤ Ck ≤ Cλ,

(where T̃ denotes the expansion of a tube T about its axis by a dimensional factor).

We now define
Sj(Q, Tj) := λ−1 surfe(Tj),ε(Zp ∩Q)

and observe that (11) immediately implies
∑

Q :Q∩Tj 6=∅

Sj(Q, Tj) ≤ C,

which establishes (3).

6Another way of achieving this is to multiply the polynomial which Theorem 3 produces with
a polynomial whose zero set consists of hyperplanes parallel to the coordinate hyperplanes which
pass through the cubes in the support of M . This has an insignificant effect on the degree of the
polynomial provided λ is large enough. However, some care must be taken when considering how
this augmentation interacts with the mollification.
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On the other hand, to see that (2) is satisfied, note that (9) and (10) together with
Lemma 5 give

CλM(Q) ≤ visε(Zp∩Q) ≤
Cλ(n−d)/n

(
surfe(T1),ε(Zp ∩Q) . . . surfe(Td),ε(Zp ∩Q)

)1/n

(e(T1) ∧ · · · ∧ e(Td))
1/n

,

and so

S1(Q, T1) . . . Sd(Q, Td) = λ−d
d∏

j=1

surfe(Tj),ε(Zp ∩Q)

is at least

Cλ−dλnM(Q)nλd−ne(T1) ∧ · · · ∧ e(Td) = CM(Q)ne(T1) ∧ · · · ∧ e(Td),

and thus (2) is established.

Consequently, the multilinear Kakeya theorem is reduced to proving Theorem 3.

5. The Borsuk–Ulam theorem and a covering lemma

The Borsuk–Ulam theorem is as follows:

Theorem 4 (Borsuk–Ulam). Suppose that N ≥ J and that F : SN → RJ is

continuous and satisfies F (−x) = −F (x) for all x ∈ SN . Then there is an x ∈ SN

such that F (x) = 0.

For a delightful discussion of this theorem and its applications, see [12]. See also [7]
for a recent proof of the Borsuk–Ulam theorem using only point-set topology and
Stokes’ theorem. Included in [12] there is a discussion of various equivalent forms
of this theorem, some of which (known as Lusternik–Schnirelmann results) take the
form of covering statements for the sphere. In this section we formulate another
such equivalent covering statement which we shall use in our proof of Theorem 3.

Lemma 7. Suppose that Ai ⊆ SN for 1 ≤ i ≤ J , and suppose that for each i,
Ai ∩ (−Ai) = ∅. If J ≤ N , then the 2J sets Ai and −Ai do not cover SN .

Note that no topological hypothesis on the sets Ai is needed.

Proof. Let Fi(x) = d(x,−Ai) − d(x,Ai) for 1 ≤ i ≤ J . Then, with F : SN → RJ

defined by F (x) = (F1(x), . . . , FJ(x)), we have that F is continuous and F (−x) =
−F (x) for all x, so by the Borsuk–Ulam theorem there is an x with F (x) = 0. We
claim that this x does not belong to any Ai or to −Ai. For if x ∈ Ai we have
d(x,Ai) = 0, hence d(x,−Ai) = 0, hence x ∈ −Ai, a contradiction. Likewise, since
by hypothesis Ai ∩ (−Ai) = ∅, x ∈ −Ai gives x ∈ Ai, another contradiction. �

Remark. The converse argument also holds: if we assume the assertion of the
lemma, but only for open sets Ui, we can recover the Borsuk–Ulam theorem. Indeed,
suppose F : SN → RJ is continuous, F (−x) = −F (x) and N ≥ J . Let Ui be the
open set {x : Fi(x) > 0}. Then −Ui = {x : Fi(x) < 0}, so that −Ui ⊆ {x :
Fi(x) ≤ 0} and so Ui ∩ (−Ui) = ∅. By assumption there is an x which is not in any
of the Ui or −Ui. So Fi(x) ≤ 0 for all i and Fi(x) ≥ 0 for all i. Hence Fi(x) = 0
for all i, that is, F (x) = 0.7

7That the assertion of Lemma 7 for open sets Ui logically implies the same statement for sets
Ai with no topological restrictions can easily be seen directly from the fact that the metric space
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6. Outline of the proof of Theorem 3

We now describe the scheme of the proof of Theorem 3. The function M is given,
and we will be working with the class P∗

k = SN of normalised polynomials p : Rn →
R of degree bounded by some k ∈ N. Recall that N ∼ kn. For each such polynomial
p, its zero set is the algebraic hypersurface Zp = {x : p(x) = 0}, and we let

S(Q) = {p ∈ P∗
k : visε(Zp ∩Q) ≤ M(Q)}.

Following Guth [10], the aim is to show that if we take a suitable k ∼ (
∑

Q M(Q)n)1/n,
and a suitable ε > 0, then we can find a polynomial in P∗

k which is not in any of
the S(Q). (Note that S(Q) = ∅ for those Q such that M(Q) . 1.) Our method to
establish this diverges somewhat from that of Guth, but there are of course many
points of contact between the two lines of argument.

Let, for r ≥ 0,

S(r)(Q) = {p ∈ P∗
k : visε(Zp ∩Q) ∼ 2−rM(Q)}.

Then

S(Q) =
⋃

1.2r.M(Q)

S(r)(Q)

since S(r)(Q) = ∅ for r such that 2r & M(Q).

We shall introduce a collection C of “colours” Θ whose cardinality is bounded by
C. For each colour Θ we shall define subsets S(r),Θ(Q) of S(r)(Q) which have the
property that

(12) S(r)(Q) =
⋃

Θ∈C

S(r),Θ(Q).

For each fixed Q and r such that 1 . 2r . M(Q) we will define an indexing set

AQ,r of cardinality C2−rnM(Q)n, and for each α ∈ AQ,r, a subset S
(r),Θ
α (Q) of

S(r),Θ(Q) such that

(13) S(r),Θ(Q) =
⋃

α∈AQ,r

S(r),Θ
α (Q).

To ensure that this decomposition is well-defined, it will transpire that ε must be
taken to be small.

Finally we shall decompose each S
(r),Θ
α (Q) as

S(r),Θ
α (Q) = S(r),Θ+

α (Q) ∪ S(r),Θ−
α (Q),

where

(14) S(r),Θ−
α (Q) = −S(r),Θ+

α (Q)

in such a way that for all Q, r,Θ and α,

(15) S(r),Θ+
α (Q) ∩ S

(r),Θ−
α (Q) = ∅.

(The closure here refers to the natural topology of P∗
k = SN .)

SN satisfies appropriate separation axioms. More precisely, if two subsets A and B of a metric
space are separated in the sense that the closure of either does not meet the other, then there are
open sets U and V with the same property such that A ⊆ U and B ⊆ V .
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The reason for the introduction of colours is to ensure that there is sufficient sepa-

ration between the sets S
(r),Θ±
α (Q) and their antipodes for (15) to hold.

In summary then,

(16)
⋃

Q

S(Q) =
⋃

Q

⋃

1.2r.M(Q)

⋃

Θ∈C

⋃

α∈AQ,r

(
S(r),Θ+
α (Q) ∪ S(r),Θ−

α (Q)
)
,

where S
(r),Θ+
α (Q) and S

(r),Θ−
α (Q) satisfy (14) and (15).

Lemma 7 then implies that if the cardinality of the set indexing the union on the
right hand side of (16) is less than or equal to N , then the sets in the union cannot
cover SN = P∗

k .

Now the number of terms indexing the union is at most

C
∑

Q

∑

r≥0

∑

Θ∈C

∑

α∈AQ,r

1 ≤ C
∑

Q

∑

r≥0

2−rnM(Q)n ≤ C
∑

Q

M(Q)n.

So provided that N &
∑

Q M(Q)n, amongst the polynomials in SN = P∗
k , there

will exist one which is not in any of the S(Q). Since N ∼ kn, we can therefore

take k with k ∼
(∑

Q M(Q)n
)1/n

and a p ∈ P∗
k which, for suitable ε > 0, satisfies

visε(Zp ∩Q) > M(Q) for all Q, as was needed.

It remains now to define the various decompositions introduced above, and establish
the assertions we have made concerning them.

7. Colours

In this section we describe how to establish (12) in such a way that the indexing
set C has cardinality at most C.

Let E denote the class of centred ellipsoids in Rn, that is images of the unit ball
B by affine linear maps A. Each ellipsoid A(B) is determined by an orthonormal
basis of principal axes or directions given by the normalised eigenvectors of AtA,
and corresponding semiaxes, the squares of whose lengths are the eigenvalues of
AtA. Thus E is a manifold of dimension n(n− 1)/2 + n = n(n+ 1)/2.

Let K denote the class of centrally symmetric convex bodies in Rn. By the John
ellipsoid theorem [11], every member K of K is close to some ellipsoid E in the
sense that n−1/4E ⊆ K ⊆ n1/4E.

There is a natural metric (the Banach–Mazur metric) to put on the class K, given
by

d(K,L) = log inf{α ≥ 1 : α−1K ⊆ L ⊆ αK}.

The John ellipsoid theorem asserts that every convex body is distant at most
(logn)/4 . 1 from some ellipsoid. An ellipsoid with semiaxes of lengths 2k1 , . . . , 2kn

where k1+· · ·+kn = 0 will be distant . max |kj | from the unit ball. Two congruent
ellipses in R2 with semiaxes of lengths 1 and N and principal directions differing
by θ will be distant . θN apart.

To set the scene for the covering property of ellipsoids that we need, note that in
RN , given a scale ρ > 0 and a pre-assigned number γ > 1, we can find a set X of
ρ-separated points xi ∈ RN such that every point of RN is in some B(xi, ρ), and
such that X can be partitioned into ON (γN ) families (colours), so that points of X
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of the same colour are distant at least γρ from each other. This property expresses
the idea that the dimensionality of RN as a metric space is N . We can then assign
to each x ∈ RN one or more colours according to whether d(x, xi) < ρ for some
xi ∈ X of that particular colour.

Similarly it is not hard to verify that given ρ > 0 and γ > 1, there exists a ρ-
separated subset E0 of E such that {B(E, ρ) : E ∈ E0} covers E and such that we
can partition E0 into at most On(γ

n(n+1)/2) families (colours) such that any two
ellipsoids in E0 of the same colour are distant at least γρ from each other.

Choosing ρ = 1 and γ sufficiently large depending only on the dimension n, and
using the John ellipsoid theorem, we obtain the following:

Lemma 8. Supose αn > 1 is sufficiently large. Then there exists a set E0 ⊆ E with

the property that for every K ∈ K there is an E ∈ E0 such that

(17) α−1
n K ⊆ E ⊆ αnK

and such that the set E0 can be partitioned into at most C = C(n, αn) colours in

such a way that every K ∈ K satisfies (17) for at most one E ∈ E0 of a given
colour.

Given n we now fix αn sufficiently large, and fix our palette C consisting of at most
C(n, αn) colours once and for all so that the conclusion of Lemma 8 holds. We say
that two convex bodies E and K are close if (17) holds. So every K ∈ K is close
to some member of E0, but there is at most one E ∈ E0 of a given colour to which
it is close. For a colour Θ ∈ C let

EΘ
0 = {E ∈ E0 : E is of colour Θ}.

Finally, given Q and r ≥ 0, let

S(r),Θ(Q) = {p ∈ S(r)(Q) : Kε(Zp ∩Q) is close to a member of EΘ
0 };

then we have

S(r)(Q) =
⋃

Θ∈C

S(r),Θ(Q),

and (12) is established.

8. Translates

We now fix Q, r ≥ 0 and a colour Θ ∈ C. In this section we establish (13) for

suitable subsets S
(r),Θ
α (Q) ⊆ S(r),Θ(Q) which are indexed by α ∈ AQ,r, where AQ,r

has cardinality ∼ 2−rnM(Q)n. We can assume that S(r),Θ(Q) 6= ∅.

If p ∈ S(r),Θ(Q), the convex body Kε(Zp ∩Q) ⊆ B has volume ∼ 2rn/M(Q)n . 1,
and it is close to a unique member E(p) of EΘ

0 of comparable volume. Hence we can
fit ∼ 2−rnM(Q)n disjoint parallel translates of E(p) inside Q, with the translations
along the principal directions of E(p). Likewise, if η < 1 is a numerical scaling
factor, we can fit ∼ η−n2−rnM(Q)n disjoint parallel translates of ηE(p) inside Q,
with the translations again along the principal directions of E(p). Indeed, if the
lengths of the semiaxes of E(p) are l1, . . . , ln ≤ c, and the principal directions are
e1, . . . , en, we can place the centres of the translated copies of ηE(p) at the points
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xQ + η
∑

j mj ljej for mj ∈ 2Z and |mj | ≤ cη−1l−1
j ; here xQ is the centre of Q. In

this construction the number of translated copies equals the product

(18) cη−n(l1 . . . ln)
−1 = cη−n2−rnM(Q)n.

Lemma 9. There is a dimensional constant Cn such that if p ∈ S(r),Θ(Q) and

η < 1, then Zp bisects at most Cnη
−(n−1)2−rnM(Q)n disjoint translates of ηE(p)

in Q.

Proof. Suppose that E(p) has principal directions {ej} and corresponding semiaxes
with lengths {lj}. If Zp bisects a translate ηE(p)+ ξ of ηE(p), then for at least one
j we will have8

surfej (Zp ∩ (ηE(p) + ξ)) ≥ Cn vol(ηE(p) + ξ)/ηlj = Cnη
n−1 volE(p)/lj .

This is just the affine-invariant formulation of the fact that a hypersurface which
bisects the unit ball must have large (n− 1)-dimensional Hausdorff measure inside
the ball – see Lemma 11 in the Appendix. So

n∑

j=1

lj surfej (Zp ∩ (ηE(p) + ξ)) ≥ Cnη
n−1 volE(p).

If now Zp bisects as many as A2−rnM(Q)n disjoint copies of ηE(p) in Q, we will
have

n∑

j=1

lj surfej (Zp ∩Q) ≥ CnAη
n−1 volE(p) 2−rnM(Q)n.

If p′ is another polynomial in SN sufficiently close to p, and if p bisects an ellispoid
E, we can conclude that p′ approximately bisects E in the sense that p′ is positive
on at least 40% of E and negative on at least 40% of E. Since we are only interested
in a finite number of ellipsoids here, namely the translates ηE + ξ for E ∈ E0 with
M(Q)−n . volE . 1 for the relevant Q, then by choosing ε small enough we will
have this approximate bisection property for all polynomials which affect the value
of surfe,ε in the expressions above. Therefore we have the estimate

n∑

j=1

lj surfej ,ε(Zp ∩Q) ≥ CnAη
n−1 volE(p) 2−rnM(Q)n.

The definition (cf. (6)) of Kε(Zp ∩Q) together with the fact that Kε(Zp ∩Q) and
E(p) are close implies that

lj surfej ,ε(Zp ∩Q) ≤ Cn

for each j, and moreover, as p ∈ S(r),Θ(Q),

volE(p) ∼ 2rn/M(Q)n.

Therefore A must satisfy A ≤ Cnη
−(n−1). �

8Here and in the next two displayed equations we are using the unmollified notion of directional
surface area surfe.
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Choose η sufficiently small so that Cnη < c. Here Cn is the constant from Lemma 9
and c is the constant in (18). Then for each p ∈ S(r),Θ(Q), Zp can bisect only a
proportion Cnη/c < 1 of the cη−n2−rnM(Q)n disjoint copies of ηE(p) in Q. In
particular, Zp will not bisect all of the available disjoint copies of ηE(p) in Q.

For each E(p) ∈ EΘ
0 of volume ∼ 2rn/M(Q)n, the set of translated ellipsoids which

are placed into Q in the construction above is of cardinality c2−rnM(Q)n. We
label these ellipsoids with an index α from AQ,r = {1, . . . , c2−rnM(Q)n}. Now

take a polynomial p ∈ S
(r),Θ
α (Q). Then p is close to a unique member E(p) ∈ EΘ

0 of
volume comparable to 2rn/M(Q)n and we can ask whether or not p bisects the α’th
translate of ηE(p). Note that for this question to be meaningful the uniqueness in
the previous sentence is important and if we had not already restricted attention
to a single colour then the uniqueness would not hold.

For α ∈ AQ,r we can thus define

S(r),Θ
α (Q) := S(r),Θ(Q) ∩ {Zp does not bisect the α’th translate of ηE(p) in Q}

Then, since Zp cannot bisect all of the translates of ηE(p) in Q, we have

S(r),Θ(Q) =
⋃

α∈AQ,r

S(r),Θ
α (Q)

as required, where there are c2−rnM(Q)n terms in the indexing set AQ,r. Thus
(13) is established.

9. Antipodes

In this section we establish (15).

Fix Q, r ≥ 0, Θ ∈ C and α ∈ AQ,r. For p ∈ S
(r),Θ
α (Q) let E(p) be as before the

unique member of EΘ
0 to which Kε(Zp ∩ Q) is close. Let Eα = Eα(p) denote the

α’th translate of ηE(p) in Q. Since Zp does not bisect Eα, we have either

vol ({p > 0} ∩ Eα) > vol({p < 0} ∩ Eα)

(in which case we say that p ∈ S
(r),Θ+
α (Q)), or

vol ({p > 0} ∩ Eα) < vol({p < 0} ∩ Eα),

(in which case we say that p ∈ S
(r),Θ−
α (Q)).

Then

S(r),Θ
α (Q) = S(r),Θ+

α (Q) ∪ S(r),Θ−
α (Q).

Moreover

S(r),Θ−
α (Q) = −S(r),Θ+

α (Q),

and so to establish (15) we wish to show that for all α,

S(r),Θ+
α (Q) ∩ S

(r),Θ−
α (Q) = ∅.

To see this, suppose for a contradiction that for some α ∈ AQ,r there is a p ∈

S
(r),Θ+
α (Q) and a sequence of pm ∈ S

(r),Θ−
α (Q) which converges to p in SN . That

is, we suppose that

(19) vol ({p > 0} ∩ Eα(p)) > vol({p < 0} ∩ Eα(p))
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and

vol ({pm > 0} ∩ Eα(pm)) < vol({pm < 0} ∩ Eα(pm))

where pm converges to p in S
N .

Lemma 10. Fix Q, r and Θ. Suppose that p ∈ S(r),Θ(Q), pm ∈ S(r),Θ(Q) for

m ∈ N and that pm converges to p in SN . Then for all sufficiently large m we

have E(pm) = E(p). If α ∈ AQ,r and in addition p, pm ∈ S
(r),Θ
α (Q), then for m

sufficiently large, Eα(pm) = Eα(p).

Proof. Since we are using the mollified version of the directional surface area and
quantities defined in terms of it, the convergence of pm to p in SN implies that the
convex bodies Kε(Zpm

∩Q) converge to Kε(Zp ∩Q) as m → ∞9 and in particular
Kε(Zpm

∩ Q) and Kε(Zp ∩ Q) are close for m sufficiently large. Since p and pm
are members of S(r),Θ(Q) then Kε(Zpm

∩ Q) and Kε(Zp ∩ Q) must be close to
some member of EΘ

0 and thus, for m sufficiently large, they are close to the same

member of EΘ
0 , which must be E(p). In particular, for m sufficiently large, we have

E(pm) = E(p) and consquently Eα(pm) = Eα(p) for all α. �

(It is at the end of the proof of this lemma, and in the construction of the sets

S
(r),Θ
α (Q), where the relevance of the earlier decomposition into colours becomes

clear.)

So, for m sufficiently large we have

vol ({pm > 0} ∩ Eα(p)) < vol({pm < 0} ∩ Eα(p))

which, upon taking limits and using the fact that vol ({p = 0}) = 0 as p is non-zero,
implies

vol ({p > 0} ∩ Eα(p)) ≤ vol({p < 0} ∩ Eα(p)),

which is in contradiction with (19). Hence

S(r),Θ+
α (Q) ∩ S

(r),Θ−
α (Q) = ∅,

and we are therefore finished.

10. Appendix – Bisecting balls

In this appendix we indicate a simple proof of the (geometrically obvious) fact that
a hypersurface which bisects the unit ball must have large surface area inside the
ball. Let B be the closed unit ball in Rn and suppose p : Rn → R is a polynomial.
Let

E = {x ∈ B : p(x) ≤ 0}

and

F = {x ∈ B : p(x) ≥ 0}.

Lemma 11. If vol (E) = a vol (B) and vol (F ) = b vol (B) where a+ b = 1, then

Hn−1({x ∈ B : p(x) = 0}) >
1

2

(
a(n−1)/n + b(n−1)/n − 1

)
Hn−1(S

n−1).

9in the sense that there is a sequence γm ≥ 1 with γm → 1 such that γ−1
m Kε(Zpm ∩ Q) ⊆

Kε(Zp ∩Q) ⊆ γmKε(Zpm ∩Q)
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Proof. It is easy to see that ∂E∪∂F = Sn−1∪ (E ∩F ) and ∂E∩∂F = E∩F. Since

Hn−1(∂E ∪ ∂F ) = Hn−1(∂E) +Hn−1(∂F )−Hn−1(∂E ∩ ∂F )

and

Hn−1(S
n−1 ∪ (E ∩ F )) = Hn−1(S

n−1) +Hn−1(E ∩ F )−Hn−1(S
n−1 ∩ E ∩ F )

we have

2Hn−1(E ∩ F ) = Hn−1(∂E) +Hn−1(∂F )−Hn−1(S
n−1) +Hn−1(S

n−1 ∩ E ∩ F ),

and so

Hn−1(E ∩ F ) ≥
1

2

(
Hn−1(∂E) +Hn−1(∂F )−Hn−1(S

n−1)
)
.

By the isoperimetric inequality we have

Hn−1(∂E) ≥ a(n−1)/nHn−1(S
n−1)

and

Hn−1(∂F ) ≥ b(n−1)/nHn−1(S
n−1),

(with strict inequality in at least one place) so that

Hn−1(E ∩ F ) >
1

2

(
a(n−1)/n + b(n−1)/n − 1

)
Hn−1(S

n−1)

as required. �

Since for n ≥ 2 and 0 < a, b < 1 with a + b = 1 we have (a + b)(n−1)/n <
a(n−1)/n + b(n−1)/n, this establishes the desired bound.

The following question may be of interest. Let K ⊆ Rn be a symmetric convex
body, which we can normalise so that its John ellipsoid is the unit ball. Within the
class of polynomial hypersurfaces Z which cut K in the proportions a : b, how do
we minimise the surface area of Z ∩K?
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[11] F. John, Extremum problems with inequalities as subsidiary conditions, Studies
and essays presented to R. Courant on his 60th birthday, January 8, 1948, 187 –
204. Interscience Publishers, Inc., (New York NY), 1948.
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