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Abstract 

While follicular lymphoma (FL) is exquisitely responsive to immuno-chemotherapy, many patients 

follow a relapsing remitting clinical course driven in part by a common precursor cell (CPC) 

population. Advances in next generation sequencing have provided valuable insights into the 

genetic landscape of FL and its clonal evolution in response to therapy, implicating perturbations of 

epigenetic regulators as a hallmark of the disease. Recurrent mutations of histone modifiers 

KMT2D, CREBBP, EP300, EZH2, ARIDIA, and linker histones are likely early events arising in the 

CPC pool, rendering epigenetic based therapies conceptually attractive for treatment of indolent 

and transformed FL. This review provides a synopsis of the main epigenetic aberrations and the 

current efforts in development and testing of epigenetic therapies in this B cell malignancy. 
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Introduction 

Follicular lymphoma (FL) is the most common form of indolent non-Hodgkin lymphoma 

(NHL), accounting for over 20% of all NHL cases. The incorporation of the anti-CD20 monoclonal 

antibody, rituximab, into treatment regimens has led to considerable improvement in the outlook of 

FL patients with 5-year overall survival approaching 90%. However, many patients display a 

relapsing-remitting pattern, with the disease eventually becoming resistant to further therapy, 

representing a major area of unmet clinical need1. These patients include a high-risk subgroup 

(30% of patients) prone to transformation into a higher-grade lymphoma2, 3, and a poor-prognostic 

subgroup (20% of cases) who progresses or relapses within 2 years of receiving first line 

treatment1. 

 At the molecular level, 85%-90% of FL are characterized by the t(14;18) translocation, which 

places the anti-apoptotic proto-oncogene BCL2 under the transcriptional control of the IGH locus, 

leading to BCL2 overexpression4-7. Intriguingly, however, t(14;18) alone is not sufficient for 

malignant transformation as it can be detected in healthy individuals who never develop the 

disease8, 9; therefore, there has been a concerted effort to identify the additional “hits” that 

cooperate with t(14;18) to induce malignant transformation in GC B cells. Additionally, 10%-15% of 

FL cases do not harbor the t(14;18) translocation10, and the pathogenic mechanisms driving the 

development of this subset of FL remain largely unknown. 

The mutational landscape of follicular lymphoma 

FL originates from the germinal center (GC) within lymphoid tissues, where B cells undergo 

clonal expansion and extensive genetic modifications through the processes of somatic 

hypermutation and class switch recombination11. Genome-wide association studies12, cytogenetic 

analyses13-16, gene expression,17-19 and microRNA profiling20, 21 have highlighted chromosomal 

alterations, including 1p36 and 6q losses, components of the tumor microenvironment, and 

association with HLA gene variants, among others12, 22. The most significant shift in our 



 

3 
 

understanding of FL’s genetic landscape, however, has occurred following advances in next 

generation sequencing (NGS). These include mutations in genes involved in immune surveillance, 

B cell development, BCR-NFkB and JAK/STAT signaling pathways, with, perhaps most strikingly, 

the identification of a plethora of mutations in series of epigenetic modifiers, such as CREBBP, 

EP300, EZH2, KMT2D, MEF2B, several members of SWI/SNF nucleosome remodeling complex, 

including ARID1A, ARID1B and BCL7A, as well as members of the linker histone H1 and histone 

H2 gene families23-32 (Figure 1). Epigenetic deregulation has long been recognized as a cardinal 

feature of many solid and hematologic cancers and, thus far, four epigenetic drugs have been 

licensed for the treatment of hematologic malignancies33. However, what distinguishes FL is its 

apparent addiction to epigenetic alterations, with lesions in epigenetic modifiers occurring in nearly 

all patients25, 27, 34. By contrast, in diffuse large B cell lymphoma (DLBCL), a more aggressive form 

of NHL, mutations in epigenetic modifiers (CREBBP, EP300, EZH2, and KMT2D) occur in ~60% of 

the GC B cell (GCB)-like subtype, which shares a common cell of origin with FL, with fewer 

epigenetic mutations reported in the activated B cell (ABC)-like subtype24, 35, 36 and Burkitt 

lymphoma37, a rarer form of GC NHL. Intriguingly, epigenetic abnormalities are common in adult-

type FL, but are rarely found in pediatric-type nodal follicular lymphoma (PTNFL), a rare variant of 

t(14;18)-negative FL, where the mutational landscape is genetically light, featuring recurrent 

mutations in TNFRSF14 and MAPK signaling pathway genes38, 39. The infrequency of epigenetic 

aberrations and the distinctly more favorable prognosis in PTNFL compared to FL, including 

t(14;18)-negative FL, further supports the notion that epigenetic deregulation in adult-type FL 

pathogenesis may support the durability of lymphoma and the resultant clinical course of the 

disease. 
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Aberrations of epigenetic modifiers are early and driving events in the pathogenesis of 

follicular lymphoma 

There is emerging evidence that the later age onset of FL is due to accumulation of several 

oncogenic events within the long-lived B cell progenitors40-42. Studies based on temporal profiling of 

FL and transformed FL (tFL), in addition to rare examples of donor-derived FL occurring several 

years following allogeneic stem cell transplant and donor lymphocyte infusions where both patients 

shared the same IGH and IGH-BCL2 rearrangements and somatic mutations, lend credence to the 

existence of a long-lived pool of common progenitor cells (CPCs) acting as tumor-initiating cells that 

need to be eliminated in order to improve outcomes25, 27, 30, 43, 44. 

Transformation in FL arises predominantly by divergent evolution (reviewed in 42), rather 

than through sequential acquisition of genetic aberrations, with mutations affecting the epigenetic 

modifiers KMT2D, EZH2, CREBBP, and MEF2B, being commonly shared between FL and tFL 

samples. These mutations are typically clonal, supporting a founder role for these events in FL, 

while mutations in NFkB signaling pathway, B cell development, or cell cycle genes tend to occur 

as later events presumably leading to the emergence of fitter clones that drive disease progression 

and transformation. It is worth keeping in mind that individual mutations in epigenetic modifiers are 

potentially insufficient to give rise to FL, although there has been an intriguing case study of FL 

occurring in a patient with Rubinstein-Taybi syndrome, a developmental disorder linked to germline 

CREBBP mutations45. In a minority of cases, however, evolution through “sparse” CPCs occurs 

with little clonal resemblance between paired FL and tFL samples and presents different epigenetic 

mutations acquired independently25, 27, which is supported by a broad consensus in the literature 

through the contributions of several groups in the field. 

Role of epigenetic regulatory mutations in lymphomagenesis 

The potential roles of genetic aberrations affecting epigenetic modifiers in lymphomagenesis 

have been elucidated in a number of functional studies. Inactivating KMT2D mutations46, 47 and 
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gain-of-function EZH2 mutations (a member of Polycomb-group proteins), mainly at tyrosine 641 

(Y641) hotspot23, 28, 48, 49, promote GC proliferation and block differentiation by transcriptional 

suppression of tumor suppressor genes that regulate B cell development, including KMT2D targets 

TNFAIP3, SOCS3 and TNFRSF14 and EZH2 targets CDKN1A, CDKN2A, PRDM1, and IRF446, 50--

52. While it has long been assumed that mutations in epigenetic modifiers arise in GC, in vivo 

models have shown that the impact of KMT2D mutations is dependent on the stage of B cell 

development, whereby mutations in early precursor B cells are sufficient to initiate lymphoma while 

mutations arising at later stages of GC B cell development require additional genetic hits to support 

malignant transformation46, 47. Loss-of-function CREBBP mutations in FL have been shown to 

facilitate immune evasion by downregulating MHC class II expression, associated with reduced T 

cell infiltration53. These inactivating mutations may also contribute to lymphomagenesis by impairing 

the acetylation of non-histone proteins p53 and BCL626, with emerging data showing that the 

BCL6/HDAC3/SMRT complex maintain the suppression of CREBBP target genes, including MHC 

class II, in CREBBP-mutant cells, rendering HDAC3 inhibition as a potential therapeutic strategy by 

restoring histone H3 lysine 27 acetylation at target enhancers54. More recently, global DNA 

methylation analysis of follicular lymphoma B cells has revealed hypermethylation of Polycomb-

suppressed genes and hypomethylation of heterochromatin regions compared to normal GC B 

cells. The abnormal DNA methylation programming in FL may potentially cooperate with the 

underlying somatic mutations in, for example, chromatin modifiers to fixate the normal dynamic 

transcriptional regulation of B cell differentiation genes55. Furthermore, enhancer profiling of FL B 

cells has identified subsets of abnormally activated or repressed regulatory elements that may also 

contain somatic mutations that directly impact on transcription factor binding and transcriptional 

regulation of downstream genes, indicating another mode of aberrant epigenetic contribution to FL 

pathogenesis56. 
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Taken together, these lines of evidence demonstrate a pivotal role for epigenetic 

abnormalities, not only as initiating events but also as potential drivers of progression, 

transformation, and modulators of the tumor microenvironment. The particular enrichment of 

epigenetic lesions in the CPC population also underscores the potential of epigenetic therapies as 

means of eradicating the founder clone in FL. These experiments equally highlight the challenges 

faced in predicting the mechanisms by which these mutations exert their effects and whether each 

genetic lesion is acting alone or there is some concerted effort in shifting a B cell towards 

malignancy. 

Mutations in epigenetic modifiers can predict patient outcomes in FL 

FL patients who relapse within 2 years of receiving R-CHOP treatment present a significant 

clinical challenge. The follicular lymphoma international prognostic index (FLIPI)57 is useful to 

predict prognosis based on clinical and basic laboratory parameters; however, FLIPI tends to 

overestimate high-risk patients at diagnosis58 and cannot be used effectively to inform clinical 

decisions. Therefore, in recent years, there have been efforts to develop new experimental models, 

the first of which, m7-FLIPI, incorporates the mutational status of seven genes, including the five 

epigenetic modifiers EZH2, CREBBP, EP300, MEF2B, and ARID1A34. m7-FLIPI has been shown to 

be more effective at distinguishing between high- and low-risk FL patients measured by 5-year 

failure-free survival following first line R-CHOP, with almost half of the patients classified as high-

risk by FLIPI re-classified as low-risk by m7-FLIPI. This new prognostic tool is also more accurate in 

predicting disease progression within 24 months, a surrogate endpoint for overall survival, and in 

identifying the small subset of patients who are at the highest risk of early treatment failure following 

first line R-CHOP. Critically, high risk patients tend to carry CREBBP or EP300 mutations, while 

EZH2- or MEF2B-mutant cases are associated with low risk disease and favorable outcome34 and 

may benefit from less intensive R-CHOP regimens. However, it is still unclear how individual 

genetic lesions affect sensitivity to treatment (outcome predictors) or aggressiveness of the disease 
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(prognostic marker). Overall, the inclusion of epigenetic modifier mutations in patient risk 

stratification holds promise for more accurate prediction of patient outcomes following first line 

treatment with R-CHOP, although this needs further improvements in prospective studies before 

they can be translated into routine clinical practice. 

Epigenetic inhibitors in follicular lymphoma therapy 

Current treatment strategies for FL are based on a “one size fits all” approach that fails to 

take into account the specific genetic and epigenetic aberrations in different patients. Going 

forward, a more considered approach may be most beneficial for high risk patients who relapse 

within the first 2 years and the patients who transform to more aggressive lymphoma. The 

abundance and the co-founding role of epigenetic modifier mutations in indolent FL and tFL, 

together with the reversibility of epigenetic abnormalities, offer a platform to apply small molecule 

inhibitors that target these epigenetic aberrations in a precision medicine approach. 

Targeting gain-of-function EZH2 mutations as emerging epigenetic therapies 

EZH2 gain-of-function hotspot mutations are oncogenic drivers in 25% of FL patients that remain 

stable during disease relapse and/or transformation23, 25, 28, therefore providing a bona fide drug 

target for FL therapy. Several S-adenosylmethionine-competitive EZH2-selective inhibitors (EZH2i) 

have been developed in recent years, including GSK-126, EPZ-6438, and CPI-1205, with superior 

EZH2 selectivity over EZH1 and other histone methyltransferases. These EZH2i have shown 

significant inhibitory effects against EZH2-mutant lymphoma cell growth and survival in pre-clinical 

studies59-63 and are currently being tested in phase I/II clinical trials (Table 1). Preliminary trial 

results of EPZ-6438 [NCT01897571] in a small subset of B-NHL patients indicate 60% objective 

response (partial or complete response)64. While encouraging, the clinical efficacy of EZH2i awaits 

data in large series of patients accounted for the mutational status of EZH2 and cell of origin. The 

intriguing responses in EZH2 wild type patients may be caused by underlying genetic abnormalities 

such as inactivating mutations in H3K27 demethylase machinery60 or by targeting the EZH2’s non-



 

8 
 

enzymatic role consistent with findings in SWI/SNF-mutant cancers65, suggesting that epigenetic 

modifiers may cooperate in driving FL. Critically, however, identifying reliable diagnostic biomarkers 

for patients who will benefit from EZH2i therapy remains challenging. 

Based on recent studies, there is also the prospect of EZH2i as a means of eradicating 

cancer stem cells. This has been exemplified in chronic myeloid leukemia where leukemic stem 

cells, which are typically resistant to first-line tyrosine kinase inhibitors, are sensitive to EZH2i due 

to their abnormal EZH2 gain-of-function status66, 67. Therefore, it is worth testing the efficacy of 

EZH2i in targeting the subset of EZH2-mutant FL CPCs to prevent them repopulating subsequent 

disease relapses or transformation. 

HDAC inhibitors may benefit high-risk follicular lymphoma patients 

Loss-of-function mutations of CREBBP/EP300 leading to acetylation imbalance are 

associated with high-risk FL patients34, therefore providing a rationale for histone deacetylase 

inhibitors (HDACi) therapy for this patient category. A number of HDACi have been tested in cancer 

trials in recent years, with vorinostat, which is licensed for the treatment of advanced cutaneous T 

cell lymphoma68, being the most exhaustively tested orally bioavailable HDACi against lymphoid 

malignancies (Table 2). The efficacy of vorinostat against relapsed/refractory FL has been shown in 

phase I/II trials with an objective response rate of ~50%69, 70 and median progression free survival 

(PFS) of 30.5 months70. Interestingly, vorinostat has shown inferior efficacies against non-FL type 

B-NHLs, including mantle cell and marginal zone lymphomas that are deplete of acetylation-

compromising genetic lesions. There may be value, therefore, in correlating CREBBP/EP300 

mutation status with response to HDACi in order to identify patients most likely to derive benefit 

from these therapies. One case in point is the association of MEF2B mutations in DLBCL with 

response to the HDACi panobinostat, in a phase II trial71. Furthermore, a recent study in Kabuki 

syndrome, a congenital genetic disorder, has linked loss-of-function KMT2D mutations to sensitivity 

to HDACi72, a biomarker that can be investigated in future HDACi trials. There are also a number of 
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caveats limiting widespread application of epigenetic therapies. In the example of HDACi, the exact 

mechanism of action in patients is poorly understood, as they can exert their function by acetylating 

both histone and non-histone proteins that are implicated in several biological processes, including 

cell cycle73, DNA damage response, apoptosis74, 75, angiogenesis76, and regulation of tumor 

immunology77. It is important, therefore, that we include routine testing of mutations as part of 

existing clinical trial programs in FL and that we equally increase our efforts in understanding the 

functional roles of these inhibitors within the context of complex tumor genetics. 

Lysine specific demethylase inhibitors: a new area of epigenetic therapy 

Despite >80% of FL cases carry KMT2D mutations24, 25, 36, no attempt has been made to target the 

resulting epigenetic abnormalities.24, 26. One therapeutic strategy may be to inhibit lysine 

demethylases (KDMs) that regulate H3K4 methylation, in order to counteract the H3K4 methylation 

imbalance in loss-of-function KMT2D mutants. The KDM family consists of seven subfamilies, with 

the KDM1 and KDM5 families both able to regulate H3K4 methylation. A number of inhibitors of 

these two families have been reported, although neither family has been investigated in lymphoma. 

Several inhibitors of the KDM1 family member LSD1 are currently undergoing clinical trials for other 

malignancies, such as acute myeloid leukemia (TCP78, ORY-1001,79 and GSK287955280). More 

recently, three potent KDM5 inhibitors (EPT-10318281, 82, CPI-455,83 and KDM5-C7084) have been 

reported in pre-clinical studies, all of which demonstrate selectivity over other KDM families, 

increase H3K4me3 levels and cause significant inhibition of cell proliferation in myeloma84 and 

drug-resistant small cell lung cancer83. There is value, therefore, in exploring LSD1 and KDM5 

inhibitors as a means of potentiating a new area of epigenetic therapeutics for KMT2D-mutant FL. 

Conclusion 

The landscape of FL demonstrates a complex pattern of frequent mutations in epigenetic 

modifiers that are co-founding events arising in the CPC and remain stable during disease 

progression and transformation, providing a compelling rationale for using epigenetic therapies. 
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These aberrant epigenetic mechanisms have also been implicated in predicting patient outcomes 

as demonstrated by the m7-FLIPI model, which links 7 mutations, 5 of which with epigenetic 

function, to FL prognosis. While promising, it is yet to be determined whether these mutations can 

be used to robustly stratify patients at diagnosis to inform clinical decision making, and whether 

they have any predictive value in determining response to epigenetic therapy in particular. 

Collectively, our understanding of abnormal epigenetic mechanisms in FL is still at its infancy 

and there are a number of hurdles to overcome if the epigenetic therapies are to realize their full 

potential clinically. From a biological perspective, we need a better understanding on whether the 

aberrant epigenetic modifiers act alone or cooperate in driving the B cell malignancy and what 

functional impact they have on downstream pathways. From the therapeutics perspective, future 

research impetus should focus on determining how these epigenetic therapies exert their effects in 

patients and rationalize treatment combinations in order to maximize their efficacy. Despite the 

challenges, we are in an exciting era of precision medicine where advanced technologies can help 

us routinely characterize the genetic and epigenetic landscape of individual patients for hypothesis-

driven therapeutic strategies whose impact on patient outcomes are being revealed from ongoing 

clinical trials. 
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Table 1. Current clinical trials with investigational EZH2i in B cell malignancies including FL. 

Novel Agent Clinical Trial No Clinical Trial Phase Estimated 

Enrollment 

Eligibility Criteria Trial 

Arms 

Additional 

Remarks 

EPZ-6438 

(Tazemetostat)  

NCT01897571 Phase I 

(closed) 

Phase II 

(recruiting) 

350 Phase I: B-cell 

lymphomas, 

advanced solid 

tumors 

Phase II: DLBCL, 

FL, tFL, PMLBCL 

Phase I: 

single 

arm 

(safety 

study); 

Phase II: 

5 cohorts 

based on 

histology, 

cell of 

origin, 

and 

EZH2 

mutation 

status 

(efficacy 

study) 

 

Phase I 

preliminary 

results: 

9/15 OR
64

 

GSK2816126 NCT02082977 Phase I 

(recruiting) 

169 Relapsed/refractory 

DLBCL, tFL, other 

NHL, MM, solid 

tumors  

Single 

arm 

(safety 

study) 

After RP2D 

is 

established, 

in part 2, 

GCB-

DLBCL, tFL 
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DLBCL; diffuse large B cell lymphoma; FL, follicular lymphoma; MM, multiple myeloma; NHL, non-

Hodgkin lymphoma; OR, objective response; PMLBCL, primary mediastinal large B-cell lymphoma; 

RP2D, recommended phase 2 dose; tFL, transformed FL. 

  

and MM 

patients will 

be 

assigned to 

two cohorts 

based on 

EZH2 

mutation 

status. 

Outcome 

data is not 

available. 

CPI-1205 NCT02395601 Phase I 

(recruiting) 

41 B-cell lymphoma Single 

arm 

(safety 

study) 

Outcome 

data not 

available. 
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Table 2. Selected HDACi in phase I/II clinical trials for NHL. 

Agent(s) Clinical Trial 

No 

Clinical Trial Phase Enrollme

nt 

Eligibility Criteria Trial Arms Additional 

Remarks 

Vorinostat NCT002536

30 

Phase II (completed) 37 relapsed/refractor

y indolent NHL 

Single arm 

(safety/effica

cy study) 

ORR: 47% 

FL, 22% 

MZL, 0% 

MCL
70

 

Vorinostat NCT008750

56 

Phase II (active, not 

recruiting) 

54 relapsed/refractor

y indolent NHL 

Single arm 

(safety/effica

cy study) 

ORR: 49% 

FL, 43% 

non-FL 

indolent 

NHL, 0% 

MCL
69

 

Vorinostat 

+ 

Rituximab 

NCT007208

76 

Phase II (active, not 

recruiting) 

33 Indolent NHL Single arm 

(safety/effica

cy study) 

ORR: 50% 

FL and 

MZL, 33% 

MCL
85

 

PCI-24781 

(Abexinosta

t) 

NCT007249

84 

Phase I/II (completed) 55 Phase I:  

relapsed/refractor

y lymphoma 

Single arm 

(safety/effica

cy study) 

ORR: 64% 

FL, MCL: 

27%
86

 

Phase II:  

Relapsed/refract

ory FL, MCL 

Panobinost

at 

NCT012612

47 

Phase II (active, not 

recruiting) 

41 Relapsed/refract

ory NHL 

Single arm 

(efficacy 

study) 

Outcome 

data not 

available. 
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CTCL, cutaneous T cell lymphoma; DLBCL; diffuse large B cell lymphoma; FL, follicular lymphoma; 

MCL, mantle cell lymphoma; MM, multiple myeloma; MZL, marginal zone lymphoma; ORR, 

objective response rate; NHL, non-Hodgkin lymphoma. 

  

CUDC-907 

(Dual 

HDAC/PI3K 

inhibitor) 

NCT017429

88 

Phase I (recruiting) 138 

(estimate

d) 

Relapsed/refract

ory lymphoma or 

MM 

CUDC-907 

vs CUDC-

907 + 

Rituximab 

(dose 

escalating 

arms) 

ORR: 55% 

DLBCL, 

0% MM 

and other 

lymphoma

87
 

Mocetinost

at 

NCT022823

58 

Phase I/II (recruiting) 56 

(estimate

d) 

Relapsed/refract

ory DLBCL and 

FL 

(CREBBP/EP300

-mutant) 

Single arm 

(safety/effica

cy study) 

Outcome 

data not 

available. 
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Figure 1. Frequently mutated epigenetic modifiers in FL. Schematic model of recurrent 

mutations affecting epigenetic modifiers in FL with reported frequencies for KMT2D24, 25, 27, 34, 

EZH225, 28, 32, 34, CREBBP25-27, 34, EP30026, 27, 32, 34, linker histone H1 and histone H2 family25, 27, 32, 

SWI/SNF complex members (ARID1A, ARID1B, BCL7A)27, 32, 34, and MEF2B23, 25, 32, 34 depicted 

above. Mutations in epigenetic modifiers occur concurrently in majority of FL patients and 

mechanistically it is not clear whether they act alone or cooperatively in driving B cell malignancy. 

H3Kac, histone H3 lysine acetylation; H3K4me3, histone H3 lysine 4 trimethylation; H3K27me3, 

histone H3 lysine 27 trimethylation. 


