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Abstract: This paper investigates relationships between low-energy four-particle scatter-

ing amplitudes with external gauge particles and gravitons in the E8 × E8 and SO(32)

heterotic string theories and the type I and type IA superstring theories by considering a

variety of tree level and one-loop Feynman diagrams describing such amplitudes in eleven-

dimensional supergravity in a Hor̆ava-Witten background compactified on a circle. This

accounts for a number of perturbative and non-perturbative aspects of low order higher

derivative terms in the low-energy expansion of string theory amplitudes, which are ex-

pected to be protected by half maximal supersymmetry from receiving corrections beyond

one or two loops. It also suggests the manner in which type I/heterotic duality may

be realised for certain higher derivative interactions that are not so obviously protected.

For example, our considerations suggest that R4 interactions (where R is the Riemann

curvature) might receive no perturbative corrections beyond one loop by virtue of a con-

spiracy involving contributions from (non-BPS) Z2 D-instantons in the type I and heterotic

SO(32) theories.
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1 Overview

The dualities of M-theory that relate string theories in different regions of moduli space

have been well-studied over the past 20 years. In particular, the interrelationships between

various theories with ten-dimensional N = 1 supersymmetry follow from the considerations

of Hor̆ava and Witten (HW) [1, 2]).1 They understood that the E8 × E8 heterotic string

(referred to as the HE theory in the following) is equivalent to eleven-dimensional M-

theory on an interval in the x11 direction2 of length L = π`11R11 (`11 is the eleven-

dimensional Planck scale) — in other words in a background space-time with geometry

M10 × S1/Z2, where M10 is ten-dimensional Minkowski space. This is equivalent to the

compactification of the eleven-dimensional theory on an orbifold of a circle of radius `11R11

so that the eleventh dimension is an interval that terminates on ten-dimensional boundaries.

Consistency of eleven-dimensional supergravity in the presence of these boundaries requires

boundary degrees of freedom that correspond to an independent N = 1 supersymmetric

E8 gauge theory restricted to each ten-dimensional boundary. The E8 × E8 heterotic

string coupling constant is ghe = R
3/2
11 , and so the limit R11 → 0 is the weak coupling

limit of the HE theory.

When compactifying on an additional spatial circle in x10 of radius `11R10 so that the

background is M9×S1×S1/Z2 Wilson lines may be added, which break the gauge symmetry

of the HE theory. Choosing the Wilson lines so that E8 is broken to SO(16) on each

boundary (following [1, 2]) the HE theory is related by T-duality to a compactification of

the heterotic Spin(32)/Z2 (referred to as the HO theory in the following) to 9 dimensions in

the presence of an HO Wilson line that breaks SO(32) to SO(16)×SO(16). The HO theory

has a coupling constant gho = R11/R10. This, in turn is related by a weak/strong duality

transformation (which will be referred to as the “S transformation” in the following) to the

type I theory compactified on a circle, where the circle direction is x11 and an appropriate

1We will refer to theories with half-maximal supersymmetry as N = 1 theories, which reflects their

ten-dimensional supersymmetry.
2The coordinates of eleven-dimensional Minkowski space will be dlabelled xµ with µ = 1, 2, . . . , x11 and

with x1 chosen to be the time coordinate.
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Figure 1. Dualities relating M-theory on M9 × S1/Z2 × S1 to N = 1 string theories.

Wilson line again breaks SO(32) to SO(16) × SO(16). The type I coupling constant is

gI = R10/R11. Finally, T-duality of the type I theory along the x11 direction relates it

to the type IA theory with coupling constant gIA = R
3/2
10 in a configruration where there

are eight D8-branes and their mirror images coincident with each of the two orientifold

8-planes. We see from this circle of dualities, which is illustrated in figure 1, that the type

IA and HE theories are related by interchanging R10 and R11. The precise correspondence

between the parameters of the various N = 1 superstring theories and the parameters of

the HW theory is reviewed in appendix A.

In this paper we will investigate these duality relationships further by considering cer-

tain scattering amplitudes in M-theory determined by tree-level and one-loop Feynman

diagrams of eleven-dimensional supergravity in the Hor̆ava-Witten background. We will

consider amplitudes involving the scattering of four gauge particles as well as those involv-

ing four gravitons (for economy of space we will not consider mixed gauge particle/graviton

amplitudes or amplitudes involving dilaton fluctuations).

Of course, we do not expect the Feynman diagram approximation to capture the

detailed behaviour of M-theory, but it should provide some information about the low-

lying terms in its low-energy approximation. Since we will discuss scattering amplitudes of

massless states in D = 9 dimensions, much of the rich structure of the theory, such as that

associated with the effects of M2-branes and M5-branes will not enter in this perturbative

approximation. Furthermore, we will treat the Hor̆ava-Witten background geometry as

rigid, ignoring in particular the fluctuations of the boundaries, which are associated with

the dynamics of the HE dilaton.

The perturbative approximation to supergravity should be valid at momentum scales

k � `−1
11 , where k is a characteristic momentum in the scattering amplitude and `11 is the

eleven-dimensional Planck scale. In this low-energy regime we would expect supergrav-

ity to reproduce terms in the low-energy expansions of scattering amplitudes, which are

insensitive to a Planck-scale cutoff. However, we will be considering the transformation

of frames involved in discussing the low-energy approximations to the dual heterotic and

type I string theories (the relationships between these frames are reviewed in appendix A).
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These dualities involve compactification on length scales � `11, where perturbation theory

cannot in general be justified. However, just as in the analogous discussion of four-graviton

scattering in the type II superstring [3], we expect that the BPS properties of the low order

terms in the low-energy expansion should justify these approximations.

The precise pattern of non-renormalisation conditions in theories with half-maximal

supersymmetry (ten-dimensional N = 1 supersymmetry) is not completely understood.

Following [4] and references therein, single-trace contributions to the low-energy expansion

of the four-gluon scattering amplitude, which contribute terms of order sn t8trF 4 to the

effective action,3 are expected to get contributions from all orders in perturbation theory,

apart from the cases n = −2 (which is the Yang-Mills pole term) and n = 0, which should

receive no corrections beyond one loop. Double-trace contributions of order sn t8(trF 2)2 are

expected to get contributions from all orders in perturbation theory apart from the cases

n = −1 (which is the gravitational pole term), n = 0, which should receive no contributions

beyond one loop, and n = 1, which should receive no contributions beyond two loops.4 The

non-renormalisation conditions on terms in the low-energy expansion of the four-graviton

amplitude are naively expected to parallel those of the double-trace terms of the same

dimension in the Yang-Mills amplitudes. However, this would suggest that t8t8R
4 (where

R is the Riemann curvature and t8 is an eighth-rank tensor that will be discussed later)

gets contributions from all loops, whereas explicit multi-loop calculations in supergravity [5]

suggest that t8t8R
4 gets no contributions beyond one loop (see also [6]). Additional non-

renormalisation conditions apply to those parity-conserving interactions that are related by

supersymmetry to the parity-violating anomaly-cancelling terms, which only get one-loop

contributions [7, 8].

Outline. In section 2 we will discuss the Feynman rules of relevance to the calculations

that follow. These differ from conventional bulk Feynman rules by virtue of the presence

of space-like boundaries, which correspond to the fixed points of the orbifold of S1.5 The

discussion of the propagators will follow that given in [9], while the vertices for bulk fields

coupling to the boundary fields was given in [1, 2]. In order to clarify the discussion, in

appendix B we will give a brief review of the action and Feynman rules in the HW back-

ground. We will also introduce a streamlined notation for terms quartic in field strengths

and curvatures that arise in the low-energy ten-dimensional N = 1 superstring actions.

Terms in the action that are quadratic in gravitational field strengths, would vanish on

shell in ordinary gravity theories, but in the context of the Hor̆ava-Witten background

such interactions are localised on the boundaries and they give rise to two-point and three-

point amplitudes involving Kaluza-Klein modes of the bulk fields, that will be discussed

in section 2.3.

3Here, the symbol tr denotes the trace in the fundamental representation of SO(16).
4More precisely, these statements apply to the heterotic theories, while the rules in the type I and type

IA theories are slightly modified from the ones described in [4].
5For the most part we will use the language of the “downstairs” formalism in this paper. This is

the description in which x11 is restricted to the interval with two boundaries, 0 ≤ x11 ≤ π`11R11. In

the “upstairs” formalism x11 spans the circle, 0 ≤ x11 ≤ 2π`11R11 with fixed points at x11 = 0 and

x11 = π`11R11 implied by the orbifold condition.
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In order to set the scene for the discussion of four-particle Yang-Mills amplitudes in

supergravity in the Hor̆ava-Witten background, in section 3 we summarise a number of

detailed properties of these amplitudes that emerge in the various N = 1 perturbative

string theories. Many of these features are well known from earlier work, but some details

of the more subtle properties will be presented elsewhere [10].

Section 4 is concerned with the low-energy expansion of four-particle supergravity

tree amplitudes with external gauge particles in the M9 × S1 × S1/Z2 background. The

simplest example is the standard Yang-Mills tree amplitude localised in either boundary,

which simply translates into the leading low-energy contribution (the massless Yang-Mills

pole contribution) in the various N = 1 string theories.

The contribution of the Yang-Mills tree with a gravitational propagator will then be

considered. This is a generalisation of the gauge boson amplitude considered in [9] (which

also considered the scattering of massive SO(16) spinors, which are not considered here).

The low-energy expansion of this term leads to double-trace contributions of the schematic

form sn t8 (triF
2
i ) (trjF

2
j ), where i, j = 1, 2 and t8 is a standard eighth rank tensor, and

the subscripts 1 and 2 label the different SO(16) subgroups. These effective interactions

arise in very different ways in the various string theories. For example, the n = 0 term

arises as a purely tree-level effect in the heterotic theories but arises at two loops (spherical

world-sheets with three boundaries) in the type I and IA theories. This term is expected

to be protected from higher order renormalisation. More generally, such terms are tree-

level contributions in the HE and HO theories but arise from world-sheet with n + 2

boundaries (and no handles) in the type I theories. However, only the interactions with

n = −1, 0, 1 (where n = −1 denotes the term with the gravitational pole) are protected

against renormalisation by higher loop effects.

In section 5 we will consider the Yang-Mills loop amplitude localised on either boundary

and compactified on a circle of radius `11R10 and with a Wilson line breaking the symmetry,

which generates Kaluza-Klein towers of massless and massive SO(16) adjoint states and

massive SO(16) spinor states circulating in the loop. After expressing this as a sum over

windings of the loop we will argue that the ultraviolet divergent zero winding term must

vanish after renormalisation. The sum of non-zero windings gives a finite coefficient for

the t8 (tr1F
4
1 + tr2F

4
2 ) interaction that contributes at one loop to the decompactified HO

theory and at disk level to the type I and IA theories, but does not contribute to the

decompactified HE theory. Here the trace is in the fundamental representation for each

SO(16) subgroup, whereas the naive expectation based on conventional gauge theory would

be for the trace to be in the adjoint representation. These observations are in accord with

string theory expectations. We will also comment on the relation of this interaction to the

chiral gauge anomaly cancelling terms of the HO and type I theories.

In section 6 we will summarise some detailed properties four-graviton amplitudes in

N = 1 perturbative string theories. This will include a review of the relationships between

the different kinds of R4 terms that arise as higher derivative interactions. Those that are

related by N = 1 supersymmetry to the anomaly cancelling terms are again not expected to

be renormalised. However, the interaction of the form t8t8R
4 is known to get contributions

at tree level and one loop in all the theories. Based on naive dimensional analysis this is not

– 4 –
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a BPS interaction, but there is a possibility that it has special features since the expected

three-loop divergence in D = 4, N = 4 supergravity is known to be absent [5] (see also [6]).

It is of interest to understand how this can be consistent with S-duality between the HO

and type I theories since the individual perturbative contributions do not transform into

each other.

In section 7 we will consider tree-level graviton scattering amplitudes in supergravity

in the Hor̆ava-Witten orbifold background. Apart from the bulk tree-level supergravity

amplitude, there are tree amplitudes with one of the vertices localised on one or on both

boundaries. These generate terms of the form t8 trR4 and t8 (trR2)2 (where the trace is in

the fundamental representation of the tangent-space group.), which are the gravitational

analogues of the gauge interactions of section 4. These parity-conserving interactions com-

bine with the familiar parity-violating terms needed for chiral anomaly cancellation in the

HE theory (as discussed in [2]) to form a sum of N = 1 superinvariants.

One-loop contributions to the four-graviton amplitude that generate terms in the ef-

fective action of order R4 will be considered in section 8. In section 8.1 we will consider

the one-loop amplitude in which the external gravitons interact with a supermultiplet of

gauge particles localised in either boundary and compactified on S1. This is the super-

gravity analogue of the four gauge particle loop considered earlier. It gives a contribution

to the R4 interaction that is a linear combination of t8 trR4 and t8 (trR2)2. In order to

evaluate the amplitude in which the external gravitons couple to bulk supergravity states

circulating in the loop we will introduce an adaptation of the eleven-dimensional world-line

superparticle formalism that was used to describe one loop in eleven-dimensional super-

gravity compactified on S1 in [3, 12]. This formalism will be reviewed briefly in section 8.2

and extended to implement the Z2 orbifold of the Horăva-Witten background. We will see

that the component of the loop with a circulating superparticle carrying zero Kaluza-Klein

mode (m = 0) in the x11 interval gives the one-loop supergravity contribution to the N = 1

theory that combines with the gauge loops of section 8.1 to complete the parity conserv-

ing part of the superinvariants that also contain the parity-violating anomaly cancelling

interactions. It is expected that this is not renormalised by higher supergravity or string

theory loop contributions.

The piece of the supergravity loop in which the circulating particles carry non-zero

Kaluza-Klein charges in the interval gives rise to an effective interaction of the form

t8t8R
4, much as in the type II theories. This has a coefficient that is a function of the

ratio R11/R10 = gho = g−1
I . This coefficient, which is the discussed in section 8.3, is

simply the non-holomorphic Eisenstein series E3/2(i/gho) of the type that arises in the

nine-dimensional type II theories, with the important distinction that the pseudsocalar

field (the real part of the type IIB coupling constant) is set to zero since it is projected

out by the orientifold that takes type II to type I. As remarked above, even though naive

dimensional analysis suggests that this interaction is not protected by supersymmetry, it

is known not to have the three-loop R4 divergence in four-dimensional N = 4 supergravity

that would have been expected for an unprotected interaction. This function, which is

invariant under S-duality, has some interesting features. Firstly, it correctly reproduces

the tree-level and one-loop coefficients in the heterotic and type I/IA theories and has no

– 5 –
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further perturbative corrections. Furthermore, it possesses an infinite set of D-instanton

contributions in both the HO and type I theories but not in the HE and type IA theories.

These non-BPS objects are identified with the effects of wrapped euclidean world-lines of

D0-branes. One might be skeptical that these non-BPS effects can be predicted accurately,

although it has been forcibly argued [11] that the presence of Z2 instantons associated with

the homotopy relation π9(SO(32)) = Z2 is an essential feature in the type I theory. This

homotopy condition would also allow instantons in the HO theory, but their origin is much

more questionable. The fact that π9(E8) = 0 means such instantons must be absent in the

HE theory, which is indeed a property of the amplitude presented in section 8.3.

Higher order terms in the low-energy expansion can arise from many sources. Firstly,

there are higher order contributions from the low-energy expansion of the tree and loop

terms described above. In addition there are many further loop diagrams that are very

complicated to analyse. Since these correspond to non-BPS protected interactions it is un-

clear to what extent they illustrate genuine features of the string theories. Nevertheless, in

section 9 we will consider the most intriguing example of such a diagram, that contributes

to the four gauge particle amplitude at order s t8triF
4
i . This is a loop of gauge particles

localised in a boundary, but with one gauge propagator replaced by a gravitational prop-

agator. It is associated with a function that transforms in a non-trivial manner under

S-duality. Although we do not expect that it is the complete story, since we are ignoring

intrinsically “stringy” effects that we do not have control over, it is of interest that this

diagram contains perturbative and instanton contributions in the HO and type I theories

with sensible powers of the coupling constants.

A summary and discussion of these results are given in section 10.

2 Feynman diagrams in the Hor̆ava-Witten geometry

In this section we will review the Feynman rules in the Hor̆ava-Witten geometry that

enter into the calculations in the subsequent sections. The action described in [1, 2] takes

the form

S = Ssugra + SYM + Sboundary , (2.1)

which is the sum of the bulk eleven-dimensional supergravity action, the ten-dimensional

super Yang-Mills action and a boundary contribution that includes the gauge and grav-

itational Chern-Simons interactions that are required in order to ensure the absence of

chiral anomalies, as discussed in [2]). Whereas Ssugra and SYM are second order in deriva-

tives, Sboundary includes gravitational interactions of fourth order in derivatives, namely

the gravitational Chern-Simons term, a R2 term (where R is the riemann curvature) and

a (∂H)2 term (where His the field strength of the two-form potential). The action S in-

cludes all the interactions that contribute to three-point functions. Ten-dimensional N = 1

supersymmetry guarantees that these interactions are not renormalised by loop corrections.

In discussing the gauge particle and graviton tree diagrams it will be sufficient to use

the bosonic components of the Feynman rules obtained from the action (2.1). However, the

discussion of loop amplitudes necessarily involves supermultiplets of circulating particles.

For the purpose of evaluating one-loop amplitudes in this paper it will prove efficient to
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make use of an extension of the supersymmetric first-quantised light-cone gauge description

of eleven-dimensional supergravity compactified on a circle in [12]. This involves vertices

describing the emission of a supergraviton from a superparticle world-line. The extension

to include vertices localised in the Hor̆ava-Witten boundaries will be briefly described in

section 2.3 (its application to a loop amplitude in the bulk will be described in sections 8.2

and 8.3).

2.1 The action in the HW background

In writing the various terms in the action below we will only be explicit about the in-

teractions involving bosonic fields — the fermionic terms required by supersymmetry are

explicit in many references to earlier papers. The bosonic terms that enter in the total

action S in (2.1) are the following. The purely eleven-dimensional supergravity action is

given by [13]

Ssugra =
1

2κ2
11

[∫
M11

d11x
√
−G(11)

(
R− 1

2
|G4|2

)
− 1

6

∫
M11

C3 ∧G4 ∧G4

]
, (2.2)

where G4 = dC3 is the four-form field strength associated with the three-form potential

C3 and G(D) is the determinant of the D-dimensional space-time metric (with D = 11 in

the above case). In our later applications the integration domain M11, will be the space

M9 × S1 × S1/Z2 of the Hor̆ava-Witten geometry compatified on S1.

The ten-dimensional supersymmetric Yang-Mills action [14] is given in its generally

coordinate invariant form by the sum of terms on each boundary

SYM = − 1

4λ2

∫
M11

d11x
√
−G(11)

1

30

[
Tr1 (FµνF

µν) δ(x11) + Tr2 (FµνF
µν) δ(x11 − L)

]
,

(2.3)

where the symbol Tri indicates a trace in the adjoint representation of (E8)i (which will be

broken to its SO(16) subgroup upon compactification on S1) where the subscript i labels

the boundary. The Yang-Mills fields depend only on the ten dimensional space-time of

the boundaries, but the metric degrees of freedom also depend on x11 so this interaction

includes the vertex coupling bulk gravity to Yang-Mills fields with arbitrary p11 momentum.

The interactions that we are including in the boundary term in (2.1) comprise the

Yang-Mills and Lorentz Chern-Simons interactions, as discussed in [1, 2], together with R2

and (∂ H)2 interactions, where H = dC, and the only non-zero boundary components of

C are Cµν11. So we will write

Sboundary = SCS + SR2 + S(∂ H)2 . (2.4)

The Chern-Simons terms in SCS are obtained by modifying the supergravity action (2.2)

by replacing G4 by

G4 = dC(3) + Ω3 , (2.5)

where Ω3 is defined by

Ω3 = −δ(x11)

(
Ω3YM −

1

2
Ω3L

)
− δ(x11 − L)

(
Ω3YM −

1

2
Ω3L

)
, (2.6)
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and we need to impose the condition that only the components C
(3)
µν11 of the bulk three-form

are non-zero at the boundary (and we are again ignoring fermionic contributions). The

quantities Ω3YM and Ω3L are the standard Yang-Mills and Lorentz Chern-Simons forms.

The action now includes the boundary terms

SCS =

(
κ2

11

λ2

)∫
M11

d11x
√
−G(11)

(
dC(3) ∧ ∗Ω3 +

1

2
Ω3 ∧ ∗Ω3

)
, (2.7)

where the ∗ operation is with respect to the ten-dimensional boundary space-time. The

first term determines the Chern-Simons contribution to on-shell three-point functions (to

be discussed in the following section) in which two states may be Yang-Mills gauge bosons

or bulk gravitons and the third state is a Kaluza-Klein mode of the bulk Cµν11 field. The

second term in (2.7) is a contact term that plays an important rôle in the context of the

four-particle amplitudes to be considered later. This term is singular since it involves the

integral of the product of two δ(x11) (or δ(x11 − L)) factors, arising from the product of

two Ω3 factors localised on the same boundary, resulting in a term proportional to δ(0) in

SCS. Similar divergent terms in the low energy action and their regularisation were briefly

discussed in section 4 of [2]. Such divergences cancel in physical amplitudes. For example,

in four-particle tree amplitudes beginning and ending on the same boundary the contact

term divergence cancels with a similarly divergent contribution from the Feynman diagram

in which a propagator joins two three-point vertices located in the same boundary.

Note also that the presence of SCS leads to a modification of the Bianchi identity for

the four-form field strength, which has an anomalous boundary contribution of the form

(dG)11µνρσ = −6

(
κ2

11

λ2

)[
δ(x11)

(
1

30
Tr1F[µνFρσ] −

1

2
trR[µνRρσ]

)
+ δ(x11 − L)

(
1

30
Tr2F[µνFρσ] −

1

2
trR[µνRρσ]

)]
, (2.8)

which is necessary in order to ensure the cancellation of chiral gauge and gravitational

anomalies.

The second higher derivative gravitational term in Sboundary in (2.4) is the four-

derivative gravitational term that is quadratic in curvature tensors, and gives higher deriva-

tive contributions to the two-graviton and three-graviton vertices. This R2 term has an

action of the form

SR2 =
1

8λ2

∫
M11

d11x
√
−G(11)

(
δ(x11) + δ(x11 − L)

)
RµνρσR

µνρσ (2.9)

(where R is the Riemann curvature scalar and Rµν is the Ricci tensor). In writing this

expression we have set to zero the coefficients of R2 and Rµν R
µν interactions, which vanish

on shell and can be removed by field redefinitions. The R2 interaction in (2.9) does not

vanish on shell — it contributes to on-shell graviton two-point functions localised on the

boundaries. The gravitons carry arbitrary Kaluza-Klein momentum, p11 while the tan-

gential momentum kµ is conserved. It also contributes an on-shell three-graviton vertex

localised on the boundary. These contributions to the amplitude will be discussed in the

next section.
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The final boundary interaction between bulk bosons that contributes to two-particle

and three-particle amplitudes has the form (see [15])

S(∂ H)2 =
1

8λ2

∫
M11

d11x
√
−G(11)

(
δ(x11)+δ(x11−L)

)
(∂µHνρσ ∂ρHσµν + ∂µH

µρσ ∂νHνρσ) ,

(2.10)

where Hµνρ = ∂[µCνρ]11. This interaction again contributes non-vanishing on-shell two-

point and three-point functions with a pair of external on-shell bulk C-fields, as will also

be discussed in the next section.

We note, for future reference that according to Hor̆ava and Witten the gravitational

coupling, κ11 and the gauge coupling, λ are related to the eleven-dimensional Planck

length by

2κ2
11 = (2π)8 `911 λ2 = 2π(4πκ2

11)2/3 = (2π)7 `611 . (2.11)

2.2 Bulk and boundary to boundary gravity propagators

Before considering the scalar propagator on an orbifold we recall the form of the momentum

space propagator on a circle of radius `11R11, which is given by

D(p2,m) =
1

p2 + p2
11

, (2.12)

where the eleven-dimensional momentum (pµ, p11) has components pµ in the ten Minkowski

space dimensions and the momentum in the x11 direction is quantised in units of `11R11

p11 =
m

R11 `11
=
mπ

L
. (2.13)

The norm p2 = pµp
µ (µ = 1, 2, . . . , 10) is with respect to the Minkowski metric

diag(−,+, . . . ,+). The propagator between points x11 and y11 on S1 is given by the

Fourier sum

G(p;x11 − y11) =
1

2L

∞∑
m=−∞

ei p11 (x11−y11)D(p2,m) , (2.14)

where the Minkowski space directions 1, 2, . . . , 10 have been left in momentum space.

We are interested in formulating Feynman rules in the presence of the Z2 orbifold

boundary conditions at x11 = 0 and x11 + L, as was considered in [9], in which case

the momentum conjugate to x11 is quantised as given in (2.13). The scalar propagator

between two points in the orbifold direction is obtained by imposing the additional orbifold

boundary conditions, which require the propagator to be invariant under x11 → −x11. This

is achieved by identifying the propagator on the orbifold as the combination

G(p;x11, y11) = G(p;x11 − y11) +G(p;x11 + y11)

=
1

2L

∞∑
m=−∞

1

p2 + p2
11

(
eip11(x11−y11) + eip11(x11+y11)

)
=

1

L

∞∑
m=−∞

1

p2 + p2
11

cos
(
p11x

11
)

cos
(
p11y

11
)
. (2.15)
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In considering loop amplitudes later it will be useful to note the following product

relations

∫ L

0
dy11G(p1;x11, y11)G(p2; y11, z11) =

1

L

∞∑
m=−∞

(
2∏
r=1

1

p2
r + p2

11

)
cos
(
p11x

11
)

cos
(
p11z

11
)
,

(2.16)

and∫ L

0
dx11

∫ L

0
dy11

∫ L

0
dz11

∫ L

0
dw11 G(p1;x11, y11)G(p2; y11, z11)G(p3; z11, w11)G(p4;w11, x11)

=
1

2

[
4∏
r=1

(
1

p2
r

)
+

∞∑
m=−∞

4∏
r=1

(
1

p2
r + p2

11

)]
(2.17)

We will later be interested in supergraviton propagators that are constrained to begin and

end on either boundary, which involve the following two slightly different expressions for

the propagator.

Endpoints on the same boundary. Setting x11 = 0 = y11 in (2.15) gives

G(pM ; 0, 0) =
1

L

∞∑
m=−∞

1

p2 + p2
11

=
1

π`11R11

∞∑
m=−∞

∫ ∞
0

dσe−σ(p2+p211)

=
1√
π

∞∑
n=−∞

∫
dσσ−

1
2 e−σp

2−L
2

σ
n2

(2.18)

where the last step involves a Poisson summation. This transforms the sum over Kaluza-

Klein modes of charge m into the sum of windings of the propagator around x11 with

winding number n. The integral can be performed explicitly, giving

G(pM ; 0, 0) =
1√
p2

∞∑
n=−∞

e−|2n|
√
p2L =

1√
p2

(
1 + 2

∞∑
n=1

e−|2n|
√
p2L

)

=
cosh(

√
p2L)√

p2 sinh(
√
p2L)

=
1√

p2 tanh(
√
p2L)

. (2.19)

The propagator G(pM ;L,L) is given by the same expression.

Endpoints on different boundaries. Setting x11 = 0 and y11 = L in (2.15) gives

G(pM ; 0, L) =
1

L

∞∑
m=−∞

(−1)m

p2 + p2
11

=
1

L

∞∑
m=−∞

(−1)m
∫ ∞

0
dσe−σ(p

2+p211)

=
1√
π

∞∑
n=−∞

∫
dσσ−

1
2 e−σp

2−L
2

σ
(n+ 1

2
)2 , (2.20)
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where the last step again follows by Poisson summation. Once again, performing the

integral gives the expression

G(pM ; 0, L) =
1√
p2

∞∑
n=−∞

e−|2n+1|
√
p2L

=
1√

p2 sinh(
√
p2L)

. (2.21)

The propagators of the bosonic supergravity fields, the metric and three-form field, involve

extra numerator factors arising from their spin. These were presented in detail in [9] and

were important in determining the tree diagram with a propagator joining the boundaries.

In subsequent sections we will make use of the expressions in [9] in order to avoid repeating

those details here.

It will prove convenient to introduce a matrix notation for the various propagators

terminating on the Horav̆a-Witten walls by defining the components of a matrix Dij

(i, j = 1, 2) by

D11(p2,m) = D22(p2,m) = G(pM ; 0, 0) = G(pM ;L,L) (2.22a)

D12(p2,m) = D21(p2,m) = G(pM ; 0, L) . (2.22b)

We may now begin to consider the Feynman diagrams that describe gauge and graviton

scattering amplitudes in the Hor̆ava-Witten supergravity background. We will begin with

the simplest cases of two-point and three-point functions (which only receive contributions

from the Chern-Simons and R2 interactions).

2.3 On-shell boundary two-point and three-point functions

Yang-Mills/graviton three-point function. The Yang-Mills action, SYM (2.3) that is

localised on the boundaries contributes to the usual ten-dimensional interactions between

gauge bosons and gravitons, together with the three-point interaction between Yang-Mills

states and a graviton carrying non-zero p11. The on-shell three-point function between

Yang-Mills states and a bulk graviton polarised in directions parallel to the boundaries is

given by

AYM grav = ε(1)µ1ζ(2)µ2ν2ε(3)µ3
(
ηµ3µ1k

(3)
µ2 + ηµ2µ3k

(2)
µ1 + ηµ1µ2k

(1)
µ3

)
k(1)
ν2 trv (T a1T a3) .

(2.23)

In this expression the external gauge bosons have null Minkowski momenta, k
(r)
µ (r = 1, 3),

with |k(r)| = 0 and polarisation vectors, ε
(r)
µ satisfy k

(r)
µ ε(r)µ = 0. The external graviton

has eleven-dimensional momentum p(2) = (−(k(1) +k(3))µ, p
(2)
11 ) and symmetric polarisation

tensor ζ(2)[µν], which satisfies (k(1) +k(3))µζ
µν = 0. When viewed from ten dimensions this

bulk state has Kaluza-Klein mass given by (mass)2 = (p
(2)
11 )2, which follows from the eleven-

dimensional massless condition, (p(2))2 = 0, Before compactification the matrix T (1) is a

generator in the adjoint of the E8 gauge group associated with the gauge particle labelled

r. After compactification on S1 with the insertion of an appropriate Wilson line, the gauge

group is broken to SO(16). In that case the external Yang-Mills states are either massless

SO(16) gauge particles or massive SO(16) spinor states, as will be discussed in more detail

in section 4.
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Yang-Mills Chern-Simons three-point function. The linearised Yang-Mills Chern-

Simons interaction in SCS (2.7) is given by

`211

2R11
AAµ ∂νA

A
ρ

(
∂µCνρ11 + ∂νCρµ11 + ∂ρCµν11

)
. (2.24)

Recall that the ten-dimensional antisymmetric tensor potential is identified with the zero

Kaluza-Klein charge of the three-form, Bµν = Cµν11 |p11=0 . This gives rise to a three-point

function of the same form as (2.23) but with an antisymmetric polarisation tensor wave

function for the Cµν11 field, so that

AYM CS =
`211

R11

[
(ε(1)k(2))(k(3)ζ(2)ε(3)) + (ε(3)k(2))(k(1)ζ(2)ε(1))

]
tr
(
T (1)T (2)

)
. (2.25)

Although knowledge of the bosonic components of the propagators and vertices is

sufficient to construct the gauge and graviton tree diagrams, when we discuss loop diagrams

we will make implicit use of a supersymmetric formalism. This will be based on an extension

of the first-quantised light-cone formalism used to describe the S1 compactification of

eleven-dimensional supergravity [12] to the Hor̆ava-Witten background. The linearised

forms of the interactions in S (2.1) arise in this formalism as expectation values of vertex

operators that describe the emission of single particle states from a world-line in a manner

that is modelled on the vertex operator construction of light-cone gauge closed superstring

theory. For present purposes we need to extend the formalism to include vertex operators

localised in either boundary, acting on states that may be in either the boundary Yang-

Mills supermultiplet or the components of the bulk graviton that couple to the boundary.

For example, the three-point interactions between a pair of Yang-Mills particles and the

bulk graviton or C-field are given by a matrix element of the form

AYM bulk = 〈ε(1), k(1)|V YM
bulk(k(2), ζ(2))|ε(3), k(3)〉 tr

(
T (1)T (2)

)
, (2.26)

where Vbulk(k(2), ζ(2)) is a vertex operator describing the emission of an on-shell bulk state

from the world-line of a Yang-Mills superparticle embedded in light-cone superspace. The

emitted state is a graviton when ζ(2)µν is symmetric and an on-shell Cµν11 state when it is

antisymmetric. This reproduces the three-particle interactions in (2.23) and (2.25). This

vertex operator is a function of bosonic and fermionic light-cone superspace coordinates xi

and SA, which are similar to the zero modes of the coordinates that enter the light-cone

description of the heterotic string. Since we will only use very general features of this

formalism we will not present the details, which can be reconstructed from [12].

Lorentz Chern-Simons, R2 and (∂H)2 interactions. The on-shell amplitude for

three bulk tensor bosons (the graviton or C-field) interacting on a boundary is given by

Abulk |boundary =

(
tµ1µ2µ3 +

`211

R11
k(1)
µ3 k

(2)
µ1 k

(3)
µ2

)
tν1ν2ν3ζ

(1)µ1ν1ζ(2)µ2ν2ζ(3)µ3ν3 , (2.27)

where tν1ν2ν3 is given by

tµ1µ2µ3 = ηµ1µ2k
(1)
µ3 + ηµ2µ3k

(2)
µ1 + ηµ3µ1k

(3)
µ2 , (2.28)

and we have specialised to the situation in which the only non-zero components of both

the metric tensor and the Cµν11 field are those parallel to the boundaries.
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The Lorentz Chern-Simons interaction. When one of the three polarisation tensors

is antisymmetric in (µ, ν) the t...t... term in (2.27) does not contribute and this expression

describes the linearised gravitational Chern-Simons interaction in SCS in (2.7). This is

given by

ACS grav. =
`211

R11
tν1ν2ν3 k

(1)
µ3 k

(2)
µ1 k

(3)
µ2 ζ

{µ1ν1}
1 ζ

[µ2ν2]
2 ζ

{µ3ν3}
3 , (2.29)

where state number 2 is the C-field and the other two states are gravitons (and ζ{µν}

denotes a symmetrised tensor).

This interaction is reproduced by replacing the Yang-Mills states in (2.25) by graviton

states (which entails replacing the gauge states and their colour factors by the tensor

graviton states) and once again using an antisymmetric polarisation tensor for particle 2.

The resulting matrix element is

ACS grav. = 〈ζ(1), k(1)|Vbulk(k(2), ζ(2))|ζ(3), k(3)〉 . (2.30)

The R2 and (∂ H)2 interactions. The two-point functions for gravitons may be ob-

tained by linearising the curvature tensors in (2.9). The two gravitons have momenta

(kµ, p
(1)
11 ) and (−kµ, p(2)

11 ), where we have used conservation of the ten-dimensional momen-

tum (k(1) = −k(2) = k). The mass-shell condition requires that k2 +(p
(1)
11 )2 = k2 +(p

(2)
11 )2 =

0 so that p
(1)
11 = ±p(2)

11 . This leads to a two-particle on-shell vertex given by

A2h =
1

2(2π)9`611

ζ(1)
µν ζ

(2)µν (k(2))2 , (2.31)

where we have used the physical state condition k
(r)
µ ζ(r)µν = 0 and ζ(r)µν is symmetric for

external gravitons. The (∂ H)2 interaction gives rise to the same on-shell two-point function

with the graviton polarisations replaced by antisymmetric ζ(1)µν and ζ(2)µν , which are the

Cµν11 polarisation tensors.

The three-point functions for three gravitons or two C-states and one graviton can be

extracted from (2.27) by a suitable choice of polarisation tensors. The t...t... term simply

reproduces the gravitational interaction of a graviton with two gravitons or with a pair of

C’s. The remaining part of the interaction in (2.27) is quartic in momenta and corresponds

to the three-field terms in the expansions of the effective interactions of the form R2 and

(∂ H)2. The on-shell three-point function resembles that discussed in [16–18] in the context

of the interactions of string ground states in the background of the D8-brane.

These three-point functions are reproduced in the world-line first quantised formalism

by replacing the antisymmetric polarisation tensor ζ(2) in (2.30) by the symmetric graviton

polarisation. Choosing the external states to either be gravitons or C-states leads to the

two kind of three-point functions described in the previous paragraph.

While the perturbative rules for constructing amplitudes follow from the local action

as described above, the string theory interpretation requires an extrapolation of these rules

into a regime in which perturbation theory may be questionable. This is well-illustrated by

the interpretation of the amplitudes that involve Kaluza-Klein modes in the x11 direction

(the orbifold direction) that have masses given by p11 = m/(`11R11) (m ∈ Z). Such modes
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decay since p11 is non conserved because of the orbifold boundary conditions. The spectrum

of particle states in the Hor̆ava-Witten background compactified on M9 × S1/Z2 × S1 is

briefly reviewed in appendix A.4.

In later sections, we will encounter amplitudes in which these unstable Kaluza-Klein

modes contribute to propagators in a manner that accounts for certain low order terms

in the effective action that are presumably protected by supersymmetry. In particular,

we will encounter interesting instanton terms in the HO and type I amplitudes, where

the instantons correspond to winding configurations of euclidean world-lines of these non-

perturbative states of the HE and type IA theories.

3 Some features of four-particle Yang-Mills amplitudes in N = 1 string

theories

Before describing the Yang-Mills amplitude calculations in the Hor̆ava-Witten background

we will summarise some features of the amplitudes that arise in different string theory

limits. The following are some of the features that we expect to reproduce. Although most

of these have been noted before (see, in particular, [7, 8]) there are some subtleties that

will be explained in more detail in [10].

• Upon compacitifcation to nine dimensions on a circle of radius rhe = 1/rho (in the

presence of appropriate Wilson lines) the SO(16) × SO(16) tree-level amplitudes

in the HO and HE theories are equivalent under T-duality, which equates rhe/g
2
he

with rho/g
2
ho. The HO/HE tree level heterotic expression has a Yang-Mills pole

g−2
het t8 trF 4/st, where the symbol tr again indicates the trace in the fundamental rep-

resentation of either SO(16) subgroup (and ghet is either of the heterotic coupling

constants). This is produced by a disk diagram in the type I/IA theories. The tree

level terms with a graviton pole in the HO or HE theories have the form t8(trF 2)2/s,

which is produced by an annulus (one-loop) diagram in the type I/IA theories.

• The first non-pole term in the low-energy expansion of the tree amplitudes in both

the heterotic theories has the form g−2
het t8(trF 2)2. This arises as a three-boundary (i.e.

two open-string loop) term proportional to gI in the ten-dimensional type I theory

(and vanishes in the ten-dimensonal type IA theory), which is a striking illustration

of the way the perturbation expansion of the heterotic theory is reorganised by its

type I parameterisation.6 Note further that the open-string one-loop (annulus) con-

tribution to t8(trF 2)2 in the type I theory vanishes at large rI, which is consistent

since otherwise S-duality would require a term of order 1/gho in the HO theory, which

does not exist. However the annulus contribution to t8 (triF
2
i )2 in the type IA theory

(i.e., in the large rIA limit) is non-vanishing and is dual to a one-loop term in the

HE theory.

6The leading term in the low-energy expansion of the three-boundary open string diagram naively has

the form s t8(triF
2
i )2 but there is closed-string (graviton) propagator that cancels the factor of s, which

accounts for the agreement with the heterotic expression.
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• The next order in the low-energy expansion of the tree amplitudes in the HO the-

ory contributes a term of the form g−2
ho ζ(3)s t8trF 4 (where we have emphasised the

occurrence of a ζ(3) coefficient). Likewise, in the type I theory the tree-level disk

diagram contributes g−1
I ζ(3)s t8trF 4. These two expressions ought to be related by

HO/type I duality, but this cannot act term by term since it would transform the

type I coefficient g−1
I into gho, which is not a possible power of gho. These tree-level

terms must be part of a function of the coupling that is transforms appropriately

under the S transformation (S : gI → gho = g−1
I ), which can be viewed as a remnant

of the SL(2,Z) duality of the type IIB theory. Furthermore, the next perturbative

contribution to s t8trF 4 in the HO theory is at one loop, whereas the one-loop term

vanishes in type I and the next contribution is of order gI and is associated with

world-sheets with the geometry of a torus with a single boundary. This is the same

order in gI as the two-loop disk diagram (which has three boundaries), which con-

tributes to gI t8(trF 2)2 as stated earlier (but not to gI t8trF 4 or gIs t8trF 4 [10]). We

will see in section 9 how these general features are reproduced by loop contributions

to the four gauge particle amplitude, although since s t8trF 4 is not protected from

loop corrections, we do not expect our analysis to give the complete expression for

its coupling constant dependent coefficient.

• The one-loop amplitudes for the two ten-dimensional heterotic theories are inde-

pendent of the couplings and are interchanged by the identification rho = 1/rhe.

However, the low-energy limits of the theories look rather different. In the large-rhe

limit the leading behaviour in the HE theory is t8

(∑
i=1,2(triF

2
i )2 − tr1F

2
1 tr2F

2
2

)
,

whereas in the large-rho limit of the HO theory the leading behaviour is trSO(32)F
4 =

tr1F
4
1 + tr2F

4
2 [19]. In both cases the traces are evaluated in the fundamental repre-

sentation of either SO(16) sub-group.

The type I theory has a t8trF 4 tree (disk) interaction but does not generate a one-

loop (annulus) contribution to t8trF 4 even in D = 9 (i.e., for finite rI) [10]. There is a

contribution from the annulus diagram to an interaction that is suppressed by a power

of rI of the form t8 (
∑

i=1,2(triF
2
i )2−tr1F

2
1 tr2F

2
2 )/rI, which leads to a contribution to

the type IA theory at large rIA [10] that agrees with the expression in the HE theory.

Whereas in the HE and HO theories the t8(trF 2)2 interaction arises at tree level,

in the ten-dimensional type I theory it arises at two loops (i.e., at order gI) and is

unrenormalised.

• The preceding description of parity-conserving terms in the low-energy action has its

counterpart in the parity-violating sector. These parity-violating terms are important

for ensuring the absence of chiral anomalies. The absence of chiral anomalies in the

ten-dimensional heterotic theories is attributed to the presence of anomaly cancelling

terms [20] of the form B ∧ X(gs)
8 (F,R) ≡ ε10BY

(gs)
8 (F,R), which arises as one-loop

effects associated with the interaction of the Neveu-Schwarz/Neveu-Schwarz antisym-

metric tensor with a total of four gauge bosons and gravitons on a toroidal world-

– 15 –



J
H
E
P
1
2
(
2
0
1
6
)
0
6
0

sheet. The notation, which is reviewed in appendix B, emphasises that these terms

are related by supersymmetry to the parity conserving terms contained in t8 Y
(gs)

8 .

As explained in [2], in the Hor̆ava-Witten description of the HE theory the eight-form

Y
(gs)

8 is naturally expressed as the sum of three pieces7

Y
(gs)

8 (F1, F2, R) = 2Y
(vw)

8 (R) + 2

(
1

30
Tr1F

2
1 −

1

2
trR2

)2

+2

(
1

30
Tr2F

2
2 −

1

2
trR2

)2

,

(3.1)

where Y
(vw)

8 (R) (implicitly defined by (B.13) and (B.12)) comes from the bulk inter-

action, and ( 1
30TriF

2
i − 1

2trR2)2 arises as an effect of either boundary (labelled i).8

Upon compactification this has coefficient rhe = 1/rho and therefore vanishes in

the large rho limit. The HO anomaly-cancelling interaction in the large-rho limit,

where the gauge group SO(32) is unbroken, is a one-loop interaction of the form

ε10B Y
(gs)

8 (F,R), where

Y
(gs)

8 (F,R) = 8 trSO(32)F
4 − trF 2trR2 +

(
trR4 +

1

4
(trR2)2

)
. (3.2)

This is related by S-duality to a similar expression in the type I theory which is

associated with an amplitude coupling a Ramond-Ramond B-field and a total of four

gravitons and gauge bosons to a disk world-sheet.

In the course of indicating how these features arise from the analysis of supergravity

coupled to Yang-Mills in the Hor̆ava-Witten background we will be led to several insights

into possible non-perturbative effects that seem to be required required for their consistency.

4 Yang-Mills four-particle tree amplitudes

We will here consider some contributions of tree-level four-particle gauge amplitudes,

which are relatively straightforward to evaluate. The external scattering states have null

Minkowski momenta, k
(r)
µ (r = 1, 2, 3, 4), with k(r) · k(r) = 0. The Yang-Mills polarization

vectors, εµ satisfy kµ ε
µ = 0. The resulting amplitude is proportional to a function of the

Mandelstam invariants multiplying four powers of the linearised field strength, (F̂µ,ν)AB
(µ, ν = 1, . . . , 10 and A ,B = 1, . . . , 496), which belongs to the 496-dimensional adjoint

representation of E8 × E8. The Mandelstam invariants are defined by

s = −(k(1) + k(2))2 , t = −(k(1) + k(4))2 , u = −(k(1) + k(3))2 . (4.1)

The linearised field strength for the particle labelled r has the form9

(F̂ (r)
µν )BC ≡ F̂µν ε(r)Ar TArBC

= (k(r)
µ ε(r)ν − k(r)

ν ε(r)µ ) ε(r)Ar TArBC . (4.2)

7Note that since anomaly cancellation is only of relevance in ten dimensions where E8 is unbroken, the

symbol Tr here refers to trace in the adjoint representation of the unbroken E8 group.
8The definition of X

(gs)
8 in [2] is a factor of 8 greater than our expression and the definition of X

(vw)
8 is

a factor of 4 greater than our expression.
9Here and in the following we indicate a linearised approximation by a hat.
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In the uncompactified ten-dimensional gauge theory TA (A = 1, . . . , 496) are 496×496-

dimensional matrices in the adjoint representation of the Lie algebra of E8 × E8 and εr Ar

is the polarization vector in the internal gauge group space, which specifies the quantum

numbers of the particle labelled r. This may be written as the sum of the field strength in

each E8 factor of E8 × E8 in the form

F = F1 ⊕ F2 , (4.3)

where F1 and F2 are 248×248 matrices in the adjoint representation of each of the E8’s (and

two-forms in µ, ν). Denoting the generators of the adjoint representation for the E8 labelled

i = 1, 2 by the matrices (TAi )BC (where A,B,C = 1, . . . , 248), with [TAi , T
B
j ] = δij f

AB
C T

C
i ,

we have

F1 = FA1 TA1 , F2 = FA2 TA2 , (4.4)

and so

TrE8×E8F
4 =

1

100
Tr1(F 2

1 ) Tr1(F 2
1 ) +

1

100
Tr2(F 2

2 ) Tr2(F 2
2 ) , (4.5)

where we have used

Tri(F
4
i ) =

1

100
Tri(F

2
i ) Tri(F

2
i ) , (4.6)

for i = 1, 2.

In the following we will discuss dualities that relate amplitudes in the heterotic and

type I/IA theories when one direction is compactified on a circle of radius `11R10. These

connections are most straightforward for amplitudes in which the scattering gauge particles

in nine dimensions are in a SO(16)×SO(16) subgroup of E8×E8, which transforms under

T-duality along the x10 direction into the same subgroup of Spin(32)/Z2.

The breaking of E8 × E8 is achieved by considering Wilson lines in both boundaries.

Recall that the E8 adjoint weights comprise the union of the SO(16) adjoint weights and

the SO(16) spinor weights. The Wilson line that breaks a boundary E8 gauge symmetry

to SO(16) is an element of the Cartan subalgebra of the form [21]

AIE8
=

1

`11R10
diag(1, 07) , (4.7)

where I is the index labelling the Cartan sub-algebra. The compactified theory then

contains a tower of Kaluza-Klein SO(16) adjoint states with square of the masses

n2

`211R
2
10

=
n2

`2Hr
2
he

=
n2

`2I g
2
IA

, (4.8)

with integer n, which includes the massless gauge potentials. These correspond to

D-particles in type IA theory [22]. There is also a tower of massive SO(16) spinor states

with square of the masses given by

(n− 1/2)2

`211R
2
10

=
(n− 1/2)2

`2Hr
2
he

=
(n− 1/2)2

`2I g
2
IA

, (4.9)
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which correspond to stuck D-particles10 in type IA theory [22]. In considering the duality

between the HE and HO theories we need to break both E8 subgroups to SO(16), which

involves the Wilson line in E8×E8 of the form AIE8×E8
= diag(1, 07, 1, 07)/(`11R10), which

gives masses to the SO(16) spinor states in both subgroups. Although the massive SO(16)

spinors will not be relevant to the gauge theory trees with massless external gauge states

that we will consider below, they are an essential ingredient in the discussion of loop

amplitudes in section 5.

The loop amplitude discussion in appendix D will also involve a discussion of the

breaking of the HO theory with SO(32) broken to SO(16)×SO(16). We are here interested

in the limit of M-theory of relevance to the HO string, which is the limit in which rho`H =

`11/(R10R11) → ∞. In this case the Wilson line is the element of the Cartan subalgebra

of SO(32) of the form [21]

AIho =
1

rho`H
diag

(
1

2

8

, 08

)
=
R10R11

`11
diag

(
1

2

8

, 08

)
, (4.10)

and gives rise to Kaluza-Klein tower of massive bi-fundamental states of SO(16) × SO(16)

with masses given by
R2

10R
2
11

`211

(n− 1/2)2 =
(n− 1/2)2

`2Hr
2
ho

, (4.11)

in addition to the Kaluza-Klein tower of adjoint states with the masses given in (4.8) (with

rhe replaced by rho).

An important point to note in considering the following expressions for scattering am-

plitudes is that the momentum conservation delta functions will not be explicitly included

in the amplitudes. However, in the compactified theory momentum conservation in the

compact x10 dimension involves the replacement of the continuous momentum conserva-

tion delta function δ(
∑4

r=1 k
(r)) by 2πR10`11 δ∑4

r=1 l
(r) , where the Kronecker delta imposes

conservation of the discrete (Kaluza-Klein) momenta of the external particles. Although

in this paper we will be setting l(r) = 0 it is obviously important to keep the volume fac-

tor, 2π`11R10. In the following this factor will always be included in the expression for a

compactified amplitude.

4.1 The Yang-Mills tree amplitude in a single boundary

In the following we will discuss Yang-Mills four-point amplitudes in which pairs of particles

may be in either of the Hor̆ava-Witten boundaries, and therefore in either of the SO(16)

subgroups of the two E8’s. The amplitude will therefore be written as a matrix, Aij = Aji,

where i, j = 1, 2 label the two subgroups.

The simplest example is the sum of tree amplitudes for the scattering of four gauge

bosons that are all in a particular SO(16) ⊂ E8 sub-group of E8 ×E8 associated with one

of the ten-dimensional boundaries, compactified on a circle in the x10 direction. The lowest

order contribution is given by the sum of poles in s, t and u channels, each corresponding

10In type IA theory, a single D-particle is necessarily stuck to the O8 planes and it is sub-threshold BPS

bound state.
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Figure 2. The Yang-Mills tree amplitude localised on one boundary (i.e. in a single E8).

to the propagation of an intermediate gauge boson, as shown in figure 2. If the gauge

particles are in the E
(1)
8 factor (where the superscript indicates which boundary we are

considering), the amplitude is proportional to

AYM-pole
11 =

R10

(2π)5`511

[
1

tu
tr(T

(1)
1 T

(2)
1 T

(3)
1 T

(4)
1 ) +

1

us
tr(T

(1)
1 T

(4)
1 T

(2)
1 T

(3)
1 )

+
1

st
tr(T

(1)
1 T

(3)
1 T

(2)
1 T

(4)
1 )

]
t8F̂

4 , (4.12)

where the superscript (r) (r = 1, 2, 3, 4) labels the scattering particle, T
(r)
1 = εr Ar TAr1

encodes the colour dependence and TAr1 is a matrix in the 16×16 representation of SO(16).

The coefficient is proportional to κ2
11/λ

2 together with the factor of 2π R10 `11 to account

for the compactification of the tenth dimension. Clearly, the expression for the amplitude

localised in the other boundary is AYM-pole
22 is obtained by replacing T

(r)
1 by T

(r)
2 . The

expression (4.12) simply reproduces the tree-level Yang-Mills amplitude in the low-energy

limit of any of the N = 1 string theories by the following straightforward interpretation of

the M-theory parameters in terms of those of the heterotic and the type I/IA superstring

theories, as follows.

The identities in (A.22)–(A.24) imply that the coefficient in the HE description is

`−5
H rhe g

−2
he and so (4.12) is proportional to the leading term in the low-energy expansion

of the Yang-Mills tree amplitude in the HE theory. The fact that this is proportional to

rhe implies that it has has a sensible ten-dimensional limit as rhe →∞.

Since T-duality implies that rhe/g
2
he = rho/g

2
ho the expression (4.12) transforms consis-

tently to the corresponding expression for the scattering of gauge particles in the SO(16)×
SO(16) subgroup of SO(32) in the HO theory.

Similarly, using (A.24) the prefactor in (4.12) is interpreted in terms of the parameters

of the type IA theory by noting that `−5
11 R10 = (`I)

−5g−1
IA , describing the four gauge boson

amplitude for scattering in the eight D8 branes and their mirrors that are coincident with

one of the orientifold O8 planes. Note, in particular, that this is independent of rIA since

– 19 –



J
H
E
P
1
2
(
2
0
1
6
)
0
6
0

Figure 3. Tree level four gauge boson amplitude generated via boundary Yang-Mills Chern-Simons

and gravitational interactions.

the scattering is entirely within one of the orientifold planes and is insensitive to the radius

of the eleventh dimension.

Finally, T-duality converts the type IA amplitude into the type I amplitude by the

replacement g−1
IA = rI g

−1
I using (A.5). This description involves a factor proportional to

the radius of the eleventh dimension, rI, since T-duality is non-local along that direction

and the type I amplitude depends on rI.

We see, therefore, the first (and rather simple) example of an amplitude that has a

consistent description in all four versions of the D = 10, N = 1 string theory.

4.2 The Yang-Mills/gravity tree amplitude in a single boundary

The first higher derivative contribution to the four-particle Yang-Mills amplitude arises

from tree diagrams with an intermediate graviton or antisymmetric potential propagating

between pairs of Yang-Mills particles on the same boundary. In this case the intermediate

particle propagates in the eleven-dimensional bulk and so the propagator involves the sum

over the quantised momentum p11 as in (2.19). This is analogous to the case considered

in [9], where the amplitude described a pair of scattering gauge particles in each boundary

joined by a propagator for a graviton or C field, which will be reviewed later (see (4.23)). In

the present case the gauge particles are scattering in a single boundary. The C field couples

to the boundary gauge fields via the (two-derivative) Chern-Simons interaction described

earlier while the graviton couples via its minimal coupling (which also has two derivatives).

An important difference from the case considered in [9] is that the boundary conditions

require the use of the propagator G(pM ; 0, 0) defined in (2.18) and (2.19). In addition, when

all four gauge particles are in a single E8 it is necessary to include the contact interactions

coming from the square of the gauge Chern-Simons three-form that is contained in the

|dĈ|2 term in the boundary action [2]. Applying the Feynman rules to this process, taking

into account the factor of κ2
11 in the propagator and λ−6 for each vertex, and using (2.11)

to express these parameters in terms of `11, gives the Yang-Mills four-particle amplitude
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with an intermediate graviton propagator and all gauge particles in E
(1)
8 ,

AYM-gravity
11 =

2`11R10

(2π)6 `411R11

(
tr(T

(1)
1 T

(2)
1 ) tr(T

(3)
1 T

(4)
1 )

∞∑
m=−∞

1

−s+ π2m2

L2

+

tr(T
(1)
1 T

(4)
1 ) tr(T

(2)
1 T

(3)
1 )

∞∑
m=−∞

1

−t+ π2m2

L2

+

tr(T
(1)
1 T

(3)
1 ) tr(T

(2)
1 T

(4)
1 )

∞∑
m=−∞

1

−u+ π2m2

L2

)
t8F̂

4 . (4.13)

We have again inserted a factor of 2π R10 `11 to account for the volume of the compactifi-

cation of the tenth dimension, as mentioned earlier. The standard kinematic factor t8F̂
4

is defined in (B.7). In writing this expression we have used the form of the propagator ex-

pressed as a sum over Kaluza-Klein modes in (2.18) since this will be useful for comparison

with the analogous expression in type I string theory.

We may now expand the terms in (4.13) in the low-energy limit, sR2
11`

2
11 = sg2

he`
2
H � 1,

using

1

`411R11

∞∑
m=−∞

1

−s+ m2

`211R
2
11

= − 1

`411R11 s
+ 2

R11

`211

∞∑
m=1

1

m2

1

1− R2
11`

2
11

m2 s

= − 1

`411R11 s
+ 2

R11

`211

∞∑
m=1

1

m2

(
1 +

R2
11`

2
11

m2
s+O(R4

11`
4
11 s

2)

)
=

1

`2H

(
− 1

`2Hg
2
hes

+
π2

3
+
π4

45
g2

he`
2
H s+O(g4

he`
4
H s

2)

)
, (4.14)

which is an expansion in powers of g2
he`

2
H s. Although we started with the expression

in (2.18) as a sum over Kaluza-Klein modes, the same result obviously arises starting from

the winding number expression (2.19), where we have

1√
−s

1

tanh(
√
−sL)

= L

[
− 1

L2s
+

1

3
+
L2s

45
+O(L4s2)

]
, (4.15)

with L = πR11`11. We will see that the sum over Kaluza-Klein charges makes a direct con-

nection with the form of the one-loop amplitude in the type I description of the amplitude.

The lowest order term in the low-energy expansion. The leading term in the

low-energy expansion of (4.13) using (4.14) contributes the pole term,

2`11R10

(2π)6 `411R11

(
1

s
tr(T

(1)
1 T

(2)
1 ) tr(T

(3)
1 T

(4)
1 ) + perms.

)
t8 trF̂ 4 . (4.16)

Its coefficient is interpreted in the HE string theory by using the M-theory/string theory

dictionary, giving the identification

R10

R11 `311

=
rhe

`3H g
2
he

. (4.17)
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Therefore, the leading term in the low-energy expansion reproduces the low-energy limit

of the tree-level heterotic E8 × E8 theory. This again transforms into the corresponding

HO tree amplitude under T-duality, using rhe/g
2
he = rho/g

2
ho.

The prefactor in the type I theory is obtained from the relation rho `
−3
H g−2

ho = rI (`I)
−3,

which reproduces the fact that the gravity/C-field pole arises in the one-loop amplitude

(the annulus diagrams) in the type I theory. T-duality implies that rI = (rIA)−1, so the

type IA amplitude vanishes in the rIA →∞ limit. This is the limit in which the non-zero

winding numbers of the bulk propagator are suppressed so the implication is that the zero

winding number contribution to the amplitude also vanishes.

Higher order terms. The next term in the low-energy expansion of the amplitude

in (4.13) is the term of order s0 in (4.14), so the coefficient (4.17) is multiplied by a factor

of −s π2R2
11/3, giving a contribution to the amplitude (4.13) of the form

AYM-gravity
11

∣∣∣
t8(tr1F 2

1 )2
=

R10R11

12 (2π)4 `11
t8F̂

4 tr(T
(1)
1 T

(2)
1 ) tr(T

(3)
1 T

(4)
1 ) , (4.18)

where we are again only displaying terms that are SO(16) singlet in the s-channel. This is

interpreted as a local contribution to the effective action of order t8 (tr1F
2
1 )2 (with a similar

term involving t8 (tr2F
2
2 )2). In the parameterisation of the various N = 1 string theories,

the coefficient of the amplitude is proportional to

R10R11

`11
=
rhe

`H
=

1

rho`H
=
rIA

`I
=

1

rI`I
. (4.19)

We therefore see that this interaction is associated with a one-loop effect in the HE and

IA theories in D = 10 (the large rhe or rIA limit) but vanishes in HO and type I in D = 10

(as rho or rI →∞).

The next term in the low-energy expansion of (4.13) is

AYM-gravity
11

∣∣∣
s t8(tr1F 2

1 )2
=
R10R

3
11`11

4720 (2π)2
s t8F̂

4 tr(T
(1)
1 T

(2)
1 ) tr(T

(3)
1 T

(4)
1 ) , (4.20)

which is expected to be a protected interaction that has no contributions beyond two loops

in the heterotic theories. Using the relations

R10R
3
11`11 = `Hrhe g

2
he = `H

g2
ho

r3
ho

= `Ir
3
IA = `I

1

r3
I

. (4.21)

This interaction is interpreted as a two-loop term in the ten-dimensional HE theory, which

could be (but has not been) checked by analysing the low-energy limit of the explicit genus-

two amplitude in HE perturbation theory [23–26]. This interaction is not present in the

ten-dimensional limit of the HO theory since it is suppressed by a factor of 1/r3
ho. It is also

interpreted as a one-loop contribution in the the open string theories. We will shortly see

(in (4.22)) that the curious-looking dependence of this term on rIA = 1/rI arises explicitly

from the expansion of the type I annulus amplitude.

More generally, the low-energy expansion of the propagator given in (4.14) produces a

sequence of terms of the form (g2
he`

2
H s)

n t8(triF
2
i )(triF

2
i ) that are interpreted as (n + 1)-

loop terms of order sn in the low-energy expansion of the HE theory. We do not expect
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Figure 4. One loop four gauge boson amplitude in type I string theory.

terms with n > 1 to be protected against higher loop contributions and there are sure to be

other contributions to these higher order terms in the low-energy expansion. In the type

I interpretation this is an expansion in powers of `2I s r
2
IA = `2I s /r

2
I , which is independent

of the type I coupling constant, gI, and therefore all such terms should originate from the

one-loop (annulus) diagram in the type I or IA theory, which we will now describe.

The type I annulus diagram in D = 9 dimensions [10]. We can see how the

structure of the low-energy expansion changes when n > 1 from the explicit form of the

type I annulus contribution to the double-trace terms in the four gauge particle amplitude.

Figure 4 represents the amplitude, which has a low-energy expansion proportional to

1

2(2π)7`I

∞∑
n̂=−∞

rI

s `2I + n̂2r2
I

[
tr(T

(1)
1 T

(2)
1 )tr(T

(3)
1 T

(4)
1 ) + tr(T

(1)
2 T

(2)
2 )tr(T

(3)
2 T

(4)
2 )

+ (−1)n̂tr(T
(1)
1 T

(2)
1 )tr(T

(3)
2 T

(4)
2 )

](
1 +O(`6I s

3)
)
t8F̂

4 , (4.22)

where we are specialising to the case where the quantum numbers of the external states have

been chosen so that T
(1)
i T

(2)
i and T

(3)
i T

(4)
i contain an SO(16) singlet and therefore couple to

the gravitational sector.11 The sum over n̂ is a sum over the winding numbers around the

x11 circle of the closed type I string propagating in the cylinder channel. This is interpreted

as the sum over Kaluza-Klein momentum of the type I open string when the world-sheet is

evaluated as an open-string loop (there is no winding number for the type I open string).

In the type IA description the open strings satisfy Dirichlet boundary conditions in the x11

direction so such strings carry no p11 momentum and the sum translates into a sum over

open-string winding modes. This, in turn, transforms into a sum over p11 Kaluza-Klein

momentum modes in the type IA closed-string description (while the Dirichlet boundary

conditions on the cylinder boundaries imply that the type IA closed string has no winding

around the x11 circle).

The graviton pole arises as the n̂ = 0 term in (4.22). The factor (s `2I + n̂2r2
I )−1 also

contains the same infinite sequence of massive poles as the field theory propagator in (4.14),

and expanding it in powers of s `2I /r
2
I gives the same infinite sequence of higher-derivative

terms as in the expansion of the supergravity tree diagram. The higher order terms in

the last parentheses arises from the Koba-Nielsen-like factor associated with excited string

states. This is a sign that the supergravity expression is not valid for interactions of order

11The expression includes the terms associated with the second SO(16) subgroup as well as the first. In

particular, the term proportional to tr1(T
(1)
1 T

(2)
1 )tr2(T

(3)
2 T

(4)
2 ) contains a factor from each SO(16) subgroup

and is obtained in Hor̆ava-Witten supergravity from a propagator stretching between the two boundaries,

as will be discussed in the next subsection.
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Figure 5. Tree-level four gauge boson amplitude generated via boundary Yang-Mills Chern-Simons

and gravitational interactions.

s2(trF 2)2 and higher (taking into account the fact the n̂ = 0 term in the sum cancels one

power of s). We see that these interactions, which are not protected by supersymmetry,

receive contributions from higher string modes, which are not captured by the supergravity

approximation.

4.3 Tree stretching between distinct boundaries

When particles 1 and 2 are in one E8 subgroup and particles 3 and 4 are in the other,

the ends of the tree are on distinct Hor̆ava-Witten boundaries, which was the example

considered in [9]. The amplitude again consists of the sum of Feynman diagrams with a

graviton or the third-rank potential, C propagating between the boundaries, (but with no

contact term). The resulting amplitude has the form ([9])

AYM-gravity
12 =

R10

(2π)5`211

tr1(T
(1)
1 T

(2)
1 ) tr2(T

(3)
2 T

(4)
2 )

1√
−s

1

sinh(
√
−sL)

t8F̂
4 , (4.23)

where we have again included a factor of 2π R10 `11 to account for the volume of the com-

pactification of the tenth dimension. The low-energy expansion can be obtained by using

1√
−s

1

sinh(
√
−sL)

= L

[
− 1

sL2
− 1

6
− 7L2s

360
+O(L4s2)

]
, (4.24)

or, equivalently, by expanding the expression for the propagator as a sum over Kaluza-Klein

modes (the first equation in (2.20)).

The lowest order term in the low-energy expansion. The leading behaviour

of the amplitude in the low-energy limit `2Hs, `
2
Ht, `

2
Hu � 1 reduces, after using the

M-theory/heterotic string theory dictionary to

AYM-gravity
12 = − 2rhe

(2π)6`3H g
2
he

tr1(T
(1)
1 T

(2)
1 ) tr2(T

(3)
2 T

(4)
2 )

1

s
t8F̂

4 , (4.25)

which again agrees with the corresponding term in the HE tree-level amplitude as noted

in [9]. The correspondence with the HO, type I and type IA theories follows as in the

discussion following (4.17).
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Higher order terms. The next term in the expansion of (4.23) following from (4.24)

AYM-gravity
12 = − R10R11

24 (2π)4`11
tr(T

(1)
1 T

(2)
1 ) tr(T

(3)
2 T

(4)
2 ) t8F̂

4 , (4.26)

which differs from that of (4.18) by a factor of −1/2. This relative factor of −1/2 between

the coefficient of tr(T
(1)
1 T

(2)
1 ) tr(T

(3)
1 T

(4)
1 ) in AYM-gravity

(1,1) and AYM-gravity
(1,2) arises from the

factor of (−1)m in (2.20) as can be seen from the identity∑
m 6=0

(−1)m

m2
= −1

2

∑
m 6=0

1

m2
. (4.27)

The relative factor of −1/2 is in accord with the computation of the annulus loop diagram in

type I string perturbation theory, where the coefficient (4.27) is obtained from the factor∑
n̂ 6=0(−1)n̂ (s `2I + n̂2r2

I )−1 in (4.22) in the s → 0 limit. This relative factor is also in

accord with the analysis given in equation (3.16) of [27], where, in the low-energy limit,

the one-loop effective action in HE string perturbation theory was found to have the form

rhe

96(2π)4`H

[
2∑
i=1

t8
(
triF

2
i

)2 − t8tr1F
2
1 tr2F

2
2

]
. (4.28)

This expression is the parity conserving partner of the parity-violating interaction that

serves to cancel the chiral gauge anomalies when decompactified to the ten-dimensional

heterotic E8×E8 limit. By contrast, the tree-level HE effective action for the double-trace

terms has the form [15, 28]

rhe

210(2π)4`Hg2
he

[
2∑
i=1

t8
(
triF

2
i

)2
+ 2 t8tr1F

2
1 tr2F

2
2

]
, (4.29)

which we will obtain from supergravity in the Hor̆ava-Witten background in section 4.4.

The terms that arise at the next order in the expansion of the propagator in powers

of (R2
11`

2
11s) following (4.28) include the `H g

2
hes t8(tr1F

2)2 interaction in (4.20) together

with terms related by permutations of the external particles and involving both SO(16)

subgroups. These are described by a two-loop effective action of the form

`Hrhe g
2
he

2880 (2π)2

[
2∑
i=1

t8
(
triF

2
i

)
d2
(
triF

2
i

)
− 7

4
t8(tr1F

2
1 )d2(tr2F

2
2 )

]
, (4.30)

which should agree with the low-energy limit of the genus-two contribution to HE super-

string theory.

To summarise, the tree amplitudes illustrated in figures 3 and 5 that have a single grav-

itational propagator capture the low order terms of the form sn t8(trF 2)2 in the low-energy

expansion of the N = 1 superstring four-point amplitude compactified on a circle. Indeed

the field theoretic amplitudes in (4.13) and (4.23) precisely reproduce the corresponding

factors associated with closed-string ground states with arbitrary winding numbers in the

contribution of the annulus (one open string loop) diagram to the four-point function of the
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Figure 6. A contribution to the low-energy expansion of the double-trace amplitude with pairs of

gauge particles in the same SO(16) subgroup.

Figure 7. A contribution to the low-energy expansion of the double-trace amplitude with pairs of

gauge particles in distinct SO(16) subgroups.

type I string theory (4.22). For n < 2 the agreement is exact, whereas stringy corrections

enter into the low-energy expansion of (4.22) at order s2 t8(trF 2)2. Other arguments (for

example, see [4]) suggest that this is a non-BPS interaction that is not protected against

higher loop corrections.

4.4 “Iterated” Yang-Mills tree diagrams

We will now consider an infinite class of generalised tree diagrams that are illustrated in

figures 6 and 7.

The black dots in these diagrams represent two-point functions induced by the presence

of the trR2 and (∂H)2 terms that enter as boundary interactions in (2.9). These vertices

have the form C s2 `−6
11 , where the dimensionless constant C can be determined from (2.31)

to have the value C = 1/2(2π)7. At any given order, the low-energy expansion of the
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amplitude involves the sum over all ways of arranging a given number of propagators to

form a chain linking the pairs of external gauge particles. Each propagator (D) introduces

a factor of κ2
11D = (2π)8 `911D/2. The pairs of gauge particle at the ends of the chains

may lie in the same SO(16) subgroup or in distinct subgroups, as is represented by the two

figures. and each chain of given length may have both endpoints on the same boundary

(and is of the form of the form D11 or D22 defined in (2.22a) or it may stretch between

boundaries (and is of the form D12 or D21). All such possibilities are to be summed over.

In figure 6 there is an even number of propagators linking the boundaries while in figure 7

there is an odd number.

The amplitude obtained by summing over all possible ways of joining the initial and

final pairs of gauge particles is given by the matrix

Aij =
R10

4(2π)5`211

tr(T
(1)
i T

(2)
i ) tr(T

(3)
j T

(4)
j ) t8 F̂

4

(
D

1− π `311s
2D/4

)
ij

. (4.31)

The indices i and j are not to be summed on the right-hand side of the above equation. This

expression can be written as an expansion in powers of π`311 s
2D/4. Each factor of D can

itself be expanded as a power series in R2
11`

2
11s (with the leading term ∼ 1/(πR11`11s)). In

terms of string theory parameters, the former is an expansion in powers of gIA`
2
I s/rIA and

the latter is an expansion in g2
he`

2
Hs. The term of zeroth order in the two-graviton vertex

manifestly reproduces the result obtained earlier due to the exchange of a single Dij between

the pairs of external gauge particles, which we previously related to the contribution of

closed-string winding number states to the annulus diagram in type IA string theory. If

we keep the leading term in the expansion of Dij , which is −(πR11`11s)
−1 (independent of

i, j), we have

Aij =
R10

2(2π)6R11`311

tr(T
(1)
i T

(2)
i )tr(T

(3)
j T

(4)
j )t8F̂

4 1

s

 1

1 +
`211

4R11
s

 (1 +O(`211R
2
11s))

= − 2rhe

(2π)6g2
he`

3
H

tr(T
(1)
i T

(2)
i )tr(T

(3)
j T

(4)
j )t8F̂

4 1

s

(
1

4 + `2Hs

)
(1 +O(`2Hg

2
hes)) . (4.32)

Thus, keeping only the massless Kaluza-Klein modes in Dij gives an expression that is

interpreted as a tree-level expression in the HE theory.

We may compare (4.32) with the expression for the tree-level four gauge particle am-

plitude in the heterotic string given in equation (4.4) of [15]. This is proportional to12

`3Hrhe

(2π)6g2
he

(
tu

24(4 + `2H s)
tr(T

(1)
1 T

(2)
1 )tr(T

(3)
1 T

(4)
1 )−

s `2H
4

tr(T
(1)
1 T

(2)
1 T

(3)
1 T

(4)
1 )
)

+ non-cyclic perms.

)(
25

`6H stu
+ ζ(3) +O(`2Hs)

)
t8 F̂

4 . (4.33)

12In [15] the heterotic string scale was chosen to be `2H = 1/2.
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We see that the supergravity amplitude in (4.32) is the component of the double-trace part

of this string theory tree amplitude that involves the 1/(stu) term in the last parenthesis.13

The dependence on string theory factors begins at order s2 (trF 2)2, which is not protected

by supersymmetry. and is the order at which the ζ(3) factor in the last parenthesis enters

in the expansion. Similarly, the single-trace term of order s trF 4 is not expected to be

protected by supersymmetry and also has a prefactor proportional to ζ(3). We will see

in section 9 how these ζ(3) terms can be motivated from the effect of loop amplitudes in

supergravity in the Hor̆ava-Witten background — although in these cases we do not expect

to reproduce the exact coefficients.

Note that the apparent pole at `2Hs = −4 in (4.33) is cancelled by stringy corrections

that are subsumed in the terms of O(s`2H) in the last parenthesis. Such a cancellation is not

captured by the Feynman diagram expression (4.31). This is consistent with the fact that

we do not expect to reproduce the exact expressions for interactions of order s2t8(trF 2)2

and beyond.

Furthermore, the expansion of (4.32) in powers of `2H s can be interpreted in the type

I theory as an expansion in powers of gI `
2
I s (using (A.5)). Each power of gI is interpreted

as the insertion of a boundary or cross-cap in the open string world-sheet. In this way we

see that a contribution to the tree-level HE amplitude is associated with an infinite series

of higher order terms in type I perturbation theory.

Thus, we have described the HE and HO tree level contributions to the interac-

tion t8(tr1F
2
1 + tr2F

2
2 )2 and the one-loop contribution in the HE theory of the form

s t8

[∑2
i=1

(
triF

2
i

)2 − tr1F
2
1 tr2F

2
2

]
(which has yet to be verified by a direct string theory

calculation).

5 Yang-Mills one-loop amplitudes

We will now turn to consider one-loop Feynman integrals for supergravity in the Hor̆ava-

Witten background compactified on a circle. We need to include the complete supermulti-

plet of states circulating in the loop, which can be expressed in a simple manner by using

the world-line light-cone superspace procedure described earlier. In the following we will be

interested in determining local terms induced by the loop amplitudes and will not discuss

the non-local effects associated with non-analytic parts of the amplitude, which can be

separated from the analytic terms in unambiguous fashion.14

5.1 A loop of gauge particles on one boundary

We will first consider the four gauge boson one-loop amplitude in E8 gauge theory com-

pactfied to nine dimensions on a circle of radius `11R10 in the presence of a Wilson line that

13We have not attempted to compare the overall normalisations of these expressions, but the agreement

of the residue at s = 0 in (4.32) with the HE string pole term, as noted earlier, guarantees the agreement

of the rest of the expression.
14It is far from obvious that such a separation of analytic and non-analytic parts of the amplitude is

possible at higher orders in the low-energy expansion.
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Figure 8. Four gauge boson amplitude in the E8 → SO(16) boundary gauge theory compactified

to nine dimensions on S1. The particles circulating in the loop are Kaluza-Klein modes of SO(16)

adjoint and spinor states.

breaks the gauge symmetry to SO(16).15 We will consider the loop amplitude with exter-

nal nine-dimensional massless states that transform in the SO(16) adjoint representation.

These states couple to the Kaluza-Klein towers of particles circulating in the compactified

loop, which are both the SO(16) adjoint states and the SO(16) spinor states.

The value of the gauge potential associated with such a Wilson line is given in (4.7)

and the corresponding loop momentum is quantised in integer units when the circulating

states are in the adjoint representation of SO(16), so p10 = n/(`11R10), where n ∈ Z and

the n = 0 states are the massless SO(16) gauge bosons. The circulating SO(16) spinor

states are those for which p10 = (n− 1/2)/(`11R10), which have masses given by (4.9) and

there are no massless states in this sector.

The complete loop amplitude consists of the sum of the contributions from the circu-

lating adjoint Kaluza-Klein tower and the spinor Kaluza-Klein tower

A1-loop = Aadj +Aspin . (5.1)

The contribution of the SO(16) adjoint states in the loop is given by

Aadj =
2

3(2π)10
t8F̂

4 Cadj Iadj(s, t, u;R10) , (5.2)

where Cadj is the colour factor for the loop amplitude of SO(16) adjoint states (and the

overall factor of t8 F̂
4 is determined by maximal Yang-Mills supersymmetry). This is given

by setting N = 16 in the SO(N) colour factor (where N is even) that has the following

form, for a particular colour ordering:

Cadj = (N − 8)tr(T a1T a2T a3T a4) + {tr(T a1T a2)tr(T a3T a4) + perms.} . (5.3)

15This amplitude can be determined in an efficient manner by means of a first-quantised world-line

formalism (modelled on string theory calculations), in which vertex operators describe the emission of

massless gauge particles from a circulating N = 1 gauge supermultiplet. We omit the details here, but see

section 8.2 for a discussion of the vertex operator construction of the gravitational loop amplitude.

– 29 –



J
H
E
P
1
2
(
2
0
1
6
)
0
6
0

We have left N as a free parameter in order to emphasise later the special features of the

value N = 16. The dynamical part of the loop amplitude is contained in Iadj(s, t, u;R10)

that is given by a scalar box Feynman diagram compactified on the circle of radius `11R10

with the loop momentum p10 replaced by the sum over integer Kaluza-Klein charges, as

will be discussed below.

The other piece of the four gauge boson amplitude, where only the SO(16) spinor states

circulate in the loop, is given by

Aspin =
2

3(2π)10
t8F̂

4 Cspin Ispin(s, t, u;R10) , (5.4)

where Cspin is the colour factor for the loop of spinor states and is given, for any SO(N)

group (with even N), and as before, for a particular colour ordering, by

Cspin = −2
N
2
−7 [4 tr(T a1T a2T a3T a4)− {tr(T a1T a2)tr(T a3T a4) + perms.}] . (5.5)

The quantity Ispin(s, t, u;R10) is the dynamical part of the amplitude, which is again given

by a Feynman box diagram with the integral over the p10 component of the loop momentum

replaced by a sum over half-integer Kaluza-Klein charges. This will also be discussed below.

It is an important fact that when N = 16 the sum of the adjoint colour factor and the

spinor colour factor satisfies

Cadj + Cspin = 3 tr(T a1T a2) tr(T a3T a4) + perms. , (5.6)

and therefore does not contain any fourth order Casimir invariant in the SO(16) funda-

mental representation. This, of course, is connected with the fact that the amplitude is

inherited from the ten-dimensional amplitude in which the circulating states are the mass-

less states in the adjoint of E8, which has no independent fourth order Casimir. Another

combination of the colour factors that will prove important below is

Cadj −
1

2
Cspin = 12 tr(T a1T a2T a3T a4) , (5.7)

which is a purely fourth order invariant.

5.2 Evaluation of the lowest order terms in the loop amplitude

In the following we will make use of the standard Poisson summation formulae∑
m

e−πa
2m2

=
1

|a|
∑
m̂

e−πa
−2m̂2

,
∑
m

e−πa
2(m− 1

2)
2

=
1

|a|
∑
m̂

(−1)m̂e−πa
−2m̂2

. (5.8)

As mentioned above, the Feynman integral reduces to a kinematic prefactor t8F̂
4 Cadj

multiplying the compactified scalar box diagram with integer Kaluza-Klein charges. The

box diagram evaluated in nine dimensions contains non-analytic threshold terms of order√
s, which do not concern us here and are, in any case, subleading in the low-energy

expansion. The lowest term in the low-energy expansion is obtained by setting s = t =

u = 0, in which case it is simple to show that

Iadj(0, 0, 0;R10) = 2π11/2

∫ ∞
0

dτ

τ3/2

∑
m∈Z

e
−τ
(

m
`11R10

)2
, (5.9)
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where the sum in the lattice factor is over the Kaluza-Klein charge, m. Each term in the m

sum obviously possesses the ultraviolet divergence of the ten-dimensional theory. This will

be dealt with by defining the loop in the winding number basis by performing a Poisson

summation (using (5.8)) that converts (5.9) into

Iadj(0, 0, 0;R10) = 2π6`11R10

∫ ∞
0

dτ̂
∑
m̂∈Z

e−τ̂ m̂
2 (π`11R10)2

= 2π

[
C1
R10

`11
+

π3

R10`11
ζ(2)

]
, (5.10)

where τ̂ = 1/τ . Here we have separated the divergent zero winding (m̂ = 0) term, that

depends on the cut-off and is represented by C1 =
∫ Λ

0 dτ̂ , where Λ is an arbitrary dimen-

sionless constant that we need not specify. The non-zero winding terms have precisely

determined coefficients.

The leading term in the low-energy expansion of Ispin is again obtained by setting

s = t = u = 0 and evaluating the box diagram with the appropriate lattice factor to

describe the circulating spinor states, giving,

Ispin(0, 0, 0;R10) = 2π11/2

∫ ∞
0

dτ

τ3/2

∑
m∈Z

e
−τ
(
m−1/2
`11R10

)2

= 2π6`11R10

∫ ∞
0

dτ̂
∑
m̂∈Z

(−1)m̂e−τ̂ m̂
2 (π`11R10)2

= 2π

[
C2
R10

`11
− 1

2

π3

R10`11
ζ(2)

]
, (5.11)

where we have used (5.8) and the fact that
∑

m̂>0 1/m̂2 = −2
∑

m̂>0(−1)m̂/m̂2 = ζ(2).

The dimensionless constant, C2, again arises from the zero winding mode (m̂ = 0) and is

cut-off dependent.

The cut-off dependent terms proportional to C1R10/`11 and C2R10/`11 should be renor-

malised by the addition of counterterms. However, since R10/`11 = rhe/g
2/3
he `H there is no

consistent perturbative string theory interpretation of such terms so we will choose the

counterterms so that C1 = C2 = 0. In that case the total contribution to the amplitude in

the low-energy limit is given by adding (5.10) and (5.11)), which gives

A1-loop =
2

3(2π)10

2π4

`11R10
ζ(2)

(
Cadj −

1

2
Cspin

)
t8F̂

4

=
1

12(2π)6

1

`11R10
ζ(2) tr(T a1T a2T a3T a4) t8F̂

4 . (5.12)

We see therefore that the amplitude vanishes in the R10 → ∞ limit, which is consistent

with fact that there is no t8trF 4 term in the E8 gauge theory.

The preceding results translate into the following effective action in the various string

theories. (assuming that the gauge potentials are in the SO(16) subgroup labelled 1 and
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ignoring the overall normalisation)

t8tr1F
4
1

1

(`11R10)
ζ(2) = t8tr1F

4
1

1

`Hrhe
ζ(2) = t8tr1F

4
1

rho

`H
ζ(2)

= t8tr1F
4
1

1

`IgIA
ζ(2) = t8tr1F

4
1

rI

`IgI
ζ(2) . (5.13)

From the expressions on the first line we see that the ten-dimensional limit of the HE

theory (rhe → ∞) has no one-loop contribution to t8tr1F
4
1 whereas the rho → ∞ limit of

the HO theory is non-zero. Recall that we earlier found an explanation for a ten-dimensional

contribution to the one-loop t8(tr1F
2
1 )2 interaction in the HE theory (in terms of a tree-level

supergravity amplitude), which vanished in the ten-dimensional HO limit. From the second

line of (5.13) we see that both the type IA and type I theories have tree-level contributions

to t8tr1F
4
1 in the ten-dimensional limit. In the type I case the presence of the requisite

volume factor of rI indicates that the limit involves the distance between the Hor̆ava-Witten

walls. In the type IA theory there is no volume factor because the interaction is localised

in one wall independent of the value of rIA. These type I contributions come from disk

diagrams, which only generate the single-trace t8trF 4.

We have thus accounted for the string theory result that the one-loop amplitude in the

HO theory is proportional to tr1F
4
1 +tr2F

4
2 with the trace in the fundamental representation

of either SO(16) subgroup, whereas the standard (UV divergent) SO(16) × SO(16) gauge

theory loop amplitude would be proportional to Tr1F
4
1 + Tr2F

4
2 , with the trace in the

adjoint representation of either SO(16). This is also in agreement with the form of the

type I open-string tree amplitude (defined on a world-sheet disk) that has a group theory

Chan-Paton factor.

One-loop amplitude in the compactified SO(32) gauge theory. It is of interest

to see how the above results are complemented by starting from a one-loop four-particle

amplitude in the compactified SO(32) theory. However, since this is not a Feynman dia-

gram that arises in supergravity in the Hor̆ava-Witten background we have relegated the

detailed argument to appendix D. There we consider the one-loop amplitude compacti-

fied on a circle of radius `11/(R10R11) = `Hrho with SO(32) gauge symmetry broken to

SO(16)× SO(16). The discussion parallels that of the E8 gauge theory loop in section 5.1.

In this case we find that when the non-zero winding number configurations of the loop

around the dual x10 direction are interpreted as Kaluza-Klein modes of the HE theory,

and with the identification rhe = 1/rho, the loop amplitude reproduces the correct effective

action involving a combination of t8 (trF 2)2 interactions obtained earlier (see (4.28)) by

considering tree amplitudes in supergravity in the Hor̆ava-Witten background.

6 Some features of four-graviton amplitudes in N = 1 string theories

As in the case of the Yang-Mills amplitude it is useful to describe some features that arise

in considering four-graviton amplitudes in the various kinds of N = 1 supersymmetric

string theory amplitudes before describing the corresponding features in supergravity in

the Hor̆ava-Witten background.
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Recall that in the maximally supersymmetric N = 2 case the only kinematic structures

that contribute to the low-energy expansion of the four-graviton scattering amplitude have

the form of derivatives acting on t8t8R
4 and ε10ε10R

4. In the type IIA theory there is a

single parity-violating term (the Vafa-Witten term [29]) of the form B ∧R∧R∧R∧R (or

ε10BY
(vw)

8 in the notation of (B.12) in appendix B.5). This structure is a consequence of

the very strong constraints of maximal supersymmetry. However, in N = 1 theories two

other structures arise. These are parity conserving terms of the form t8trR4 and t8(trR2)2,

where the trace is over the ten-dimensional tangent-space group, SO(9, 1). These parity

conserving interactions are not independent since they satisfy the identity [30]

t8t8R
4 − 24 t8 trR4 + 6 t8 (trR2)2 = 0 . (6.1)

This linear relationship means there is an ambiguity in the choice of basis for these terms.

We will see below that a natural basis is defined in the Hor̆ava-Witten description since

t8t8R
4 is produced entirely by a bulk effect while a particular combination of the other two

terms is localised on the boundaries. As reviewed in appendix B.5 these two localised R4

interactions are related by supersymmetry to corresponding parity-violating interactions

terms, ε10BtrR4 and ε10B(trR2)2.

In the following it will be useful to recall the origin of R4 terms in N = 1 perturbative

superstring theory, which we will now summarise.

• The HE and HO theories have leading tree-level pole contributions of the form

t8t8R
4/stu, which is simply a compact way of expressing the sum of all the tree

level four-graviton amplitudes in Einstein gravity. There are also poles in amplitudes

of higher order in the low-energy expansion that correspond to terms of the form

t8trR4/st and t8(trR2)2/s.

• At the next order of the tree-level expansion of the heterotic theories there are terms

of the form ζ(3) t8t8R
4 and t8(trR2)2, where we have again explicitly indicated the

occurrence of a notable factor of ζ(3). Although (6.1) implies an ambiguity in how the

combination of R4 terms is expressed, the coefficient of ζ(3) in the ζ(3) t8t8R
4 term

suggests that this particular term is singled out from the other one in an unambiguous

fashion.

In the type I theory, the term ζ(3) t8t8R
4 again arises from the spherical world-sheet

diagram and is of order 1/g2
I , but t8(trR2)2 comes from diagrams with two open-

string loops (three boundaries/cross-caps) and are of order gI (which is analogous to

the origin of the (trF 2)2 terms considered earlier).

• The one-loop HE or HO contributions again have form t8t8R
4 and t8(trR2)2. But it

is now natural to express this (using (6.1)) as the sum of t8t8R
4 and t8Y

(gs)
8 (where

t8 Y
(gs)

8 contains the combination of t8trR4 and t8(trR2)2 defined in (B.15)). As

described in the context of the Yang-Mills action, this is motivated by supersymmetry

with the one-loop anomaly cancelling terms, which have the form ε10B Y
(gs)

8 . We will

describe later how these observations fit with HO — type I duality.
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N = 1 effective R4 actions at tree-level and one loop. We will here summarise

the duality relationships between the R4 interactions in the various N = 1 string theories

in terms of their effective actions compactified to nine dimensions. These can be expressed

with the help of the N = 1 superinvariants J0 (defined in (B.17)), I2 (defined in (B.18))

and X1 and X2 (defined in (B.21)), where the notation is based on [8]. The string frame

effective action for the terms of order R4 in the nine-dimensional HO theory at tree-level

and one loop, obtained by combining expressions in [15, 19, 27], is16

SHO |R4 =
rho

29(2π)6 4!`H

∫
M9

d9x
√
−G

[
2ζ(3)

g2
ho

(
t8t8R

4 − 1

8
ε10ε10R

4

)
− 1

2g2
ho

t8(trR2)2

+
2π2

3

(
48t8Y

(gs)
8 (R, 0)− 12ε10BY

(gs)
8 (R, 0)

)(
1 +

1

r2
ho

)]
=

rho

29(2π)6 4!`H

∫
M9

d9x
√
−G

(
2ζ(3)

g2
ho

J0 −
1

2g2
ho

(trR2)2

+
2π2

3
(J0 − I2 + 24X1 + 18X2)

(
1 +

1

r2
ho

))
. (6.2)

Here the contributions of the massless Kaluza-Klein scalar associated with the compact x10

direction should be included in the definition of the superinvariants, although they have

been ignored in the first two lines of this equation.

For later comparison with the type I theory it is useful to write the HO one-loop

contribution to the parity-conserving terms in the last line of (6.2) using the identities in

appendix B.5

48t8Y
(gs)

8 = J0 − (J0 − 48 t8 trR4 − 12 t8 (trR2)2)

= J0 +

(
24 t8 trR4 + 18 t8 (trR2)2 +

1

8
ε10ε10R

4

)
. (6.3)

The combination of terms in parentheses will be identified with disk-level contributions

to the amplitude in type I theory whereas the first term arises from the torus diagram.

Further understanding of these points will emerge from the analysis in section 8.

The following comments concerning the effective action are of note:

• The parity-violating anomaly cancelling term −12ε10BY
(gs)

8 in the second line is

contained in the combination of the invariants X1, X2 and I2 in the fourth line. These

terms are one-loop exact in the HE and HO theories. The tree-level interaction in the

first line t8(trR2)2 is part of the expression t8(trF 2−trR2)2 when the gauge fields are

included. This receives no loop corrections since it is related by supersymmetry to

the three-point interactions in t8(trF 2 − trR2) and these are unrenormalised beyond

tree level. The relationship (6.1) means that there is an ambiguity in the coefficients

of t8t8R
4, t8trR4 and t8(trR2)2 in the one-loop terms in the second line of (6.2).

However, there is no ambiguity in the expression written in terms of superinvariants,

which is exhibited in the last two lines of the equation.

16We are grateful to Michael Haack for pointing out errors in this equation in the first version of this paper.
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• The effective action for the HE theory is obtained simply by performing the heterotic

T-duality relation (A.1). The expression (6.2) is invariant under this transformation

since the four-graviton amplitudes in HO and HE theories on a spherical or a toroidal

world-sheet are identical — they are insensitive to the details of the gauge group.17

• The nine-dimensional type I superstring effective action is proportional to

SR4 =
rI

29(2π)64!`I

∫
M9

d9x
√
−G

(
2ζ(3)

g2
I

J0 +
2π2

3gI
(−I2 + 24X1 + 18X2)

+
2π2

3
J0 −

1

2
gI(trR

2)2

)
. (6.4)

As expected the interactions that are tree-level or one-loop exact, translate straight-

forwardly from the HO theory using the S-duality relations. The (2ζ(3)/g2
I +2π2/3)J0

terms arise from the diagrams with spherical and toroidal world-sheets, just as in the

HO theory. S-duality cannot simply act on these terms in isolation, since they would

transform into terms of order gho and 1/gho, respectively, which are powers that

do not make sense in the HO theory. This is a signal that the coupling constant-

dependent coefficient of t8t8R
4 in the HO/type I theories is a non-trivial function

of the coupling constant that transforms under S-duality in a manner that preserves

these first two perturbative terms. We will later find a candidate for such a function

motivated by supergravity in the Horav̆a-Witten background, in a manner analogous

to the modular function that enters as the coefficient of t8t8R
4 in the type IIB theory.

• Whereas in the HO expression (6.2) the ε10ε10R
4 interaction only arises at tree level,

in the type I expression (6.4) there are three distinct terms containing this interac-

tion. Two of these arise from the spherical and toroidal world-sheets in the same

manner as in the type IIB theory (and are proportional to 1/g2
I and g0

I ). According

to (6.4) there should also be a disk contribution proportional to 1/gI, which has not

been determined directly from the string theory. The ε10ε10R
4 interaction does not

contribute to the graviton four-point function so it would be necessary to evaluate

an amplitude with N gravitons coupling to a disk, with N ≥ 5, in order to verify

its presence.

• A certain amount is known concerning higher derivative terms in N = 1 super-

symmetric string perturbation theory that will also be discussed in the context of

supergravity in the Hor̆ava-Witten background.

7 Graviton tree amplitudes in the Hor̆ava-Witten background

We will now turn to the explicit calculations of graviton amplitudes in the Hor̆ava-Witten

background. This will extend the earlier analysis of the gauge theory amplitudes. The

graviton polarization tensor satisfies kµ ζµν = kν ζµν = 0. The symmetric part of ζµν
describes the graviton polarisation while the antisymmetric part describes the polarisation

17The group theory lattice factor is same for the two gauge groups.
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Figure 9. Tree level four-graviton amplitude with graviton exchange in the bulk.

of an antisymmetric tensor potential. The curvature tensor linearised around Minkowski

space has the form

R̂µνρσ = kµ kρ ζνσ . (7.1)

We will again only consider amplitudes in which the external momenta and polarization

tensors are oriented in the nine non-compact dimensions, so we will not consider the scat-

tering of the scalar states arising from Kaluza-Klein compactification. Since much of the

analysis is a simple extension of the analysis of the scattering of gauge particles the follow-

ing exposition will be brief.

Graviton tree amplitudes. Four graviton tree amplitudes in the Hor̆ava-Witten back-

ground arise from the four-graviton vertex operator on sphere in the heterotic theories.

But they arise at different orders of type I perturbation theory.

There are tree amplitudes with conventional gravitational vertices in the eleven-

dimensional bulk, as well as trees with either one or both vertices localised in the boundary

induced by the boundary Chern-Simons and R2 interactions. In the following we will adapt

the notation used to label the Yang-Mills tree amplitudes by denoting the gravitational

amplitudes by

AGIJ = (AG00 , A
G
i0 , A

G
ij) , (7.2)

where i, j = 1, 2 labels the boundary in which a vertex is localised and 0 denotes a bulk

vertex operator.

7.1 The bulk tree

The supergravity tree amplitude shown in figure 9 (together with the standard four-graviton

contact interaction) has the form

AG00 =
2R11R10

(2π)6`711

t8t8R̂
4 1

stu
=

2rhe

(2π)6g2
he`

7
H

t8t8R̂
4 1

stu
=

2rho

(2π)6g2
ho`

7
H

t8t8R̂
4 1

stu

=
2rI

(2π)6g2
I `

7
H

t8t8R̂
4 1

stu
=

2rIA

(2π)6g2
IA`

7
H

t8t8R̂
4 1

stu
, (7.3)

where we have displayed the interpretation of the supergravity tree amplitude in all this

N = 1 string theory. This amplitude is the tree level amplitude of ordinary Einstein gravity
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Figure 10. Graviton tree amplitude with graviton exchange coupling to one vertex localised on a

boundary.

where the intermediate particle can only be graviton. Since the external states are assumed

to have p11 = 0 this is identical to the expected tree-level interaction of ten-dimensional

gravity coupled to a dilaton. This amplitude arises from a spherical world-sheet in any of

the N = 1 string perturbation expansions.

7.2 Tree amplitude with one vertex on a boundary

This amplitude is obtained by joining a bulk graviton vertex to the cubic contribution to the

R2 vertex localised on either boundary as in figure 10, together with the four-point contact

term that arises from R2. This is a higher derivative pole contribution of order s`2H relative

to the Einstein gravity tree. This gives a contribution to the amplitude that is independent

of R11 since it is localised on only one of the boundary, and has the following form

AG10 =
R10

12(2π)6`511

t8trR̂4 1

tu
+ perms. =

rhe

12(2π)6g2
he`

5
H

t8 trR̂4 1

tu
+ perms.

=
rI

12(2π)6gI`5I
t8 trR̂4 1

tu
+ perms.

=
1

12(2π)6gIA`5I
t8 trR̂4 1

tu
+ perms. , (7.4)

where we have translated the amplitude into the heterotic, type I and type IA parmeterisa-

tions. The fact that the amplitude is localised on a single Hor̆ava-Witten boundary means

that its type IA description is independent of rIA, although it is proportional to rI in the

T-dual type I description.

While this amplitude arises as a higher order term in the expansion of the tree ampli-

tude in the HE and HO theories, in type I perturbation theory, it arises from the sum of

the amplitudes on the disk and RP2 world-sheets with four closed string vertex operators.

The amplitude AG20 has an identical form and the total amplitude is AG10 +AG20.

7.3 Tree amplitude with both vertices on boundaries

A third contribution to the tree level four-graviton amplitude is shown in figure 11. In

this case the vertices are either the R2 vertex or the gravitational Chern-Simons vertex,

both of which are localised on the boundaries. The exchanged particle can now be either
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Figure 11. Graviton tree amplitude with graviton and C exchange with vertices localised on one

or both boundaries.

a graviton or the potential Cµν11. This case is analogous to the Yang-Mills amplitudes

depicted in figure 3 and figure 5. The form of the amplitude is

AGij =
R10

24(2π)6 `311R11

∞∑
m=−∞

(−1)m(i−j)

−s+ π2m2

L2

t8(trR̂2)2 , (7.5)

where the numerator factor is 1 when the vertices are on the same boundary or (−1)m

when they are on different boundaries. The term with m = 0 gives the pole contribution

R10

24(2π)6 `311R11
t8(trR̂2)2 1

s
=

rhe

24(2π)6 `3Hg
2
he

t8(trR̂2)2 .
1

s

=
rho

24(2π)6 `3Hg
2
ho

t8(trR̂2)2 .
1

s
(7.6)

The next term in the low energy expansion is given by setting s = 0 in (7.5). Combining

the contributions from AG11, AG22, AG12 and AG21 gives

3R10

24(2π)6 `311R11
ζ(2) t8(trR̂2)2 =

rhe

27(2π)4 `H
t8(trR̂2)2 (7.7)

This corresponds to a t8 (trR2)2 contribution to the one-loop HE effective action that is

the parity-conserving partner of the parity-violating term ε10B (trR2)2, which is part of

the GS anomaly cancelling term. As we will see in section 8 the other part of the parity-

conserving partner of the anomaly-cancelling term in the HE theory, which is proportional

to t8t8R
4, emerges from the contribution of a graviton loop propagating in the bulk in the

Hor̆ava-Witten background and has the coefficient Ĉ in (8.19) and (8.21).

The discussion of the expansion of the non-zero KK terms in powers of R2
11`

2
11s is

similar to the discussion of the higher derivative t8(trF 2)2 interactions in section 4. As in

that case all the terms in the expansion arise from contributions of order g0
I in the type I

description, which are associated with a world-sheet cylinder, Möbius strip and Klein bottle.

The integer m is the type I closed string winding number around the compact dimension.
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7.4 “Iterated” graviton tree diagrams

Similarly there are gravitational tree amplitudes with the same structure as the Yang-Mills

amplitudes discussed in subsection 4.4, in which there are chains of propagators joining

the vertices with the external particles. These are gravitational analogues of the Yang-

Mills processes shown in figures 6 and 7. These possibilities generate higher derivative

contributions to the tree processes described in section 7, in much the same way as that

discussed in the context of the Yang-Mills interactions earlier.

8 Graviton one-loop amplitudes

We turn now to consider the one-loop four-graviton amplitude. There are two kinds of loop

amplitudes that contribute to leading terms in the low-energy expansion. In section 8.1

we will consider the loop with circulating super-gauge particles localised in either ten-

dimensional boundary and compactified on a circle of radius R10. This can be constructed

by use of a light-cone gauge world-line vertex operator formalism based on the vertex

in (2.26), which describes the emission of a graviton from a super Yang-Mills world-line.

The resulting loop amplitude is identical to the contribution that arises from the gauge

loop in ten-dimensional N = 1 supergravity compactified to nine dimensions. Much as

in the case of the Yang-Mills four-particle loop amplitude discussed in section 5, after

transforming to the winding number basis by performing a Poisson summation over the

Kaluza-Klein modes in the x10 direction, we are able to make contact with various R4

terms in the string theory effective action.

The other loop contribution is the “bulk” gravity loop with circulating supergravity

particles propagating in the eleven-dimensional space compactified on the interval of length

L = πR11`11 and a circle of radius R10`11, which is the subject of sections 8.2 and 8.3.

In section 8.2 we will make use of an extension of the light-cone gauge vertex operator

construction used in the description of the four-graviton loop in eleven-dimensional super-

gravity compactified on S1 [3, 12]. Implementing the Z2 orbifold condition that defines the

Hor̆ava-Witten background raises some subtleties connected with the breaking of super-

symmetry. The amplitude that results from this construction is discussed in section 8.3. Its

low energy limit contains a t8t8R
4 contribution that manifests the strong coupling duality

relating the HO and type I theories in an interesting manner.

8.1 Four gravitons coupled to gauge particle loop on the boundary

The one-loop amplitude with gravitons coupled to a circulating supermultiplet of N = 1

gauge fields in one boundary is depicted in figure 12. Since we are restricting the graviton

polarisations and momenta to lie in the boundary directions the bulk propagation plays

no rôle in this calculation and the amplitude could, in principle, be obtained from the

Feynman rules of ten-dimensional N = 1 supergravity compactified to nine dimensions in

the x10 direction. The expression for this amplitude could also be determined by making

use of a world-line formalism analogous of that described in the case of the bulk loop

in sections 8.2 and 8.3. This involves the product of four vertex operators of the form
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Figure 12. One-loop four-graviton amplitude localised in a Hor̆ava-Witten boundary.

Vbulk (2.26) that couple the external gravitons to a N = 1 gauge supermultiplet. We will

denote the low energy limit of this amplitude by Agauge loop
i , where the subscript i = 1, 2

labels the boundary.

The complete ten-dimensional N = 1 one-loop supergravity amplitude also involves

a contribution from the supergravity multiplet circulating in the loop. As we will see in

section 8.3 this contribution is naturally thought of as a p11 = 0 contribution to the “bulk

loop”. We will here denote it by Agravity loop
p11=0 .

Although we have not performed the explicit gauge loop calculations in detail we know

that when added to Agravity loop
p11=0 the result will contribute to the parity conserving part of a

linear sum ofN = 1 invariants, which also contains parity violating pieces of these R4 terms.

Therefore, the precise combination of parity conserving R4 interactions is determined from

knowledge of the anomaly cancelling terms. So we conclude that the amplitude must

be proportional to the one-loop kinematic factor t8

(
trR̂4 + (trR̂2)2/4

)
= t8 Y

(gs)
8 (R̂, 0)

multiplying a scalar box integral. In other words, after adjusting the normalisation to

agree with (6.2), the low energy limit of the loop amplitude is given by

Atotal
N=1 = Agauge loop

1 +Agauge loop
2 +Agravity loop

p11=0

=
3

(2π)10
t8

(
trR̂4 +

1

4
(trR̂2)2

)
I(0, 0, 0;R10) . (8.1)

Using (5.10) and (5.11) we have

Atotal
N=1 =

3

(2π)9
t8

(
trR̂4 +

1

4
(trR̂2)2

)(
Ĉ
R10

`11
+

π3

`11R10
ζ(2)

)
. (8.2)

As in the case of the gauge theory loop amplitude, we will set the coefficient of the renor-

malised divergence to zero, Ĉ = 0, since the quantity R10/`11 translates (using the re-

lations (A.25)) into (r
4/3
ho g

−2/3
ho )/`H in the HO description, which involves a nonsensical

power of the string coupling.
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The expression (8.2) corresponds to an effective action in terms of the HO string theory

parameters of the form

3 rho

4! 23(2π)6`H
ζ(2)

∫
M9

d9x
√
−Gt8 Y (gs)

8 (R̂, 0) . (8.3)

The analogous expression in the HE theory is proportional to 1/rhe. In type I string theory

this interaction is of order 1/gI and arises from four graviton vertex operators coupled to

a world-sheet disk and to the projective plane RP2 (a sphere with a cross-cap). However,

as pointed out following (6.3), the type I theory also has a term proportional to t8t8R
4

(contained in the N = 2 invariant J0), which is crucial for understanding how HO/type I

duality is realised, as we will see following the discussion of the bulk loop in section 8.3.

Comments on supersymmetry connection with chiral anomaly cancelling terms.

The above argument gave the parity-conserving part of the combination of superinvari-

ants (−I2 + 24X1 + 18X2) in the HO theory (where the invariants are defined (B.21)

and (B.23)). This combination also contains the parity-violating anomaly-cancelling term

B∧X(gs)
8 (R) and is protected from higher loop corrections. There is no ten-dimensional HE

contribution from (8.3) in the rhe →∞ limit. However, we earlier found the HE one-loop

contributions to t8 (trR2)2 arising from the tree-level supergravity graphs obtained in (7.7)

in the previous section. This is part of the same superinvariant as the parity-violating

ten-form, ε10B(trR2)2. It was argued in [2] that the remaining part of the anomaly can-

celling term in the HE theory is provided by the bulk Vafa-Witten ten-form of the type

IIA theory ε10B Y
(vw)

8 (R) (reviewed in appendix B.5). We will see that the superpartner

of the Vafa-Witten term (t8 Y
(vw)

8 (R) = t8t8R
4) is generated by the bulk loop calculation

in section 8.3 (the term with coefficient Ĉ in (8.19) and (8.21)).

In other words, the tree amplitudes of supergravity in the Hor̆ava-Witten background

combine with the Vafa-Witten interaction to give the anomaly cancelling terms in the

HE theory, whereas in the HO theory these terms arise from the loop of gauge particles

localised in either boundary.

8.2 Supersymmetry and the bulk one-loop amplitude

We will here describe the supersymmetric world-line formalism that will be used in the

next subsection to determine the properties of the four-graviton loop amplitude in which

the circulating particles are bulk supergravitons.

M-theory compactified on a x11 circle is invariant under eleven-dimensional supersym-

metry, associated with a 32-component SO(10, 1) Majorana spinor, Q, which decomposes

into two 16-component SO(9, 1) spinors of opposite chirality, Q = (Q1 , Q2) which satisfy

the chirality conditions

Γ11Qr = (−1)rQr (8.4)

where r = 1, 2 and Γ11 = Γ1 . . .Γ10 is the product of the gamma matrices of the ten-

dimensional theory. The supercharges Q1,2 are those of the type IIA theory and their

anti-commutation relation takes the form

{Qr, Q̄s} = δrs Γµpµ + εrs p11 µ = 1, . . . , 10 (8.5)
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where the Kaluza-Klein momentum, p11, enters as the central extension and is the sig-

nal of 1/2-BPS D0-brane states in type IIA string theory. As discussed in [1, 2], in the

Hor̆ava-Witten background the boundary conditions at x11 = 0 and x11 = L break the

supersymmetry so that only Q2 survives and the theory possesses N = 1 ten-dimensional

supersymmetry.

In constructing the bulk loop amplitude we will adapt the eleven-dimensional light-cone

vertex operator formalism [12], which was used to discuss one-loop amplitudes in eleven-

dimensional supergravity compactified on a d-torus, T d. In 11-dimensional Minkowski

space we choose the light-cone gauge with x± = (x1 ± x2)/2. The world-line fields com-

prise the transverse bosonic coordinates xI (I = 3, . . . , 11), which form a SO(9) vector, and

the fermionic coordinates, SA, which form a 16-component SO(9) spinor. After compactifi-

cation on a x11 circle the light-cone coordinates naturally decompose into xi, x
11, where xi

is a SO(8) vector (i = 3, . . . , 10) and SA = (Sȧ1 , S
a
2 ), where Sr (r = 1, 2) are eight-comonent

SO(8) spinors of opposite chiralities (indicated by undotted and dotted indices).

Single-particle states are labelled by the vector and spinor indices appropriate for the

“left-moving” and “right-moving” sectors of the type IIA string theory, together with the

value of the Kaluza-Klein charge m,

|i, j̃;m〉 , |i, ḃ;m〉 , |a, j̃;m〉 , |a, ḃ;m〉 . (8.6)

The states in the massless supermultiplet of the IIA theory are the m = 0 states and the

Kaluza-Klein recurrences (the D0-brane states in the type IIA theory) have m 6= 0. The

type IIA supersymmetry generators can be expressed in terms of the SO(8) spinors, Sr,

which relates fermionic and bosonic states in the following manner

Sȧ1 |i〉 = γȧbi |b〉 , Sȧ1 |b〉 = γȧbi |i〉 , Sa2 |̃i〉 = γaḃ
ĩ
|ḃ〉 , Sa2 |ḃ〉 = γaḃ

ĩ
|̃i〉 (8.7)

(where we have suppressed the vector/spinor labels that are not affected by the action of

Sr on a state).

In considering the Hor̆ava-Witten background we need to identify states under the

action of the orbifold Z2, which identifies x11 with −x11, which is represented by the action

of an operator Ω. This reverses the sign of m and changes the dotted spinor by a minus

sign, giving

Ω |i, j̃ : m〉 = |i, j̃ ;−m〉 , Ω |i, ḃ ;m〉 = −|i, ḃ ;−m〉 ,
Ω |a, j̃ ;m〉 = |a, j̃ ;−m〉 , Ω |a, ḃ ;m〉 = −|a, ḃ ;−m〉 . (8.8)

The states that are invariant under Ω are those obtained by the action of the projection

operator (1 + Ω)/2, which gives

1

2
(1 + Ω) |i, j̃;m〉 =

1

2
(|i, j̃;m〉+ |i, j̃;−m〉) ,

1

2
(1 + Ω) |a, j̃;m〉 =

1

2
(|a, j̃;m〉+ |a, j̃;−m〉) ,

1

2
(1 + Ω) |i, ḃ;m〉 =

1

2
(|i, ḃ;m〉 − (|i, ḃ;−m〉) ,

1

2
(1 + Ω) |a, ḃ;m〉 =

1

2
(|a, ḃ;m〉 − (|a, ḃ;−m〉) . (8.9)
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Figure 13. The bulk contribution to the four-graviton amplitude loop.

So when m = 0 we have

1

2
(1 + Ω) |i, j̃; 0〉 = (|i, j̃; 0〉 , 1

2
(1 + Ω) |a, j̃; 0〉 = |a, j̃ ; 0〉 ,

1

2
(1 + Ω) |i, ḃ ; 0〉 = 0 ,

1

2
(1 + Ω) |a, ḃ ; 0〉 = 0 . (8.10)

and therefore the dotted space is killed by this projection. The physical states are therefore

spanned by

|i, j̃; 0〉, |a, j̃; 0〉 , (8.11)

which are the states of N = 1 supergravity. The matrix elements of the undotted spinor,

Sȧ2 , vanish between these projected states. On the other hand when m 6= 0 both chiralities

contribute with equal weight (the relative minus signs cancel out).

With these preliminaries we can now proceed to evaluate the one-loop four-graviton

amplitude in the bulk shown in figure 13.

8.3 The bulk one-loop four-graviton amplitude

The four-graviton loop amplitude for eleven-dimensional supergravity in the compactified

background, M9×S1×S1, can be constructed in terms of a trace over the product of four

vertex operators attached to the loop (as in equations (5.1) and (5.2) in [12])∫ ∞
0

dt

t

∫
d9p

∑
m

e
−t
(
p2+

m2
1

`211R
2
10

+
m2

2
`211R

2
11

)
Tr

〈
n∏
r=1

( ∫
dt(r)V

(r)
h (t(r))

)〉
(8.12)

(where p is the continuous nine-dimensional loop momentum and m1, m2 are Kaluza-Klein

charges) in the theory compactified in the x10 and x11 directions, and the proper times of

the vertex operators, t(r) are integrated over the range 0 ≤ t(r) ≤ t. Each vertex operator

has the form (at t(r) = 0)

Vh(0) = ζij

(
ẋi − 1

2
S1γ

ilS1 kl

) (
ẋj − 1

2
S2γ

jmS2 km

)
eik·x , (8.13)

– 43 –



J
H
E
P
1
2
(
2
0
1
6
)
0
6
0

which describes the emission of a graviton with polarisation ζij and momentum ki, where

we choose i, j = 3, . . . , 9 which are directions transverse to the light-cone directions

and to the compact directions, x10 and x11. In the type IIA theory the trace over the

eight S1 and eight S2 fermionic modes arising from the product of four vertex operators

in (8.12) gives a kinematic factor of t8t8R
4 multiplying a scalar field theory box diagram

in M9 × S1 × S1 [3, 12].18

The orbifold condition of relevance to the Hor̆ava-Witten background compactified on

a circle, M9 × S1 × S1/Z2, is implemented by inserting a factor of (1 + Ω)/2 between the

vertex operators in (8.12). The trace in the m2 6= 0 and m2 = 0 sectors in the sum over

m2 must be treated separately since the space of states in the m2 = 0 sector is reduced by

the conditions (8.10) to the N = 1 states (8.11).

(i) m2 6= 0

In this case all of the N = 2 states circulating in the loop survive the projection

in (8.9). The trace over the components of S1 and S2 again leads to the kinematic

prefactor t8t8R
4 of the type IIA theory. The sum over m < 0 is equivalent to the

sum over m > 0, which leads to a factor of 1/2 in the overall normalisation of these

terms relative to the type IIA case.

(ii) m2 = 0

In this case the circulating states are those in (8.11) and we can set S2 = 0 in the

vertex operator acting on this projected space, reducing it to

V m=0
h (0) = ζij ẋ

i

(
ẋj − 1

2
S1γ

jmS1 km

)
eik·x , (8.14)

which is the zero mode piece of the graviton vertex in the heterotic string acting on

the supergravity multiplet. The fermionic trace only involves the dotted spinors Sȧ1 ,

which produces a factor of t8, leading to a prefactor that is a linear combination of

t8 trR4 and t8 (tr(R2))2. The complete one-loop amplitude is obtained by adding this

contribution to that of the boundary gauge loop considered in section 8.1.

The dynamical factors in the amplitude are given in terms of the integral of the product

of four Green functions in the orbifold background. From (2.17) we see that, apart from a

factor of 1/2 in its normalisation, the p11 6= 0 (m2 6= 0) contribution has precisely the same

form as the expression that enters the loop amplitude of eleven-dimensional supergravity

compactified on a torus. In order to make heterotic/type I duality manifest it is very useful

to write the resulting expression for the sum of the p11 6= 0 terms in the low energy limit

of the loop amplitude in the form

Abulk loop =
`211R10R11

3 · 25(2π)6
t8t8R̂

4
(
Ibulk(0, 0, 0R10, R11)− Ibulk

p11=0(0, 0, 0;R10, R11)
)
, (8.15)

18The ε10ε10R
4 pieces of the type IIA effective action is not captured by the four-graviton amplitude

since it vanishes on shell.
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where we have included a p11 = 0 contribution to the loop momentum in the

box diagram amplitude, Ibulk(s, t, u;R10, R11), and subtracted it again in the term

−Ibulk
p11=0(s, t, u;R10, R11).

Properties of the bulk loop amplitude. The coefficient of t8t8 R̂
4 in the p11 = 0

sector, Ibulk
p11=0(s, t, u;R10, R11), has the same form as for the gauge theory loop in (5.9) and

is interpreted as a one-loop contribution in the HO theory by the same Poisson summation

over m1 argument that leads from (5.9) to (5.10).

The contribution Ibulk(s, t, u;R10, R11), which involves the sum of all values of p11 is

very similar to the expression for the loop amplitude of eleven-dimensional supergravity

compactified on a torus [3] with purely imaginary complex structure. The leading order

term in the low-energy expansion is obtained by setting the momenta to zero in the factors

of eik·x in the vertex operators in (8.12). After performing the integral over the nine-

dimensional momentum we obtain

I0(R10, R11) ≡ Ibulk(0, 0, 0;R10, R11) =
3π9/2

`211R10R11

∫ ∞
0

dt

t3/2

∑
m1∈Z ,m2∈Z

e
− t

`211

(
m2

1
R2
10

+
m2

2
R2
11

)

(8.16)

The integral for each term in the sum over Kaluza-Klein charges is divergent in the ultra-

violet region (the t→ 0 limit). However, the total integrand may be expressed in terms of

the winding numbers m̂1 and m̂2 by Poisson summation over m1 and m2. The result is

I0(R10, R11) = 3π11/2

∫ ∞
0

dt̂ t̂1/2
∑

m̂1∈Z, m̂2∈Z
e−π

2 t̂ `211 (R2
10 m̂

2
1+R2

11 m̂
2
2) , (8.17)

where t̂ = 1/t. The divergence is now entirely in the (m̂1, m̂2) = (0, 0) term while every

term with (m̂1, m̂2) 6= (0, 0) is convergent. Performing the integral for each winding number

and separating the divergent (0, 0) term gives

I0(R10, R11) =
3

24`311R
3/2
10 R

3/2
11

∑
(m̂1,m̂2) 6=(0,0)

(R10/R11)
3
2(

m̂2
1 (R10/R11)2 + m̂2

2

) 3
2

+ Ĉ . (8.18)

The quantity Ĉ represents the regulated zero winding piece. The divergence can be sub-

tracted by introducing a one-loop counterterm that leaves a finite but undetermined con-

tribution, Ĉ.

The contribution of I0(R10, R11) to the nine-dimensional low-energy supergravity am-

plitude can be translated into a term in the effective M-theory action of the form

St8t8R4 (8.19)

=
1

29(2π)64!`11

∫
M9

d9x
√
−Gt8t8R4

 1

R
1/2
10 R

1/2
11

∑
(m̂1,m̂2) 6=(0,0)

Ω
3
2
2

(m̂2
1Ω2

2+m̂2
2)

3
2

+R10R11Ĉ

.
In the limit V = 2π2R10R11 →∞, the expression describes an action in eleven non-compact

dimensions and only the Ĉ term survives, while the first term in parentheses is suppressed

by the factor of V−
3
2 .
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Relation to the N = 1 string theories. The expression for the t8t8R
4 M-theory

action in (8.19) can be translated into the language of string theory by using the dictionary

in appendix A, so that the parameters R10 and R11 are related to the parameters of the

HO theory in D = 9 dimensions via the relations

Ω2 ≡
R10

R11
= g−1

ho ,
1

`11R
1/2
10 R

1/2
11

=
rho

`H
g
− 1

2
ho . (8.20)

Thus, the contribution to the M-theory effective action in (8.19) translates into the HO

effective action

SHO
t8t8R4 =

rho

29(2π)64!`H

∫
M9

d9x
√
−Gg−

1
2

ho t8t8R
4

 ∑
(m̂1,m̂2) 6=(0,0)

g
− 3

2
ho

(m̂2
1g
−2
ho + m̂2

2)
3
2

+
g

1
2
ho

r2
ho

Ĉ

.
(8.21)

The first term in parentheses s proportional to rho and has a finite ten-dimensional

limit as rho → ∞. This term is closely related to the Eisenstein series E 3
2
(Ω), which

is the SL(2,Z)-invariant function that arises as the coefficient of the t8t8R
4 in the ten-

dimensional type IIB superstring. Whereas Ω = Ω1 + iΩ2 in the type IIB theory, the

Ramond-Ramond axial scalar does not arise in the heterotic theories, so Ω1 = 0. In other

words, the first term in parentheses in (8.21) is identified with E 3
2
(g−1

ho ). The second term

in parentheses is proportional to the regulated quantity Ĉ and vanishes as rho → ∞. We

will later argue that Ĉ = 4π2/3 in order to reproduce the HE one-loop effective action (the

term proportional to 1/rho = rhe in (6.2)).

Taking the limit rho → ∞, it follows that the coefficient of the t8t8R
4 interaction in

the ten-dimensional HO effective action has the form

SHO
t8t8R4 =

g
− 1

2
ho

29 (2π)7 4! `2H

∫
M10

d10x
√
−G t8t8R

4E 3
2
(g−1

ho ) . (8.22)

We may now make use of the standard expression for the Fourier modes of the SL(2,Z)

Eisenstein series,

Es(x+ iy) =
∑

(m1,m2) 6= (0,0)

ys

|m1(x+ iy) +m2|2s
=
∑
n∈Z
Fn,s(y) e2πinx , (8.23)

where (see, for example, [31]) the zero mode consists of two power behaved terms,

F0,s(y) = 2ζ(2s) ys +
2
√
π Γ(s− 1

2)ζ(2s− 1)

Γ(s)
y1−s , (8.24)

and the non-zero modes are proportional to K-Bessel functions,

Fn,s(y) =
4πs

Γ(s)
|n|s−

1
2 σ1−2s(|n|)

√
y Ks− 1

2
(2π|n|y) , n 6= 0 , (8.25)

and the divisor sum is defined by σs(n) =
∑

d|n d
s.
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Using the large-z expansion K1(z) =
√
πe−2z/

√
2z (1+O(z−1)), the small gho (or large

Ω2) expansion of (8.23) with s = 3/2 takes the form

E 3
2
(g−1

ho ) =
∑

(m̂1,m̂2) 6=(0,0)

g
− 3

2
ho

(m̂2
1 g
−2
ho + m̂2

2)
3
2

= 2ζ(3) g
− 3

2
ho + 2ζ(2) g

1
2
ho +

∑
n∈Z+

8π σ−1(|n|) e−
2π|n|
gho (1 +O(gho)) . (8.26)

Substituting this expression in (8.22) gives the perturbative expansion of the t8t8R
4 inter-

action in the ten-dimensional HO theory. The following features of the resulting expression

are worth noting.

• The expression (8.22) contains two perturbative terms, a tree-level term of order

g−2
ho and a one-loop contribution of order g0

ho. These have the same coefficients as

in the type IIB theory. Invariance of the Eisenstein series under the transformation

Ω→ −1/Ω implies

E 3
2
(ig−1

ho ) = E 3
2
(ig−1

I ) , (8.27)

which is a manifestation of HO/type I S-duality. In particular, the perturbative

contributions to t8t8R
4 in the HO theory from spherical and toroidal world-sheets are

identical to contributions from spherical and toroidal world-sheets in the type I theory.

• In addition, (8.22) contains an infinite set of non-perturbative terms that appear as

D-instanton contributions proportional to exp(−2π|k|/gho) in the HO parameterisa-

tion. The instanton action is identified with the action of the euclidean world-line

of the m’th Kaluza-Klein mode in the x11 interval, winding n̂ times around the x10

circle, where k = mn̂. In the HE description the contribution of such an object is

exp(−2π|k|rhe/ghe), which vanishes in the ten-dimensional heterotic limit, rhe →∞.

The possible rôle of such D-instantons is intriguing since they do not arise in HO

string theory in any obvious manner. However, it is worth recalling that the original

argument for the existence of D objects in closed string theories by Shenker [32] was

based on a counting argument that applies to any closed-string theory and does not

distinguish between heterotic and the type II theories, which allows for the possibility

that D-instantons might indeed contribute to heterotic amplitudes. Moreover, the

fact that the instantonic contributions might be present in the HO theory, but not

the HE theory, is reminiscent of Polchinski’s observation [33] concerning the possible

rôle of open heterotic strings in the HO theory. We also note the peculiarity that the

perturbative expansion around each instanton in (8.26) is an expansion in powers of

gho and not g2
ho.

• The total contribution to Abulk loop in (8.15) includes the term −Ibulk
p11=0 t8t8 R̂

4, which

subtracts the one-loop contribution from Ibulk t8t8 R̂
4. As a result, there is no one-

loop t8t8 R̂
4 contribution in the HO theory and the complete one-loop contribution

gives the effective action (8.3) described in section 8.1. This agrees with the expres-

sion (6.3). However the −Ibulk
p11=0 contribution is interpreted in the type I theory via

HO/type I duality as a disk diagram contribution (of order 1/gI).
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• Since (in the Einstein frame) the coefficient of the t8t8R
4 contribution contained

in (8.22) in the HO theory is identical to the coefficient in the type I theory after the

replacement gho → g−1
I , the type I coefficient also contains effects due to D-instantons.

In contrast to the HO description these type I D-instantons are required by symmetry

considerations. As argued in [11] the type I theory would have gauge group O(32)

were it not for the presence of type I Z2 D-instantons that break the invariance under

the transformation transformations in O(32)/Z2 to transformations in SO(32) since

π9(SO(32)) = Z2. In our discussion of supergravity in the compactified Hor̆ava-

Witten background, these non-BPS type I D-instantons have an interpretation, via

T-duality, in terms of pairs of euclidean world-lines of type IIA D-particles winding

(with opposite orientations) around the x11 orbifold.19 Note also that the fact that

D-instantons do not contribute to the HE theory in the rhe → ∞ limit is consistent

with the fact that π9(E8) = 0.

• We know that the parity conserving one-loop effective actions of both the heterotic

theories are equal, which is consistent with T-duality on the x10 circle. In this

section we have seen how this is obtained in the HO theory by summing boundary

and bulk loop contributions to supergravity in the Hor̆ava-Witten background. In

HE coordinates the one-loop effective action is given by

2π2

3

rhe

28(2π)6 `H
t8Y

(gs)
8 , (8.28)

where t8 Y
(gs)

8 = t8 trR4 + 1
4(trR2)2. We found in (7.7) that the t8 (trR2)2 part of

this expression arises from the expansion of a gravity tree diagram and contributed

a term
2π2

3

rhe

28(2π)6 `H
t8 (trR2)2 , (8.29)

to the HE effective action. We also see from (8.21), after replacing rho by r−1
he , that

the bulk loop calculation produces a term of the form

rhe

28(2π)6 48 `H
Ĉ t8t8R

4 . (8.30)

It follows that in order to ensure that the complete one-loop term in the HE theory

has the effective action (8.28) we need to set the renormalised value of the Ĉ to

the value

Ĉ =
4π2

3
. (8.31)

• Finally, it is not at all obvious why the expression we have deduced from the bulk

supergravity loop should give the exact form of the R4 interactions. Unlike the type

II theories, in which this interaction is 1/2-BPS, in the half-maximally supersymmet-

ric theories the R4 interactions do not preserve any supersymmetry in any obvious

manner. However, the situation is a little murky since this statement also suggests

19A more complete discussion of these type I Z2 D-instantons is given in section 4 of [9].
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that there should be a three-loop R4 ultraviolet divergence in four-dimensional N = 4

supergravity. The obvious local counterterm for such a divergence is the volume of

superspace, but this was shown to vanish in [35], where an alternative and less obvi-

ous counterterm was determined. However, explicit supergravity calculations in [5]

demonstrate that this ultraviolet divergence is absent. In addition, as pointed out

in [6, 36], the absence of a R4 interaction at two loops in the heterotic string suggests

that there is no renormalisation of R4 beyond one loop.

Even though we have not analysed higher-loop amplitudes in detail we know that

these have low energy limits that start with at least two derivatives on R4. This adds

weight to the suggestion that R4 is not renormalised beyond one loop.

Since our non-perturbative expression contains the correct perturbative terms for both

the heterotic and type I theories it is of interest to further understand the significance of

the non-perturbative contributions.

9 Higher order contributions from other one-loop amplitudes

In the above analysis we have discussed the leading behaviour of boundary and bulk loop

amplitudes that contribute, in the limit s, t, u → 0, to low order terms in the low-energy

expansion. The expansions of these expressions to higher orders in s, t, u is straightforward

since the field theory box diagram has a simple expansion. At least at low orders in

this expansion the amplitude can be separated into an analytic part that and the part that

contains non-analytic threshold behaviour. The first of these thresholds gives contributions

of order t8F̂
4s log s or t8t8R

4s log s in the ten-dimensional theory, although the nature of the

singularity changes when compactified. For example, in nine dimensions the gauge theory

amplitude has a threshold term of the form t8F̂
4s

1
2 . As stressed earlier, only the first few

terms in the low-energy expansion are likely to be protected by supersymmetry against

receiving corrections beyond those exhibited by the Feynman diagrams we are considering.

In addition to the higher order terms obtained by expanding the loop diagrams we

have already considered in powers of s, t and u, there are other one-loop Feynman di-

agrams that contribute to Yang-Mills amplitudes in supergravity in the Hor̆ava-Witten

background. The low-energy limit of these diagrams starts with higher powers of the Man-

delstam invariants than those we have considered so they do not affect the terms that we

expect to be protected by supersymmetry, but the systematics of their contributions may

nevertheless be of some interest.

9.1 Yang-Mills one-loop amplitude with one gravity propagator: s t8triF
4
i

The first of these diagrams is illustrated in figure 14. In this contribution to the four

gauge particle amplitude one of the propagators in figure 8 is replaced by a gravitational

propagator. Two vertices now have an extra power of momentum and the low-energy limit

contributes to the d2trF 4 interaction in the low-energy expansion of the type I four gauge

particle disk amplitude.
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Aµ

Figure 14. A Yang-Mills four gauge boson loop amplitude (localised on one boundary) with an

internal gravity propagator.

Before discussing the details of the diagram, we note that S-duality must act in a

non-trivial manner — much as we saw with the t8t8R
4 interaction, it cannot act term by

term. This can be seen from the fact that there is a disk amplitude in the type I theory

that gives a contribution of the form ζ(3) d2trF 4/gI. Transforming to the Einstein frame

produces no powers of the dilaton and therefore, applying the type I/heterotic S-duality

transformation, gI → g−1
ho , results in a HO interaction of order gho. This does not make

sense, which means that the coefficient of this interaction must be a non-trivial duality

invariant function of the coupling constant, which gives a HO tree contribution of the same

form as the type I disk contribution. Another feature to note for this interaction is that it

vanishes when two F s belong to each E8 subgroup of E8 × E8. This follows since d2 trF 4

is then a total derivative (equivalently, s+ t+ u = 0).

As before, we will consider the amplitude compactified on S1 to nine dimensions in

the presence of the Wilson line that breaks the symmetry to SO(16) × SO(16). In this

case only adjoint SO(16) gauge particles can propagate in the loop in figure 14 since the

external states are in the adjoint representation and the graviton is a SO(16) singlet. A

straightforward extension of earlier arguments leads to the expression for the low-energy

limit of this amplitude of the form

48

(2π)10
C(R10, R11) d2trF 4 . (9.1)

Here C(R10, R11) is the s, t, u → 0 limit of a ten-dimensional scalar box diagram com-

pactified on the x10 circle and with the unusual feature that one propagator is of the

form (2.18), which involves a sum over the Kaluza-Klein momentum in the x11 direction,

which is m/(`11R11) in the following expressions (whereas the Kaluza-Klein momentum

in the x10 is n/(`11R10). Including the volume factor 2π`11R10 and ignoring an overall

normalisation constant we have

C(R10, R11) =
`211

R11

∑
m,n

∫
M9

d9p
1(

p2 + n2

`211R
2
10

)3 ×
1

p2 + n2

`211R
2
10

+ m2

`211R
2
11

(9.2)

which can be expressed as

`211

2R11

∑
m,n

∫
M9

d9p

∫ ∞
0

dσ1dσ3 σ
2
3 exp

(
−(σ1+σ3)

(
p2 +

n2

`211R
2
10

)
− σ1

m2

`211R
2
11

)
. (9.3)
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Performing the p integrations gives

C(R10, R11) =
π9/2`211

2R11

∑
m,n

∫ ∞
0

dσ1dσ3σ
2
3

(σ1+σ3)9/2
exp

(
−(σ1+σ3)

n2

`211R
2
10

− σ1
m2

`211R
2
11

)
. (9.4)

The sum over Kaluza-Klein charges m,n is converted to sum over winding numbers (m̂, n̂)

by Poisson summations. In the first step the Poisson sum over n gives

C(R10, R11) =
π5

2

`311R10

R11

∑
m,n̂

∫
dσ1dσ3 σ

2
3

(σ1 + σ3)5
exp

(
−π

2n̂2`211R
2
10

σ1 + σ3
− σ1

m2

`211R
2
11

)
, (9.5)

and the subsequent summation over m gives

C(R10, R11) =
π11/2

2
`411R10

∑
m̂,n̂

∫ ∞
0

dσ1dσ3 σ
2
3

(σ1 + σ3)5√σ1
exp

(
−π

2n̂2`211R
2
10

σ1 + σ3
− π2m̂2`211R

2
11

σ1

)
.

(9.6)

We may now analyze the expansion of this expression in the perturbative HO limit in which

gho = R11/R10 → 0 or the perturbative type I limit in which gI = R10/R11 → 0.

As in the previous examples, the ultraviolet divergence of this Feynman diagram is

contained in the zero winding, m̂ = n̂ = 0 term. A high momentum cut-off at a mo-

mentum scale `−1
11 , which regularises this divergence, translates into a cut-off at the lower

endpoint of the σ1 and σ3 integrations. Substituting in (9.6), the renormalised value of

this contribution is

C(R10, R11)
∣∣
UV divergence

= C̃ `11R10 = C̃`Hrhe , (9.7)

where C̃ is a dimensionless constant. Its value is arbitrary, but since we know that there is

no t8trF 4 interaction in the HE theory (where the trace is in the fundamental representation

of a SO(16) subgroup of E8), the only consistent value is C̃ = 0.

The remaining non-zero winding terms in (9.6) are finite and can be interpreted in the

string parameterisation in the following manner.

Tree coefficient in heterotic string theory. The tree-level term arises as the most

singular contribution in the small-ghe (or small-R11/R10) limit, which comes by setting

n̂ = 0 in (9.6)

C(R10, R11)
∣∣
HO tree

=
π11/2

2
`411R10

∑
m̂

∫
dσ1dσ3 σ

2
3

(σ1 + σ3)5√σ1
exp

(
−π

2m̂2`211R
2
11

σ1

)
=
π3`11R10

24R3
11

ζ(3) = `Hrho
1

g2
ho

π3ζ(3)

24
. (9.8)

This has the right form, including the presence of the ζ(3) factor, to correspond to the

tree-level terms compactified to nine dimensions in both the heterotic theories (although

we have not kept track of rational prefactors and powers of π in the overall coefficient).
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Loop contributions to heterotic string theory. In order to extract the loop contri-

butions to C(R10, R11) we need to consider the intermediate summation given in (9.5).

Firstly consider the m = 0 term. This gives

C(R10, R11)
∣∣
HO loop

=
π5

2

`311R10

R11

∑
n̂ 6=0

∫
dσ1dσ3 σ

2
3

(σ1 + σ3)5
exp

(
−π

2n̂2`211R
2
10

σ1 + σ3

)

=
π3

3

`11

R10R11
ζ(2) = `Hrho

π3ζ(2)

3
. (9.9)

Further perturbative terms arise from m 6= 0 terms in (9.5). The integral can be

evaluated explicitly for m, n̂ 6= 0. Converting to the HO parameterisation, these terms give

C(R10, R11)
∣∣
m,n̂ 6=0

= π3`Hrho

(
2ζ(2)2

π2
g2

ho −
8ζ(4)2

π4
g4

ho +
24ζ(6)2

π6
g6

ho

− 8

π2
g2

ho

∑
k>0

1

k2
σ−2(k)K4 (2πk/gho)

)
, (9.10)

where k = mn̂ and σ−2(k) =
∑

d|k 1/d2. In the weakly coupled HO limit the terms in the

first line of this equation are contributions of the form expected for two, three and four

loop HO string contributions. The last term containing the Bessel function gives rise to

instantonic contributions, as we will see shortly.

The complete contribution of perturbative terms to the HO amplitude arising from

the diagram in figure 14 therefore has the form

C(R10, R11)
∣∣
ho pert

d2trF 4 = `Hrhoπ
3

(
ζ(3)

24g2
ho

+
ζ(2)

3
+

2ζ(2)2

π2
g2

ho

−8ζ(4)2

π4
g4

ho +
24ζ(6)2

π6
g6

ho

)
d2trF 4

= `Hrheπ
3

(
ζ(3)

24g2
he

+
ζ(2)

3r2
he

+
2ζ(2)2

π2

g2
het

r4
he

−8ζ(4)2

π4

g4
ho

r6
he

+
24ζ(6)2

π6

g6
ho

r6
he

)
d2trF 4 , (9.11)

where we have used T-duality to relate the HO and HE amplitudes in the last step.

Instanton contribution in the HO theory. The last line of (9.10) gives rise, in the

gho → 0 limit, to an infinite set of instanton contributions to the interaction (9.1) of

the form

C(R10, R11)
∣∣
HO inst

= −8π`Hrhog
2
ho

∑
k>0

1

k2
σ−2(k)K4 (2πk/gho)

= −4π`Hrhog
5/2
ho

∑
k>0

1

k5/2
σ−2(k) e

− 2πk
gho (1 +O(gho)) , (9.12)

where the instanton number is k = |n̂m|. So, we have an indication that, ss in the case of

the t8t8R
4 interaction discussed in section 8.3, the ten-dimensional HO amplitude contains

the contribution of an infinite sequence of D-instantons. As commented earlier, we do not

have an explanation of the origin of such instantons witihn the HO string theory.
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Tree coefficient in type I string theory. We may now consider the weakly coupled

type I limit, in which R11 � R10. In that case the tree coefficient is obtained by setting

m̂ = 0 in (9.6) giving

C(R10, R11)
∣∣
I tree

= π11/2`411R10

∑
n̂ 6=0

∫
dσ1dσ3 σ

2
3

(σ1 + σ3)5√σ1
exp

(
−π

2n̂2`211R
2
10

σ1 + σ3

)

=
π3`11

R2
10

16

15
ζ(3) = π3rI`I

1

gI

16

15
ζ(3) . (9.13)

The presence of the ζ(3) is again in qualitative agreement with the expression obtained by

expanding the type I tree-level amplitude. However, the ratio of the heterotic tree-level

coefficient in (9.8) to the type I coefficient in (9.13) does not correspond to the result

obtained by explicit calculation in string perturbation theory, which is not surprising since

this is not expected to be a protected process.

Two-loop (and absence of one-loop) coefficient in type I string theory. Higher

order perturbative terms in the type I theory can be obtained by performing a Poisson

summation over the integer m in (9.4) instead of over n. In that case we are led to the

expression

C(R10, R11) = π5`311

∑
n

∑
m̂ 6=0

∫
dσ1dσ3 σ

2
3

(σ1 + σ3)9/2√σ1
exp

(
−(σ1 + σ3)

n2

`211R
2
10

− π2m̂2`211R
2
11

σ1

)
,

(9.14)

which is analogous to (9.5), but with sums over m̂ and n so the rôles of Kaluza-Klein

momentum and winding number reversed. The term in this expression that corresponds

to the lowest order perturbative loop term in type I string theory is obtained by setting

n = 0 and is a two-loop contribution. In this case, changing integration variables to

σ̃i = (π2R2
11)−1σi, gives

C(R10, R11)
∣∣∣
I 2-loop

=
π3`11

R2
11

∑
m̂

∫
dσ̃1dσ̃3 σ̃

2
3

(σ̃1 + σ̃3)9/2
√
σ̃1

exp

(
−m̂

2

σ̃1

)
=
π3`11

R2
11

16

105
ζ(2) = π3rI`IgI

16

105
ζ(2) . (9.15)

There are undoubtedly higher order perturbative terms arising from terms in the inte-

gral (9.14) with n 6= 0, but since we do not have a useful closed form expression for the

integral we have not extracted them. The perturbative contributions in the weakly coupled

type I and IA limits limit that we have extracted are summarised in the type I and IA

theories by

C(R10, R11)
∣∣
I pert

d2trF 4 =
16

15
π3rI`I

(
ζ(3)

gI
+
ζ(2)

7
gI + . . .

)
d2trF 4

=
16

15
π3`I

(
ζ(3)

gIA
+
ζ(2)

7

gIA

r2
IA

+ . . .

)
d2trF 4 . (9.16)
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Figure 15. A contribution of order gI s t8trF 4 in Type I superstring theory.

Instanton contribution in type I string theory. The D-instanton contribution in

the type I theory also arises from the terms in (9.14) with n 6= 0. Although there appears

to be no closed-form expression in terms of Bessel functions for this integral, it is easy to

make use of a saddle point analysis to find the terms that are exponentially damped when

R10/R11 = gI � 1. They give a series of the form

C[R10, R11]
∣∣
inst

=
`11

R10R11

∑
k>0

ck exp

(
−2πk

R11

R10

)
(1 +O(R10/R11))

= `IrI
∑
k>0

ck exp

(
−2πk

gI

)
(1 +O(gI)) , (9.17)

where k = m̂n and ck is a constant that can be determined by standard saddle point

methods.

Comments and summary of features of the s t8trF 4 calculation. We do not

expect that the loop diagram in figure 14 should generate the exact coefficient of the d2trF 4

interaction, but we have included it because it does generate a coefficient that demonstrates

several of the expected features of string theory. A summary of these is as follows.

• The expression for the coefficient of the s trF 4 interaction contains perturbative terms

up to four loops in the HO theory. Strikingly, the one-loop term is absent in the

weakly coupled type I limit — this agrees with the explicit string calculation [10].

Since we expect that there are further contributions to this interaction from other

sources, it is quite possible that there is an infinite number of contributions in the

full perturbation expansion.

• The origin of the type IA two-loop term in string perturbation theory can be traced

to the world-sheet diagram shown in figure 15, which is a torus with a boundary

localised on a stack of eight-branes coincident with one of the orientifold planes.

The four gauge particles are attached to these eight-branes. This contribution is of

the same order as the disk world-sheets with two holes or cross-caps inserted, which

contribute to gIA t8(trF 2)2 as we discussed earlier.

• Just as we saw for the t8t8R
4 interaction that was obtained from the bulk super-

gravity loop, the coefficient function C(R10, R11) contains an infinite sequence of

non-perturbative instantonic terms. These make exponentially small contributions of

order e−2πk/gho in perturbative HO theory and e−2πk/gI in perturbative type I theory.
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10 Discussion

The arguments of this paper, based on perturbative supergravity in the Hor̆ava-Witten

background, M9×S1×S1/Z2, lead to an interpretation of a number of features of the low-

energy expansion of scattering amplitudes for gauge particles and gravitons in N = 1 string

theories in D = 9 and D = 10 dimensions (although we did not discuss mixed gauge/gravity

amplitudes). Several of these are known features of superstring perturbation theory that

would seem mysterious without such an interpretation and some of them are indications

of non-perturbative features, such as non-renormalisation theorems and the contributions

of instantons. The interpretation of supergravity Feynman amplitudes in terms of string

theory has some unusual features, the most striking of which are summarised here.

• The gravitational propagator in the Hor̆ava-Witten bulk depends of the interval

length, `11R11. As a result, the gauge boson tree diagrams in section 4 and gravi-

ton tree diagrams in section 7, depend on the string coupling constants induced by

the orbifold geometry. One consequence is that the low-energy expansion of these

tree amplitudes contains a power series in sR2
11`

2
11 = g2

hes `
2
H = s `2I /r

2
I multiplying

(trF 2)2. This infinite series of terms is therefore interpreted in terms of contributions

to loop amplitudes in HE string theory to all orders in the coupling constant g2
he.

In the type I description, this sum of this series reproduces the factor (4.22) in the

one-loop cylinder amplitude (figure 4) that comes from the sum of the ground states

of closed string winding modes. These modes, which correspond to the Kaluza-Klein

modes in the Hor̆ava-Witten interval, are unstable. However, the agreement of the

supergravity and string amplitudes up to order sg2
het8(trF 2)2 is in accord with ex-

pectations based on supersymmetry and suggests that the effects of this instability

enter at higher order in the low-energy expansion.

• The tree amplitudes were generalised in section 4.4 to tree contributions with “iter-

ated” propagators induced by the R2 and (∂H)2 interactions localised on the bound-

aries. This generated another infinite series of powers of s `211/R11 = s `2H = gIs `
2
I .

This corresponds an infinite sequence of tree-level contributions in the HE and HO

theories that reproduces the explicit factor in the heterotic tree amplitude displayed

in (4.33). In the type I theory interpretation this low-energy expansion of a tree level

HO factor is interpreted as an infinite series of higher order terms corresponding to

world-sheets with arbitrary numbers of boundaries.

• In section 5 we gave a novel analysis of the ten-dimensional E8 gauge theory loop

amplitude compactified on S1, which is relevant to a loop that is localised in ei-

ther of the two Hor̆ava-Witten boundaries. Before compactifying on S1 the states

circulating in the loop are in the adjoint representation (the 248) of E8 and the am-

plitude is an ill-defined ultraviolet divergent integral multiplying t8(Tr248F
2)2. After

compactification, with the gauge group broken by Wilson lines to SO(16), the states

circulating in the loop are the massless SO(16) adjoint gauge states together with

their Kaluza-Klein tower, as well as the Kaluza-Klein tower of massive SO(16) spinor

states. These states complete the adjoint representation of E8 in the large-R10 limit.
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The sum over Kaluza-Klein modes circulating in the loop was transformed into a sum

over windings of the loop around the x10 circle by means of a Poisson summation and

the ultraviolet divergence was thereby isolated in the zero winding term. We argued

that, after renormalisation, this zero-winding term gives a contribution that has no

sensible string theory interpretation and so its renormalised value should be taken to

vanish. The non-zero winding terms give a sum of finite contributions proportional

to 1/rhe = rho that were interpreted as contributions to the S1 compactification of

the HO theory. Making use of the conspiracy between adjoint and spinor traces

in (5.7), which is a special feature of SO(16) these non-zero winding terms contribute

to t8 triF
4
i (i = 1, 2), where the traces are in the fundamental representation of either

SO(16), which agrees with the result in HO perturbation theory. Strikingly, this

would not be the structure of the one-loop amplitude in conventional SO(16)×SO(16)

gauge theory, where the traces would be in the adjoint representation of either SO(16)

(and the loop would be ultraviolet divergent). The trace has to be in the fundamental

representation in order to agree with HO/type I duality, since the type I amplitude

arises from a disk diagram with a Chan-Paton factor, which obviously gives single

trace in the fundamental representation.

• The arguments concerning the contributions of one-loop four-graviton amplitudes

considered in section 8 provided suggestive illustrations of HO/type I duality in the

M9 × S1 × S1/Z2 background. There were two kinds of loops. The first was one in

which the external gravitons coupled to a loop of gauge particles localised on either

boundary, which generalised the gauge theory loop amplitude summarised in the

previous item and led to a combination of t8trR4 and t8(trR2)2 interactions.

The second contribution came from a loop in which the external gravitons coupled

to a loop of gravitons propagating in the bulk. In this case the amplitude involved

a sum over the Kaluza-Klein momentum, p11, in the eleventh dimension. We argued

that the p11 = 0 contribution to this loop integral added a term to the gauge loop

contribution, leading to a total one-loop effective action in the HO theory proportional

to t8 Y
(gs)

8 (R). This is the parity conserving partner of the anomaly cancelling ten-

form ε10B Y
(gs)

8 (R) and is expected to be one-loop exact.

The p11 6= 0 terms in the loop integral generated a t8t8R
4 interaction, analogous

to that of the type II theories, but with a coupling constant dependence described

by (g
− 1

2
ho E 3

2
(i/gho)− 2ζ(2)), where E 3

2
(i/gho) is an Eisenstein series that has a weak

coupling expansion containing just two perturbative terms (tree-level and one-loop)

and an infinite series of Z2 D-instanton contributions The presence of −2ζ(2) sub-

tracts the one-loop term of order g0
ho from the Eisenstein series, which accounts for

the absence of the p11 = 0 term in this loop contribution. It follows that the t8t8R
4

interaction in the HO theory only has a perturbative tree-level contribution together

with D-instanton contributions. In addition there is a one-loop contribution pro-

portional to t8 Y
(gs)

8 (R,F ), which is the parity-conserving partner of the anomaly-

cancelling ten-form (the curvature dependent piece was obtained in (8.3)). After
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applying HO/type I duality we conclude that the type I theory has contributions to

t8t8R
4 of order 1/g2

I and g0
I , corresponding to spherical and toroidal world-sheets.

This analysis hints at the non-renormalisation of the R4 interactions beyond one loop

in any of the N = 1 string theories — a feature that ties in with expectations based

on perturbative supergravity and string theory calculations [5, 6].

• The presence of D-instanton terms in the expansion of the function E 3
2
(i/gho) that

multiplies the t8t8R
4 interaction in (8.22) is crucial in ensuring its invariance under

HO/type I duality, gho → gI = 1/gho. Although the necessity of type I D-instanton

contributions is well documented [11], there is much less evidence that there should be

well-defined contributions of HO D-instantons. After all, these objects originate from

world-lines of unstable D0-branes in the HE theory wound around the x10 direction.

Such unstable heterotic D-branes are generally not expected to play a preferred rôle,

so while the coupling constant dependence in (8.22) is interesting, it is by no means

proven to be exact.

• Similar considerations determine the structure of the parity-violating gauge and grav-

itational effective interactions that are necessary to ensure the absence of chiral gauge,

gravitational and mixed anomalies. These are contained in the ten-form B ∧ X(gs)
8

and were discussed in the context of the HE theory in [2]. The expression for X
(gs)
8 is

given in (3.1) as a sum of the bulk “Vafa-Witten” term, X
(vw)
8 , and (triF

2
i − trR2/2)2

terms localised on the two boundaries. In this paper we have seen how the parity-

conserving partners of these interactions arise as the sum of the t8t8R
4 interaction

induced by a gravitational loop and the combination t8(triF
2
i − trR2/2)2 induced by

a sum of tree amplitudes with vertices localised in each boundary.

In the HO case the expression for X
(gs)
8 = εY

(gs)
8 is given by (3.2) (and Y

(gs)
8 is given

in (B.15)). We found that the corresponding parity-conserving terms of the form

t8 Y
(gs)

8 arise in a rather different fashion since they originate from a loop of gauge

particles localised in either compactified boundary, coupling to external gauge par-

ticles (as in section 5), or gravitons (as in section 8), or a mixture of both gauge

particles and gravitons (which we have not explicitly considered). The anomaly-

cancelling terms in the HO theory defined by (3.2) are clearly determined by analo-

gous parity-violating loop amplitudes with an external B-field coupling to four gauge

or gravitational particles, although we have not explicitly evaluated these amplitudes

in this paper. As in the parity-conserving case, such an analysis would explain the

occurrence of the fundamental trace in the trF 4 term in (3.1) and (B.15).

More generally, it is obvious that the Feynman diagram approximation is not adequate

for understanding the physics of M-theory beyond the low-energy approximation. Even in

the context of the low-energy expansion in terms of Feynman diagrams, there are many

other sources of contributions to higher derivative interactions of the form d2kF 4, d2kR4 and

mixed gauge/gravity amplitudes, that are not generally expected to be protected against

receiving higher order corrections. These include contributions from higher order terms in
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the low-energy expansion of tree-level and one-loop Feynman amplitudes considered in this

paper, as well as from higher-loop amplitudes that we have not considered. Clearly, under-

standing the dynamics of M-theory beyond the first few terms in the low-energy expansion

requires a deeper understanding of intrinsically stringy effects that are not probed by the

supergravity approximation. It is nevertheless of interest to probe the extent to which low

order terms are determined by supersymmetry.
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A The M-theory/string theory dictionary in the Hor̆ava-Witten

background

A.1 Dualities relating N = 1 superstring theories

There are four distinct N = 1 superstring perturbation “theories” in ten-dimensional

Minkowski space (each with sixteen supercharges), namely, heterotic E8 × E8, heterotic

Spin(32)/Z2, type I superstring theory and type IA superstring theory. These theories

have different perturbative expansions but they are related to each other by stringy du-

alities. These dualities relate the moduli associated with each of these theories in the

following manner.

1. Heterotic T-duality

T-duality in the direction of the x10 circle maps the heterotic string vacuum with

unbroken Spin(32)/Z2 on M9 × S1 to itself, and maps the heterotic string vacuum

with unbroken E8 × E8 on M9 × S1 to itself. However, T-duality is more interesting

when the gauge group is broken by Wilson lines in the compactified theory. The HE

theory with E8 × E8 broken to SO(16) × SO(16) is related by T-duality to the HO

theory with Spin(32)/Z2 broken to SO(16)× SO(16) [21, 37, 38]. The parameters of

two heterotic string theories are related to each other by

rhe =
1

rho
, ghe =

gho

rho
. (A.1)

2. Type I theory from type IIB orientifold

The type I theory is a theory of unoriented open and closed strings with SO(32) gauge

group that is equivalent to type IIB in the presence of an orientifold nine-plane [39]
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and sixteen D9-branes, which are needed to neutralise the total R-R charge [40]. This

explains the origin of the SO(32) gauge group in terms of D-branes. The coupling

constants of the type II and type I theories are related by

gIIB =
√

2 gI , (A.2)

which fits in with the understanding that the world volume coupling constant of

D-branes in the type I theory is twice that in the type IIB theory.

3. Relationship of type IA and type IIA theories

The type IA theory has two orientifold eight-planes located at the fixed points of the

orbifold of the x11 circle, There are sixteen D8-branes positioned at points on the x11

axis between the fixed planes, together with their images. In the SO(16) × SO(16)

case considered here, there eight D8-branes coincide with each orientifold plane, also

coinciding with their images. Type IA theory can be equivalently thought as type

IIA theory in an orbifold M9 × S1/Z2. The coupling constants of the IA and IIA

theories are equal and given by

gIIA = gIA . (A.3)

4. T-duality of type I and type IA theories

When compactified to nine dimensions on a circle of radius rI (in string units) the

type I theory is T-dual to the type IA theory compactified on a circle of radius rIA.

This is the image of the transformation that relates the type IIA and type IIB closed

string theories compactified on a circle. The radii and the coupling constants are

related by

rI =
1

rIA

rI

gI
=

1

gIA
. (A.4)

The details of this duality are again particularly simple in the situation in which the

symmetry group is SO(16) × SO(16), which is the case in which the dilaton charge

of the orientifold planes is locally screened.

5. Heterotic Spin(32)/Z2/type I strong coupling duality

Heterotic Spin(32)/Z2 theory and type I SO(32) theory are conjecturd to be related

by S-duality [41, 42] with the following relationships between the patrameters of the

theories

gho =
1

gI
rho =

rI

g
1/2
I

`I = `H(gho)1/2 . (A.5)

According to S-duality the D-string of the type I theory can be identified with funda-

mental heterotic string [41]. It was noted in [11] that in order for this duality to be

satisfied there have to be non-perturbative Z2 instanton effects in the type I theory

that are associated with the breaking of O(32) to SO(32). We will comment on these

in an explicit calculation later in this paper.
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An important comment. A term of fixed loop number in the HO theory has a

low-energy expansion in powers of `2H s. Since these powers translate into powers of

gI`
2
I s in the type I theory this expansion may be reinterpreted as a sum of terms of

higher order in type I perturbation theory, with the number of world-sheet boundaries

increasing as the power of s increases. However, this identification of individual

terms in the heterotic and type I/IA low-energy effective actions only applies to

special terms. More generally the strong/weak coupling duality does not allow the

identification of specific terms in the expansion of the HO theory with specific terms

in the type I theory, as is seen explicitly in the body of the paper.

A.2 Relationships between N = 1 and type II string theories

We will here review the relations between the parameters in maximally supersymmetric

(N = 2) string theories (type II theories) compactified on a circle and the N = 1 theories

compactified on S1. The objective is to clarify certain factors of
√

2 that arise in passing

from the type II theories to the heterotic and type I theories.

1. Relations between the parameters

The parameters of the type IIA and IIB theories compactified on S1 to nine dimen-

sions are related by
2π`II rIIA

g2
IIA

=
2π`II rIIB

g2
IIB

, (A.6)

where rIIA = 1/rIIB and `II is the type IIA or IIB string length scale.

The type IA theory is obtained from type IIA by compactifying on S1/Z2 together

with a world-sheet orientation reversing operator, Ω. The type I theory is simply

obtained by acting on the type IIB theory with Ω and is reduced to nine dimensions

by compactifying on S1. So the relation (A.6) between type II theories becomes a

relation between type IA and IB if the S1 is replaced by the orbifold S1/Z2 on the

left-hand side of the equation, which halves the volume of the compact direction but

the right-hand side is unaltered.20 In that case the above relation is replaced by

π`IIrIIA

g2
IIA

=
2π`IIrIIB

g2
IIB

. (A.7)

The relation between the type I and type IA theories takes the standard form if

we define

gIIA = gIA gIIB =
√

2 gI (A.8a)

rIA = rIIA rI = rIIB (A.8b)

and equate the type I and type II string lengths so that

`II = `I . (A.8c)

20See the comment below eq. 13.3.30 in page 151 of [43].
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Equation (A.7) can then be written as

2π`IrIA

g2
IA

=
2π`IrI

g2
I

, rIA =
1

rI
, (A.9)

or
rI

gI
=

1

gIA
. (A.10)

2. Dp-brane tension in type II and type I theories

The tension of a Dp brane in the type II theory is

Tp
gII

Tp =
2π

(2π`II)p+1
. (A.11)

The D-brane tension in the unoriented theory is smaller by a factor of 1/
√

2,21 and

hence the tension in type I theory is

Tp√
2 gIIB

. (A.12)

From the relation between the type IIB and type I coupling constants in (A.8a), it

follows that the tension in the type I theory is

Tp
2gI

, (A.13)

which is consistent with the claim on page 151 of [43].

3. Relation between orientable and unorientable closed string loop amplitudes

An important point of relevance to the interpretation of the graviton loop calculations

in section 8 involves the relationship of the type II one-loop amplitude to that of the

type I theory. The type II loop amplitudes are defined on orientable world-sheets

while Ω̂ is the orientation reversing operator. Hence, the orientable part of the n-loop

diagram in type I theory comes with a factor of

(gIIB)2(n−1)

2n
, (A.14)

using the relation between the type IIB coupling and type I coupling (A.8a) this is

simply a factor of
1

2
(gI)

2(n−1) . (A.15)

This is relevant to the one-loop calculation in section 8.3, where we suggest that the

ratio of tree-level to one-loop amplitudes arising from Ibulk (that enters in (8.15))

in the HO theory.is the same as in the type I theory. The factor of 1
2 in (A.15),

together with the fact that the closed-string tree-level amplitude (given by four vertex

operators attached to a spherical world-sheet) is proportional to 1/g2
IIB = 1/(2g2

I )

from (A.8a), is in accord with this suggestion.

21See footnote 8 in page 21 of [44].
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4. Type I T-duality and D-particles in type IA theory

Recall that a D0-brane of the type IA theory moving in the bulk (i.e., in the fun-

damental domain, 0 < x11 < π`11R11) is identical to the D0-brane of the type IIA

theory and has a mass
T0

gIA
=

T0

gIIA
. (A.16)

This is the description in the downstairs formalism in which x11 is restricted to an

interval with two boundaries. In the upstairs formalism, where x11 spans the circle,

0 ≤ x11 ≤ 2π`11R11, the fields are subject to the Z2 orbifold condition (so that for

a scalar field, Φ(x11) = Φ(−x11)). In this formalism bulk D0-branes always come

in pairs comprising a D0-brane at 0 < x11 < π`11R11 with mass T0/(2gIA) and its

mirror image at −x11 with the same mass. The mass of the pair agrees with the mass

of the bulk D0-brane in the downstairs description.

A type IA D0-brane can be its own mirror image if it is “stuck” to either fixed point

of the orbifold (x11 = 0 or x11 = π`11R11) and cannot move in the bulk. The mass

of such a stuck type IA D0-brane is

T0

2gIA
. (A.17)

T-duality along x11 identifies such a D0-brane with a type I D1-brane wrapping once

around the circle of radius `IrI. The D1-brane of the type I theory has a tension

T1

2gI
, (A.18)

and from (A.11) it is easy to see that its mass agrees with that of the stuck type IA

D0-brane in (A.17).

A.3 Relationship between string theory parameters and M-theory parameters

We will here give a brief summary of the relationships between the parameters R11 and

R10 of the Hor̆ava-Witten geometry on a circle (M9 × S1 × S1/Z2) and the parameters

of the various N = 1 string theories compactified to nine dimensions. For each of these

theories these parameters consist of the coupling constant and radius of the tenth dimen-

sion: (ghe, rhe), (gho, rho), (gIA, rIA), (gI, rI), for the HE, HO, type IA and type I theories,

respectively. Detailed arguments for these relationships can be found in [1, 2].

The Hor̆ava-Witten geometry is obtained from eleven-dimensional Minkowski space

by compactifying on the orbifold of a circle in the eleventh direction, where the generator

of the orbifold group acts on the eleventh dimension x11 by reflection x11 → −x11, as

well as acting on the three-form field of eleven-dimensional supergravity, C → −C, i.e,

the three form field C is odd under parity reflection Only the components C11µν are even

under reflection and hence survive the Z2 projection. Similarly the h11µ components of

the graviton are odd under reflection and hence projected out. The gauge fields are vector

fields that propagate on the boundary of the space-time.
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The radius of the orbifold circle and the other circle, measured in 11-dimensional

Planck units, are R11 and R10, respectively.22 The physical length of the interval in the

11th direction is then given by

L = π R11`11 . (A.19)

The metric on the cylinder is given by

G
(2)
ij = `211

V
Ω

(
Ω2 0

0 1

)
= 2π2`211

(
R2

10 0

0 R2
11

)
, (A.20)

V = 2π2R10R11 , Ω =
R10

R11
. (A.21)

The following summarises the relationships between the M-theory pararmeters, R10 and

R11 and the string theory parameters for each of the N = 1 string theories. It also

summarises the relations between the eleven-dimensional Planck length, `11 and the string

length in each of the nine-dimensional string theories.

• Heterotic E8 × E8 theory

The ten-dimensional heterotic E8 × E8 theory has a coupling constant that is ex-

pressed as

ghe = R
3/2
11 . (A.22)

while the radius of the spatial circular dimension is given in string units by

rhe = R10

√
R11 . (A.23)

The heterotic string length `H is related to the eleven-dimensional Planck length

`11 by

`H =
`11√
R11

. (A.24)

• Heterotic Spin(32)/Z2 theory

Using (A.1) and (A.22)–(A.24), we find the relations between the Spin(32)/Z2 het-

erotic string theory parameters and R11 and R10

gho =
R11

R10
rho =

1

R10

√
R11

`H =
`11√
R11

. (A.25)

• Type IA theory

Upon compactification of the Hor̆ava-Witten geometry on the circle of radius R10 the

theory may be interpreted in terms of type IA string theory. The relation between

type IA parameters and M-Theory parameters

gIA = R
3/2
10 rIA = R11

√
R10 `I =

`11√
R10

. (A.26)

22This is the convention used in [2], but differs from that of [1].
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• Type I theory

T-duality of type IA string theory along the orbifolded direction (with radius R11)

results in the type I description, with parameters that are related to those of

M-theory by23

gI =
R10

R11
rI =

1

R11

√
R10

`I =
`11√
R10

. (A.27)

A.4 Particle states in nine dimensions

We will here briefly summarise the spectrum of particle states that arise in the M-theory

orbifold M9 × S1 × S1/Z2 and the corresponding string theories, compactified on S1 to

nine dimensions, as described in [2]. Although the M2-brane states do not enter into

the amplitude calculations in the body of this paper, the particle states that arise from

wrapping it on S1/Z2 × S1 enter into a discussion of the multiplets of states in nine-

dimensions.

These particle states may be obtained starting from the BPS states in the maximally

supersymmetric theory obtained from M-theory on M9 × S1 × S1. Following [2] (with a

slight change of notation) the masses of these states are given by

|m|
`11R11

,
|n|

`11R10
,

|w|R10R11

`11
, (A.28)

where m,n,w ∈ Z. These are the Kaluza-Klein modes in the x11 and x10 directions, with

charges m and n, respectively, together with the wrapped M2-brane states with wrapping

number w.

The states of interest to us are those that arise in the M9 × S1/Z2 × S1 compacti-

fication of M-theory, which must be invariant under the action of the Z2 orbifold group.

This identifies x11 with −x11 and so its action on the states is |m,n, `〉 → ±| − m,n, `〉.
The Kaluza-Klein charge m in the orbifold direction is therefore not conserved in this

background. The wrapping number w is conserved by virtue of the fact that the orbifold

projection acts on both the embedding space-time and the M2-brane world-volume (this is

the definition of an orientifold).

The Kaluza-Klein modes in the x10 direction, translate (using the dictionary in

appendix A) into stable states with the following masses in the various string theories

|n|
`Hrhe

,
|n| rho

`H
,

|n|
`IgIA

,
|n|rI

`IgI
. (A.29)

These are Kaluza-Klein modes of the HE theory, winding modes of the HO theory, D0-

branes of the type IA theory and winding modes of the D1-brane of the type I theory

(which is the heterotic Spin(32)/Z2 string), respectively.

The unstable Kaluza-Klein modes in the x11 direction correspond to unstable states

in the various nine-dimensional N = 1 string theories with masses given by

|m|
`H ghe

,
|m| rho

`H gho
,

|m|
rIA`I

,
|m| rI

`I
. (A.30)

23This corrects a typographical error in equation (3.2) in [1].
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The first of these is the mass of a charge-m D0-brane in the HE theory that is inherited

from the type IIA theory but its charge is not conserved. The second is the mass of a ground

state of the unstable D1-brane in the HO theory with winding number m (a wound type

I string), which is related to the HE theory by T-duality. The third entry in (A.30) is the

mass of the charge-m non-conserved Kaluza-Klein mode of the type IA closed string, and

the fourth entry is a state of the type I closed string with winding number m that is T-dual

to the type IA state, and is unstable since the type I string can break into open strings.

Although the unstable D-branes of the HE and HO theories are motivated by extrapolating

from the Hor̆va-Witten starting point, it is not clear how they can be described directly

in the heterotic string theories.24 The instability of the type I string is well understood.

In the Hor̆ava-Witten description invariance under the action of the orbifold requires a

superposition of type I string states of opposite orientations.

The stable wrapped M2-brane states with wrapping number w in (A.28) translate into

states with the fiollowing masses in the string theory descriptions

|w|rhe

`H
,

|w|
`Hrho

,
|w| rIA

`I
,

|w|
`IrI

. (A.31)

These are respectively, winding states of the HE string, Kaluza-Klein states of the HO

string, winding states of the type IA string, and Kaluza-Klein states of the type I theory.

B Notation and conventions

We will here summarise some well-known features of certain terms in the low-energy ef-

fective theory that arise from ten-dimensional string theories with N = 1 space-time su-

persymmetry. We will illustrate these in subsection B.1 by reviewing the low lying terms

in the low-energy expansion of the heterotic and type I SO(32) theories that contribute to

on-shell three-point amplitudes. In subsections B.2 and B.5 we will review some notation

relating to parity conserving and parity violating terms that are related by supersymmetry

and enter the effective action with up to five external on-shell particles.

B.1 Duality between effective action of type I and HO theories

We begin by reviewing the low-energy effective actions for the type I and heterotic SO(32)

theories, keeping those terms that contribute to on-shell three-point functions.

The string-frame effective action for the heterotic SO(32) string theory that includes

terms contributing to three-point functions gets contributions entirely from tree-level in-

teractions since that are not renormalised by loop effects [26, 45]. The bosonic terms are

given by

S(3) het =
1

(2π)7`8H

∫
M10

d10x
√
−Ge−2φh

(
R+ 4∂µφ

h∂µφh − 1

2
|H̃3|2 −

`2H
2

tr(|F |2)

)
+ Shet

R2 + Shet
(∂ H)2 . (B.1)

24The argument given by Shenker [32] suggested the existence of D-branes and D-instantons based on

the divergence of closed string perturbation theory appears to apply not only to the type II theories but

also to the heterotic and type I theories.

– 65 –



J
H
E
P
1
2
(
2
0
1
6
)
0
6
0

In this expression R is the Riemann curvature scalar, φ is the dilaton, As in the body of

this paper, the symbol tr indicates a trace of a matrix in the fundamental representation,

while Tr indicates a trace in the adjoint representation. The three-form field strength for

the two-form Neveu-Schwarz/Neveu-Schwarz potential, B2µν , includes the modifications

due to Yang-Mills and Lorenz Chern-Simons terms.

H̃3 = dB2 −
`2H
2

tr

(
A ∧ dA+

2

3
A ∧A ∧A

)
+
`2H
2

tr

(
ω ∧ dω +

2

3
ω ∧ ω ∧ ω

)
. (B.2)

The two terms in the second line of (B.1) are higher-derivative interactions that contribute

to three-point functions and are required by supersymmetry once the Lorentz Chern-Simons

term, which is also a higher derivative term, is included in the action. These are manifes-

tations in the HO effective action of the corresponding boundary terms in (2.4).

The equivalent string frame effective action for the bosonic fields of the type I theory

is given by

S
(3)
I =

1

(2π)7(`I)8

∫
M10

d10x
√
−G
(
e−2φI

(
R+4∂µφ

I∂µφI
)
− 1

2
|F̃3|2 −

(`I)
2

2
e−φ

I
tr(|F |2)

))
+ SIR2 + SI(∂ H)2 . (B.3)

Here the three-form field strength for the Ramond-Ramond potential, C2µν , again includes

the presence of the Yang-Mills and Lorenz Chern-Simons terms, and is given by

F̃3 = dC2 −
`2I
2
e−φ

I
tr

(
A ∧ dA+

2

3
A ∧A ∧A

)
+
`2I
2
e−φ

I
tr

(
ω ∧ dω +

2

3
ω ∧ ω ∧ ω

)
.

(B.4)

The equivalence of the type I and HO actions is manifest with the identifications

GIµν = e−φ
h
Ghµν , φI = −φh , BI

µν = Bh
µν , AIµ = Ahµ , (B.5)

together with the relation between the string length scales in the two theories in (A.22).

The corresponding actions for the HE and IA theories have analogous structure.

B.2 Supergravity in the HW background and the Feynman rules

In order to express the Feynman rules in a unified manner in the main text we will express

the eleven-dimensional gravitational constant and the ten-dimensional gauge coupling in

terms of the eleven-dimensional Planck length, `11, given in (2.11).

The Feynman rules that follow from this action have the following general features.

• Each vertex coupling three gauge particles contains a single derivative and contributes

a factor of 1/`611.

• Each vertex coupling a pair of gauge particles in a boundary to a gravitational particle

(the graviton or the antisymmetric three-form, C, which couples via the Lorentz

Chern-Simons term) contains two derivatives and again contributes a factor of 1/`611.

• Each supergravity bulk interaction vertex is quadratic in derivatives and contributes

a factor of 1/`911.
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• Gravitational particles also couple via the Lorentz Chern-Simons term, is localised

on a boundary and has four derivatives and contributes a factor of 1/`611.

• The graviton propagator has a factor of `911 while each gauge propagator contributes

a factor of `611.

• The expression for an amplitude in Minkowski space-time includes an implicit product

of delta functions for momentum conservation in each direction. When a dimension

is compactified on a circle of radius R`11 so the conjugate momentum is quantised in

units of the inverse radius, the dleta function becomes a Kronecker delta conserving

the integer Kaluza-Klein charges multiplied by the volume factor 2π`11R. As dis-

cussed in the paragraph after (4.11) our expressions include this volume factor, but

suppress the discrete momentum Kronecker delta.

B.3 Some higher order interactions

In addition to the terms in the actions (B.1), (B.3) and the corresponding HE and IA

versions, we will encounter a number of interactions that arise in higher-point on-shell

gauge particle and graviton amplitudes in the main part of this paper. Certain of these

are parity-violating terms arise that are crucial for understanding the cancellation of gauge

and gravitational anomalies. These are components of a D = 10, N = 1 supersymmetry

multiplet that also contains analogous parity-conserving terms. These terms arise art one

loop in the heterotic theories (so they are independent of the dilaton) and are protected from

renormalisation beyond one loop. It is convenient to introduce a notation that highlights

this relationship.

B.4 The gauge sector

The eighth rank tensor t8 is defined by its contractions with the gauge field strength, Fµν ,

which is a matrix in some representation of E8 × E8 or SO(32),

t8 F
4 ≡ tµ1,ν1,...µ4ν48 Fµ1ν1 Fµ2ν2 Fµ3ν3 Fµ4ν4

= 16Fµν Fρν Fµλ F
ρλ + 8Fµν Fρν F

ρλ Fµλ

− 4Fµν Fµν Fρλ F
ρλ − 2Fµν F ρλ Fµν Fρλ . (B.6)

In order to distinguish the single and double traces on the group theory indices we will

use the notation t8TrF 4 and t8(TrF 2)2, where the capital Tr indicates that trace is in the

adjoint representation. We will use the lower case tr symbol to indicate a trace in the

fundamental representation, where this is appropriate.

In a gauge theory scattering amplitude with gauge particle polarisations and momenta

labelled by εr and kr (r = 1, 2, 3, 4) the linearised gauge field has the form F̂A = TA (εµkν−
ενkµ). In this case the effective F 4 interactions can be represented by t8TrF 4 = t8F̂

4 TrT 4

– 67 –



J
H
E
P
1
2
(
2
0
1
6
)
0
6
0

or t8(TrF 2)2 = t8F̂
4 (TrT 2)2 where

t8F̂
4 = −2ut(ε(1) · ε(2))(ε(3) · ε(4))− 2st(ε(1) · ε(3))(ε(2) · ε(4))− 2su(ε(1) · ε(4))(ε(2) · ε(3))

+ (ε(1) · ε(2))
[
4t(ε(3) · k(1))(ε(4) · k(2)) + 4u(ε(3) · k(2))(ε(4) · k(1))

]
+ (ε(3) · ε(4))

[
4t(ε(1) · k(3))(ε(2) · k(4)) + 4u(ε(1) · k(4))(ε(2) · k(3))

]
+ (ε(1) · ε(3))

[
4s(ε(2) · k(3))(ε(4) · k(1)) + 4t(ε(2) · k(1))(ε(4) · k(3))

]
+ (ε(2) · ε(4))

[
4s(ε(1) · k(4))(ε(3) · k(2)) + 4t(ε(1) · k(2))(ε(3) · k(4))

]
+ (ε(1) · ε(4))

[
4s(ε(2) · k(4))(ε(3) · k(1)) + 4u(ε(2) · k(1))(ε(3) · k(4))

]
+ (ε(2) · ε(3))

[
4s(ε(1) · k(3))(ε(4) · k(2)) + 4u(ε(1) · k(2))(ε(4) · k(3))

]
. (B.7)

The interactions t8TrF 4 and t8(TrF 2)2 are components of two D = 10 N = 1 superinvari-

ants that also contains the parity-violating F 4 terms that are essential for understanding

the absence of chiral gauge anomalies. The superinvariant that arises at one loop in the

HO theory is the combination

I1 = t8 trF 4 − 1

4
ε10B trF 4 , (B.8)

where tr indicates the trace in the fundamental representation of SO(32) and

ε10BF
4 ≡ εµ1,ν1,...µ5,ν5 Fµ1ν1 Fµ2ν2 Fµ3ν3 Fµ4ν4 Bµ5ν5 . (B.9)

In (B.8) we have converted from traces in the adjoint representation of SO(32) to traces in

the fundamental representation using

TrF 4 = 24trF 4 + 3(trF 2)2 , TrF 2 = 30trF 2 . (B.10)

There is no independent fourth order Casimir in the E8 × E8 theory, and we have

TrF 4 = (TrF 2)2/100 where Tr denotes the trace in the 248× 248-dimensional adjoint rep-

resentation. The terms that arise in the E8×E8 one-loop effective action for the HE theory

form the combination

I2 = t8 (triF
2
i )2 − 1

4
ε10B (triF

2
i )2 . (B.11)

B.5 The gravitational sector

We will again introduce a notation that emphasises the relationship between terms in

the ten-dimensional effective action that are integrals of ten-forms with analogous scalar

expressions. For example, the Vafa-Witten term in the type IIA theory will be denoted

εB Y
(vw)

8 (R) ≡ B ∧X(vw)
8 (R) = B ∧

(
tr(R ∧R ∧R ∧R)− 1

4
tr(R ∧R) tr(R ∧R)

)
,

(B.12)

where X
(vw)
8 (R) is an eight-form (that is inherited from a ten-dimensional characteristic

class). The eleven-dimensional version of this term [46] is the eleven-form, C ∧X(vw)
8 (R).
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We have introduced the notation X
(vw)
8 (R) = εY

(vw)
8 (R) since the Vafa-Witten term is

related by N = 2 supersymmetry to a scalar term formed from four curvatures, which can

be written as

t8Y
(vw)

8 (R) ≡ 1

24
t8t8R

4

= tµ1,ν1,...µ4ν48 t8µ′1,ν′1,...µ′4ν′4 R
µ′1ν
′
1

µ1ν1 . . . R
µ′4ν
′
4

µ4ν4

= t8

(
trR4 − 1

4
(trR2)2

)
. (B.13)

The third line follows from the earlier definition of t8 and uses the notation in which the

curvature is viewed as a matrix in the fundamental representation of the tangent space

Lorentz group, SO(9, 1). As with the corresponding term in the gauge sector, the parity-

violating term is replaced by the parity-conserving term simply by exchanging a factor of

εB for a factor of t8.

The same combination of four powers of the curvature, Y
(vw)

8 (R), enters the N = 1

theories as the N = 2 theories. In addition, a different combination involving the fourth

power of curvatures and Yang-Mills field strengths arises in the N = 1 D = 10 theories,

which is a key ingredient necessary for the absence of anomalies. The parity-violating piece

is the Green-Schwarz ten-form given by

εB Y
(gs)

8 (R,F ) ≡ B ∧X(gs)
8 (R,F ) , (B.14)

where B is either the Neveu-Schwarz/Neveu-Schwarz two-form in the heterotic theories or

the Ramond-Ramond two form in the type I theory and25

Y
(gs)

8 (R,F ) =

(
8 trF 4 + trR4 +

1

4
(trR2)2 − trF 2 trR2

)
. (B.15)

Again the low-energy expansion involves a parity-conserving partner of this ten-form, which

can be written as t8Y
(gs)

8 (R,F ), which includes the t8 trF 4 term that follows from (B.6).

It is notable that the ratio of the coefficient of the trR4 term to that of the (trR2)2

term in (B.13) has the opposite sign to the ratio of these coefficients in (B.15), so that

Y
(gs)

8 (R, 0) = Y
(vw)

8 (R) +
1

2
(trR2)2 . (B.16)

The (trR2)2/2 term is a boundary contribution that was explained in the context of M-

theory in the Hor̆ava-Witten background in [2].

R4 superinvariants. It is useful for the discussion in sections 7 and 8 to identify which

combinations of the above R4 terms are bosonic components of superinvariants. We will

here summarise the discussion of Tseytlin in [8], adapted to our present conventions. We

will also make use of the detailed analysis in [47, 48].

25The anomaly cancelling term in the action has the symbolic form −1/(217π53)
∫
d10xεB Y

(gs)
8 (this

value differs from the normalisation in [2] because of the different definition of the anomaly cancelling term,

as stressed in footnote 8).
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Type II invariants. The type II theories have N = 2 supersymmetry. The following

combination of bosonic terms involving the Riemann curvature is a superinvariant that

enters into the tree-level effective action of both the IIA and IIB theories.

J0 = t8t8R
4 − 1

8
ε10ε10R

4 . (B.17)

The two ten-dimensional epsilon tensors contract into the sixteen indices of R4 leaving two

pairs to contract into each other. The eight-dimensional analogue of the ε10ε10R
4 term is

proportional to the Euler invariant.

At one loop the type IIA effective action receives an extra contribution. This is pro-

portional to the superinvariant, I2 defined by

I2 = −1

8
ε10ε10R

4 + 6 ε10BY
(vw)

8 (R) . (B.18)

Recall that ε10BY
(vw)

8 (R) is the odd-parity Vafa-Witten term, which is here seen to be

related by supersymmetry to ε10ε10R
4. The R4 terms in the type IIA effective action only

arise at tree-level and one loop and can be summarised by an effective action proportional to

SIIA
R4 =

1

`2II

∫
M10

d10x
√
−G

(
2ζ(3)

g2
IIA

J0 −
2π2

3
(J0 − 2I2)

)
, (B.19)

where `II is the type IIA or IIB string length scale.

It is notable that in the type IIA theory the combination of t8t8R
4 and ε10ε10R

4 arises

at one loop with the opposite relative sign to the tree-level combination. The one-loop odd

parity Vafa-Witten term in the type IIA theory is protected against renormalisation at

higher loops. It follows that ε10ε10R
4 is also protected against higher loop corrections. In

the type IIA theory these tree-level and one-loop contributions are the only contributions

to ε10ε10R
4.

In the type IIB theory there is no Vafa-Witten term and the only invariant containing

R4 is J0. In this case the relative signs of the t8t8R
4 and ε10ε10R

4 terms are the same in

both the tree-level and one-loop terms. There is no reason to expect J0 to be protected

against getting higher loop or D-instanton corrections, and in fact the dilaton dependence

of the coefficient of J0 enters as a modular invariant function of the complex scalar, Ω. The

type IIB theory effective R4 action is proportional to

SIIB
R4 =

1

`2II

∫
M10

d10x
√
−Gg−

1
2

IIB E 3
2
(Ω) J0 , (B.20)

where Es(Ω) is a non-holomorphic Eisenstein series of weight s that is modular function of

the complex scalar Ω = C(0) + i/gIIB and is discussed in section 6. The coupling constant

dependence of E 3
2
(Ω) shows that that this t8t8R

4 interaction has contributions from tree

level and one loop in string perturbation theory and from an infinite set of D-instantons.

Heterotic and type I invariants. The heterotic or type I effective actions contain

N = 1 superinvariants. These can be chosen to be J0 (the N = 2 invariant defined

in (B.17), and X1 and X2, defined as follows

X1 = t8trR4 − 1

4
ε10B trR4 , X2 = t8(trR2)2 − 1

4
ε10B (trR2)2 . (B.21)
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The combination that contains the N = 1 odd-parity anomaly-cancelling term is the N = 1

invariant

J2 = X1 +
1

4
X2 =

(
t8 −

1

4
ε10B

)
Y

(gs)
8 (R, 0) , (B.22)

which should not to be confused with the N = 2 invariant I2 defined earlier, which is the

combination

I2 = J0 − 24

(
X1 −

1

4
X2

)
=

1

8
ε10ε10R

4 + 6 ε10B Y
(vw)

8 (R) . (B.23)

C Relations between traces

In the body of the paper we make use of a number of well-known identities between traces of

matrices in various representations of SO(N) and E8, which we summarise in this appendix.

C.1 SO(N) traces

The relations between traces of products of up to six matrices in the adjoint and funda-

mental representations of SO(N) are given by

TradNF
2 = (N − 2)trNF

2 , (C.1a)

TradNF
4 = (N − 8)trNF

4 + 3(trNF
2)2 , (C.1b)

TradNF
6 = (N − 32)trNF

6 + 15trNF
4trNF

2 , (C.1c)

where the symbol TradN indicates the trace in the adjoint representation of SO(N) while

trN denotes the trace in the N -dimensional representation.

The traces of products of up to six matrices in the Weyl spinor representation

of SO(2M) (indicated by trS), which is 2M−1 dimensional, are (see, for example,

pages 274–276 of [49])

trSF
2 = 2M−4tr2MF

2 , (C.2a)

trSF
4 = −2M−5tr2MF

4 + 3 · 2M−7(tr2MF
2)2 , (C.2b)

trSF
6 = 2M−4tr2MF

6 − 5 · 3 · 2M−8tr2MF
4trF 2 + 5 · 3 · 2M−10(tr2MF

2)3 . (C.2c)

Note that the ratio of coefficients is independent of M , while the overall normalization

is proportional to 2M . The same relations also hold for the spinor representation of

SO(2M − 1).

C.2 E8 traces

The adjoint representation of E8 is 248 dimensional and it is given by the sum of the

adjoint and spinor representations of SO(16)

248 = 120 + 128 . (C.3)
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The quadratic Casimir of E8 in the adjoint representation can be expressed in terms of

SO(16) traces by

TrE8F
2 = tr120F

2 + tr128F
2

= 14 tr16F
2 + 16 tr16F

2 = 30 tr16F
2 , (C.4)

where we have denoted the adjoint trace by TrE8F
2 ≡ Tr248F

2. Similarly, the quartic

Casimir of E8 is given by

TrE8F
4 = tr120F

4 + tr128F
4

= 9 (tr16F
2)2 =

1

100
(TrE8F

2)2 . (C.5)

The sixth order Casimir in the adjoint representation of E8 is given by

TrE8F
6 ≡ tr248F

6 = tr120F
6 + tr128F

6

=
15

4
(tr16F

2)3 =
1

7200
(TrE8F

2)3 . (C.6)

This implies that E8 has no independent fourth and sixth order Casimirs. Using (C.5) we

can write (C.6) as

TrE8F
6 =

[
1

48
TrE8F

4 − 1

14400
(TrE8F

2)2

]
TrE8F

2 . (C.7)

E8 does not possess a fundamental representation but it has become conventional to define

a quantity trE8 by

trE8F
2 ≡ 1

30
TrE8F

2 . (C.8)

With this definition, several normalisations of coefficients in the E8 × E8 heterotic theory

coincide with those of the SO(32) theory if trE8 is interchanged with trSO(32). With the

above definition substituted in (C.5) and (C.6) we get

TrE8F
4 = 9 (trE8F

2)2 , (C.9a)

TrE8F
6 =

15

4
(trE8F

2)3 . (C.9b)

D Loop amplitude in compactified SO(32) gauge theory

We will here consider the one-loop amplitude in the SO(32) gauge theory with gauge

group broken to SO(16)×SO(16) by the Wilson line in (4.10). This is analogous to the loop

amplitude in the E8 gauge theory considered in section 5.1. However, as emphasised earlier,

this loop contribution does not arise in supergravity in the Hor̆ava-Witten background so

it is not directly relevant to the bulk of this paper, but the structure of the following

argument complements that of the E8 case.

We will again consider the loop where all the external states are massless in nine

dimension and are in the adjoint representation of the SO(16)× SO(16) gauge group. The
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states circulating in the loop can either be SO(16) × SO(16) adjoint states with masses

given by (4.7), or the SO(16)× SO(16) bi-fundamental states with masses given by (4.11).

The amplitude is the sum of contributions of the circulating massless gauge states and

their massive Kaluza-Klein recurrences in the adjoint of SO(16)×SO(16) and of the tower

of massive bi-fundamental states propagating around the loop, so that

A1-loop = Aadj +Abifun . (D.1)

The piece containing circulating adjoint states is given by

Aadj =
2

3(2π)10
t8F̂

4CadjIadj(s, t, u; rho) , (D.2)

where the colour factor is the sum of two copies of (5.3)

Cadj =
2∑
i=1

[(N − 8)tri(T
a1T a2T a3T a4) + (tri(T

a1T a2)tri(T
a3T a4) + perms)] , (D.3)

where we will later set N = 16, and the dynamical factor Iadj(s, t, u; rho) (which we have

chosen to express in terms of the HO parameters, using `2Hr
2
ho = `211(R10R11)−2) is again

given by a ten-dimensional scalar box diagram. Repeating the Poisson summation argu-

ment that led from (5.9) to (5.10) gives

Iadj(0, 0, 0; rho) = 2π11/2

∫ ∞
0

dτ

τ3/2

∑
m∈Z

e
−τ
(

m
`Hrho

)2

= 2π

[
Ĉ1

rho

g
2/3
ho `H

+
π3

(rho`H)
ζ(2)

]
. (D.4)

Here we have again regularised the divergent zero winding number term and assigned it

an arbitrary renormalised value Ĉ1R10/`11 in `11 units. Whereas a cut-off in `11 units was

natural for the E8 theory in the context of supergravity in the Hor̆ava-Witten background,

it is not so clear that the M-theory Planck scale provides a natural cut-off in the context

of the SO(32) theory under consideration. Our treatment of this renormalised term, which

is proportional to rho, may therefore be questionable. However, with this choice of renor-

malisation the power of the string coupling in the first term in (D.4) makes no sense, so

we need to set Ĉ1 = 0.

The other piece of the four gauge boson loop amplitude, in which SO(16) × SO(16)

bi-fundamental states are circulating, has the form

Abifun =
2

3(2π)10
t8F̂

4 CbifunIbifun(s, t, u; rho) , (D.5)

where Cbifun is the colour factor for the loop of bi-fundamental states and is given by

Cbifun =

[
N

2∑
i=1

tri(T
a1T a2T a3T a4) + tr1(T a1T a2)tr2(T a3T a4)

]
. (D.6)
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The low-energy limit is obtained by setting s, t, u = 0 in the dynamical factor Ibifun, which

leads to

Ibifun(0, 0, 0; rho) = 2π11/2

∫ ∞
0

dτ

τ3/2

∑
m∈Z

e
−τ
(
m−1/2
`Hrho

)2

= 2π

[
Ĉ2

rho

g
2/3
ho `H

− 1

2

π3

rho`H
ζ(2)

]
, (D.7)

where, as before we have used a cut-off in `11 units, and we again need to set the arbitrary

renormalised coefficient of the zero winding number term to zero (Ĉ2 = 0) since it multiplies

an unphysical power of the string coupling.

The total amplitude is given by adding (D.4) and (D.7). We see that setting N = 16

in the effective action gives

A1-loop = (Aadj +Abifun)

= t8

[
2∑
i=1

(triF
2
i )2 − (tr1F

2
1 )(tr2F

2
2 )

]
1

`Hrho
ζ(2)

= t8

[
2∑
i=1

(triF
2
i )2 − (tr1F

2
2 )(tr2F

2
2 )

]
rhe

`H
ζ(2) , (D.8)

and so the double-trace amplitude survives in the ten-dimensional limit of the HE theory

(rhe →∞). The result is identical to the expression we obtained earlier by expanding tree

amplitudes in (4.28), and agrees with the direct evaluation of the low-energy limit of the

HE loop amplitude in string perturbation theory.

As noted above, the renormalisation procedure used to obtain the values of the zero

winding terms in (D.4) and (D.7), which are proportional to rho, is sensitive to our choice

of renormalisation procedure. This is not determined by present considerations since the

SO(32) gauge theory does not originate from a local action analogous to that of super-

gravity in the Hor̆ava-Witten background. With the choice of cut-off in M-theory Planck

units used in (D.4) and (D.7) we are led to the expression (D.8), which vanishes in the

limit rho →∞. Therefore the ten-dimensional HO expression is not apparent from this

perspective, although it was determined from the E8 gauge theory loop as the rho → ∞
limit of (5.13) in section 5.1.
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