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Abstract 

 The need to reduce agricultural pollution emissions to water and air is well documented. 

Designing new national policies to help combat diffuse pollution requires scenario analyses 

capturing key controlling factors such as the physical environment and farming systems, as 

well as the technically feasible impact of new on-farm mitigation scenarios.  Accordingly, a 

new multi-pollutant modelling framework for England and Wales has been developed.  This 

includes emissions of nitrate, phosphorus and sediment to water and ammonia, methane and 

nitrous oxide to air, and has been used to characterise baseline (no uptake of on-farm 

measures) and business-as-usual (BAU) pollutant losses, and compare these with the rates of 

loss under a range of new policies aimed at increasing the uptake of relevant source control 

measures to 95% across England and Wales.  Model outputs, evaluated using national water 

quality monitoring data from the Environment Agency’s routine monitoring programme, 

have been summarised at both farm (Robust Farm Type) and water management catchment 

(WMC) scale. Nationally, across all farm types, the median reductions in pollutant losses 

under the new scenarios, relative to BAU, were predicted to range between 9-16% for nitrate, 

13-37% for phosphorus, 12-21% for sediment, 2-57% for methane and 10-17% for nitrous 

oxide.  For ammonia, the range was -2-28%, indicating the potential for pollution swapping 

and an increase in ammonia emissions under scenarios designed to reduce nitrogen flux to 

waters. Increased uptake of pollution source control measures would result in a wide range of 

mailto:yusheng.zhang@rothamsted.ac.uk


annual total (capital and operational) costs (per farm) for the major farm types, with median 

estimates ranging from £635 yr
-1

 (Less Favourable Areas (LFA) with grazing livestock) to 

£15,492 yr
-1

 (Cereals) in Nitrate Vulnerable Zone (NVZ) areas, compared with a range of £23 

yr
-1

 to £13,484 yr
-1

 for the same respective farm types in non-NVZ areas. The annual total 

costs normalised by typical farm size would range from £6 ha
-1

 yr
-1

 (LFA with grazing 

livestock) to £118 ha
-1

 yr
-1

 (Mixed). The estimated median annual load reductions for all 

WMC’s, relative to BAU, were predicted to be 16% for nitrate, 20% for phosphorus, 16% for 

sediment, 16% for ammonia, 15% for methane and 18% for nitrous oxide. At this scale, the 

corresponding median total annual costs were predicted to range up to £69 ha
-1

 yr
-1

, with 

maximum estimates of >£100 ha
-1

 yr
-1

 for a quarter of the WMCs. In combination, these 

predictions suggest that almost perfect (95% uptake) implementation of source control 

measures to relevant farm systems will not deliver substantial improvements in pollutant 

emissions to water and air, thereby underscoring the need for additional and alternative 

strategies including those focussing on treatment-train approaches. The limitations of the 

strategic modelling exercise are also discussed. 
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Introduction 

Diffuse water pollution from agriculture (DWPA), sometimes referred to as nonpoint 

source pollution) has long been recognised as a significant environmental issue at catchment, 

regional, national (e.g. Johnes and Burt, 1991; Johnes, 1996; Heathwaite and Johnes, 1996; 

Heathwaite et al., 1996; Johnes & Hodgkinson, 1998; Johnes et al., 2007; Carpenter et al., 

1998; McGonigle et al., 2012; Withers et al., 2014; Zhang et al., 2014), international (e.g. 



Johnes and Butterfield, 2002; Durand et al., 2011; Howarth et al., 1996) and even global (e.g. 

Howarth et al. 2012; Novotny, 1999; Vitousek et al., 2011) scales. Recent modelled cross-

sector source apportionment for England and Wales suggested that agricultural contributions 

of total nitrogen, total phosphorus and sediment are dominant in 53% (63,030 km
2
) of non-

coastal water bodies designated for cycle two of the EU Water Framework Directive (WFD; 

Zhang et al., 2014). The detrimental impacts of DWPA on downstream aquatic environments 

have increased water treatment costs, adversely affected aquatic ecology and been 

detrimental to ecosystem services including those associated with recreation. Such off-site 

impacts of DWPA pose serious challenges for governments and environmental protection 

agencies in their attempts to meet the requirements prescribed by the EU WFD and daughter 

directives. As an example, DWPA and rural land use has been directly attributed to 28% of 

failures to meet WFD standards in England (Houses of Parliament, 2014) and the actual 

proportion which may be indirectly attributed to DWPA is much higher. In a recent paper by 

Greene et al. (2015) in which total N and total P flux to all UK waters, was simulated for the 

period 2000-2010, annual DWPA flux to waters ranged from 0.16 - 1.41 kg P/ha and from 

6.56 - 29.2 kg N/ha.  The % contribution from DWPA to the total flux varied from 5% P and 

13% N in lowland grazed heathlands to over 76% of total P flux and 81% of total N flux to 

waters in more intensively farmed areas, mirroring rates reported for P flux to waters in 

England and Wales in an earlier study by Johnes et al. (2007). 

In a bid to reduce pollutant loadings from agricultural sources, extensive research has 

been undertaken to design and test, individually or in combination, on-farm mitigation 

options which can be incorporated into existing farming practices. Field scale experiments 

(e.g. Deasy, et al., 2009; Stevens, et al., 2009), process-based modelling (e.g. White and 

Arnold, 2009), literature reviews (Collins et al., 2009a; Newell-Price, et al., 2011; 

Schoumans et al., 2011, 2014) and national scale scenario analysis based on farming sector 



reductions of N, P and sediment flux (Johnes et al., 2007; Collins et al., 2009a,b; Greene et 

al., 2015) have all been carried out to summarise the likely impact of mitigation measures for 

the agricultural sector on the rate of DWPA.  As a result, some progress is being made in 

understanding their cost-effectiveness as well as their interactions in reducing multiple water-

borne pollutant loads (including nitrogen, phosphorus, sediment), lowering emissions of 

green-house gases (including ammonia, methane, nitrous-oxide) and lessening impacts on the 

wider environment, such as delivering benefits for biodiversity and ecosystem services.   

For policy support in England and Wales, the FARMSCOPER (FARM Scale 

Optimisation of Pollutant Emission Reduction) modelling tool has been developed for 

characterising diffuse agricultural pollutant emissions from representative farm types and 

quantifying the technically feasible impacts of on-farm control options on those losses to the 

environment (Zhang et al., 2012; Collins et al., 2014a; Gooday et al, 2014). This tool is built 

on existing models that have been extensively applied across the UK for policy support. The 

models are: the Phosphorus and Sediment Yield CHaracterisation In Catchments (PSYCHIC) 

model (Collins et al., 2007; Davison et al., 2008; Stromqvist et al., 2008; Collins and 

Anthony, 2008; Collins et al., 2009b,c); the National Environment Agricultural Pollution–

Nitrate (NEAP-N) model (Anthony et al., 1996); the National Ammonia Reduction Strategy 

Evaluation System (NARSES; Webb and Misselbrook, 2004); the MANure Nitrogen 

Evaluation Routine (MANNER; Chambers et al., 1999), and; the IPCC methodology for 

methane and nitrous oxide emissions (IPCC, 2006) with adjustments to the nitrous oxide 

calculations to account for improved representation of ammonia losses within NARSES. 

Though originally designed for farm scale assessment, more recently FARMSCOPER has 

been extended with upscaling functions (Zhang et al., 2012; Collins et al., 2014a).  

To support evidence-based strategic decision-making and the increased drive towards 

improved spatial targeting of mitigation measures at national scale, there is a clear need to 



evaluate the potential impacts of pollutant control strategies associated with different 

combinations of available on-farm mitigation measures.  Existing work in England and Wales 

has been generally reported for specific pollutants including sediment, (e.g. Collins et al., 

2014a) and selected priority catchments including those targeted by the Catchment Sensitive 

Farming (CSF) initiative (e.g. Zhang et al., 2012).  Such studies have focused on assessing 

the technical feasibility of implementing all applicable measures and an examination of 

resulting variability in impacts and associated costs for different Robust Farm Types (RFTs; 

Defra, 2010). In recognition of the fact that it is operationally impractical and economically 

infeasible to apply all applicable mitigation methods at national scale, attempts have already 

been made to select shortlists of on-farm measures in tandem with specific policy 

instruments, including Cross Compliance (the minimum expectations of farmers) funded by 

EU Pillar I in England and Wales.  

Implementing diffuse pollution controls, by definition, is challenging because DWPA is 

characterised by spatially and temporally variable contributing sources and so reducing these 

inputs by on-farm mitigation potentially involves high costs. On the basis of this challenge 

for remedial efforts for DWPA, it has often been argued that the best solution is to try to 

prevent or at least reduce the problem at source by the adoption of targeted control measures. 

The significance of source control has long been recognised in the source-mobilisation-

delivery continuum conceptual model for diffuse pollution delivery to rivers  (Lemunyon and 

Gilbert, 1999; Haygarth et al., 2005; Granger et al., 2010) and the recently extended  nutrient 

transfer cascade for evaluation of the Nitrates Directive National Action Programme in 

Ireland (Wall et al., 2011). Source, mobilisation, pathway and delivery are also key 

coordinates (components) for the characterisation of on-farm mitigation measures within 

FARMSCOPER (Zhang et al., 2012; Gooday, 2014) thereby providing a convenient 

opportunity to pre-select sets of control measures for scenario analyses.    



Taking into account the spatial variability of agricultural pollutant loadings and updated 

current on-farm mitigation for DWPA across England and Wales, this paper presents the 

results of application of the new national scale FARMSCOPER modelling framework to 

identify source control measures for the mitigation of DWPA and assess their potential 

efficacy and associated costs.  These are reported for nutrient and sediment fluxes to water 

and GHG emissions, simultaneously, relative to BAU, at farm and water management 

catchment (WMC) scales across the whole of England and Wales.  

    

 Methods 

The general approach 

The general procedures for the application of FARMSCOPER at WMC scale have 

already been reported elsewhere (Collins, et al., 2014a). The catchment areas of the 99 

WMCs vary from 77.6 km
2 

to 4204.9 km
2
, with a median value of 1344.5 km

2
.  The key 

elements of the modelling approach (Figure 1) can be summarised as:  

1) Mapping of soil type and rainfall combinations using existing spatial data layers for 

England Wales. Soils have been classified into three broad groups: (i) free draining 

soils, (ii) soils drained for arable use, and (iii) soils drained for both arable and 

grassland.  Annual average rainfall  (AAR hereafter) has been divided into six bands  

(< 600 mm, 600 – 700 mm, 700 – 900 mm, 900-1200 mm, 1200-1500 mm and > 1500 

mm), respectively.  For each WMC (n = 99), significant soil/rainfall combinations 

were identified and mapped on the basis of their spatial coverage.  

2) Characterisation of field management and farming activities based on the national 

2010 June Agricultural Census (JAC) returns, which is still the most comprehensive 

data available at national scale.  Cropping areas and categorised livestock numbers for 

each Robust Farm Type (RFT) in each WMC were used to generate typical model 



farms (>5000 for England and Wales, including >700 for Wales and nearly 400 in the 

border areas between the two countries).  

3) Parameterisation of FARMSCOPER by pairing combinations of soil group and 

rainfall band with the generated model RFTs, using the 2010 JAC returns. 

4) Estimation of baseline (no uptake of on-farm mitigation measures) and BAU pollutant 

emissions to water and air using the best estimates of current cropping and livestock 

numbers from the 2010 JAC, as well as uptake of on-farm measures including that 

resulting from agri-environment schemes. 

5) Evaluation of BAU pollutant emission predictions using available national scale 

monitoring data for multiple pollutants.    

6) Estimation of the technically feasible reductions in water and air pollutant emissions, 

relative to BAU, on the basis of improved uptake (95% implementation rate for all 

source measures) of on-farm pollution source control measures. 

 

Mapping rainfall and soil combinations 

 

Mapping at 1 km
2
 spatial resolution across England and Wales suggests that most 

areas have AAR between 600 - 1200 mm. This dominant range comprises three AAR bands 

(600 – 700 mm, 700 – 900 mm and 900 – 1200 mm) defined within FARMSCOPER with an 

estimated relative areal coverage of 25.7%, 30.0% and 16.5%, respectively. Other more 

extreme (>1200 mm) AAR bands account for <30% of the land area. The dominant soils in 

each 1 km
2
 grid cell were grouped into three broad groups based on their respective HOST 

(Hydrology of Soil Types; Boorman et al., 1995) numbers: drained for arable (9, 10, 14, 18, 

19, 20, 21, 22), drained for both arable and grassland (23, 24, 25) and free draining soil 

(others).  As a proportion of agricultural soils, free draining soils are dominant at national 

scale, with an estimated areal coverage of 49.8%. Remaining areas are either drained for 



arable use (22.2%) or drained for both arable and grassland (27.9%). A multitude of rainfall 

and soil combinations exist, but the most significant combinations are presented in Table 3, 

accounting for ~80% of the land area. To capture the spatial variations in soil/rainfall 

combinations at WMC scale, the top two ranked combinations (by areal coverage) were 

identified and their land areas relative to total WMC area were estimated. Among the 

combinations selected on this basis, 49 WMCs have the same AAR bands, 34 have the same 

soil group and 16 have different AAR and soils. This suggests that the spatial variation in 

soils exceeds that of AAR. Free draining soils dominate in the high rainfall regions, in the 

western parts of England and Wales (Figure 1).  

 

Identification of source control mitigation measures and estimation of their efficacy 

There are 105 mitigation measures included in the version of FARMSCOPER 

(Version 3) used for this work. These include measures for reducing diffuse pollutant fluxes 

to water, GHG emissions, or both. The measures relate to nutrient, livestock, soil and 

pollutant delivery management. For this strategic modelling exercise, the built-in mitigation 

measures were reviewed and a subset identified (59) representing agricultural pollution 

source control measures (Table 1).  

The efficacy of individual mitigation methods in the FARMSCOPER library is based 

on a number of literature reviews (e.g. Newell-Price et al., 2011) and expert judgement. The 

later has typically not involved structured elicitation such as application of analytical 

hierarchy process (AHP; Saaty, 1980), but rather, round-the-table discussion and consensus 

building. Given substantial gaps in the empirical evidence base for some on-farm mitigation 

measures and the ranges in efficacy values for the same abatement measures reported by 

different studies, method efficacy is summarised in FARMSCOPER on an indicator scale to 

provide an uncertainty range for the potential pollutant reduction impacts (Table 2). On this 



basis, estimates of average measure efficacy are lower than the central values of the ranges to 

provide a conservative assessment of impact.  The predicted net impacts of multiple on-farm 

mitigation methods (N) are multiplicative, such that the effectiveness of combined methods 

will be less than the sum of their individual impacts, viz.: 







ni

i

iRN
1

)1(1         (1) 

where iR  is pollutant emission reduction due to an individual on-farm mitigation measure. 

The costs of mitigation measure implementation account for changes to the variable 

costs and gross margin of a livestock or cropping enterprise, changes to the fixed costs or 

overheads associated with labour and machinery and capital investment using a number of 

sources (e.g. Cuttle et al., 2007; Nix, 2009). Capital costs are typically amortised over 5 to 20 

years, depending upon the expected lifetime of the corresponding investment and any 

associated loans. The simulations reported here are based on mitigation measure costs for 

2013. Costs exclude those to government bodies for policy instrument administration and 

enforcement on the ground by agencies or catchment officers.  

 

Update of prior implementation rates using farm survey returns and expert feedback 

Within FARMSCOPER, there are default prior implementation rates for different on-

farm mitigation measures under different soil types (free draining or slowly permeable), 

management intensity (intensive or extensive farming and specialised farming, e.g. poultry, 

pigs) and Nitrate Vulnerable Zone (NVZ) designation (Yes or No) which are based on farm 

practice surveys and expert judgement. With intense ongoing on-the-ground activities 

directed towards the mitigation of DWPA (e.g. via the Catchment Sensitive Farming 

initiative in England), the actual implementation rates evolve with time. Therefore, in order to 



obtain up-to-date information on prior implementation under present day BAU, targeted farm 

surveys have been conducted in the three main Demonstration Test Catchments (DTCs) in 

England: the Hampshire Avon, Wensum and Eden, to solicit farmers’ current uptake and 

attitudes towards the mitigation measures (Newell-Price et al., 2011) listed in 

FARMSCOPER.  The DTCs provide three representative catchments in terms of natural 

environment and together cover >80% of rainfall and soil combinations for England and 

Wales, the RFT distributions and the DWPA mitigation efforts. In total, the numbers of farms 

surveyed during DTC phase 1 were 38, 32 and 18 for the Hampshire Avon, Wensum and 

Eden catchments, respectively. Treating all farms surveyed in each DTC as one overall 

sample population, the uptake rate of individual mitigation measures was calculated. 

Summary statistics (minimum, maximum and median) of current implementation in the three 

DTCs were derived and then compared against the default values in the FARMSCOPER tool. 

Because of the limited number of farms surveyed in each catchment, only the ranges of 

uptake rates and their median values were examined. This data analysis suggested that current 

uptake rates are in broad agreement for most source control mitigation measures (43 out of 

59). For those with substantial differences between the default FARMSCOPER values and 

the returns from the DTC phase 1 farm surveys, experts or farm advisors from the 

Environment Agency, local Rivers Trust and scientific community were consulted. On this 

basis, decisions were made to modify the default values by either adopting the DTC values, 

or using the average of the DTC survey and FARMSCOPER default values, depending upon 

the consensus view. Where there was no consensus or in depth knowledge about the uptake 

of specific source control measures, no changes were made to the default values. This 

consultation exercise resulted in the modification of prior implementation rates for 18 

pollution source control measures (Table 3).     

 



The spatial distribution of model RFTs 

Based on geo-referenced JAC data for 2010, the majority of WMCs (92 out of 99) 

contained more than 8 RFTs, presumably because of their catchment sizes (> 1300 km
2
). 

Most RFTs could be found in most WMCs: only LFA (less favoured area) grazing farms was 

restricted to a limited number (47 out of 99) of WMCs because of the corresponding 

designation of LFAs. The relative coverage of the different RFTs at national scale  in rank 

order was, cereal farms (23%) > dairy farms (19%) > mixed farms (15%) > general cropping 

farms (13%) > LFA grazing farms (8%) > lowland grazing farms (8%). Other more 

specialised RFTs, including horticulture, pig farms and poultry farms, used < 15% of the land 

reported in the 2010 JAC. These more specialised RFTs were typically smaller than other 

farm types (Table 4). To represent the spatial patterns of RFTs across England and Wales, the 

two top ranking RFTs in terms of land area within each WMC were identified (Figure 3). 

There is a clear contrast between the dominance of arable farming in the east and livestock 

rearing in the west (Figure 3). More subtle differences were also captured in the modelling 

framework by using 11 unique combinations of the RFTs.  

 

Assessment of agricultural pollution mitigation potential for the WMCs 

During each FARMSCOPER run, the following estimates were generated for each 

individual pollutant category and model farm (n = >5000) constructed using the 2010 JAC 

data: total baseline pollutant loads, total modified loads resulting from the revised existing 

(BAU) implementation of on-farm mitigation measures (E) and total predicted loads (P) 

resulting from the scenario specifying increased uptake of those source control mitigation 

measures relevant to each RFT. To estimate the overall mitigation potential (R) for each 

individual (n = 99) WMC, the actual numbers of holdings for each RFT (H) were combined 

with the calculated loads (E and P) to estimate the percentage reduction resulting from the 



implementation of the new scenario using the equation shown below, where n is the number 

of RFTs modelled by FARMSCOPER: 

𝑅 =  ∑((𝐸𝑖 − 𝑃𝑖) ∗  𝐻𝑖)/ ∑ 𝐸𝑖𝐻𝑖

𝑛

𝑖=1

𝑛

𝑖=1

∗ 100 

For this modelling exercise, 9 RFTs were considered and the most important ones were 

Cereal, General cropping, Specialised pigs, Horticulture, Lowland grazing, Upland grazing, 

Mixed, Dairy and Specialised poultry. The JAC data reported under the remaining RFT 

category, ‘Unclassified’, were redistributed proportionally amongst the other eight RFTs 

where necessary.    

 

Results and discussion 

Modelled BAU agricultural pollutant emissions to water and air and their evaluation using 

national monitoring data 

There are intrinsic pollution risks associated with the adoption of certain farming 

activities within a given environmental setting. FARMSCOPER accounts for spatial 

variability in these risks by estimating ‘baseline’ pollutant emissions for customised farms. 

These predictions do not include the uptake of any on-farm mitigation measures, reflecting 

instead the impact of rainfall, soils, cropping and stocking. Baseline pollutant loadings to 

water for nitrate, total phosphorus, sediment, and to air for ammonia, methane and nitrous 

oxide, were generated for the model farms created for each WMC:  summary statistics reveal 

marked differences between the baseline pollutant emissions for the individual RFTs (Table 

5). Specialised RFTs such as horticulture, specialised pigs and specialised poultry, tend to 

have higher pollutant loadings because of their intensive production practices, involving 

higher fertiliser application/feed rates and stocking densities. Even within the same RFT, 



substantial variation exists in baseline emissions across England and Wales because of 

variations in farm size and structure in terms of cropping areas, livestock type and stocking 

densities, driven by variations in environmental character, which in turn drive pollution 

mobilisation. In relative terms, the specific emissions of sediment, phosphorus and methane 

exhibit higher spatial variability at WMC scale, compared with those of ammonia, nitrous 

oxide and nitrate (Table 5).   

A variety of methods can be used for model evaluation (Bennett et al., 2013). Here, 

evaluation of the modelled pollutant emissions to water and air were based on comparison of 

model estimates under the BAU scenario with monitoring data for catchments across England 

and Wales.  FARMSCOPER is built on a suite of existing models that have been extensively 

applied across the UK for policy support. These model outputs, in the case of sediment and 

phosphorus, have previously been assessed using comparisons against field scale soil erosion 

rates (Collins et al., 2009b) and both catchment (Collins, et al., 2007, Stromqvist et al., 2008; 

Zhang et al., 2012; Comber et al., 2013) and strategic scale monitoring data (Collins et al. 

2009c). Outputs from the sediment, phosphorus and nitrate models underpinning 

FARMSCOPER were also used for the quantification of agricultural inputs by Zhang et al. 

(2014) where the predicted specific loadings were compared against published PARCOM (cf. 

Neal and Davies, 2003 for background to PARCOM monitoring) data at national scale. It is 

challenging to validate the modelled BAU pollutant emissions at WMC scale because of the 

paucity of longer-term (minimum 10 years) observed water quality data at matching temporal 

and spatial scales, the confounding influence of pollutant inputs from non-agricultural 

sources, and differences between modelled and monitored pollutant fractions and species. 

Since it is widely accepted that the agricultural sector is the dominant contributor of sediment 

and nitrate loadings to freshwater, an updated comparison was made between the total 

predicted BAU agricultural loadings of sediment and nitrate for different WFD river basin 



districts (RBDs) and PARCOM monitoring data (1991-2010). These comparisons suggest 

that the modelled BAU predictions for sediment (r
2
 0.59) and nitrate (r

2
 0.75) are in general 

agreement with the PARCOM data (Figure 4), especially with respect to capturing the 

general relative variations in the monitored data for the RBDs.  Differences between the 

magnitudes of the modelled and monitored data reflect a number of factors, including the 

modelled data representing agriculture only rather than all contributing sources (e.g. channel 

banks contribute significantly to sediment loads; Collins et al., 2009b,c; Zhang et al., 2014), 

the monitored sediment data including the organic fraction associated with suspended 

particulate matter (SPM; cf. Neal and Davies, 2003) which is not included in the modelling 

framework, and the different temporal coverage of the two datasets (2010-2013 for the 

modelled and 1991-2010 for the PARCOM monitoring data). In addition, the modelling 

framework only represents inland WFD cycle 2 water bodies, whereas the PARCOM 

monitoring data represent export to the near shore coastal environment. These comparisons 

should also bear in mind that PARCOM loads are based on routine, but infrequent, sampling 

which introduces bias relative to pollutant export estimates based on higher resolution 

sampling (Johnes, 2007a; Lloyd et al, 2015). For this reason, it is more instructive to use the 

PARCOM estimates for longer periods (e.g. 20 years in this study) rather than for any 

individual or smaller selection of years. For agricultural GHG emissions to air, a comparison 

was undertaken between the simulated BAU emissions of methane and nitrous oxide and the 

corresponding official GHG inventories from agriculture for 2013 at RBD scale (Figure 5). 

The comparison suggests that there is very good agreement for methane emissions (r
2
 0.97) in 

terms of the relative differences between the RBDs, but revealed a systematic under-

prediction by the national scale modelling. Comparison of modelled and measured nitrous 

oxide emissions (r
2
 0.86) from agriculture was also reasonable in terms of the spatial patterns 



across the RBDs, but suggested a systematic over-prediction by the national scale modelling 

which was most pronounced for the Severn RBD (Figure 5).  

 

Estimation of the potential to reduce current agricultural pollutant loads and associated 

annual costs at farm scale 

Each on-farm source control mitigation measure has its targeted land use, field 

management practice and farm management routine. Its relevance and expected efficacy in 

the reduction of pollutant loadings for a model farm depends on farm size, composition (e.g. 

grass and arable area, stocking) and operations. Whilst acknowledging the uniqueness of each 

individual farm present in the landscape, RFT is arguably still the most recognisable typology 

of farms for national scale data collection and policy development in England and Wales. For 

each RFT, the percentage reductions in agricultural pollutant loads was modelled relative to 

the prior (BAU) implementation scenario (Table 6). A distinction was made between NVZ 

and non-NVZ areas in recognition of the potential impact of the Action Programme (AP) 

rules for farmers on prior implementation rates within designated areas for the Nitrate 

Directive.  As part of the NVZ AP, farmers must adhere to specific rules for stocking, manure 

and manufactured fertiliser applications and minimising the risk of losses by following 

restrictions on the timing, location and overall rates of application. These rules can be 

mapped onto mitigation options (Table 1) in the modelling framework and can be 

summarised as follows: any person spreading nitrogen fertiliser must do so in an accurate a 

manner as possible (fertiliser spreader calibration in the modelling); for nitrogen all 

applications of organic manures and synthetic fertilisers must be planned (use a fertiliser 

recommendation system and integrate fertiliser and manure nutrient supply in the modelling); 

no person may spread manufactured fertiliser within 2 m of surface water if soils are 

waterlogged, flooded or snow covered or if soil has been frozen for more than 12 hours over 

the past 24 hours (manufactured fertiliser cannot be applied to high risk areas in the 



modelling).  There are also closed periods for spreading of nitrogen fertiliser and no person 

may spread nitrogen fertiliser on land if there is a significant risk of nitrogen getting into 

surface water, in particular, taking into account whether the land is steeply sloping (>12°), 

whether there is any ground cover, the proximity of the land to surface waters, local weather 

conditions, soil type and the presence of land drains (avoid spreading manufactured fertiliser 

to fields at high risk times in the modelling framework).  

 

Because the implementation rates of such control measures are higher in NVZs, the 

increased uptake of source control measures, relative to BAU, will generally have a slightly 

higher impact in non-NVZ areas where uptake rates of specific on-farm measures (such as the 

use of a fertiliser recommendation system, integration of fertiliser and manure nutrient 

supply, and use of fertiliser spreader calibrations) are currently lower (Table 6).  The model 

outputs demonstrate that the increased implementation (95% implementation rate for all 

source control measures) of on-farm source control measures should result in the reduction of 

pollutant loadings from almost all RFTs (Table 6). The national median reductions in 

emissions from the RFTs, for example, are predicted to range between 9-16% for nitrate, 13-

37 for phosphorus, 12-21% for sediment, 2-57% for methane and 10-17% for nitrous oxide.   

A noticeable exception is the annual ammonia loading from lowland grazing farms where the 

model predicts that a small increase could occur as a result of pollution swapping associated 

with increased uptake of source control measures relevant to livestock farming (Tables 1 and 

6).  The modelled outputs in Table 6 suggest that some systematic changes are predicted for 

some combinations of RFTs and pollutants. For nitrate and ammonia, the results suggest that 

greater reductions could be achieved on arable farms rather than on livestock farms, though it 

should be noted that the majority of nutrient fluxes from livestock farming areas occur in the 

form of organic N and P rather than the inorganic nitrate and ammonia fluxes simulated here 



(Johnes, 2007b). For ammonia emissions, technically feasible reductions of more than 25% 

were predicted for cereal and general cropping farms, compared with much lower estimates 

for dairy, lowland grazing and LFA grazing farms (Table 6). A similar pattern, but with less 

contrast (>15% vs <10%) was also predicted for potential reductions in nitrate emissions 

associated with the increased uptake of on-farm source control measures. For phosphorus, the 

opposite pattern is revealed by the data summary in Table 6, with the predicted reductions for 

cereal and general cropping farms at 17% and 13%, compared with values of ~20% for dairy, 

lowland grazing and LFA grazing farms.  

With respect to soil group based comparisons for the predicted impacts of increased 

uptake (95%) of the source control measures, significant differences are observed for 

technically feasible reductions in emissions to water but not to air (Table 7).  This reflects the 

fundamental control exerted by soil type on the potential for water pollution, as opposed its 

more variable control on gaseous emission rates. As the results for NVZ and non-NVZ areas 

were similar, only those model predictions for the former are presented (Table 7). Compared 

with the predicted impacts for drained soils, the results in Table 7 suggest that the magnitude 

of reductions could be twice as high for sediment and phosphorus in areas with free draining 

permeable soils. The reverse trend is shown by the modelled outputs in Table 7 for nitrate 

load reductions with the highest reductions predicted for heavily drained soils for arable and 

grass.  

FARMSCOPER estimates the annual capital and operational costs associated with on-

farm mitigation measures separately and these are combined to calculate total costs. 

Monetary costs for the implementation of the selected source control measures were 

estimated for both NVZ and non-NVZ areas (Table 8). Negative values indicate that a saving 

could be made on the RFT in question. Because of the uncertainty associated with the 

valuation of individual on-farm measures and the volatile nature of market prices, these cost 



estimates should be taken as indicative of the actual costs to farms. On this basis, it is more 

reliable to examine the relative costs among the different RFTs. Accordingly, it is interesting 

to note that while capital costs will be much higher for livestock farms, given the 

applicability of expensive manure/slurry source control options (e.g. increase the capacity of 

farm slurry stored to improve timing of slurry applications; Table 1) to these enterprises, the 

operational costs will be much higher for arable farms given their larger size (Table 4) and 

corresponding increased areas covered by relevant pollutant source control options (Table 1). 

Generally, the increased uptake of source control measures would result in a wide range of 

annual capital costs to the different RFTs, with medians ranging from £136 yr
-1

 (horticulture) 

to £40,022 yr
-1

 (dairy) in NVZ areas and a similar range in non-NVZ areas (Table 8).  The 

results in Table 8 suggest that small savings could be made by livestock farms in terms of 

operational costs (e.g. respective medians of £987 yr
-1

 and £1488 yr
-1 

in NVZ and other 

areas), with the increased uptake of source control measures. With regard to the total 

predicted annual costs associated with increased uptake of source control measures, the 

estimates generally higher for the major farm types, such as cereal, mixed and dairy (Table 

8), reflecting their larger sizes (Table 1) and the relevance of high cost mitigation options. 

The main message from Table 8, therefore, is that increased uptake of source control 

measures would incur reasonably substantial annual costs to most farm types, in the context 

of reasonably low impacts in reducing pollutant emissions to water and air (Table 6). 

 

Extrapolation to WMC scale 

The estimated annual pollutant load reductions for water quality related pollutants 

(nitrate, phosphorus and sediment), GHG emissions (ammonia, methane and nitrous oxide) 

and the associated total annual costs per hectare were determined for each WMC (Figures 6, 

7 and 8, respectively). For all pollutants, the median estimates of annual load reductions for 



all WMCs, relative to prior (BAU) implementation, ranged from 15% to 20% (Table 9). The 

results suggest that relatively speaking, greater reductions might be achieved for phosphorus 

and nitrous oxide given that many of the control measures relate to the management of 

organic or inorganic fertilisers (Table 1). Predicted annual reductions in sediment (Figure 6) 

and ammonia (Figure 7) losses exhibit the highest spatial variability among WMCs. The 

median total annual costs, including both capital and operational costs, are predicted to range 

up to £69 ha
-1

 yr
-1

 with maximum estimates of >£100 ha
-1

 yr
-1

 for a quarter of the WMCs 

(Table 9 and Figure 8). The mapped spatial distributions of predicted annual pollutant 

reductions at WMC scale, in conjunction with increased uptake of on-farm source control 

measures, reflect to some extent, the strong dependences between rainfall magnitude/soil type 

 dominant farming types  applicable source control measures  potential mitigation 

impacts. 

  

Limitations           

 

 The above results should be interpreted in the context of a number of limitations and 

uncertainties in both the observational data and the modelling framework adopted. Farm type 

distribution within the rainfall/soil combinations is assumed to be random in the absence of 

detailed national analysis of high resolution spatial correlations. Prior (BAU) implementation 

rates need revisiting in terms of capturing the impact of locally-driven incentivised schemes, 

such as payment for ecosystem services (PES). The updated BAU implementation rates are 

more reflective of national policy instruments and initiatives. The administration costs of 

policy instruments are not included in the cost summaries which instead, reflect only the 

costs to farmers. A multiplicative approach to measure interaction is cautious in terms of 

predicting potential impacts on diffuse pollution control and locally, mitigation measures may 

interplay more additively, especially if they are co-designed to target specific on-farm issues 

such as mobilisation of pollution from a steading, transport along a track and delivery to the 



stream. Mitigation costs should be viewed as highly generalised on the basis of the 

assumption of nationally representative uniform values for the measures in the modelling 

framework. The costs of measure implementation can vary both spatially and temporally in 

response to a range of controls on market prices and operational costs including supply chain 

special offers (in the context of unit costs and quantity of materials required), the proximity 

of suppliers of raw materials and infrastructure, competition between agricultural contractors, 

seasonality of supply and the weather and ground conditions during installation. The current 

costs in the modelling framework provide values discussed and agreed with UK Government 

policy teams, but the potential for regional and temporal contrasts should be borne in mind. 

Ongoing work as part of the Demonstration Test Catchment programme is seeking to 

improve the cost data for those on-farm measures used most widely for diffuse pollution 

control across England and Wales.  The modelling framework does not currently characterise 

baseline losses of total nitrogen (TN), nor the impact of on-farm mitigation on such losses 

and underestimates both fluxes from, and likely responses of these systems to, mitigation 

measures aimed at livestock production practices.  By way of example, existing evidence 

suggests that 20-30% of the TN load exported to lowland permeable streams in the UK is in 

the form of dissolved organic nitrogen (DON), 10-20% as particulate organic nitrogen 

(PON), and only an average of around 50-60% as nitrate (NO3-N) (see Johnes and Burt, 

1991; Heathwaite et al., 1996; Prior and Johnes 2002; Durand et al., 2011).  Hydrochemical 

responses to management inevitably influence both the total N flux, and the proportion of TN 

exported as NO3-N, since recent evidence reviewing all full N speciation databases for 

European waters indicates that nitrate decreases as a proportion of TN load as TN 

concentration decreases (Durand et al., 2011).  In upland farming systems in England and 

Wales, the majority of the TN load (60-80%) is reported as in the form of organic N fractions 

(Durand et al., 2011).  Thus, to ensure that up to 80% of the TN load exported to UK waters 



from agriculture is not missed in any assessment of likely responses to on-farm manipulation, 

further work is required to capture baseline losses of the total N load and the impacts thereon 

of mitigation measures.  Whilst nitrate typically represents the dominant component of 

nitrogen emissions to water from arable farming systems with high inputs of manufactured 

fertilisers, those with manure/slurry applications, mixed farms with livestock herds or 

specialist livestock, pig or poultry farms will generate nitrogen losses with higher organic 

fraction content.  Extension of the modelling framework to include total nitrogen (cf. Johnes 

& Butterfield, 2002; Greene et al., 2015) would make it more consistent with the current 

inclusion of total phosphorus.  With respect to phosphorus though, the modelling framework 

does not discretize emissions and impacts of mitigation thereon in terms of different 

phosphorus (soluble reactive P, dissolved organic P, particulate P) fractions and again, this 

requires further work to capture better the real contrasts between farming systems across 

England and Wales. These limitations for the characterisation of nitrogen and phosphorus 

emissions in the modelling are important in the context of existing (soluble reactive 

phosphorus; SRP) or potential (TN as opposed to the existing nitrate drinking water standard) 

targets for inland and coastal waters in the UK.  Further limitations arise through a lack of 

detailed understanding of the response of the relevant WFD biological quality elements to 

reductions in DWP: incorporating predicted aquatic ecology endpoints in the models would 

enable a more thorough exploration of the policy options available for achieving the WFD 

target of “Good” ecological status.  The comparisons between the modelled and measured 

GHG data whilst positive in terms of the relative differences between RBDs across England 

Wales, suggest that it would be useful to adopt the empirical data as the national pressure 

layers in future work.   

 

Conclusions 



 A national scale framework has been used to predict the technically feasible pollutant 

load reductions from the agricultural sector that might be achieved with increasing (95% 

uptake) the uptake of on-farm source control measures in excess of their current 

implementation.  Mitigation strategies focussing on such measures are easy to understand for 

farmers, in the context of the many potential sources being fixed spatially (e.g. manure/slurry 

stores, high risk fields due to soil type and slope) in the landscape, and help to implement a 

risk-averse approach to control based on the adage that prevention is better than cure. The 

results, however, suggest that the technically feasible pollutant reductions over BAU 

resulting from this mitigation scenario would be quite limited in the context of significant 

annual total costs to some farm types and, indeed the rates of reduction in nutrient and 

sediment losses predicted across all RFT. This is exacerbated by the off-site impacts of on-

farm mitigation being reduced by the cross sector sources contributing pollution to waters 

(Collins et al., 2014b).  Source control needs to be considered in the context of a treatment-

train approach to diffuse pollution mitigation, targeting the different components of the 

pollution transfer continuum. Future work will aim to represent nutrient species and fractions 

more comprehensively and to convert the predicted loads and corresponding reductions into 

water quality (e.g. time-averaged concentrations) and aquatic ecology outcomes in order that 

potential benefits for the status of the freshwater environment across England and Wales can 

be better assessed. 
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Table 1: Pollution source control mitigation measures in the FARMSCOPER tool. 

Make use of improved genetic resources in livestock 

Use plants with improved nitrogen use efficiency 

Fertiliser spreader calibration 

Use a fertiliser recommendation system 

Integrate fertiliser and manure nutrient supply 

Do not apply manufactured fertiliser to high-risk areas 

Avoid spreading manufactured fertiliser to fields at high-risk times 

Use manufactured fertiliser placement technologies 

Use nitrification inhibitors 

Replace urea fertiliser to grassland with another form 

Replace urea fertiliser to arable land with another form 

Incorporate a urease inhibitor into urea fertilisers for grassland 

Incorporate a urease inhibitor into urea fertilisers for arable land 

Use clover in place of fertiliser nitrogen 

Do not apply P fertilisers to high P index soils 

Reduce dietary N and P intakes: Dairy 

Reduce dietary N and P intakes: Pigs 

Reduce dietary N and P intakes: Poultry 

Adopt phase feeding of livestock 

Reduce the length of the grazing day/grazing season 

Extend the grazing season for cattle 

Reduce field stocking rates when soils are wet 

Move feeders at regular intervals 

Construct troughs with concrete base 

Increase scraping frequency in dairy cow cubicle housing 

Additional targeted bedding for straw-bedded cattle housing 

Washing down of dairy cow collecting yards 

Frequent removal of slurry from beneath-slat storage in pig housing 

Increase the capacity of farm slurry stores to improve timing of slurry applications 

Adopt batch storage of slurry 

Install covers to slurry stores 

Allow cattle slurry stores to develop a natural crust 

Anaerobic digestion of livestock manures 

Minimise the volume of dirty water produced (sent to dirty water store) 

Minimise the volume of dirty water produced (sent to slurry store) 

Compost solid manure 

Site solid manure heaps away from watercourses/field drains 

Store solid manure heaps on an impermeable base and collect effluent 

Cover solid manure stores with sheeting 

Use liquid/solid manure separation techniques 

Use poultry litter additives 

Manure Spreader Calibration 

Do not apply manure to high-risk areas 

Do not spread slurry or poultry manure at high-risk times 



Do not spread FYM to fields at high-risk times 

Calibration of sprayer 

Fill/Mix/Clean sprayer in field 

Avoid PPP application at high risk timings 

Drift reduction methods 

PPP substitution 

Construct bunded impermeable PPP filling/mixing/cleaning area 

Treatment of PPP washings through disposal, activated carbon or biobeds 

Plant areas of farm with wild bird seed / nectar flower mixtures 

Uncropped cultivated areas 

Unfertilised cereal headlands 

Use dry-cleaning techniques to remove solid waste from yards prior to cleaning 

Capture of dirty water in a dirty water store 

Monitor and amend soil pH status for grassland 

Increased use of maize silage 

 



Table 2: Characterisation of the average efficacy of on-farm mitigation measures and 

corresponding uncertainty ranges. 

Efficacy class Average efficacy Uncertainty range Pollutant reduction 

A - - None 

B 2 0–10 Very low 

C 10 2–25 Low 

D 25 10–50 Moderate 

E 50 25–80 High 

F 80 50–95 Very high 

G 100 100 Total 

 

  



Table 3: Modified prior implementation rates for the source control measures in the 

FARMSCOPER tool.  

Mitigation  

method 

Default 

median 

Adjusted 

median 

Allow cattle slurry stores to develop a natural crust 80 45 

Washing down of dairy cow collecting yards 25 5 

Construct troughs with concrete base 2 25 

Increase the capacity of farm slurry stores to improve timing of slurry 

applications 1 8 

Adopt phase feeding of livestock 80 15 

Store solid manure heaps on an impermeable base and collect effluent 10 20 

Establish tree shelter belts around livestock housing 10 20 

Construct bridges for livestock crossing rivers/streams 80 25 

Loosen compacted soil layers in grassland fields 10 25 

Use clover in place of fertiliser nitrogen 10 30 

Compost solid manure 2 20 

Use plants with improved nitrogen use efficiency 0 10 

Replace urea fertiliser to arable land with another form 0 25 

Incorporate manure into the soil 10 45 

Establish in-field grass buffer strips 2 10 

Do not spread FYM to fields at high-risk times 0 35 

Do not spread slurry or poultry manure at high-risk times 0 30 

Use a fertiliser recommendation system 80 60 

 

  



Table 3:  Significant soil and rainfall (AAR) combinations across England and Wales.  

Soil group and AAR (mm) combination % 

Free draining & 700-900 mm 13 

Free draining & 900-1200 mm 10 

Drained for both arable and grassland use & 700 – 900 mm 10 

Drained for both arable and grassland use & 600 -700 mm 9 

Drained for arable use & 600 -700 mm 8 

Free draining & 600 -700 mm 8 

Free draining & > 1500 mm  8 

Free draining & 1200 – 1500 mm  8 

Drained for arable use & 700 – 900 mm 7 

 

  



Table 4: Summary size statistics for typical RTFs at WMC scale across England and Wales. 

Robust Farm type (RFT) Average area (ha) STD (ha) CV (%) 

Cereals 138.9 58.4 42.0 

General cropping 75.8 53.8 71.0 

Horticulture 30.1 46.5 154.6 

Specialist pig 23.9 17.7 74.3 

Specialist poultry 24.6 16.1 65.6 

Dairy 117.0 37.1 31.7 

LFA* grazing livestock 102.3 78.2 76.5 

Lowland grazing livestock 45.9 37.5 81.6 

Mixed 90.3 76.3 84.5 

*less favoured area 

  



 

Table 5: Annual baseline pollutant emissions (kg/ha/yr) from the modelled farms in the 

national FARMSCOPER framework. 

Pollutant RFT Q1* median Q3* CV** 

Nitrate Cereals 24.1 33.3 44.8 62 

 

General cropping 5.4 13.0 25.5 155 

 

Horticulture 4.3 10.6 25.3 198 

 

Specialist pig 40.8 86.5 160.5 138 

 

Specialist poultry 56.7 181.9 311.7 140 

 

Dairy 24.7 35.3 47.7 65 

 

LFA grazing livestock 7.5 10.2 13.2 56 

 

Lowland grazing livestock 8.0 12.1 17.9 82 

 

Mixed 18.0 25.5 35.7 69 

Phosphorus Cereals 0.22 0.49 0.91 141 

 

General cropping 0.10 0.25 0.58 191 

 

Horticulture 0.09 0.25 0.58 198 

 

Specialist pig 0.34 0.94 2.30 208 

 

Specialist poultry 0.54 1.21 2.68 177 

 

Dairy 0.27 0.50 1.08 163 

 

LFA grazing livestock 0.12 0.25 0.54 167 

 

Lowland grazing livestock 0.12 0.26 0.53 161 

 

Mixed 0.20 0.44 0.89 159 

Sediment Cereals 110.8 264.9 526.1 157 

 

General cropping 54.3 154.6 362.9 200 

 

Horticulture 51.6 150.3 363.6 208 

 

Specialist pig 58.2 201.9 563.2 250 

 

Specialist poultry 32.4 94.3 256.6 238 

 

Dairy 74.2 174.5 357.2 162 

 

LFA grazing livestock 38.2 90.6 190.4 168 

 

Lowland grazing livestock 35.9 94.6 222.6 197 

 

Mixed 97.9 232.0 488.3 168 

Ammonia Cereals 11.4 16.1 21.5 63 

 

General cropping 1.4 4.3 8.8 174 

 

Horticulture 1.1 3.5 8.5 213 

 

Specialist pig 50.4 107.7 184.1 124 

 

Specialist poultry 85.9 277.2 357.3 98 

 

Dairy 29.2 41.3 47.2 44 

 

LFA grazing livestock 5.2 6.7 8.2 44 

 

Lowland grazing livestock 8.2 10.7 13.7 51 

 

Mixed 12.5 17.2 23.4 63 

Methane Cereals 0.6 2.3 6.0 233 

 

General cropping 0.0 0.3 2.8 885 

 

Horticulture 0.0 0.9 4.4 506 

 

Specialist pig 58.5 112.5 182.5 110 

 

Specialist poultry 32.0 58.2 93.2 105 



 

Dairy 139.5 208.1 236.1 46 

 

LFA grazing livestock 32.8 48.3 58.1 52 

 

Lowland grazing livestock 51.4 64.8 80.9 45 

 

Mixed 36.5 53.3 67.3 58 

Nitrous Oxide Cereals 4.8 6.1 7.9 50 

 

General cropping 2.6 4.0 7.0 110 

 

Horticulture 1.8 3.5 6.6 136 

 

Specialist pig 12.3 20.7 36.0 115 

 

Specialist poultry 18.5 49.8 69.4 102 

 

Dairy 9.6 12.0 13.5 33 

 

LFA grazing livestock 3.8 5.6 6.7 51 

 

Lowland grazing livestock 5.4 6.9 8.2 40 

 

Mixed 5.8 7.8 10.4 58 

*Q1 and Q3 are the first and third percentiles provided by all simulated typical farms for each RFT.  

** CV is an indicator of variation for any given RFT and calculated as (Q1-Q3) / median   

 

  



 

Table 6: Modelled pollutant load reductions (%) relative to BAU implementation due to the 

increased uptake of source control measures by RFT. The Q1, median and Q3 estimates are 

based on the uncertainty ranges associated with the efficacy of the source control mitigation 

measures (Table 2). 

Pollutant RFT NVZ Other 

  

Q1* Median Q3* Q1* Median Q3* 

Nitrate Cereals 14.3 15.9 17.8 15.7 17.6 19.8 

 

General cropping 13.9 15.5 17.8 15.4 17.1 19.5 

 

Horticulture 13.9 15.4 17.7 15.2 17.2 19.3 

 

Specialist pig 6.3 7.5 9.8 7.0 8.4 11.1 

 

Specialist poultry 12.5 13.2 15.0 13.2 14.0 16.4 

 

Dairy 8.3 9.8 15.7 9.6 11.4 18.2 

 

LFA grazing livestock 7.7 9.0 11.8 8.5 9.9 12.7 

 

Lowland grazing livestock 8.5 9.7 15.2 9.5 10.9 16.3 

 

Mixed 11.4 13.0 15.8 12.9 14.7 17.9 

Phosphorus Cereals 14.7 17.3 24.3 16.5 18.9 25.0 

 

General cropping 10.3 13.0 15.8 11.5 14.5 16.9 

 

Horticulture 11.9 13.8 17.0 13.3 15.1 17.8 

 

Specialist pig 13.7 19.0 27.6 15.4 21.1 29.1 

 

Specialist poultry 32.2 36.8 45.5 35.4 39.6 47.0 

 

Dairy 16.5 19.6 22.5 19.2 21.3 23.7 

 

LFA grazing livestock 12.7 19.6 22.9 14.0 19.9 23.4 

 

Lowland grazing livestock 14.1 20.7 22.4 15.5 21.4 23.0 

 

Mixed 12.6 16.3 21.9 14.8 17.7 22.7 

Sediment Cereals 12.6 15.6 30.7 12.6 15.6 30.7 

 

General cropping 10.4 12.4 21.3 10.4 12.4 21.3 

 

Horticulture 11.2 13.7 26.4 11.2 13.7 26.4 

 

Specialist pig 12.0 15.8 30.7 12.0 15.8 30.7 

 

Specialist poultry 7.4 15.2 31.8 7.4 15.2 31.8 

 

Dairy 9.7 18.4 31.9 9.7 18.4 31.9 

 

LFA grazing livestock 5.1 19.0 24.6 5.1 19.0 24.6 

 

Lowland grazing livestock 7.6 21.4 32.6 7.6 21.4 32.6 

 

Mixed 11.1 16.6 30.8 11.1 16.6 30.8 

Ammonia Cereals 24.1 27.0 28.9 25.6 29.7 32.2 

 

General cropping 25.5 28.3 30.0 27.5 31.2 33.0 

 

Horticulture 21.0 25.3 28.4 24.2 27.5 31.1 

 

Specialist pig 12.9 13.8 15.1 12.9 14.0 15.4 

 

Specialist poultry 25.0 27.0 28.6 25.1 27.1 28.7 

 

Dairy 6.0 6.7 7.5 6.4 7.3 8.4 

 

LFA grazing livestock -1.2 0.2 1.1 -0.6 0.4 1.7 

 

Lowland grazing livestock -1.4 -0.2 0.8 -0.8 0.4 1.6 

 

Mixed 11.8 13.8 15.0 13.3 15.5 16.7 



Methane Cereals 1.7 2.1 8.0 1.7 2.1 8.0 

 

General cropping 0.0 1.7 6.2 0.0 1.7 6.2 

 

Horticulture 0.0 1.7 5.2 0.0 1.7 5.2 

 

Specialist pig 26.8 32.1 35.2 26.8 32.1 35.2 

 

Specialist poultry 34.5 56.5 67.4 34.5 56.5 67.4 

 

Dairy 17.6 18.2 18.4 17.6 18.2 18.4 

 

LFA grazing livestock 5.2 6.4 7.1 5.2 6.4 7.1 

 

Lowland grazing livestock 7.8 8.6 9.1 7.8 8.6 9.1 

 

Mixed 8.6 9.7 11.1 8.6 9.7 11.1 

Nitrous Oxide Cereals 16.2 16.7 17.3 18.5 19.3 20.0 

 

General cropping 6.5 13.5 14.9 7.7 14.7 16.5 

 

Horticulture 11.9 13.4 15.1 12.7 14.6 16.5 

 

Specialist pig 9.4 10.3 11.1 11.7 12.6 13.2 

 

Specialist poultry 11.8 12.4 12.7 14.2 14.7 15.0 

 

Dairy 14.4 14.9 15.5 16.2 16.7 17.4 

 

LFA grazing livestock 12.2 13.0 14.0 12.6 13.4 14.4 

 

Lowland grazing livestock 14.5 15.0 15.6 15.0 15.5 16.2 

 

Mixed 13.9 14.5 15.0 15.5 16.2 16.8 

*Q1 and Q3 are the first and third percentiles provided by all simulated typical farms for each RFT.  

 

  



 

Table 7: Modelled pollutant load reductions (%) relative to prior implementation due to the 

increased uptake of source control measures by soil group. The Q1, median and Q3 estimates 

are based on the uncertainty ranges associated with the efficacy of the source control 

mitigation measures (Table 2). 

Pollutant Soil group Q1* Median Q3* 

Nitrate Free drain 8.1 11.2 13.4 

 

Drained for arable use 9.1 12.6 14.9 

 

Drained for arable and grassland use 14.9 16.9 18.6 

Phosphorus Free drain 20.3 23.1 26.2 

 

Drained for arable use 14.9 17.3 22.0 

 

Drained for arable and grassland use 11.6 13.0 15.4 

Sediment Free drain 28.7 31.1 32.3 

 

Drained for arable use 13.7 16.1 19.7 

 

Drained for arable and grassland use 6.6 9.7 11.4 

Ammonia Free drain 6.8 15.3 26.5 

 

Drained for arable use 6.9 15.0 26.6 

 

Drained for arable and grassland use 6.7 14.8 26.6 

Methane Free drain 4.9 9.1 18.7 

 

Drained for arable use 4.8 9.1 18.7 

 

Drained for arable and grassland use 4.9 9.1 18.7 

Nitrous Oxide Free drain 12.1 14.0 14.8 

 

Drained for arable use 12.2 14.3 15.1 

 

Drained for arable and grassland use 12.5 14.7 15.7 

*Q1 and Q3 are the first and third percentiles provided by all simulated typical farms for each RFT.  

 

  



Table 8: Estimated costs (£ yr
-1

) for the increased uptake of source control mitigation 

measures by RFT. 

Cost type RFT NVZ Non-NVZ 

  

Q1* Median Q3* Q1* Median Q3* 

Capital Cereals 862 1165 1476 862 1165 1476 

 

General cropping 123 313 634 123 313 635 

 

Horticulture 65 136 290 65 136 290 

 

Specialist pig 4115 8458 13850 4133 8494 13912 

 

Specialist poultry 405 928 1639 407 928 1640 

 

Dairy 27239 40022 46175 27371 40224 46395 

 

LFA grazing livestock 1223 1468 2046 1229 1474 2056 

 

Lowland grazing livestock 2257 3060 3743 2261 3066 3750 

 

Mixed 4543 7042 9176 4550 7056 9192 

Operational Cereals 7269 14489 19543 3635 12471 17354 

 

General cropping 890 3440 7801 845 3290 7363 

 

Horticulture 498 1570 3624 467 1494 3477 

 

Specialist pig 

-

22263 -12336 -7059 

-

25303 -14627 -8010 

 

Specialist poultry 384 2279 4146 

-

10419 -7919 -2948 

 

Dairy 

-

36904 -29613 

-

18083 

-

41317 -32456 

-

21781 

 

LFA grazing livestock -1725 -987 -163 -2297 -1488 -652 

 

Lowland grazing livestock -401 -150 94 -892 -582 -296 

 

Mixed 1317 3534 6361 496 2172 4616 

Total Cereals 8095 15492 20692 4311 13484 18704 

 

General cropping 950 3751 8237 906 3551 7924 

 

Horticulture 609 1725 3831 546 1647 3664 

 

Specialist pig -7479 -4414 -2129 

-

10458 -6475 -3039 

 

Specialist poultry 766 3490 5737 -9099 -6599 -2176 

 

Dairy 3440 7754 12603 1339 4925 10019 

 

LFA grazing livestock -155 635 1514 -673 23 1018 

 

Lowland grazing livestock 2260 2791 3564 1923 2371 3075 

 

Mixed 6736 10698 15384 5647 9092 13791 

*Q1 and Q3 are the first and third percentiles provided by all simulated typical farms for each RFT.  

 

 

  



Table 9: Estimated annual pollutant load reductions (%) and annual total costs for the 

increased implementation of source control mitigation measures for WMCs across England 

and Wales. 

Summary Nitrate Phosphorus Sediment Ammonia Methane Nitrous Oxide Total cost 

statistics % % % % % % £ 

min 10.0 15.8 9.4 3.3 6.2 13.4 -7.8 

max 22.1 31.2 39.5 40.1 23.0 20.3 162.7 

stdev 2.4 3.3 5.9 9.7 3.8 1.2 42.6 

median 16.0 19.7 16.1 16.2 14.6 17.8 69.1 

average 15.9 20.7 18.2 17.7 14.6 17.7 69.7 

Q1* 14.4 18.4 14.6 9.3 13.1 17.0 35.8 

Q3* 17.5 21.9 20.3 25.8 17.0 18.6 103.8 

*Q1 and Q3 are the first and third percentiles provided by all simulated typical farms for each RFT.  
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Figure 1:  Key elements of data flow for running FARMSCOPER at national scale. 
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 Figure 2:  The spatial distribution of 

significant FARMSCOPER soil groups within water management catchments across England 

and Wales. 

 

  



 

 

 

Figure 3: The spatial distribution of the dominant (by area) RFTs within water management 

catchments across England and Wales. 

  



 

 

Figure 4: Comparison of modelled agricultural BAU sediment and nitrate emissions to water 

with PARCOM (1991-2010) monitoring data at WFD RBD scale. 
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Figure 5: Comparison of modelled agricultural BAU GHG emissions to air with published 

GHG inventory (2013) data at WFD RBD scale. 
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Figure 6:  Estimated annual load reductions (% relative to BAU) for water quality related 

pollutants at WMC scale across England and Wales. 



      

 

 

Figure 7: Estimated annual GHG emission reductions (% relative to BAU) at WMC scale 

across England and Wales. 

 

 

 

 



 

Figure 8: Estimated annual total costs for the increased implementation of source control 

measures at WMC scale. 

 


