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Redundant interdependencies boost the robustness of multilayer networks
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Ginestra Bianconi
School of Mathematical Sciences, Queen Mary University of London, London, E1 4NS, United Kingdom

In the standard model of percolation on multilayer networks, a node is functioning only if its
copies in all layers are simultaneously functioning. According to this model, a multilayer network
becomes more and more fragile as the number of layers increases. In this respect, the addition
of a new layer of interdependent nodes to a preexisting multilayer network will never improve its
robustness. Whereas such a model seems appropriate to understand the effect of interdependencies
in the simplest scenario of a network composed of only two layers, it may seem not reasonable for
real systems where multiple network layers interact one with the other. It seems in fact unrealistic
that a real system, such a living organism, evolved, through the development of multiple layers of
interactions, towards a fragile structure. In this paper, we introduce a model of percolation where
the condition that makes a node functional is that the node is functioning in at least two of the
layers of the network. The model reduces to the standard percolation model for multilayer networks
when the number of layers equals two. For larger number of layers, however, the model describes a
scenario where the addition of new layers boosts the robustness of the system by creating redundant
interdependencies among layers. We prove this fact thanks to the development of a message-passing
theory able to characterize the model in both synthetic and real-world multilayer graphs.

PACS numbers: 89.75.Fb, 64.60.aq, 05.70.Fh, 64.60.ah

I. INTRODUCTION

Multilayer networks [1–3] are emerging as a power-
ful paradigm for describing complex systems character-
ized by the coexistence of different types of interactions.
Multilayer networks represent an appropriate descrip-
tive model for real networked systems in disparate con-
texts, such as social [4, 5], technological [6–8] and biolog-
ical systems [9–11]. For example, global infrastructures
are formed by several interdependent networks, such as
power grids, water supply networks, and communication
systems, and studying their properties require to account
for the presence of such interdependencies [12]. Cell func-
tion and/or malfunction (yielding diseases) cannot be un-
derstood if the information on the different nature of the
interactions forming the interactome (protein-protein in-
teractions, signaling, regulation) are not integrated in a
general multilayer scenario [9]. Similarly, the complex-
ity of the brain is encoded in the different nature of the
interactions existing at the functional and the structural
levels [10, 11].

A multilayer networks is composed of a set of net-
works forming its layers [1–3]. Nodes can be connected
within and across layers. It has been shown that multi-
layer networks are much more fragile than isolated net-
works just because of the presence of interdependencies
among the layers of the system [12–18]. In particular,
the fragility of the system increases as the number of
layers increases [16, 19–22]. Such a feature has an in-
tuitive explanation. In the standard percolation model
for multilayer networks, the probability that a node is
damaged equals to the probability that at least one of

its interdependent nodes is damaged. As the number
of layers increases, the probability of individual failures
grows thus making the system more fragile. This sce-
nario leads, however, to the conundrum: if the fragility
of a system is increased by the number of layers of inter-
actions, why are there so many real systems that display
multiple layers of interactions? Further, the addition of
new layers of interactions in a preexisting multilayer net-
work has generally a cost, so it doesn’t seem reasonable
to spend resources just to make the system less robust.
The purpose of the current paper is to provide a potential
explanation by introducing a new model for percolation
in networks composed of multiple interacting layers. In
the model, we will assume that a node is damaged only
if all its interdependent nodes are simultaneously dam-
aged. The model is perfectly equivalent to the standard
one when the number of layer equals two. Additional
layers, however, provide the system with redundant in-
terdependencies, generating backup mechanisms against
the failure of the system, and thus making it more robust.

The robustness of multilayer networks in presence of
redundant interdependencies is here investigated using a
message-passing theory [13, 23–26] (also known as the
cavity method). We build on recent advances obtained
in standard interdependent percolation theory [19, 27–
30] to propose a theory that is valid for multilayer net-
works with link overlap [5, 31] as long as the multilayer
network is locally tree-like. This limitation is common
to all message-passing approaches for studying critical
phenomena on networks. Corrections have been recently
proposed [32] on single networks to improve the perfor-
mace of message-passing theory and similar approxima-
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tions valid for loopy multilayer networks might be envis-
aged in the future.

II. REDUNDANT PERCOLATION MODEL ON
MULTILAYER NETWORKS

We consider a multilayer network ~G =
(G1, G2, . . . , GM ) composed of M layers Gα with
α = 1, 2, . . . ,M . Every layer contains N nodes. Exactly
one node with the same label appears in every individual
layer. Nodes in the various layers sharing a common
label are called replica nodes, and they are considered
as interdependent on each other [33]. Nodes in the
network are identified by a pair of labels (i, α), with
i = 1, 2, . . . , N and α = 1, 2, . . . ,M , the first one indicat-
ing the index of the node, and the second one standing
for the index of the layer. For every node label i, the set
of replica nodes is given by the M nodes corresponding
to pairs of labels (i, α) with with α = 1, 2, . . . ,M (see
Figure 1). When at least two replica nodes (i, α) and
(i, α′) are connected to two corresponding replica nodes
(j, α) and (j, α′) we say that the multilayer network
displays link overlap.

Given a multilayer network as described above, we con-
sider a percolation model where some of the nodes are
initially damaged. We assume that the interdependen-
cies are redundant, i.e., every node can be active only if
at least one its interdependent nodes is also active. We
refer to this model as “Redundant percolation model.”
As an order parameter for the model, we define the so-
called Redundant Mutually Connected Giant Component
(RMCGC). The nodes that belong to the RMCGC can
be found by following the algorithm:

(i) The giant component of each layer α is determined,
evaluating the effect of the damaged nodes in each
single layer;

(ii) Every replica node that has no other replica node in
the giant component of its proper layer is removed
from the network and considered as damaged;

(iii) If no new damaged nodes are found at step (ii), then
the algorithm stops, otherwise it proceeds, starting
again from step (i).

The set of replica nodes that are not damaged when the
algorithm stops belongs to the RMCGC.

The main difference with the standard percolation
model [12] on multilayer networks and the consequent
definition of Mutually Connected Giant Component
(MCGC) is that step (ii) must be substituted with “Ev-
ery replica node that has at least a single replica node not
in the giant component of its proper layer is removed from
the network and considered as damaged, i.e., if a replica
node is damaged all its interdependent replica nodes are
damaged” [12–16, 19–21]. In particular, the RMCGC
and the MCGC are the same for M = 2 layers, but they
differ as long as the number of layers M > 2. In the

latter case, the RMCGC naturally introduces the notion
of redundancy among interdependent nodes. As we will
see in the following, the main effect of redundancy is to
let the robustness of the system increases as the number
of layers increases.

FIG. 1: A multilayer network with M = 3 layers, and N = 5
nodes is shown. Every node i has M = 3 interdependent
replica nodes (i, α) with α = 1, 2, 3. In this figure, triplets of
replica nodes are also identified by their color.

III. MESSAGE-PASSING ALGORITHM

We assume that interactions within each layer α are

described by elements a
[α]
ij of the adjacency matrix of

the layer, indicating whether the replica nodes (i, α) and

(j, α) are connected (a
[α]
ij = 1) or not (a

[α]
ij = 0) in layer

α. Additionally, we consider a specific realization of the
initial damage to the replica nodes indicated by the set
{siα}. The generic element siα = 0 indicates that the
replica node (i, α) has been initially damaged, whereas
siα = 1 indicates that the replica node (i, α) has not
been initially damaged. Under these conditions, as long
as the multilayer network is locally treelike, the follow-
ing message-passing algorithm identifies the replica nodes
that are in the RMCGC.

Each node i sends to a neighbor j a set of messages

n
[α]
i→j in every layer α where node i is connected to node

j, i.e., with a
[α]
ij = 1. These messages indicate whether

(n
[α]
i→j = 1) or not (n

[α]
i→j = 0) node i connects node j to

the RMCGC with links belonging to layer α. The mes-

sage n
[α]
i→j = 1 if and only if all the following conditions

are met:
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(a) node i is connected to node j in layer α, and both
nodes (i, α) and node (j, α) are not damaged, i.e.,

siα = sjα = a
[α]
ij = 1;

(b) node i is connected to the RMCGC through at least
one node ` 6= j in layer α;

(c) node i belongs to the RMCGC assuming that also
node j belongs to the RMCGC. This conditions is
satisfied if and only if, assuming that node j be-
longs to the RMCGC, node i is connected in at
least two layers to the RMCGC.

If the previous conditions are not simultaneously met,

then n
[α]
i→j = 0. Put together, the former conditions lead

to the algorithm for the messages n
[α]
i→j

n
[α]
i→j = θ(vi→j , 2) a

[α]
ij sjαsiα

1−
∏

`∈Nα(i)\j

(
1− n[α]`→i

) .(1)

Here Nα(i) indicates the set of nodes that are neighbor

of node i in layer α. The term 1−
∏
`∈Nα(i)\j

(
1− n[α]`→i

)
therefore will equal one if at least one message is arriving
to node i from a neighboring node ` 6= j, while it will be
equal to zero, otherwise. θ(vi→j , 2) = 1 for vi→j ≥ 2 and
θ(vi→j , 2) = 0, otherwise. vi→j indicates in how many
layers node i is connected to the RMCGC assuming that
node j also belongs to the RMCGC, i.e.,

vi→j =

M∑
α=1

siα
1−

∏
`∈Nα(i)\j

(
1− n[α]`→i

)
+siαsjαa

[α]
ij

∏
`∈Nα(i)\j

(
1− n[α]`→i

) . (2)

Therefore vi→j indicates the number of initially undam-
aged replica nodes (i, α) that either receive at least one
positive messages from nodes ` ∈ Nα(i) \ j or are con-
nected to the undamaged replica nodes (j, α). Finally,
the replica node (i, α) belongs to the RMCGC if (i) it is
not damaged, (ii) it is connected to the RMCGC in layer
α, and (iii) it receives at least another positive message
in a layer α′ 6= α. These conditions are summarized by

σiα = siα

1−
∏

`∈Nα(i)

(
1− n[α]`→i

)
×

1−
∏
α′ 6=α

1− siα′ + siα′

∏
`∈Nα′ (i)

(
1− n[α

′]
`→i

) .(3)

The average number S of replica nodes belonging to the
RMCGC is computed as

S =
1

MN

M∑
α=1

N∑
i=1

σiα. (4)

The system of Eqs. (1), (2), (3), and (4) represents a
complete mathematical framework to estimate the aver-
age size of the RMCGC for a given network and a given
initial configuration of damage. The solution can be ob-
tained by first iterating Eqs. (1) and (2) to obtain the val-

ues of the messages n
[α]
i→j . Those values are then plugged

into Eqs. (3) to compute the values of the variables siα,
and finally these variables are used into Eq. (4) to esti-
mate the average size of the RMCGC. We stress that,
being valid for a given network and for a given configura-

tion of damage, the values of the variables n
[α]
i→j and siα

are either 0 or 1. The variables vi→j can assume instead
integer values in the range [0,M ]. The mathematical
framework works properly also in presence of edge over-
lap among layers. This is an important feature that can
change dramatically change the robustness properties of
multilayer networks [19, 27–30].

IV. MULTILAYER NETWORKS WITHOUT
LINK OVERLAP

A. General results

1. Simplification of the message-passing equations on a
single realization of the initial damage

In absence of link overlap, a given pair of nodes i and j
may be linked exclusively along a single layer α. Nontriv-
ial messages potentially different from zero will therefore
exist only on a specific layer for every pair of connected
nodes i and j. It can be easily seen that the message-
passing Eqs. (1) and (2) reduce to

n
[α]
i→j = siαsjαa

[α]
ij

1−
∏

`∈Nα(i)\j

(
1− n[α]`→i

)
×

1−
∏
α′ 6=α

1− siα′ + siα′

∏
`∈Nα′ (i)

(
1− n[α

′]
`→i

) .(5)

We further notice that in this situation the result of the
message-passing algorithm does not change if we consider
messages that depend exclusively on the state siα of the
node i that sends the message. Even if we drop the factor
sjα in Eq. (5), the message will be allowed anyways to
propagate further at the next iteration step, if the replica
node (j, α) is not initially damaged. Therefore, we can
further simplify Eq. (5) and consider

n
[α]
i→j = siαa

[α]
ij

1−
∏

`∈Nα(i)\j

(
1− n[α]`→i

)
×

1−
∏
α′ 6=α

1− siα′ + siα′

∏
`∈Nα′ (i)

(
1− n[α

′]
`→i

) .(6)
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Eqs. (6) replace Eqs. (1) and (2) in the case of a mul-
tilayer network without link overlap. The rest of the
framework is identical, so that Eqs. (3) and (4) remain
unchanged.

2. Message-passing equations for random realizations of the
initial damage

Eqs. (6), (3), and (4) determine the average size of the
RMCGC in a multilayer network without link overlap
for a given realization of the initial damage {siα}. These
equations can be, however, extended to make predictions
in the case of a random realization of the initial damage
when the replica nodes are damaged independently with
probability 1 − p, i.e,. such that the the initial damage
{siα} is a random configuration obeying the probability
distribution

P̂({siα}) =

N∏
i=1

M∏
α=1

psiα(1− p)1−siα . (7)

To this end, we denote the probability that node i sends a

positive message to node j in layer α by n̂
[α]
i→j =

〈
n
[α]
i→j

〉
,

and the probability that the replica node (i, α) belongs
to the RMCGC by σ̂iα = 〈σiα〉. The message-passing

algorithm determining the values of n̂
[α]
i→j and σ̂iα is given

by

n̂
[α]
i→j = a

[α]
ij p

1−
∏

`∈Nα(i)\j

(
1− n̂[α]`→i

)
×

1−
∏
α′ 6=α

1− p+ p
∏

`∈Nα′ (i)

(
1− n̂[α

′]
`→i

) ,

σ̂iα = p

1−
∏

`∈Nα(i)

(
1− n̂[α]`→i

)
×

1−
∏
α′ 6=α

1− p+ p
∏

`∈Nα′ (i)

(
1− n̂[α

′]
`→i

) . (8)

This algorithm can be applied to a given network, and
provides the average number of replica nodes S belonging
to the RMCGC for a random realization of the initial
damage obeying Eq. (7). Specifically the value of Ŝ is
related to σ̂iα by

Ŝ =
1

MN

N∑
i=1

M∑
α=1

σ̂iα. (9)

3. Message-passing equations for random multilayer
networks

A multilayer network where every layer is a sparse net-
work generated according to the configuration model is

a major example of a multilayer network without link
overlap in the limit of large network sizes. It is therefore
natural and important to characterize the RMCGC in
this case. We assume that every network layer Gα is a
random graph taken from the probability distribution

P [α](Gα) =
1

Z

N∏
i=1

δ

k[α]i ,

N∑
j=1

a
[α]
ij

 , (10)

where k
[α]
i indicates the preimposed degree of node i in

layer α, δ(x, y) = 1 if x = y and δ(x, y) = 0, other-
wise, and Z is the normalization factor indicating the to-
tal number of networks in the ensemble. Averaging over
the network ensemble allows us to translate the message-
passing equations into simpler expressions for the char-
acterization of the percolation transition.

Let us consider a random multilayer network obey-
ing the probability of Eq. (10), and a random realiza-
tion of the initial damage described by the probability
of Eq. (7). The average message in layer α, namely

S′α =
〈
n̂αi→j |a

[α]
ij = 1

〉
, and the average number of replica

nodes of layer α that are in the RMCGC, denoted by
Sα = 〈σ̂i,α〉, obey the equations

Sα = p
∑
k

P (k)
[
1− (1− S′α)k

[α]
]

1−
∏
α′ 6=α

[
1− p+ p(1− S′α′)k

[α′]
] ,

S′α = p
∑
k

kα

〈kα〉
P (k)

[
1− (1− S′α)k

[α]−1
]
,

×

1−
∏
α′ 6=α

[
1− p+ p(1− S′α′)k

[α′]
] , (11)

where P (k) indicates the probability that a generic

node i has degrees ki = k, i.e. (k
[1]
i , k

[2]
i , . . . , k

[M ]
i ) =

(k[1], k[2], . . . , k[M ]).

If there are no correlations between the degrees of a
node in different layers, the degree distribution P (k) can
be factorized as

P (k) =
∏
α

P [α](k[α]) , (12)

where P [α](k) is the degree distribution in layer α. In
this case, Eqs. (11) can be expressed in terms of the gen-
erating function of the degree distribution in each layer.
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Specifically, we have

Sα = p
[
1−H [α]

0 (1− S′α)
]

1−
∏
α′ 6=α

[1− p+ p H0(1− S′α′)]

 ,

S′α = p
[
1−H [α]

1 (1− S′α)
]

1−
∏
α′ 6=α

[
1− p+ p H

[α′]
0 (1− S′α′)

] , (13)

where the generating functions H
[α]
0 (z) and H

[α]
1 (z) of

the degree distribution P [α](k) of layer α are given by

H
[α]
0 (x) =

∑
k

P [α](k)xk,

H
[α]
1 (x) =

∑
k

k

〈k[α]〉
P [α](k)xk−1. (14)

Finally the average number S of replica nodes in the
RMCGC is given by

S =
1

M

∑
α

Sα. (15)

If we consider the case of equally distributed Poisson
layers with average degree z, we have that Eq. (12) is

P [α](k) =
1

k!
zke−z (16)

for every layer α = 1, 2, . . . ,M . Then, using Eqs. (13),
one can show that S′α = Sα = S, ∀α, and S is determined
by the equation

S = p
(
1− e−zS

) {
1− [1− p+ pe−zS ]M−1

}
. (17)

This equation has always the trivial solution S = 0. In
addition, a nontrivial solution S > 0 indicating the pres-
ence of the RMCGC, emerges at a hybrid discontinuous
transition characterized by a square root singularity, on
a line of points p = pc(z), determined by the equations

hz,p(Sc) = 0,

dhz,p(S)

dS

∣∣∣∣
S=Sc

= 0, (18)

where

hz,p(S) = S − p(1− e−zS)

×
{

1− [1− p+ pe−zS ]M−1
}

= 0. (19)

For p > pc there is a RMCGC, for p ≤ pc there is no
RMCGC. The entity of the discontinuous jump at p = pc
in the fraction S of replica nodes in the RMCGC is given
by S = Sc. The percolation threshold pc as a function of
the average degree z of the network is plotted in Figure

2 for M = 2, 3, 4, 5. It is shown that as the number of
layers M increases the percolation threshold decreases
for every value of the average degree z. Additionally also
the discontinuous jump Sc decreases as the number M
of layer increases for very given average degree z (see
Figure 3). Therefore as the number of layers increases
the multilayer networks becomes more robust.

FIG. 2: The percolation threshold pc is plotted versus the
average degree z of each layer for Poisson multilayer networks
with M = 2, 3, 4, 5 layers indicated respectively with with
blue solid, red dashed, green dot-dashed and orange dotted
lines.

FIG. 3: The discontinuous jump Sc = S(pc) of the RMCGC
at the percolation threshold p = pc, is plotted versus the
average degree z of each layer for Poisson multilayer networks
with M = 2, 3, 4, 5 layers indicated respectively with blue
solid, red dashed, green dot-dashed and orange dotted lines.
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B. Comparison between the RMCGC and the
MCGC

In this section, we compare the robustness of multilayer
networks in presence of ordinary interdependencies and
in presence of redundant interdependencies. To take a
concrete example, we consider the case of a multilayer
network with M Poisson layers, each layer having the
same average degree z. In this case the fraction S of
replica nodes in the RMCGC is given by the solution of
Eqs. (17) while the fraction of replica nodes in the MCGC
is given by

S = p̃
(
1− e−zS

)M
. (20)

In Eq. (20), it is assumed that every replica node (i, α)
of a given node i is damaged simultaneously (with prob-

ability f̃ = 1− p̃). On the contrary, in presence of redun-
dant interdependencies it is natural to assume that the
initial damage is inflicted to each replica node indepen-
dently (with probability f = 1 − p). Therefore, in order
to compare the robustness of the multilayer networks in
presence and in absence of redundant interdependencies,
we set p = p̃ = 1, i.e., replica nodes are not initially
damaged, and compare the critical value of the average
degree z = z? at which the percolation transition occurs
respectively for the RMCGC and for the MCGC. Addi-
tionally we will characterize also the size S = S? of the
jump in the size of the RMCGC and the MCGC at the
percolation transition. In Fig. 4, we display the values
of z? and S? as a function of the number of layers M
for the RMCGC and the MCGC. For M = 2, the two
models give the same results as they are identical. For
M > 2, differences arise. In presence of redundant inter-
dependencies, multilayer networks become increasingly
more robust as the number M of layers increases. This
phenomenon is apparent from the fact that the RMCGC
emerges for multilayer networks with an average degree
of their layers z? which decreases as the number of layers
M increases. On the contrary, in ordinary percolation
the value of z? for the emergence of the MCGC is an
increasing function of M . Additionally, the size of the
discontinuous jumps S? at the transition point decreases
with M for the RMCGC, while increases with M for the
MCGC showing that the avalanches of failures have a
reduced size for the RMCGC.

C. Comparison with numerical simulations

In this section, we compare the results obtained with
Eqs. (1), (2), (3), and (4) on a single instance of dam-
age with the predictions the message-passing algorithm
described in Eq. (13) characterizing the size S of the
RMCGC in an ensemble of networks. Specifically, we
consider the case of a multilayer network with M = 3
Poisson layers with the same average degree z. In order
to draw the percolation diagram for single instances of

FIG. 4: Comparison between the MCGC and the RMCGC
models in Poisson multilayer networks. (a) Critical value z?

of the average degree as a function of the number of network
layers M . Results for the RMCGC model are displayed as red
diamonds. Results for the MCGC model are denoted by blue
triangles. (b) Height of the jump S? at the transition point
as a function of the number of network layers.

initial damage as a function of the probability of damage
1 − p, we associate each replica node (i, α) with a ran-
dom variable riα drawn from a uniform distribution and
we set

siα =

{
1 if riα ≤ p
0 if riα > p

(21)

Fig. 5 displays the comparison between the two ap-
proaches, showing an almost perfect agreement between
them. Additionally in Fig. 6, we compare simulation re-
sults averaged over several realizations of the initial dam-
age and several instances of the multilayer network model
with the theoretical predictions given by the numerical
solution of Eqs. (11)-(17), obtaining a very good agree-
ment.

V. MULTILAYER NETWORKS WITH LINK
OVERLAP

A. Link overlap, multilinks and multidegree

In isolated networks, two nodes can be either con-
nected or not connected. In multilayer networks instead,
the complexity of the structure greatly increases as the
ways in which a generic pair of nodes can be connected
is given by 2M possibilities. A very convenient way of
accounting for all the possibilities with a compact no-
tation is to use the notion of multilink among pairs of
nodes [5, 31]. Multilinks ~m =

(
m[1],m[2], . . . ,m[M ]

)
with

m[α] = 0, 1, describe any of the possible patterns of con-
nections between pairs of nodes in a multilayer network
with M layers. Specifically, m[α] = 1 indicates that a



7

FIG. 5: Comparison between simulation results of the RM-
CGC for a multilayer network with M = 3 Poisson layers
Poisson with average degree z and no link overlap, and the
message-passing results over single network realization and
given configuration damage. We consider different values of
the average degree z = 2.5, 3.0, 4.0, 5.0. Points indicate results
of numerical simulations: blue circles (z = 2.5), red squares
(z = 3.0), green diamonds (z = 4.0), and orange triangles
(z = 5.0). Message-passing predictions are denoted by lines
with the same color scheme used for numerical simulations.
Simulations results are performed on a single instance of a
multilayer network with N = 104 nodes.

FIG. 6: Same as in Fig. 5, but for averages over 20 instances
of the multilayer network model and configurations of random
initial damage.

connection exists in layer α, whereas m[α] = 0 indicates
that the connection in layer α does not exists. In par-
ticular, we can say that, in a multilayer network with M
layers, two nodes i and j are connected by the multilink

~mij = (a
[1]
ij , a

[2]
ij , . . . , a

[M ]
ij ). (22)

In order to distinguish the case in which two nodes are

not connected in any layer with the case in which in at
least one layer the nodes are connected, we distinguish
between the trivial multilink ~m = ~0 and the nontrivial
multilinks ~m 6= ~0. The trivial multilink ~m = ~0 indicates
the absence of any sort of link between the two nodes.

Using the concept of multilinks, one can define mul-
tiadjacency matrices A~m whose element A~m

ij indicates

whether (A~m
ij = 1) or not (A~m

ij = 0) a node i is con-
nected to node j by a multilink ~m. The matrix elements
A~m
ij of the multiadjacency matrix A~m are given by

A~m
ij =

M∏
α=1

δ
(
m[α], a

[α]
ij

)
. (23)

Using multiadjacency matrices, it is straightforward to
define multidegrees [5, 31]. The multidegree of node i
indicated as k ~mi is the sum of rows (or columns) of the
multiadjacency matrix A~m, i.e.,

k ~mi =
∑
j

A~m
ij , (24)

and indicates how many multilinks ~m are incident to node
i.

Using a multidegree sequence {k ~mi }, it is possible to
build multilayer network ensembles that generalize the
configuration model. This way, overlap of links is fully
preserved by the randomization of the multilayer net-
work. These ensembles are specified by the probability

P̃(~G) attributed to every multilayer network ~G of the

ensembles, where P̃(~G) is given by

P̃(~G) =
1

Z̃

N∏
i=1

∏
~m 6=~0

δ

k ~mi , N∑
j=1

A~m
ij

 , (25)

with Z̃ normalization constant equal to the number of
multilayer networks with given multidegree sequence.

B. General discussion of the message passing
equations for the RMCGC

Our goal here is to generalize the message-passing al-
gorithm already given by Eqs. (1), (2), (3), and (4) for
a generic single instance of a multilayer network and
single realization of initial damage to the cases of (i)
random multilayer networks with given multidegree se-
quence and/or (ii) random realizations of the initial dam-
age. The extensions for both cases has been already con-
sidered for the case of multilayer networks without link
overlap. In presence of link overlap, however, the ap-
proach is much more cumbersome. For two nodes i and j

in fact, the messages n
[α]
i→j given by Eq. (1) and sent from

node i to node j over the different layers α = 1, 2 . . .M
are correlated because they all depend on the value of
the variable vi→j given by Eq. (2). Such correlations
require particular care when averaging the messages to
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treat the percolation transition for random initial dam-
ages. Similar technical challenges are also present in the
treatment of the standard MCGC model where interde-
pendencies are not redundant [19, 27]. In presence of
redundant interdependencies there is an additional pre-
caution that needs to be taken. In fact, the messages

n
[α]
i→j are explicitly dependent on the state of all replicas

(j, α′) of node j. This state is indicated by the vari-
ables ~sj = (sj1, sj2, . . . , sjα′ , . . . sjM ) where sjα′ spec-
ifies whether the replica node (j, α′) is initially dam-
aged or not. As a consequence of this property, when
averaging over random realizations of initial damage,
message-passing equations are written in terms of the

messages σ̂
~mij ,~n
i→j (~sj) explicitly accounting for the proba-

bility that node i is sending to node j the set of messages

~n = (n
[1]
i→j , n

[2]
i→j . . . n

[α]
i→j , . . . n

[M ]
i→j), given that node j is

in state ~sj and node i and node j are connected by a mul-
tilink ~m = ~mij . We have derived these equations for a
general multilayer network with M layers. However, the
message-passing algorithm has a very long expression. To
make the paper more readable, we decided to place the
exact treatment of the general case in the SM, and con-
sider here only the special case of ensembles of random
multilayer networks with overlap. For these ensembles in
fact, the message-passing equations are written in terms
of average messages sent between nodes with given mul-

tilinks ~m, i.e., S ~m,~n(~sj) =
〈
σ̂
~mij ,~n
i→j (~sj)|~mij = ~m

〉
, and

the equations greatly simplify. Two specific cases of mul-
tilayer network ensembles are discussed below, for the
cases of M = 2 and M = 3 layers.

C. Ensembles of multilayer networks link overlap
and M = 2 layers

In this case, every replica node is in the RMCGC if and
only if also its interdependent node in the other layer is in
the RMCGC. Therefore, the only messages that are dif-
ferent from zero are the messages S ~m,~n(~sj = (1, 1)) sent
to nodes j in state ~sj = (1, 1). Specifically, we consider
the case of a random multilayer network with Poisson
multidegree distributions characterized by the averages

〈k(1,1)〉 = z2,

〈k(0,1)〉 = 〈k(1,0)〉 = z1. (26)

The messages S ~m,~n(~sj = (1, 1)) only depend on the
multiplicity of overlap of the multilinks ~m and ~n given
respectively by

µ =

M∑
α=1

m[α],

ν =

M∑
α=1

n[α]. (27)

The fraction S of replica nodes in the RMCGC is deter-

mined by the variables

xµ,ν = S ~m,~n(~sj = (1, 1)). (28)

The value of x2,2 indicates the probability that node i
to sends a message ~n = (1, 1) to its neighbor j with
~sj = (1, 1) connected by a multilink ~m = (1, 1). This fact
occurs if and only if node i has both replica nodes that
are not initially damaged (which occurs with probability
p2) and if at least one positive message in each layer α
is reaching node i from neighbors different from j. The
value of x1,1 indicates the probability that node i sends
a message ~n = (1, 0) to its neighbor j with ~sj = (1, 1)
connected by a multilink ~m = (1, 0) or equivalently sends
a message ~n = (0, 1) to its neighbor j with ~sj = (1, 1)
connected by a multilink ~m = (0, 1). This fact occurs if
and only if node i has both replica nodes that are not
initially damaged (which occurs with probability p2) and
if at least one positive message in each layer α is reaching
node i from neighboring nodes different from j. The
latter is a necessary condition to have vi→j = 2. The
value x2,1 indicates the probability that node i is sending
a message ~n = (1, 0) to its neighbor j in state ~sj = (1, 1)
and connected by a multilink ~m = (1, 1) or equivalently
sends a message ~n = (0, 1) to its neighbor j in state
~sj = (1, 1) and connected by a multilink ~m = (1, 1). This
fact occurs if only if node i has both replica nodes that are
not initially damaged (which occurs with probability p2)
and if at least one positive message is reaching node i in
the layer for which n[α] = 1 from neighbors different from
j and no positive message is reaching node i in the layer
where n[α] = 1 from neighboring nodes different from
node j. Finally, S is the probability that a replica node
(i, α) is in the RMCGC which implies that (i) it is not
initially damaged, (ii) its replica node in the other layer
is not initially damaged, and (iii) at least one positive
message reaches node i in both layers.

The values of the variables xµ,ν and S are therefore
determined by the following set of equations

x2,2 = p2
[
1− 2e−z1x1,1−z2(x2,2+x2,1)

+e−2z1x1,1−z2(x2,2+2x2,1)
]

x2,1 = p2
[
e−z1x1,1−z2(x2,2+x2,1)

−e−2z1x1,1−z2(x2,2+2x2,1)
]

S = x1,1 = x2,2

. (29)

These equations are the same equations as those that
determine the value of the MCGC as long as the fact
that the damage in each replica node is independent is
taken into account, which can be done by making the
substitution p2 → p [19, 27].

D. Ensembles of multilayer networks link overlap
and M = 3 layers

We consider now the case of a random multilayer net-
work with M = 3 layers. The network has Poisson mul-
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tidegree distributions and averages given by

〈k(1,1,1)〉 = z3,

〈k(1,1,0)〉 = 〈k(1,0,1)〉 = 〈k(0,1,1)〉 = z2,

〈k(1,0,0)〉 = 〈k(0,1,0)〉 = 〈k(0,0,1)〉 = z1. (30)

In this case, the messages S ~m,~n(~sj) only depend on the
multiplicity of overlap of the multilinks ~m and ~n and the
number of layers where sj,α = 1 and m[α] = 1. Therefore,
messages depend only on

µ =

M∑
α=1

m[α],

ν =

M∑
α=1

n[α],

ξ =

M∑
α=1

sjαm
[α]. (31)

The fraction of replica nodes in the RMCGC S is deter-

FIG. 7: Example of a diagrammatic representation of the

equations determining x
(3)
3,2 = S(1,1,1),(1,1,0)[(1, 1, 1)] in a mul-

tilayer network with M = 3 layers and 〈k(1,1,1)〉 = z3,

〈k(1,1,0)〉 = 〈k(1,0,1)〉 = 〈k(0,1,1)〉 = z2 and 〈k(1,0,0)〉 =

〈k(0,1,0)〉 = 〈k(0,0,1)〉 = z1. Filled circles indicate initially
undamaged replica nodes siα = 1, whereas empty circles in-
dicate initially damaged replica replica nodes siα = 0. The
message are sent along the direction indicated by the arrows.
A solid line reaching node i in layer α indicates that at least
one positive message is reaching node i from nodes different
from node j in layer α. Dotted lines joining node i in layer α
indicate that no positive message reaches node i from nodes
different from node j in layer α. A solid (dotted) line between

node i and node j in layer α indicates m[α] = 1 (m[α] = 0).

mined by the variables

x(ξ)µ,ν = S ~m,~n(~sj). (32)

Let us explicitly describe the equations that one of these
variables needs to satisfy, and introduce a symbolic way

to describe the equations. Specifically, we consider x
(3)
3,2

as the probability S(1,1,1),(1,1,0)((1, 1, 1)) that a node i,
connected to a node j by a multilink ~m = (1, 1, 1), sends
to node j a message ~n = (1, 1, 0) provided that node j is
in the state ~sj = (1, 1, 1) (see Fig. 7). This probability

is equal to the sum of (i) the probability that node i is
in the state ~si = (1, 1, 0) [which occurs with probability
(1− p)p2] and it sends the message ~n = (1, 1, 0) to node
j and (ii) the probability that node i is in the state ~si =
(1, 1, 1) (which occur with probability p3) and sends the
same message to node j. Node i sends the message ~n =
(1, 1, 0) only if the following conditions are met:

(i) if node i is in the state ~si = (1, 1, 0), node i must
receive at least one positive message from nodes
different from node j in layers α = 1 and α = 2.

(ii) if node i is in the state ~si = (1, 1, 1), node i must
receive at least one positive message from nodes
different from node j in layers α = 1 and α = 2 and
must not receive any positive message from nodes
different from node j in layer α = 3.

These requirements are summarized by the diagram of
Fig. 7. Diagrams that describe the equations to deter-

mine the value of all the other variables x
(ξ)
µ,ν are presented

in Fig. 8. These equations read as

x
(3)
3,3 = p3 [1− 3h1,3 + 3h2,3 − h3,3]

x
(3)
3,2 = p2(1− p) [1− 2h1,2 + h2,2] + p3 [h1,3 − 2h2,3 + h3,3]

x
(2)
2,2 = p2(1− p) [1− 2h1,2 + h2,2] + p3 [1− 2h1,3 + h2,3]

x
(2)
3,2 = x

(2)
2,2

x
(1)
1,1 = 2p2(1− p) [1− 2h1,2 + h2,2]

+p3 [1− h1,3 − h2,3 + h3,3]

x
(2)
2,1 = p2(1− p) [h1,2 − h2,2] + p2(1− p) [1− 2h1,2 + h2,2]

+p3 [h1,3 − h2,3]

x
(1)
2,1 = x

(1)
11

x
(2)
3,1 = x

(2)
2,1

x
(3)
3,1 = 2p2(1− p) [h1,2 − h2,2] + p3 [h2,3 − h3,3]

S = x
(1)
1,1 (33)

where

h1,3 = e−z1x
(1)
1,1−z2(2x

(2)
2,2+2x

(2)
2,1)−z3(x

(3)
3,3+2x

(3)
3,2+x

(3)
3,1)

h2,3 = e−2z1x
(1)
1,1−z2(3x

(2)
2,2+4x

(2)
2,1)−z3(x

(3)
3,3+3x

(3)
3,2+2x

(3)
3,1)

h3,3 = e−3z1x
(1)
1,1−z2(3x

(2)
2,2+6x

(2)
2,1)−z3(x

(3)
3,3+3x

(3)
3,2+3x

(3)
3,1)

h1,2 = e−z1x
(1)
1,1−z2(x

(2)
2,2+x

(2)
2,1+x

(1)
2,1)−z3(x

(2)
3,2+x

(2)
3,1)

h2,2 = e−2z1x
(1)
1,1−z2(x

(2)
2,2+2x

(2)
2,1+2x

(1)
2,1)−z3(x

(2)
3,2+2x

(2)
3,1).(34)

We note that, in absence of overlap, i.e., for z1 = z, z2 =
0 and z3 = 0, Eqs. (33) reduce Eqs. (17). By defining

a suitable order of the variables x
(ξ)
µ,ν , it is possible to

introduce a vector x whose elements are the variables
x
(ξ)
µ,ν , and rewrite the Eqs. (33) in a matrix form as

x = G(x). (35)
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	 x31	(3)=	 	 		+	 	 						+	 	 	 	 	

	x33(3)=	 	 	 			x32(3)	=	 	 				+	 	 	 x22(2)=	 	 						+		 	 	 	 	 				

x31	(2)=	 	 			+	 	 				+	

	x21	(2)=	 	 							+	 	 	 		+	

x32	(2)=		 	 											+	 	 	 	 	 	

x	21	(1)=		 	 										+	 								+																			+																			+		 	 	 	 	 	

	x11	(1)=	 	 									+		 							+																				+																			+		 	 	 	 	 	

FIG. 8: Diagrams for Eqs. (33) determining x
(ξ)
µν in the case of multilayer networks with three layers (M = 3) and Poisson

multidegree distribution with 〈k(1,1,1)〉 = z3, 〈k(1,1,0)〉 = 〈k(1,0,1)〉 = 〈k(0,1,1)〉 = z2 and 〈k(1,0,0)〉 = 〈k(0,1,0)〉 = 〈k(0,0,1)〉 = z1.

The hybrid discontinuous phase transition can be found
by imposing that the system of Eqs. (35) is satisfied to-
gether with the condition that the determinant of the
Jacobian J of G(x) equals one, that is

x = G(x) and detJ = 1. (36)

E. Simulation results

We perform a comparison between results obtained
from the solution of Eqs. (1), (2), (3), and (4), and those
obtained from the solution of Eqs. (33) for Poisson mul-
tilayer networks composed of M = 3 layers and differ-
ent values of the averages z1, z2, and z3. The percola-
tion transition is studied for single and multiple instances
of the multilayer network model as already described in
Sec. IV C. Results are presented in Figs. 9 and 10, and
they provide clear evidence of a perfect agreement be-
tween the two approaches.

VI. CONCLUSIONS

In this paper, we introduced and fully characterized
an alternative percolation model for multilayer networks.
The model serves to quantify the robustness of net-
works with redundant interdependencies. According to
the model, interdependencies make a system more fragile
than it would be by considering each layer independently.
This fact is consistent with the original model used to
study percolation in multilayer networks [12, 14, 16], and
it is apparent from the fact that the transition is abrupt
for any number of network layers considered in the in-
terdependent model. On the other hand, redundancy
of interdependencies across multiple layers favors system
robustness, as the height of the discontinuous jump and
the location of the transition point decrease as the num-
ber of layers increases. This is a fundamental difference
with respect to the model currently adopted to study the
robustness of multilayer networks, where instead increas-
ing the number of layers generates more and more fragile
networks [16, 19–21]. We believe that having a model
where system robustness is augmented by the number of



11

FIG. 9: Comparison between the simulation results and
message-passing theory for a multilayer network with M = 3
layers and Poisson multidegree distribution with 〈k(1,1,1)〉 =

z3, 〈k(1,1,0)〉 = 〈k(1,0,1)〉 = 〈k(0,1,1)〉 = z2 and 〈k(1,0,0)〉 =

〈k(0,1,0)〉 = 〈k(0,0,1)〉 = z1. We consider here a single network
instance and a given configuration of damage. Data are shown
for z1 = 0, z2 = 3, z3 = 2 (blue), z1 = 1, z2 = 3, z3 = 0, (red),
and z1 = 2, z2 = 0, z3 = 2 (green). Symbols stand for results
from numerical simulations, whereas lines represent results
for the numerical solution of the message-passing equations.
Simulations results are performed on networks with N = 104

nodes.

FIG. 10: Same as in Fig. 9, with the difference that results of
the simulations stand for averages obtained over 20 instances
of the multilayer network models and configurations of the
initial damage.

layers is generally more appropriate. Often, new interde-
pendent layers are indeed created to provide backup op-
tions. For example, adding a new mode of transportation
in a preexisting multimodal transportation system should
make the system more reliable against eventual failures.
Similarly in a living organism, the development of new
types of interactions among constituents should increase
the stability of the same organism against possible mu-
tations. In the current setting, the model assumes that
the functioning of individual nodes requires that nodes
are correctly operating on at least two interdependent
layers. The model can be, however, generalized to deal
with a variable number of minimal functioning layers to
describe more realistic scenarios in specific situations of
interest.
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SUPPLEMENTAL MATERIAL

Message passing for given multilayer network and given initial damage

Let us consider a given multilayer network ~G with M layers. Each layer α = 1, 2, . . . ,M of the multilayer network
has adjacency matrix a[α]. In this multilayer network, each pair of nodes i and j is connected by a multilink

~mij = (a
[1]
ij , a

[2]
ij . . . , a

[α]
ij , . . . , a

[M ]
ij ). (SM1)

Any two nodes i and j are connected by a nontrivial multilink is ~mij 6= ~0 implying that at least one link between the
two nodes is present across the M layers. We assume that the initial damage configuration is known and that it is
given by the set of variables {siα} where siα indicates if a replica (i, α) is initially damaged (siα = 1) or not (siα = 0).
The message passing algorithm given in Sec. III of the main text allows us to determine for any given initial damage
configuration, if any replica node (i, α) is in the RMCGC (σiα = 1) or not (σiα = 0) as long as the multilayer network
is locally tree-like. Specifically the variables σiα are determined in terms the set of messages

~ni→j = (n
[1]
i→j , n

[2]
i→j , . . . , n

[α]
i→j , . . . n

[M ]
i→j) (SM2)

going from any node i to any node j joined by a nontrivial multilink ~mij 6= ~0.
The messages ~ni→j are determined according to the following recursive equation

n
[α]
i→j = θ(vi→j , 2)a

[α]
ij sjαsiα

1−
∏

`∈Nα(i)\j

(
1− n[α]`→i

) , (SM3)

where Nα(i) indicates the set of nodes that are neighbor of node i in layer α and where θ(x) is the step function with
values θ(vi→j , 2) = 1 for vi→j ≥ 2 and θ(vi→j , 2) = 0 for vi→j = 0, 1. Here the variable vi→j indicates in how many
layers node i is connected to the RMCGC assuming that node j also belongs to the RMCGC,

vi→j =

M∑
α=1

siα
1−

∏
`∈Nα(i)\j

(
1− n[α]`→i

)+ siαsjαa
[α]
ij

∏
`∈Nα(i)\j

(
1− n[α]`→i

) . (SM4)

Finally the variables σiα are expressed in terms of the messages ~ni→j and are given by

σiα = siα

1−
∏

`∈Nα(i)

(
1− n[α]`→i

)1−
∏
α′ 6=α

1− siα′ + siα′

∏
`∈Nα′ (i)

(
1− n[α

′]
`→i

) . (SM5)

In many situations, however, the initial configuration of the damaged {siα} is not known, and instead it is only

known the probability distribution P̂({siα}) of the initial damage configuration.
In this case, one aims to know the probability σ̂iα = 〈σiα〉 that a replica node (i, α) is in the RMCGC for a random

configuration of the initial damage. The value of σ̂iα, on a locally treelike multilayer network is determined by a
distinct message passing algorithm that can be derived from the message passing algorithm valid for single realization
of the initial damage, by performing a suitable average of the messages.

Particular care should be taken when one aims to perform this average. In fact σiα depends on all the messages

n
[α]
i→j sent by node i to node j in all the layers α. These messages are correlated and therefore they cannot be averaged

independently.
An alternative formulation of the Eqs. (SM3)− (SM11) provides the necessary framework for deriving in few steps

the message passing algorithm to predict σ̂iα. This alternative formulation is written terms of the variables σ ~m,~ni→j

indicating whether (σ ~m,~ni→j = 1) or not (σ ~m,~ni→j = 0) node i send to node j a message ~n = ~ni→j given that node j is
connected to node i by a multilink ~m = ~mij .

Using Eqs. (SM3) − (SM4) it is easy to see that the value of the variables σ ~m,~ni→j is determined by the following
equations:

(a) if ν =
∑M
α=1 n

[α] > 1 and ~m = ~mij ,

σ ~m,~ni→j =

M∏
α=1

m[α]sjαsiα −m[α]sjαsiα
∏

`∈N(i)\j

(
1− n[α]`→i

)n
[α]

M∏
α=1

1− siα + siα
∏

`∈N(i)\j

(
1− n[α]`→i

)(1−n[α])m[α]sjα

,(SM6)
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(b) if ν =
∑M
α=1 n

[α] = 1 and ~m = ~mij ,

σ ~m,~ni→j =


M∏
α=1

m[α]sjαsiα −m[α]sjαsiα
∏

`∈N(i)\j

(
1− n[α]`→i

)n
[α]

1−
∏

α′|n[α′]=0

1− siα′ + siα′

∏
`∈N(i)

(
1− n[α

′]
`→i

) ,(SM7)

(c) if ν =
∑M
α=1 n

[α] = 0 and ~m = ~mij ,

σ ~m,
~0

i→j = 1−
∑
~n 6=~0

σ ~m,~ni→j , (SM8)

where ~ni→j is determined in terms of the messages σ ~m,~ni→j as

~ni→j = argmax~nσ
~mij ,~n
i→j . (SM9)

Finally a replica node (i, α) is in the RMCGC (σiα = 1) or not (σiα = 0) depending on the messages it receives
from its neighbors, i.e.

σiα = siα

1−
∏

`∈N(i)

(
1− n[α]`→i

)1−
∏
α′ 6=α

1− siα′ + siα′

∏
`∈N(i)

(
1− n[α

′]
`→i

) . (SM10)

Message passing algorithm for random damage

By averaging Eqs. (SM6)−(SM7)−(SM10) we can derive the message passing algorithm predicting the probability
σ̂iα that a replica node (i, α) is in the RMCGC when the initial damage {si} is randomly drawn for the probabil-

ity distribution P̂({siα}). Assuming that each replica node is damaged independently the probability distribution

P̂({siα}) is given by

P̂({siα}) =

N∏
i=1

M∏
α=1

psiα(1− p)1−siα . (SM11)

The message passing algorithm valid for a random distribution of the initial disorder, is written in terms of the

messages σ̂ ~m,~ni→j(~s). The messages σ̂ ~m,~ni→j(~s) take real values between zero and one. They indicate the probability that
node i send to node j a message ~n = ~ni→j given that node j is connected to node i by a multilink ~m = ~mij and that
node j has initial damage configuration ~s = ~sj , i.e. (s1, s2, . . . , sα, . . . , sM ) = (sj1, sj2, . . . , sjM ).

Let us indicate with P̂ (~s) the probability of a local initial damage configuration given by

P̂ (~s) =
M∏
α=1

psα(1− p)1−sα (SM12)

and let us indicate with ~r the vector

~r = (r[1], r[2], . . . , r[α], . . . , r[M ]) (SM13)

of elements r[α] = 0, 1. Using this notation, the messages σ̂ ~m,~ni→j(~s) are determined by the following algorithm (see last

section of this Supplementary Information for the derivation of these results):

(a) if ν =
∑M
α=1 n

[α] > 1 and ~m = ~mij ,

σ̂ ~m,~ni→j(~s) =
∑

~si|
∑
α siα>1

P̂ (~si)
∑

~r|r[α]=0 if (n[α]+(1−n[α])m[α]sα)=0

C ~m,~n(~si, ~s, ~r)

×

 ∏
`∈N(i)\j

1−
∑

~n′|
∑
α(n

′)[α]r[α]>0

σ̂ ~m`i~n
′

`→i (~si)

 , (SM14)
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where

C ~m,~n(~si, ~s, ~r) =

M∏
α=1

[
(m[α]siαsα)n

[α]

(−1)r
[α]n[α]

(1− siα)(1−r
[α])(1−n[α])m[α]sα (siα)

r[α](1−n[α])m[α]sα
]
, (SM15)

(b) if ν =
∑M
α′=1 n

[α′] = 1, n[α] = 1 and ~m = ~mij ,

σ̂ ~m,~ni→j(~s) =
∑

~si|
∑
α′ siα′>1

P̂ (~si)siαsαa
[α]
ij

1−
∏

`∈N(i)\j

1−
∑

~n′|(n′)[α]>0

σ̂ ~m`i~n
′

`→i (~si)


−

∑
~r|r[α]=0

∏
α′ 6=α

(1− siα′)

(
1−r[α

′]
)

(siα′)
r[α

′] ∏
`∈N(i)\j

1−
∑

~n′|
∑
α′ (n′)[α

′]r[α
′]>0

σ̂ ~m`i~n
′

`→i (~si)


+

∑
~r|r[α]=0

∏
α′ 6=α

(1− siα′)

(
1−r[α

′]
)

(siα′)
r[α

′] ∏
`∈N(i)\j

1−
∑

~n′|
∑
α′ (n′)[α

′]
[
δα,α′+r[α

′]
]
>0

σ̂ ~m`i~n
′

`→i (~si)


 ,(SM16)

(c) if ν =
∑M
α=1 n

[α] = 0 and ~m = ~mij ,

σ̂ ~m,
~0

i→j(~s) = 1−
∑
~n 6=~0

σ̂ ~m,~ni→j(~s). (SM17)

Finally the probability σ̂iα that a replica node (i, α) is in the RMCGC is given by

σ̂iα =
∑

~si|
∑
α′ siα′>1

P̂ (~si)siαa
[α]
ij

1−
∏

`∈N(i)

1−
∑

~n′|(n′)[α]>0

σ̂ ~m`i~n
′

`→i (~si)


−

∑
~r|r[α]=0

∏
α′ 6=α

(1− siα′)

(
1−r[α

′]
)

(siα′)
r[α

′] ∏
`∈N(i)

1−
∑

~n′|
∑
α′ (n′)[α

′]r[α
′]>0

σ̂ ~m`i~n
′

`→i (~si)


+

∑
~r|r[α]=0

∏
α′ 6=α

(1− siα′)

(
1−r[α

′]
)

(siα′)
r[α

′] ∏
`∈N(i)

1−
∑

~n′|
∑
α′ (n′)[α

′]
[
δα,α′+r[α

′]
]
>0

σ̂ ~m`i~n
′

`→i (~si)


 .(SM18)

Average over multilayer ensemble with give multidegree sequence

In order to derive the phase diagram of the percolation transition in presence of redundant interdependencies over

given multilayer network ensembles, it is useful to consider a further average of the messages σ̂ ~m,~ni→j . To this end we

consider the multilayer network ensemble that preserves the multidegree sequence {k ~mi }. Every multilayer network ~G
in this ensemble has probability

P̃(~G) =
1

Z̃

N∏
i=1

∏
~m 6=~0

δ

k ~mi , N∑
j=1

δ (~m, ~mij)

 , (SM19)

where Z̃ is a normalization constant equal to the number of multilayer networks with the given multidegree sequence.

In this multilayer network ensemble the average messages S ~m,~n(~s) =
〈
σ̂
~mij ,~n
i→j |~m = ~mij

〉
indicate the probability

that a message ~n is sent toward a node with initial damage configuration ~s over a multilink ~m. These average messages
can be found by solving the following recursive equations:
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(a) if ν =
∑M
α=1 n

[α] > 1

S ~m,~n(~s) =
∑
{k~m}

k ~m

〈k ~m〉
P ({k ~m})

∑
~si|
∑
α siα>1

P̂ (~si)
∑

~r|r[α]=0 if (n[α]+(1−n[α])m[α]sα)=0

C ~m,~n(~si, ~s, ~r)

×

 ∏
~m′ 6=0

1−
∑

~n′|
∑
α(n

′)[α]r[α]>0

S ~m
′~n′

(~si)

k~m
′
−δ(~m,~m′)

 , (SM20)

where

C ~m,~n(~si, ~s, ~r) =

M∏
α=1

[
(m[α]siαsα)n

[α]

(−1)r
[α]n[α]

(1− siα)(1−r
[α])(1−n[α])m[α]sα (siα)

r[α](1−n[α])m[α]sα
]
, (SM21)

(b) if ν =
∑M
α′=1 n

[α′] = 1, n[α] = 1

S ~m,~n(~s) =
∑
{k~m}

k ~m

〈k ~m〉
P ({k ~m})

∑
~si|
∑
α′ siα′>1

P̂ (~si)siαsαa
[α]
ij

1−
∏
~m′ 6=~0

1−
∑

~n′|(n′)[α]>0

S ~m
′~n′

(~si)

k~m
′
−δ(~m,~m′)

−
∑

~r|r[α]=0

∏
α′ 6=α

(1− siα′)

(
1−r[α

′]
)

(siα′)
r[α

′] ∏
~m′ 6=~0

1−
∑

~n′|
∑
α′ (n′)[α

′]r[α
′]>0

S ~m
′~n′

(~si)


k~m−δ(~m,~m′)

+
∑

~r|r[α]=0

∏
α′ 6=α

(1− siα′)

(
1−r[α

′]
)

(siα′)
r[α

′] ∏
~m′ 6=~0

1−
∑

~n′|
∑
α′ (n′)[α

′]
[
δα,α′+r[α

′]
]
>0

S ~m
′~n′

(~si)


k~m−δ(~m,~m′)

 ,(SM22)

(c) if ν =
∑M
α=1 n

[α] = 0

S ~m,
~0(~s) = 1−

∑
~n 6=~0

S ~m,~n(~s). (SM23)

Finally the probability Sα that a replica node in layer α is in the RMCGC in the multilayer network ensemble is given
by

Sα =
∑
{k~m}

P ({k ~m})
∑

~si|
∑
α′ siα′>1

P̂ (~si)siαa
[α]
ij

1−
∏
~m′ 6=~0

1−
∑

~n′|(n′)[α]>0

S ~m
′~n′

(~si)

k~m
′

−
∑

~r|r[α]=0

∏
α′ 6=α

(1− siα′)

(
1−r[α

′]
)

(siα′)
r[α

′] ∏
~m′ 6=~0

1−
∑

~n′|
∑
α′ (n′)[α

′]r[α
′]>0

S ~m
′~n′

(~si)


k~m

+
∑

~r|r[α]=0

∏
α′ 6=α

(1− siα′)

(
1−r[α

′]
)

(siα′)
r[α

′] ∏
~m′ 6=~0

1−
∑

~n′|
∑
α′ (n′)[α

′]
[
δα,α′+r[α

′]
]
>0

S ~m
′~n′

(~si)


k~m
 .(SM24)

Derivation of Eq. (SM14)

In this section, we will discuss in detail the derivation of Eq. (SM14) from Eq.(SM6). A similar derivation (that
we omit here) can be performed to derive Eqs. (SM16)/(SM18) from Eqs. (SM7)/(SM10).
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We start from Eq. (SM6) written for the messages σ ~m,~ni→j sent from a node i to a node j with ~n satisfying ν =∑M
α=1 n

[α] > 1 and ~m = (a
[1]
ij , a

[2]
ij . . . , a

[M ]
ij ). This equation is rewritten here for convenience,

σ ~m,~ni→j =

M∏
α=1

m[α]sjαsiα −m[α]sjαsiα
∏

`∈N(i)\j

(
1− n[α]`→i

)n
[α]

M∏
α=1

1− siα + siα
∏

`∈N(i)\j

(
1− n[α]`→i

)(1−n[α])m[α]sjα

,(SM25)

We given a set of variables p[α] = 0, 1 we can use the following identity

M∏
α=1

(yα + zα)p
[α]

=
∏

α|p[α]>0

(yα + zα) =
∑

~r|r[α]=0 if p[α]=0

M∏
α=1

[
(yα)

1−r[α]

(zα)
r[α]
]
, (SM26)

where in the last expression we perform a sum over all the M -dimensional vectors ~r

~r = (r[1], r[2], . . . , r[α], . . . , r[M ]), (SM27)

with r[α] = 0, 1 if p[α] = 1 and r[α] = 0 if p[α] = 0. Using this expansion for the products in Eq. (SM25) we obtain

σ ~m,~ni→j =
∑

~r|r[α]=0 if (n[α]+(1−n[α])m[α]sjα)=0

C ~m,~n(~si, ~s, ~r)
∏

`∈N(i)\j

[
M∏
α=1

(
1− n[α]`→i

)r[α]
]
, (SM28)

where C ~m,~n(~si, ~s, ~r) is given by Eq. (SM15). By using the fact that the messages σ ~m,~ni→j take only values zero or one,

that that out of all the messages σ ~m,~ni→j from node i to node j only one is actually equal to one, and all the others are

zero, we can rewrite Eq. (SM28) as

σ ~m,~ni→j =
∑

~r|r[α]=0 if (n[α]+(1−n[α])m[α]sjα)=0

C ~m,~n(~si, ~s, ~r)
∏

`∈N(i)\j

1−
∑

~n′|
∑
α(n

′)[α]r[α]>0

σ ~m`i~n
′

`→i

 . (SM29)

Finally, averaging over the probability distribution P̂ (~si) of the configuration ~si of the initial damage of node i, in

the locally treelike approximation we obtain for the messages σ̂ ~m,~ni→j(~sj) the Eq. (SM14) that we rewrite here for
convenience,

σ̂ ~m,~ni→j(~sj) =
∑

~si|
∑
α siα>1

P (~si)
∑

~r|r[α]=0 if (n[α]+(1−n[α])m[α]sjα)=0

C ~m,~n(~si, ~s, ~r)

∏
`∈N(i)\j

1−
∑

~n′|
∑
α(n

′)[α]r[α]>0

σ̂ ~m`i~n
′

`→i (~si)

 . (SM30)
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