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We propose a general method to arbitrarily manipulate an electromagnetic wave propagating in a two-
dimensional medium, without introducing any scattering. This leads to a whole class of isotropic spatially
varying permittivity and permeability profiles that are invisible while shaping the field magnitude and/or phase.
In addition, we propose a metamaterial structure working in the infrared that demonstrates deep subwavelength
control of the electric field amplitude and strong reduction of the scattering. This work offers an alternative
strategy to achieve invisibility with isotropic materials and paves the way for tailoring the propagation of light at
the nanoscale.
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I. INTRODUCTION

In recent years, the introduction of transformation optics has
shed new light on the propagation of electromagnetic waves in
complex media and has proven to be an intuitive yet powerful
tool for engineering the flow of light at the subwavelength
scale [1–3]. The theory is based on the invariance of Maxwell’s
equations under a change of coordinates, resulting in equiv-
alent permittivity and permeability profiles that are generally
anisotropic, spatially varying, and sometimes singular. Perhaps
the most popular application has been an invisibility cloak,
which has been realized experimentally in various frequency
regimes for two-dimensional and three-dimensional setups
[4–6] thanks to the development of metamaterials and ad-
vanced manufacturing techniques [7]. However, the com-
plexity of the required material properties makes practical
realization a hard task, while the use of resonant meta-atoms to
reach extreme parameters results usually in a narrow frequency
band of operation [8,9]. There is thus a critical need for other
approaches to achieve invisibility at least to reduce diffrac-
tion significantly such as mantle cloaking [10], optimized
dielectric covers [11,12], or by introducing gain [13,14]. Quite
paradoxically, although it is a very common phenomenon in
wave physics, relatively little is known regarding what does
or does not cause scattering when the material properties are
allowed to vary rapidly in space [15–18]. Finally, there is an
ever increasing demand for controlling optical fields at the
nanoscale for applications ranging from medical diagnostics
and sensing to optical devices and optoelectronic circuitry
[19–22]. In particular, local field enhancement is of paramount
importance in phenomena such as surface enhanced Raman
scattering [23,24], improved nonlinear effects [25–27], optical
antennae and the control of the local density of states [28,29].

In this paper we present a general purpose method to
control the amplitude and/or phase of a wave propagating in a
two-dimensional inhomogeneous isotropic medium. Although
we focus our attention on media that does not scatter an
incident plane wave while producing a specified amplitude
and/or phase, the technique might be extended to arbitrary
incident fields as well as to control the scattering pattern. In
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addition, the method is not based on the geometrical optics
approximation and is valid at every frequency.

II. GOVERNING EQUATIONS

We consider here linear, isotropic, lossless, and possibly
dispersive materials characterized by their z-invariant relative
permittivity ε(r) and relative permeability μ(r), where r =
(x,y)T is the position vector. This medium is illuminated by a
monochromatic electromagnetic wave of pulsation ω = k0/c,
amplitude A0(r,k0), and phase φ0(r,k0) whose electric field
is linearly polarized along the z axis, which is the so-called
TE polarization, so that E = Ezz. Under these conditions,
Maxwell’s equations can be recast as the scalar wave equation:

∇ ·
(

1

μ
∇Ez

)
+ k2

0εEz = 0. (1)

By writing the total electric field in polar form as Ez = Aeiφ

(A and φ real), Eq. (1) is separated into the following two
equations:

∇ ·
(

A2

μ
∇φ

)
= 0, (2)

(∇φ)2 − k2
0εμ − ∇2A

A
+ ∇μ

μ
· ∇A

A
= 0. (3)

The physical meaning of these two equations is well known:
the first is the continuity equation for the Poynting vector,
while the second is the exact eikonal equation governing the
motion of the rays [30,31]. They are usually solved through
setting ε and μ as known quantities and then solving for Ez,
i.e., A and φ. However, the methodology presented here allows
us to fix arbitrarily two parameters and then compute the two
others using Eqs. (2) and (3).

From now on we consider an incident homogeneous plane
wave with constant amplitude A0 and phase φ0(r,k0) =
k0n · r , with n = (cos θ0, sin θ0)T the unit vector defining the
incidence direction. The gradient of the phase can then be
written as

∇φ = nk0 + ∇ψ,
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where ψ is an additional phase term. If ∇ψ → 0 and A → A0

as r =
√

x2 + y2 → +∞, the incident wave remains plane
and the material will be invisible.

III. CONTROLLING AMPLITUDE AND PERMEABILITY

In this section we suppose that we fix A and μ. Substituting
∇φ into Eq. (2), we obtain the following Poisson equation
for ψ :

∇ ·
(

A2

μ
∇ψ

)
= −k0n · ∇

(
A2

μ

)
, (4)

which can be solved to give

∇ψ(r) = − μ(r)k0

2πA2(r)

∫
d2r ′ r − r ′

|r − r ′|2 n · ∇′
(

A2(r ′)
μ(r ′)

)
.

This shows that if we specify the quantity ζ = A2/μ over
space, then the gradient of the phase changes in response to
the change in ζ in the same way the electric field responds to
a charge density. Substituting the above equation into (3) then
determines a relationship between ε and μ.

In the following we further assume that A and μ are disper-
sionless and introduce the frequency independent quantities
α = φ/k0 and β = ψ/k0. Locally, the permittivity dispersion
takes the form of a lossless Drude model

ε(ω) = ε∞ − ω2
p/ω

2, (5)

with the permittivity at infinite frequency ε∞ and the plasma
frequency ωp defined as

ε∞ = (∇α)2

μ
= 1

μ
[1 + (∇β)2 + 2 n · ∇β], (6)

ω2
p = c2

μ

(∇2A

A
− ∇μ

μ
· ∇A

A

)
. (7)

The obtained permittivity is linear, spatially varying, with
a 1/ω2 dispersion and nonlocal since ε∞ depends on the
incidence direction n. On the basis of time reversal, a plane
wave coming from the opposite direction gives a total field with
the same amplitude but an opposite phase as φ(−n) = −φ(n),
while invisibility is maintained for the same permittivity since
ε(−n) = ε(n), even if generally the amplitude and material
profiles do not possess any particular symmetry.

A. A special case

There is a particular situation for which we can get rid
of the nonlocality, and this happens when ∇β = 0, i.e.,
when μ is proportional to A2. In this case and in the ray
optics approximation we retrieve a medium with unit index
of refraction because ε → 1/μ as ω → +∞, which is an
inhomogeneous medium where all the waves travel in straight
lines and without reflection. Essentially, our approach can be
understood by considering this limiting case ε = 1/μ and
extending it to work for all frequencies and all incidences
by adding dispersive and nonlocal terms into ε. On the other
side of the spectrum, the medium becomes singular in the
quasistatic limit since |ε| → +∞ as ω → 0. This behavior
is due to the fact that any permeability inhomogeneity will

FIG. 1. Invisible material in the case μ = A2 with 80% damping
of the field in the center. (a) Permeability (top) and permittivity
(bottom) profiles along the radial direction. (b) Real part of the electric
field Ez for λ0/R = 1.

cause large scattering at low frequencies, and one needs large
changes in the permittivity to counteract this.

Without loss of generality, we now consider the case
where μ = A2: this implies that the phase is exactly given
by ∇φ = nk0 everywhere, i.e., the field is a plane wave with a
nonuniform amplitude, and the Drude parameters simplify as

ε∞ = 1

μ
and ω2

p = c2

μ

(∇2√μ√
μ

− ∇μ

μ
· ∇√

μ√
μ

)
. (8)

We note that in this case, ε is frequency dispersive but does not
depend on the incidence angle, similarly to the Pöschl-Teller
profile (which is reflectionless for all angles and depends on ω;
see, e.g., [32]) as the permittivity is analogous to the quantum
potential for the Schrödinger equation.

As an example, suppose we want to obtain a field with a
prescribed Gaussian amplitude A = 1 − f exp(−r2/R2), and
that μ = A2 [see blue line on the top panel of Fig. 1(a)],
with R = 700 nm and f = 0.8. Note that this results in a
permeability profile with values below unity, which seems to
contradict our assumption of neglecting frequency dispersion
for μ. In practice, indeed we would likely only be able
to realize the μ profile containing regions of μ < 1 for
one single frequency. The calculated permittivity profile is
shown for several wavelengths in Fig. 1(a) (bottom panel). As
discussed previously, the required ε is roughly equal to 1/μ

for λ0/R = 0.1, while one needs more extreme permittivity
values at longer wavelengths. We solved the wave equation
(1) using a finite element method for λ0/R = 1, with a plane
wave of unit amplitude incident from the negative x axis and
perfectly matched layers to truncate the domain. The real part
of the electric field Ez is plotted in Fig. 1(b) and reveals a
clear damping of the field as well as no scattering and a planar
wavefront everywhere. The computed square norm of the field
matches the required one perfectly [see black circles in the top
panel of Fig. 1(a)].

Note that the TM polarization case can be treated similarly
by replacing Ez by Hz and swapping ε and μ.
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FIG. 2. Invisible material profile in the nonmagnetic case (μ = 1)
with arbitrary control of the amplitude. (a) Specified amplitude (from
a picture of James Clerk Maxwell). (b) Computed amplitude. (c)
Permittivity profile. (d) Real part of the electric field, showing the
invisibility effect.

B. The nonmagnetic case

For practical reasons, we investigate the possibility of
having nonmagnetic invisible profiles (μ = 1). We solve
Eq. (2) to obtain the phase, and the parameters for the
permittivity reduce to

ε∞ = 1 + (∇β)2 + 2 n · ∇β and ω2
p = c2 ∇2A

A
. (9)

To illustrate the arbitrariness of the choice of the amplitude,
we used a profile extracted from a grayscale image of James
Clerk Maxwell depicted in Fig. 2(a), where dark values
correspond to a 50% enhancement of the field, with a lateral
“size” of approximately D = 6λ0. The permittivity profile is
displayed in Fig. 2(c), and presents small features and rapidly
varying values between −0.5 and 1.5. The real part of Ez

is displayed in Fig. 2(d), and proves clearly that the field is
not a plane wave, with a retarded phase on the left and an
advanced phase on the right of the inhomogeneity, but that
this profile does not induce any scattering. The required field
enhancement is respected as can be seen in Fig. 2(b) with no
more than 5% relative error, albeit some small reflections due
to numerical inaccuracies. This proves the ability of the method
to devise invisible nonmagnetic media capable of shaping
intricate magnitude patterns. We then investigate the angular
response of this permittivity profile in terms of invisibility and
amplitude control. To quantify this, we computed the scattering
cross section σs normalized to the profile size D, along with

−π/2 0 π/2 π 3π/2
10−2

10−1

θ0

E
r

10−3

10−2

10−1

100

101

102

σ
s/

D

FIG. 3. Angular response of the permittivity profile of Fig. 2(c).
Top: scattering cross section σs normalized to the profile size D.
Bottom: average error on the amplitude Er defined by Eq. (10).

the average error on the amplitude Er defined as

Er(θ0) = 1

S

∫


d r

∥∥∥∥1 − |Ez(θ0)|
A

∥∥∥∥, (10)

where  = [24λ0 × 24λ0] is the computational window used
[cf. Fig. 2(d)] with surface S = (24λ0)2. The results are
plotted as a function of the incident angle θ0 in Fig. 3, and
clearly indicate a strong reduction of the scattering and an
accurate reconstruction of the field magnitude for the reference
configuration (θ0 = π ) as well as for the antiparallel direction
of incidence (θ0 = 0), as discussed before. As expected, both
effects are fairly narrow band due to the nonlocality of the
permittivity.

C. Metamaterial implementation

As for a possible experimental verification of our method,
we propose a metamaterial structure that approximates the
permittivity profile given by Eq. (9) at λ0 = 10.32 μm
with A = 1 − f exp(−r2/R2), f = −0.9, and R = λ0/6.5 =
1587 nm. The resulting continuous permittivity profile is given
in Fig. 4(a) and it varies between 0.044 and 2.239. To be
able to reach values of permittivity smaller than unity, we use
silicon carbide (SiC), a polaritonic material that has a strong
dispersion in the thermal infrared range given by the Drude-
Lorentz model [33] εSiC(ω) = ε∞[1 + (ω2

L − ω2
T )/(ω2

T −
ω2 + i�ω)], with ε∞ = 6.7, ωL = 1.82 × 1014 rad s−1, ωT =
1.49 × 1014 rad s−1, and � = 8.96 × 1011 rad s−1 [see solid
and dashed cyan lines in Fig. 4(d)]. This material exhibits a
dielectric to metallic transition around λ0 = λL = 10.32 μm
so that εi(λ0) = 0.0009 − 0.0815i. For values greater than
unity, we use potassium bromide (KBr) with permittivity
εKBr(λ0) = 2.3280 [34]. The hybrid metamaterial structure is
a 51 × 51 array of square unit cells of period d = λ0/27 =
377 nm. The continuous map of Fig. 4(a) is discretized at the
center (xi,yj ) of those unit cells resulting in a discrete set of
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FIG. 4. Invisible metamaterial with subwavelength control of the amplitude. (a) Continuous and (b) metamaterial permittivity profiles. (c)
Central color map: real part of the electric field at λ0 = 10.32 μm, top and right panels: target (black dashed lines) and calculated (red solid
lines) amplitudes for y = 0 and x = 0, respectively. (d) Left ordinate axis: permittivity dispersion of SiC (solid and dashed cyan lines for real
and imaginary parts) and KBr (solid red line); the horizontal dashed line indicates a zero value; right ordinate axis: scattering cross section
spectra of the metamaterial structure. The vertical dashed line indicates λ0 = λL = 10.32 μm at which we designed the structure.

values εij = ε(xi,yj ). Since the period is much smaller than
the wavelength, we can safely use an effective permittivity εeff

given by the Maxwell-Garnett homogenization formula:
(

εeff − εh

εeff + 2 εh

)
= f

(
εi − εh

εi + 2 εh

)
,

where εh is the permittivity of the host medium (air in our
case), εi is the permittivity of the inclusions (either SiC or
KBr), f = a2/d2 is the filling fraction, and a is the length of
the square section of the rods. The structure is then constructed
as follows: if εij < 0.99 we use SiC rods, if εij > 1.01 we use
KBr rods, otherwise we just use air [see Fig. 4(b)]. The real part
of the electric field is plotted in Fig. 4(c), and clearly illustrates
the invisibility effect and the subwavelength control of the
amplitude. The top and left panels compare the target (black
dashed lines) and calculated (red solid lines) amplitudes for
y = 0 and x = 0, respectively, revealing a quasiperfect match
apart from a small scattering, mostly due to the truncation
and discretization of the permittivity profile and a slightly
weaker amplitude than expected, due to losses in SiC rods.
The scattering cross section spectrum in Fig. 4(d) exhibits a
pronounced dip around λ0 = 10.32 μm, which illustrates the
strong reduction of diffraction resulting in a quasi-invisible
complex metamaterial.

IV. THE INVERSE PROBLEM: CONTROLLING
AMPLITUDE AND PHASE

Finally, we study the inverse problem of finding invisible
material properties that give a predefined electric field. To
this aim, we fix the amplitude A and the additional phase term
ψ and rewrite Eq. (2) as

A2∇φ · ∇u = ∇ · (A2∇φ), (11)

with u = ln μ. This equation is then solved numerically and
the obtained value of μ is plugged into Eq. (3) to obtain ε.

For the following example, we set λ0 = 700 nm, R = λ0,
θ0 = π/3,

A = 1 − 0.3e−[(x−2λ0)2+0.5(y+2λ0)2]/R2

+ 0.4e−[0.6(x+2λ0)2+(y−2λ0)2]/R2

and

ψ = k0
[
x ′′

a e−[x ′′
a

2+0.4y ′′
a

2]/R2 − 0.7x ′′
b e−[0.5x ′′

b
2+y ′′

b
2]/R2]

using the shifted and rotated coordinates:

x ′′
a = nxx

′
a + nyy

′
a, x ′

a = x − 2λ0,

y ′′
a = −nyx

′
a + nxy

′
a, y ′

a = y − 2λ0,

x ′′
b = nxx

′
b + nyy

′
b, x ′

b = x + 2λ0,

y ′′
b = −nyx

′
b + nxy

′
b, y ′

b = y + 2λ0.

This particular choice of amplitude and phase will give the
following wave behavior: amplitude damping at (+2λ0,−2λ0),
amplitude enhancement at (−2λ0,+2λ0), phase expansion at
(−2λ0,−2λ0), and phase compression at (+2λ0,+2λ0) [see
Figs. 5(e), 5(g), and 5(c) for the specified amplitude, additional
phase, and electric field, respectively]. The obtained values of
material properties are plotted in Fig. 5(a) for the permittivity
and Fig. 5(b) for the permeability. These nontrivial profiles
allow us to control the wave propagation quite arbitrarily in
the near field while being transparent to a specific incident
plane wave. Note that as stated before, the same profiles are
still invisible for a wave coming from the opposite direction,
and maintain the amplitude control but the phase now has
opposite sign.

To double-check the validity of our results, we solved the
wave equation (1) employing the permittivity and permeability
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FIG. 5. Inverse design of amplitude and phase profiles (see text for definitions) represented in (e) and (g), giving a desired electric field
(c). Required permittivity (a) and permeability (b) are the used to solve the wave equation (direct problem) for a sanity check of the field (d),
amplitude (f), and phase (h).

obtained by our approach. The results are plotted in Figs. 5(f),
5(h), and 5(d) for the amplitude, additional phase, and electric
field, respectively, and match the required wave behavior
perfectly. The generality of this inverse problem makes it
quite versatile and reveals a family of amplitude and phase
controlling invisible electromagnetic media.

V. CONCLUSION

In conclusion, we have presented a flexible and system-
atic methodology to derive isotropic and lossless material
properties needed to manipulate the amplitude and phase
of the electromagnetic field in an arbitrary way, for planar
propagation. In addition, our work provides a contribution
in the understanding of what governs scattering in this type
of media. Since it is based on the scalar wave equation, it
could be easily extended to other fields such as acoustics or
fluid dynamics. In particular, we have applied this method to
derive a large class of invisible permittivity and permeability
profiles. We illustrated these concepts through numerical
examples for TE polarized plane waves using both ε and μ

and obtained omni-directional invisibility and control of the
amplitude. Then we studied the case of nonmagnetic materials
and showed that one can obtain invisibility and fashion
the spatial variation of the magnitude of the electric field
for two antiparallel directions of incidence. A metamaterial
structure working in the infrared has been proposed, exhibiting
subwavelength control of waves and invisibility at the same
time. Finally, we tackled the inverse problem of finding
nonscattering material properties that give a specified electric
field. These results pave the way for a new route towards
achieving invisibility with isotropic materials, and may offer
an alternative paradigm for the design of nanophotonic devices
with enhanced performances.
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