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Very different strongly interacting quantum systems such as Fermi gases, quark-gluon plasmas formed in
high-energy ion collisions, and black holes studied theoretically in string theory are known to exhibit quantitatively
similar damping of hydrodynamic modes. It is not known if such similarities extend beyond the hydrodynamic
limit. Do nonhydrodynamic collective modes in Fermi gases with strong interactions also match those from
string theory calculations? In order to answer this question, we use calculations based on string theory to make
predictions for modes outside the hydrodynamic regime in trapped Fermi gases. These predictions are amenable
to direct testing with current state-of-the-art cold atom experiments.
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I. INTRODUCTION

Traditional descriptions of quantum matter rely heavily on
approaches formulated in terms of particlelike constituents,
ranging from ordinary electrons, nuclei, and photons to
fermions in Fermi liquids and phonons in superfluids. These
particle-based descriptions are and have been extremely
successful and provide the backbone of modern physics’
ability to describe nature.

Recently, however, it has become clear that there is an
ever growing class of strongly interacting systems where
particle-based descriptions simply do not work, such as in the
mysterious normal state of high-temperature superconductors,
fractional quantum Hall effect, extremely hot quark-gluon
plasmas, and ultracold quantum gases. Precision experiments
in the past decade suggest that despite the fact that quark-gluon
plasmas and ultracold quantum gases differ by no less than
18 orders of magnitude in temperature, their ability to flow
around obstacles is very similar. This notion can be quantified
by comparing the ratio of shear viscosity η to the entropy
density s for both normal fluids, finding ηkB/�s � 0.2 ± 0.1
for the quark-gluon plasma [1] and ηkB/�s � 0.2 − 0.4 ± 0.1
for ultracold quantum gases [2], where � is Planck’s constant
divided by 2π and kB is Boltzmann’s constant. It should be
noted that in both these systems the precise determination
of ηkB/�s is still an ongoing effort and requires further
experimental and theoretical studies [3–7]. Nevertheless, it
seems to be an established fact that the quark gluon plasma and
ultracold quantum gases have (minimum) values of ηkB/�s

which differ only by a factor of a few at most.
Unlike ordinary liquids which have particlelike con-

stituents, long-lived particles do not seem to exist for strongly
interacting quantum liquids such as hot quark-gluon plasmas
and ultracold quantum gases. This breakdown of traditional
particle-based methods motivates the search for new, non-
particle-based descriptions of strongly interacting quantum
matter. One recently developed theoretical tool for strongly
interacting systems that does not rely on any particle-based

description is the conjectured duality between classical black
holes and strongly interacting quantum field theories originat-
ing in string theory [8]. Within this framework, it is possible to
calculate the friction coefficient η/s for a strongly interacting
quantum liquid. One obtains ηkB/�s = 1/4π � 0.08, which
is close to the experimentally determined values for both hot
quark-gluon plasmas and ultracold quantum gases [9].

The fact that very different systems such as hot quark-gluon
plasmas, ultracold quantum gases, and black holes in low-
energy string theory have quantitatively similar values of η/s

has led to the conjecture that transport properties in strongly
interacting quantum liquids are approximately universal [10].
In cold Fermi gases, the presence of a quantum critical point
at zero density and temperature also gives rise to universal
scaling properties of thermodynamic and transport quantities;
cf. Refs. [11,12]. This quantum critical point universality
is different from the universality discussed above, which is
thought to originate from the strongly coupled nature of
different systems. Indeed, neither quark-gluon plasmas nor
the black hole considered here are close to a quantum critical
point. Universality would imply that the transport properties of
a given strongly interacting liquid are matched quantitatively
by any other realization of a strongly interacting liquid as long
as basic symmetry requirements are fulfilled, even if the liquids
themselves have very different constituents, temperatures, or
densities. In the case at hand, exact universality cannot be ex-
pected, as is already evident from the somewhat different val-
ues of η/s for quark-gluon plasmas, ultracold quantum gases,
and black holes. However, studying approximate symmetries
in physics has had enormous successes in the past, as is evident
in the cases of chiral symmetry of the strong force and parity
symmetry of the weak force to name two prominent examples.
Thus it may nevertheless be useful to consider the possibility of
approximate universality concerning the transport properties
of different strongly interacting quantum liquids.

The aim of the present work is to test approximate transport
universality of strongly interacting quantum fluids by making
experimentally testable predictions. Examining the case of
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black holes as one example of strongly interacting quantum
fluids, one finds that a robust transport feature of black holes
is the existence of so-called nonhydrodynamic quasinormal
modes, which characterize the ring-down of the black hole
after some perturbation occurred (see Ref. [13] for an in-depth
review of the physics of quasinormal modes of black holes). If
transport properties of strongly interacting fluids are approxi-
mately universal, we expect these nonhydrodynamic modes to
be realized in ultracold quantum gases. In the remainder of this
article, we assume that a commonly studied experimental setup
for ultracold Fermi gases admits a gravity-dual approximation
in terms of a black hole. We then proceed to make quantitative
predictions for the frequencies and damping rates of nonhy-
drodynamic modes based on this model. These predictions
are within the reach of current state-of-the-art experiments,
and can be checked by higher-precision experimental data. A
detection of nonhydrodynamic modes in ultracold Fermi gases
would support the conjectured approximate universality of
transport properties among strongly interacting quantum fluids

The remainder of the work is organized as follows. In
Sec. II, we review the experimental setup to study collective
oscillations in ultracold Fermi gases. In Sec. III, the theoretical
calculations of the nonhydrodynamic modes are described,
including a summary of assumptions used to convert these cal-
culations to experimentally accessible predictions. Section IV
contains our results and we conclude in Sec. V.

II. COLLECTIVE OSCILLATIONS
IN ULTRACOLD FERMI GASES

Experiments on ultracold Fermi gases are particularly
suited for testing the strong-coupling transport universality hy-
pothesis because they offer the possibility of studying systems
in two and three spatial dimensions, with tunable interaction
strength, while offering direct real-time information about
the density profile and correlations of the gas. The limit of
strong interactions is achieved experimentally by tuning a bias
magnetic field until the gas experiences a broad Feshbach
resonance at which the s-wave scattering length a diverges
(unitary regime). Placing the gas of fermionic atoms in a
deep optical trap with trapping frequencies ωx,ωy,ωz in the
x, y, and z directions then allows experimentalists to routinely
measure time-resolved oscillations of the radii of the gas
cloud’s shape, from which the frequency and damping of the
underlying collective modes can be extracted [14–16]. The
time evolution of the cloud’s shape in two dimensions can be
studied experimentally by making the trapping frequency ωz

much larger than both ωx,ωy , so that the gas cloud is extremely
compressed in the z direction, and for ωx � ωy the cloud shape
resembles that of a pancake. By contrast, if ωz is much smaller
than both ωx,ωy the cloud shape resembles that of a cigar.
Oscillations of the shape of the cigar in the x-y plane will be
referred to as three-dimensional dynamics in the following.

Two independent cloud shape oscillation modes which will
be discussed in the following are sketched in Fig. 1. One
distinguishes between a radial quadrupole mode, correspond-
ing to elliptic deformations without volume change, and a
breathing mode. The amplitude Q(t) for the quadrupole mode
can be accessed experimentally by measuring the difference
in the width of the main axes, while the amplitude B(t) for

FIG. 1. Sketch of shape oscillations of an atomic gas cloud in
the x-y plane: breathing mode (left) and quadrupole mode (right).
The breathing mode changes the overall cloud volume, while the
quadrupole mode corresponds to a surface deformation without
volume change. The cloud’s equilibrium configuration is indicated
by the dashed circle.

the breathing mode is obtained by summing the widths. A
simple approximation to describing the time evolution of the
cloud’s shape oscillations for a strongly interacting Fermi gas
is provided by the equations of hydrodynamics, more precisely
the Navier-Stokes equations. (We will limit our discussion
to temperatures above the superfluid phase transition where
single-fluid hydrodynamics is applicable). For a harmonic
trapping potential and small oscillation amplitudes one finds
analytic solutions to B(t),Q(t) that are in the form of damped
harmonic oscillations [17,18]:

B(t) ∝ cos(ωBt)e−�Bt , Q(t) ∝ cos(ωQt)e−�Qt . (1)

The frequencies ω and damping rates � for these hydrody-
namic modes differs between breathing and quadrupole mode.
Specifically, one finds ωQ = √

2 ω⊥, �Q = η ω2
⊥/P for the

hydrodynamic quadrupole mode in both d = 2 and d = 3 di-
mensions. In the case of the breathing mode, ωB = √

10/3 ω⊥,
�B = η ω2

⊥/3P for the d = 3 breathing mode [10,15,19]. (The
breathing mode in two dimensions is undamped and will not be
considered in the following.) In expressions above, P denotes
the local equilibrium pressure of the strongly interacting Fermi
gas, ω⊥ ≡ √

ωxωy is the average trap frequency in the x-y
plane, and a constant ratio η/P has been assumed in order to
derive these analytic results.

III. BLACK HOLE DUAL CALCULATION FOR
NONHYDRODYNAMIC FREQUENCIES

AND DAMPING RATES

The hydrodynamic modes should be contrasted with the
corresponding collective modes expected from a string-theory-
based approach. String-theory-based calculations employ so-
called black hole duals to calculate properties of strongly
interacting matter. In addition to hydrodynamic modes, black
holes have an infinite number of nonhydrodynamic collective
excitations (quasinormal modes), which are similar to the
ring-down modes of a glass struck (lightly) with a fork. As
a working definition, nonhydrodynamic modes are modes that
do not arise when studying solutions of the Navier-Stokes
equations. Despite recent progress [20–22], no exact black hole
dual description is known for a strongly interacting Fermi gas.
However, one may attempt to use known duals that at least
describe bulk features of cold atomic systems in d (spatial)
dimensions. In order to describe a nonrelativistic strongly
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interacting liquid, we select a black hole dual that correctly
reproduces the equation of state (the relation between pressure
P to energy density ε) of a strongly interacting Fermi gas.
Lifshitz black holes have a scaling parameter z that enters the
equation of state as εz = Pd [23]. Since a strongly interacting
Fermi gas in d dimension has ε = Pd/2 we choose z = 2.

For Lifshitz black holes at finite temperature T and zero
chemical potential, which are the ones considered in the
following, the ratio of shear viscosity to entropy density is
known to be ηkB/�s = 1/4π [24]. In addition, the ring-down
spectrum is straightforward to evaluate using a probe scalar
with operator dimension �. The operator dimension controls
the type of perturbation considered. For instance, for density
perturbations (fermionic bilinears), the operator dimension
would be � = d, while for energy density perturbations
(fermionic bilinears with a gradient), � = d + 1. While it is
not known exactly which operator dimension corresponds to
the case of density perturbations in the strongly interacting
Fermi gas, a reasonable assumption is that � is bounded by
the cases � = d and � = d + 1, so final results including
systematic error estimates will be based on the mean and
difference from these two choices. To be specific, we compute
the quasinormal modes of a scalar field propagating in a fixed
Lifshitz black brane background, using the setup described
in [25].

In the case of d = z, analytic expressions for the ring-down
frequencies and damping rates were found in Ref. [25], and
we use these for d = 2

ω(d=2)
n = 0, �(d=2)

n =
(

n − 1 + �

2z

)
4πkBT /�, n � 1.

(2)

For d = 3, we determine the corresponding values numerically
following the general approach outlined in [26], and collect the
results in Table I.

The results in Table I all scale as 4πT for a liquid
of temperature T , vanishing chemical potential, and shear
viscosity over entropy ratio of η/s = �/4πkB . This situation
differs from the case of real Fermi gases because no exact dual
to real Fermi gases is known. Real Fermi gases have sizable
chemical potential, small temperature, and shear viscosity
over entropy ratios different from η/s = �/4πkB . In order
to connect the string-theory-based calculations to real Fermi
gases, guidance from kinetic theory is employed. In kinetic
theory, one encounters a single nonhydrodynamic mode with
a damping rate �1 = 1/τR where the relaxation time τR is
known to obey τR ∝ η/P in the hydrodynamic limit [10]. The

TABLE I. Numerical results for frequencies and damping rates
for ring-down frequencies for d = 3 and two choices of �.

� = 3 � = 4

n ωn�/(4πkBT ) �n�/(4πkBT ) ωn�/(4πkBT ) �n�/(4πkBT )

1 0.2812 0.5282 0.3560 0.7540
2 0.5776 1.437 0.6507 1.663
3 0.8714 2.342 0.9446 2.568
4 1.165 3.246 1.239 3.472

results from Table I can be brought into this form under the
assumption that 4πkBT /� → sT /η, which is trivially correct
for the employed black hole dual. Using furthermore the
thermodynamic identity sT = (ε + P ) for a fluid with finite
temperature and zero chemical potential, it is proposed that
the replacement

4πkBT /� → (ε + P )/η (3)

in the results for the nonhydrodynamic frequencies and damp-
ing rates of Table I can be used to connect the black hole dual
calculations to real Fermi gases for strong interactions. Once
this replacement has been performed, all explicit reference
to temperature and chemical potential have been replaced by
energy density ε and pressure P , which can be applied to
a cold strongly interacting Fermi gas with equation of state
ε = Pd/2 and different values of shear viscosity.

Finally, the above calculations are for the case of an
untrapped Fermi gas, rather than a Fermi gas in an optical
trap which is studied in most experimental setups. To relate
the above untrapped results to the case of a trapping potential
with average trapping frequency ω⊥, again guidance from
kinetic theory is used. In kinetic theory, hydrodynamic mode
oscillations change qualitatively between a free system and a
system placed in a trap, but the nonhydrodynamic modes do
not change at all (cf. Ref. [10]). Based on this observation, the
nonhydrodynamic mode frequencies and damping rates from
the black hole dual calculation of an untrapped system above
are directly applied to the case of a trapped Fermi gas.

Summary of assumptions

In making predictions for the properties of nonhydrody-
namic modes in trapped unitary Fermi gases several assump-
tions have been made, which are summarized below.

(i) Black holes in asymptotic Lifshitz spaces have been
assumed to describe the bulk features of a strongly interacting
Fermi gas.

(ii) A probe scalar with dimension � � d + 1
2 has been

assumed to approximately describe density perturbations in
the strongly interacting Fermi gas.

(iii) It has been assumed that a strongly interacting Fermi
gas at nonzero density and ηkB

s�
�= 1

4π
is well approximated by

the calculation for a Lifshitz black hole done at zero density
and ηkB

s�
= 1

4π
when performing the replacement (3).

(iv) It has been assumed that the frequencies and damping
rates of nonhydrodynamic modes do not differ between the
untrapped and trapped Fermi gas.

All of these assumptions can in practice be tested and in
most cases lifted by performing more general calculations.
However, we leave these more demanding calculations for
future work.

IV. RESULTS

Let us consider density perturbations in a trapped, unitary
Fermi gas. Besides the familiar hydrodynamic component,
the dual black hole calculation implies that there are an
infinite number of nonhydrodynamic modes with relative
amplitudes αn. A single nonhydrodynamic mode also is
present in kinetic theory [10]; however, kinetic theory is a
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TABLE II. Numerical values for the frequencies and damping
rates of the first n � 4 nonhydrodynamic modes in d = 2 and d = 3
dimensions, obtained from a string-theory-based calculation. Results
are expressed in terms of the ratio of pressure P to shear viscosity
η. Note that P/η can be reexpressed in terms of the damping rates
�Q,�B of the hydrodynamic quadrupole and breathing modes for a
strongly interacting Fermi gas in a trap.

d = 2 d = 3

n ωn × η/P �n × η/P ωn × η/P �n × η/P

1 0 1.25(25) 0.8(1) 1.6(3)
2 0 3.25(25) 1.5(1) 3.9(3)
3 0 5.25(25) 2.3(1) 6.1(3)
4 0 7.25(25) 3.0(1) 8.4(3)

weak-coupling, particle-based description not quantitatively
applicable to strongly interacting Fermi gases, so it is unclear
how to interpret the kinetic theory result. If black hole duals can
be used to describe real unitary Fermi gases then this implies
that density perturbations give rise to generalized breathing
and quadrupole modes of the form

H (t) = αH cos(ωH t + φH )e−�H t

+
∞∑

n=1

αn cos(ωnt + φn)e−�nt , (4)

where H = B,Q depending on the shape oscillation consid-
ered, and possible phase shifts φH ,φn have been allowed.

As outlined in Sec. III, the frequencies ωn and damping
rates �n of the nonhydrodynamic modes can be calculated
with the black hole dual for both d = 2 and d = 3 dimen-
sions. The results from Sec. III have been condensed into
experimentally accessible quantities for both d = 2,3 shown
in Table II. Note that, for two dimensions, the result can
be obtained analytically for all n, and one finds ωn = 0 and
�n = (2n − 3/4 ± 1/4)P/η.

Note that, unlike the hydrodynamic component, the
frequencies ωn and damping rates �n of the nonhydrodynamic
modes turn out to be independent of the cloud’s average
trapping frequency ω⊥. While the spatial oscillation structure
of the nonhydrodynamic modes is exactly equal to those of
the well-known hydrodynamic breathing and quadrupole
modes, their respective time-dependent signature is quite
different. Inspecting Table II it becomes apparent that the
nonhydrodynamic modes are excitations with damping rates
larger than the oscillation frequency in all cases. (For two
dimensions, the analytic result implies that the excitations are
purely damped, corresponding to an exponentially decreasing
evolution without harmonic oscillations). The different time
dependence offers an experimental handle to distinguish these
nonhydrodynamic modes from well-studied hydrodynamic
oscillations.

In order to facilitate experimental detection of these
nonhydrodynamic collective modes, results from Table II
have been converted into predictions in Fig. 2 for damping
rates expressed in terms of the experimentally measured
quantities. For this conversion, the relation between the
hydrodynamic damping rates and η/P discussed in Sec. II
has been used to reexpress the predicted nonhydrodynamic
damping rates from Table II in terms of the damping rates
�Q,�B for the hydrodynamic modes [28]. The damping
rates �Q,�B themselves have been measured experimentally
in two and three dimensions, respectively [14–16]. For
example, �1 = 1.25(25)P

η
for the d = 2 quadrupole mode

from Table II becomes �1 = 1.25(25)�−1
Q ω2

⊥ which becomes
�1 � 4.17(83)ω⊥ when using the experimentally determined
value of �Q � 0.30ω⊥ from Ref. [16] at ln(kF a) � 1.04.
In Fig. 2, predictions for nonhydrodynamic mode damping
rates �n/ω⊥ are shown in the case of the two-dimensional
quadrupole mode and the three-dimensional breathing mode,
given different choices of temperature and atom interaction
strength. For reference, also shown in Fig. 2 are the only
published constraints on the two-dimensional quadrupole
mode damping rate �1 extracted from experimental data [10].

FIG. 2. Predicted nonhydrodynamic mode damping rates �n/ω⊥ (bands). Left: two-dimensional quadrupole mode as a function of
interaction strength ln(kF a), where a is the two-dimensional s-wave scattering length and kF is the Fermi momentum [27] related to the
density n at the cloud’s center as n = k2

F /2π . Also shown is the damping rate �1 of the first nonhydrodynamic mode extracted from
experimental data [10]. Right: three-dimensional breathing mode as a function of cloud’s temperature in units of the Fermi temperature
TF = (3Nωxωyωz)

1/3
�/kB , where N � 5 × 105 is the number of atoms in the three-dimensional optical trap.
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In Ref. [10], existing experimental data [16] on the quadrupole
mode in a two-dimensional trapped Fermi gas had been
reanalyzed using a two-component form (4). Given the time
resolution and number of data sets obtained in the experiment,
the reanalysis performed in Ref. [10] found that information
about a predicted second component could be extracted from
the data, albeit with low statistical significance. This can be
understood through the fact that the measured amplitude Q(t)
is most sensitive to the predicted nonhydrodynamic component
in Eq. (4) at early times, thus requiring a high time-sampling
frequency. In contrast, the main aim in Ref. [16] had been
extraction of the hydrodynamic component which requires
long-time information. As a consequence, the time-sampling
rate chosen in Ref. [16] is not optimal to extract early-time
information with high statistical significance. It is likely that
the statistical significance of the nonhydrodynamic component
could be vastly improved if the experiment in Ref. [16]
could be repeated to yield 100 data sets with time resolution
increased by a factor of 20. Absent newer experimental data,
it is nevertheless interesting to note that the experimental
constraints on �1 obtained in Ref. [10] are broadly consistent
with the present predictions.

It is also possible to estimate the amplitude ratio α1/αH of
the first nonhydrodynamic mode relative to the amplitude of
the usual hydrodynamic mode when assuming that standard
experimental procedures are used to excite quadrupole and
breathing mode oscillations [14–16]. Assuming random phase
shifts φH ,φ1 for individual hydrodynamic and nonhydrody-
namic components, one finds | α1

αH
| � (ωH + �H )/(ω1 + �1).

This result would imply typical amplitude ratios of | α1
αH

| �
40% for the two-dimensional quadrupole mode and | α1

αH
| �

20% for the three-dimensional breathing mode. This estimate
places the predicted first nonhydrodynamic mode well within

the experimental detection capabilities of present state-of-the-
art experiments in both two and three dimensions.

V. SUMMARY AND CONCLUSIONS

In this work, strongcoupling calculations based on string
theory have been used to make quantitative predictions for
the existence and properties of nonhydrodynamic modes in
strongly interacting Fermi gases. The temporal signatures,
frequencies, and damping rates as well as amplitude of the
first nonhydrodynamic mode relative to the well-measured
hydrodynamic mode have been predicted for both two and
three spatial dimensions. These predictions should be well
within the experimental testing capabilities for current state-
of-the-art experiments.

Indeed, in Sec. IV it was found that experimental constraints
on the nonhydrodynamic mode damping rate �1 in the two-
dimensional case are consistent with the present string-theory-
based prediction [10]. However, given the large error bars and
weak statistical significance of �1 in the analyzed data, this is
not sufficient to confirm our present predictions. New, high-
precision experimental data would be required to confirm (or
rule out) the presence of these nonhydrodynamic modes, and
thus provide a first stringent test of strong-coupling transport
universality.
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