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ABSTRACT

Traditional methods for motion estimation estimate the
motion field F between a pair of images as the one that min-
imizes a predesigned cost function. In this paper, we propose
a direct method and train a Convolutional Neural Network
(CNN) that when, at test time, is given a pair of images as
input it produces a dense motion field F at its output layer.
In the absence of large datasets with ground truth motion that
would allow classical supervised training, we propose to train
the network in an unsupervised manner. The proposed cost
function that is optimized during training, is based on the clas-
sical optical flow constraint. The latter is differentiable with
respect to the motion field and, therefore, allows backprop-
agation of the error to previous layers of the network. Our
method is tested on both synthetic and real image sequences
and performs similarly to the state-of-the-art methods.

Index Terms— Motion Estimation, Convolutional Neural
Network, Unsupervised Training

1. INTRODUCTION

Motion fields, that is fields that describe how pixels move
from a reference to a target frame, are rich source of infor-
mation for the analysis of image sequences and beneficial for
several applications such as video coding [1, 2], medical im-
age processing [3, 4, 5], segmentation [6] and human action
recognition [7, 8]. Traditionally, motion fields are estimated
using the variational model proposed by Horn and Schunck
[9] and its variants such as [10, 11]. Very recently, inspired by
the great success of Deep Neural Networks in several Com-
puter Vision problems [12], a CNN has been proposed Fischer
et al. in [13] for motion estimation. The method showed per-
formance that was close to the state-of-the-art in a number of
synthetically generated image sequences.

A major problem with the method proposed in [13] is
that the proposed CNN needed to be trained in a supervised
manner, that is, it required for training synthetic image se-
quences where ground truth motion fields were available. Fur-
thermore, in order to generalize well to an unseen dataset, it
needed fine tuning, also requiring ground truth data on sam-
ples from that dataset. Ground truth motion estimation are not

easily available though. For this reason, the method proposed
in [13] was applied only on synthetic image sequences.

In this paper, we propose training a CNN for motion es-
timation in an unsupervised manner. We do so by designing
a cost function that is differentiable with respect to the un-
known motion field and, therefore, allows the backpropaga-
tion of the error and the end to end training of the CNN. The
cost function builds on the widely used optical flow constraint
- our major difference to Horn-Schunk based methods is that
the cost function is used only during training and without reg-
ularization. Once trained, given a pair of frames as input the
CNN gives at its output layer an estimate of the motion field.
In order to deal with motions large in magnitude, we embed
the proposed network in a classical iterative scheme, in which
at the end of each iteration the reference image is warped to-
wards the target image and in a classical coarse-to-fine multi-
scale framework. We train our CNN using randomly chosen
pairs of consecutive frames from UCF101 dataset and test it
on both the UCF101 where it performs similarly to the state-
of-the-art methods and on the synthetic MPI-Sintel dataset
where it outperforms them.

The remainder of the paper is organized as follows. In
Section 2 we describe our method. In Section 3 we present
our experimental results. Finally, in Section 4 we give some
conclusion.

2. METHOD

At the heart of all motion estimation methods is the minimiza-
tion of the difference between features extracted at a certain
location x,y at the reference frame t and its correspondence in
the frame t+ dt. The classical Horn and Schunck [9] method
penalizes the deviation from the assumption of constant in-
tensity, that states that the intensity at a pixel in the reference
frame at time t and the intensity at its correspondence at time
t+ dt are the same. Formally, the goal is the minimization of
the motion compensated intensity differences, that is, [14]

M∑
x,y=1

|I(x+ u(x, y), y + v(x, y), t+ ∆t)− I(x, y, t)|2,

(1)



where I(x, y, t) is the intensity at pixel (x, y) at frame t, and

F (x, y) ,

[
u(x, y)
v(x, y)

]
is the unknown motion vector at pixel

(x, y). Clearly, u(x, y) and v(x, y) are respectively the hori-
zontal and vertical displacement of the pixel with coordinates
(x, y). To arrive at a computationally tractable method, Horn
and Schunck [9] introduced a regularization term that penal-
ized discontinuities in the motion field and linearized the cost
by taking the first order Taylor expansion with respect to the
horizontal and vertical displacements. By doing the latter,
they arrived at the optical flow equation uIx + vIy + It = 0,
where Ix, Iy and It are the horizontal, vertical and tempo-
ral intensity derivatives respectively, and penalized deviations
from it. In the equation above, we omit the pixel coordinates
for notation simplicity.

In this work, we build on the constant intensity assump-
tion. However, instead of using it at test time to estimate the
motion field as the one that minimizes the deviations from it,
we use it at training time only in order to train a CNN that
takes as input a pair of images and outputs at its last layer
a dense motion field F between them. Clearly, the motion
field F is a function of the weights w of the CNN and the im-
ages at its input. In order to reduce the influence of outliers
we use a robust error norm, that is the Charbonnier penalty
ρ(x) =

√
x2 + ε [15], a differentiable variant of the L1 norm,

the most robust convex function. Formally, during training we
learn the CNN by optimizing the sum of costs that for a pair
of images I(t) and I(t+ dt) are defined as follows:

E(F ) =

M∑
x,y=1

√
(uIx + vIy + It)2 + ε, (2)

where the image coordinates x,y are omitted for notation sim-
plicity.

Clearly, the motion field F is a function of the weights w
of the CNN and the images at its input. Therefore, the cost
function in Eq. 2 is a function of the CNN weights. More im-
portantly, our cost function allows us to calculate the deriva-
tives of it with respect to the network weights. Specifically,
using the chain rule,

∂E

∂w
=
∂E

∂F

∂F

∂w
. (3)

The second part, that is ∂F
∂w , are the partial derivatives of

the output F of the CNN with respect to its weights w. This
can be calculated in a classical manner using the standard
form of the backpropagation algorithm. The first term, that
is ∂E
∂F , can be calculated in closed form as

∂E

∂F
=

[
∂E
∂u
∂E
∂v

]
=

∑M
x,y=1

Ix(uIx+vIy+It)√
(uIx+vIy+It)2+ε∑M

x,y=1
Iy(uIx+vIy+It)√
(uIx+vIy+It)2+ε

 . (4)

The cost function that is used for training relies on the op-
tical flow constraint. This is known that it does not hold when

the motions are large in magnitude. Following the dominant
paradigm in the field, we embed our method in a coarse-to-
fine multiscale iterative scheme.

At test time, that is once trained, given a pair of frames as
input the CNN gives as output an update on the motion field.
The updated motion field is then used to warp the second
frame towards the first one, and the new pair of images are
given as input to the CNN to calculate another update on the
motion field. Several iterations are performed at each scale
of the muti-scale framework. After each update, and sim-
ilarly to other methods in the literature [16], the calculated
motion field in each iteration is filtered (by a median filter in
our case). The proposed algorithm at test time is summarized
in Algorithm 1.

Algorithm 1 The algorithm of our proposed framework dur-
ing the test time.

1: procedure
2: I1,I2: Two input frames
3: Ftot: The desired motion field
4: In1 ,In2 : The downsampled versions of I1 and I2 by
5: a factor of n = 2k

6: Ftot = 0
7: In2w ← In2
8: while n ≥ 1 do
9: while Number of iterations is less than 4 do

10: ∆F ← CNN(In1 , I
n
2w) : Calculate the

11: update on the motion field
12: ∆F ←MedFilt(∆F ) : Median filter the
13: motion field
14: Ftot ← Ftot + ∆F : Update Ftot using the
15: motion field
16: In2w ← warp(In2 , Ftot) : Warp In2 towards In1
17: using the motion field
18: end while
19: Up-sample Ftot by a factor of 2
20: n = n

2

21: end while
22: Return Ftot

2.1. Architecture

We propose a fully convolutional neural network with 12
convolutional layers. The architecture could be imagined
as two parts. The CNN makes a compact representation of
motion information in the first part which involves 4 down-
samplings. This compact representation is then used to re-
construct the motion field in the second part which involves
4 up-samplings. The up-sampled is performed by simply
repeating the rows and columns of the feature maps. Since
our proposed DNN is fully convolutional, the input could be
of any size. Fig. 3 shows the two parts of the proposed CNN.
To update the CNN weights during the training phase, we
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Fig. 1. The motion field predicted by different motion estimation methods on several samples of UCF101.

Images Ground Truth DeepFlow EpicFlow HAOF LDOF USCNN

Fig. 2. The motion field predicted by different motion estimation methods on several samples of MPISintel.

used ADAM [17] and calculate that spatiotemporal intensity
derivatives Ix, Iy and It as proposed in [9].

3. EXPERIMENTS

In order to evaluate the performance of our method, we re-
port its results on 2 datasets, namely the real UCF101 and
the synthetically generated MPI-Sintel, and compare them
with the results of other state-of-the-art methods. We train
the proposed Unsupervised trained CNN (USCNN) on 20K
pairs of consecutive grayscale frames randomly selected from
the about 1 million frames of the UCF101 dataset [19]. We
first test the method on the same dataset, using for the evalu-
ation 10K pairs of frames that were randomly selected from
the UCF101 dataset making sure that there is no overlap with
the training set. Since there is no ground truth motion field
for UCF101 dataset, we use as ground truth the output of the
EpicFlow - to the best of our knowledge this is the state-of-
the-art method for motion estimation. Table 1 reports the re-
sults of the proposed method and three other state-of-the-art

methods in the field, with the notable exception of FlowNet
for which, neither the training network nor the training dataset
are available. As it can be seen, the proposed method has
comparable performance for motions less than 5 pixels - for
larger motions as it is largely expected from methods that rely
on coarse-to-fine schemes that involve downsampling it has
lower accuracy.

To evaluate how well our method can generalize to an un-
known dataset, we have applied it on the MPI-Sintel Final
[18] which is one of the most realistic synthetic datasets for
which ground truth is available. As reported in Table 2, the
USCNN has a better performance than LDOF and has a com-
parable performance in comparison with the other state-of-
the-art methods. In Table 2, the performance measures for
EpicFlow, DeepFlow, LDOF, and FlowNet are from [13] and
the performance measure for HAOF is calculated using their
publicly available code.

For fair comparison, we report the performance of the
two architectures introduced by [13] without finetuning.
’FlowNetS’ has a rather generic architecture which receives



Fig. 3. The architecture of our proposed CNN. We have assumed the height and width of the input is 128x96. The illustrated
motion field is chosen from MPI-Sintel dataset [18]

Table 1. Evaluation of different methods on UCF101 dataset. AEE-05 stands for Average End-point Error for the motions
smaller than 5 pixels. AEE-5so refers to the motions bigger than 5 pixels, and AEE-tot refers to the total error value. AAE
stands for Average Angular Error.

Method AEE-05 AEE-5so AEE-tot AAE-05 AAE-5so AAE-tot
DeepFlow 0.30 3.99 0.47 9.35 14.65 9.59

HAOF 0.37 4.59 0.56 10.95 19.40 11.33
LDOF 0.35 2.85 0.46 9.91 9.72 9.9

USCNN 0.46 8.7 0.81 12.74 59.50 14.70

as input the two images stacked together. In ’FlowNetC’,
first meaningful representations are made in two separate but
identical streams each receiving one of the input images and
then their output is combined and fed into another stream
for motion estimation. Our network architecture is closest
to ’FlowNetS’. As reported in Table 2 , although trained un-
supervised, USCNN has a close performance to ’FlowNetS’
and ’FlowNetC’ that are trained supervised. The motion field
of several samples from UCF101 and MPI-Sintel datasets, es-
timated by various methods are depicted in Fig. 1 and Fig. 2
respectively.

Table 2. The performance comparison between different
methods on MPI-Sintel.

Method MPI-Sintel Final
EpicFlow 6.29
DeepFlow 7.212
HAOF 7.56
LDOF 9.12
FlowNetS 8.43
FlowNetC 8.81
USCNN 8.88

4. CONCLUSIONS

In this work, we propose estimating dense motion fields with
CNNs. We show that, surprisingly perhaps, a simple cost
function that relies on the optical flow equation can be used
successfully for training a deep convolutional network in a
completely unsupervised manner and without the need of any
regularization or other constraints. Our CNN is trained on the
UCF101 dataset. We show that it has a performance that is
comparable to other state-of-the-art methods, especially for
motions that are not large in magnitude, and that it can gen-
eralize very well to an unknown dataset, MPI-Sintel, without
the need for refinement. The proposed method in this paper
is among the very few studies conducted on the application of
DNNs for motion estimation.
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