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Runtime Verification Based on Register Automata

Radu Grigore1, Dino Distefano1, Rasmus Lerchedahl Petersen2, and Nikos
Tzevelekos1

1Queen Mary University of London and2Microsoft Research

Abstract. We propose TOPL automata as a new method for runtime verification
of systems with unbounded resource generation. Paradigmatic such systems are
object-oriented programs which can dynamically generate an unbounded num-
ber of fresh object identities during their execution. Our formalism is based on
register automata, a particularly successful approach in automata over infinite
alphabets which administers a finite-state machine with boundedly many input-
storing registers. We show that TOPL automata are equally expressive to register
automata and yet suitable to express properties of programs. Compared to other
runtime verification methods, our technique can handle a class of properties be-
yond the reach of current tools. We show in particular that properties which re-
quire value updates are not expressible with current techniques yet are naturally
captured by TOPL machines. On the practical side, we presenta tool for runtime
verification of Java programs via TOPL properties, where thetrade-off between
the coverage and the overhead of the monitoring system is tunable by means of a
number of parameters. We validate our technique by checkingproperties involv-
ing multiple objects and chaining of values on large open source projects.

1 Introduction

Runtime verification [19,22] connotes the monitoring of program executions in order to
detect specific error traces which correspond to violationsof sought safety properties.
In contrast to its static counterpart, runtime verificationchecks only certain program
executions, yet the error reports are accurate as detected violations represent real bugs
in the program. In the case of systems with dynamic generation of resources, such as
object references in Java, runtime verification faces the key challenge of reasoning about
a potentiallyunboundednumber of parameter values representing resource identities.
Hence, the techniques applicable in this realm of programs must be able to deal with
infinite alphabets (this idiom is also known as parametric monitoring). Leading runtime
verification techniques tackle the issue using different approaches, such as reducing the
problem to checking projections of execution traces over bounded sets of data values
(trace slicing) [26,20,3,2], or employing abstract machines whose transition rules are
explicitly parameterised [9,7,8].

Another community particularly interested in reasoning over similar data domains,
albeit motivated by XML reasoning and model-checking, is the one working on au-
tomata over infinite alphabets. Their research has been prolific in developing a wide
range of paradigms and accompanying logics, with varying degrees of expressivity and
effectiveness (see [27] for an overview from 2006). A highly successful such paradigm
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is that ofRegister Automata[21,24], which are finite-state machines equipped with a
fixed number of registers where input values can be stored, updated and compared with
subsequent inputs. They provide a powerful device for reasoning about temporal rela-
tions between a possibly unbounded number of objects in a finite manner. In this work
we propose a foundational runtime verification method basedon a novel class of ma-
chines calledTOPL automata, which connects the field with the literature on automata
over infinite alphabets and, more specifically, with register automata.

The key features of our machines are: (1) the use of registers, and (2) the use of sets
of active states (non-determinism). From the verification point of view, registers allow
us to use a fixed amount of specification variables which, however, can bere-bound
(i.e. have their values updated). On the other hand, by beingable to spawn several ac-
tive states, we can select different parts of the same run to be stored and processed.
These features give us the expressive power to capture a widerange of realistic pro-
gram properties in afinite way. A specific such class of properties concernschaining
or propagation, which are of focal importance in areas like dynamic taint analysis [25]
as well as dynamic shape analysis.1 In the latter case, we aspire to reason at runtime
about particular shapes of dynamically allocated data-structures irrespectively of their
size. For example, checking

“the shape of the list should not contain cycles” (1)

for lists of any size and in a finite way, requires two activities. First, being able to change
the value of the variables in the specification while traversing the list (re-binding). Sec-
ond, keeping correlations of different elements in the listat the same time (multiple
active states).

TOPL Properties

hl-TOPL Automata

TOPL Automata

Register Automata

Fig. 1. Diagram of the main con-
cepts. The target of each arrow is
at least as expressive as its source.

The aim of this work is to exploit the flexibility
and the power of registers to address certain proper-
ties not expressible with other approaches while, on
the other hand, making it easy for programmers to ex-
press properties of their code. More precisely, we start
from register automata and extend them driven by typ-
ical properties required in real-world object-oriented
systems. This process results in the definition of two
new classes of automata:

– TOPLautomata, which are low-level and are used
for simplifying the formal correspondence with
register automata;

– hl-TOPLautomata, which are high-level and natu-
rally express temporal properties about programs.

We moreover define theTemporal Object Property Language (TOPL), a formal lan-
guage which maps directly onto hl-TOPL automata and is used for expressing runtime
specifications. TOPL is a Java-programmer-friendly language where properties look
like small Java programs that violate the desired program behaviour. The hierarchy of
presented concepts is depicted in Figure1.

1 Although shape analysis is mainly a static technique, we will see in Section2 that, when doing
run-time monitoring, being able to reason about shapes may be vital.
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We complement and validate our theoretical results with a practical runtime veri-
fication tool for Java programs. The tool can be used by programmers to rigorously
express temporal properties about programs, which are thenautomatically checked by
the system. Although the formal correspondence to registerautomata is completely hid-
den from the user, it provides a concrete automata-theoretic foundation which allows
us to know formally the advantages and limitations of our technique, and also reuse
results from the register automata literature. Moreover, our tool can be tuned in terms
of coverage, overhead and trace reporting by means of a number of parameters.

Contributions. This paper builds upon [18], which introduced the language of TOPL
properties and drafted the corresponding automata. Here weclarify the latter, provide a
formal correspondence to automata over infinite alphabet, and devise and test a practical
tool implementation. In summary, the contributions of the present work are:

– We introduce TOPL and hl-TOPL automata, two classes of abstract machines for
verifying systems over infinite alphabets. We prove that both formalisms are equally
expressive to register automata by constructing formal reductions between them. The
reductions allow us to transfer results from the register automata setting to ours (e.g. de-
cidability of language emptiness, language closures, etc.).

– We define TOPL, a formal specification language designed for expressing pro-
gram properties involving object interactions over time ina way that is familiar to
object-oriented programmers. We moreover present a formalsemantics for TOPL, thus
making it suitable for static and dynamic program analysis.

– We implement a tool for automatically checking for violations of TOPL proper-
ties in Java programs at runtime. A number of parameters are provided for tuning the
precision of the system. We furthermore report on experiments in which we ran our tool
on large open-source projects. The results are encouraging: for example, we have found
an interesting and previously unknown concurrency bug in the DaCapo suite [13].

2 Motivating Examples

Interaction among objects is at the core of the object-oriented paradigm. Consider for
example Java collections. A typical property one would wantto state is

If one iterator modifies its collection then other iteratorsof the same collec-
tion become invalid, i.e. they cannot be used further.

(2)

The formalisation of the above constraint is non-trivial since it needs to keep track of
several objects(at least two iterators and one collection) and theirinteraction over time.

A slightly more complex scenario is described in Figure2. ClassCharArray ma-
nipulates an array of chars, while classConcat concatenates two objects of typeStr.
Both classes implement theStr interface. Consider the case whereConcat is used for
implementing arope.2 The operations of a rope (e.g. insert, concat, delete) may update
its shape and the references to its root. In this case we may have two or more collec-
tionssharingsome elements. Hence, iterators operating on those different collections
may invalidate each other. We need to modify (2), increasing its complexity:

2 A rope is a data structure for efficiently storing and manipulating very long strings.
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interface Str {

void set(int i, char c);

char get(int i);

int len();

Itr iterator();

}

interface Itr {

boolean hasNext();

char next();

void set(char c);

}

class CharArray implements Str {

char [] data;

// ...

}

class Concat implements Str {

Str s, t;

public static Concat make(Str s, Str t) {

/* ... */

}

// ...

}

Fig. 2. A first example: Java code.

If one iterator modifies its collection then other iteratorsof collections shar-
ing some of its elements become invalid, i.e. they cannot be used further.

(3)

On the need for re-binding.Let us now suppose we want to performtaint checkingon
input coming from a web form. What we want to check is the property:

Any value introduced by theinput() method should not reach thesink()
method without first passing through thesanitizer()method.

(4)

Although the property may seem simple, its difficulty can vary depending on the con-
text. Consider the case where the input is constructed by concatenating strings from a
web form, for example by using ropes implemented with classConcat. The number
of user inputs, and therefore of concatenations, is not known a priori and is in general
unbounded. Consequently, we may end up having an unbounded number of tainted ob-
jects. In a temporal specification, we would then need eitherone logical variable for
each of them, or the ability torebind (or update) variables in the specification so that
we can trace taint propagation. For an unbounded number of objects, rebinding spec-
ification variables with different values during the computation helps in keeping the
specification finite.

The need for rebinding of variables in the specification arises also in other contexts.
For example, when reasoning about the evolving shape of dynamically allocated data-
structures. Consider the following loop which uses a list:

while (l.next()!=null) { ... }

If the list l contains a cycle, the loop will diverge. Being a violation ofa liveness
property (termination), divergence cannot be observed at runtime in finite time and
therefore it is harder to debug. If we obtained the list by calling a third-party library, we
would want to check the property (1) from the Introduction. Thefiniteencoding of such
properties requires the ability to update the values of specification variables.

3 TOPL Automata

We start by presenting some basic definitions. We fixV to be an infinite set ofvalues,
with its members denoted byv, u and variants. Given an arityn, a letter ℓ is an element
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(v1, . . . , vn) ∈ Σ, whereΣ = V n is thealphabet. For ℓ = (v1, ..., vn), we set the
notationℓ(i) = vi. Given a sizem, we define the set of stores to beS = V m. For
a stores = (u1, ..., um), we writes(i) for ui. A register i is an integer from the set
{1, ...,m} identifying a component of the store.

A guard g is a formula in a specified logic, interpreted over pairs of letters and
stores; we write(s, ℓ) |= g to denote that the stores ∈ S and the letterℓ ∈ Σ satisfy
the guardg, and we denote the set of guards byG. An action a is a small program
which, given an input letter, performs a store update. That is, the set of actions is some
setA ⊆ Σ → S → S.

Given an alphabetΣ = V n and a (memory) sizem, we shall define TOPL automata
to operate on the set of labelsΛ = G×A, whereG andA are given by:

G ::= eq i j | neq i j | true | G and G

A ::= nop | set i := j | A;A

with i ∈ {1, ...,m} andj ∈ {1, ..., n}. If n = 1, then(eq i) stands for(eq i 1); (neq i)
for (neq i 1); and(set i) stands for(set i := 1). The guards are evaluated as follows.

(s, ℓ) |= eq i j if s(i) = ℓ(j), (s, ℓ) |= true always,
(s, ℓ) |= neq i j if s(i) 6= ℓ(j), (s, ℓ) |= g1and g2 if (s, ℓ) |= g1 and(s, ℓ) |= g2.

The TOPL actions are built up from the empty action,nop(ℓ)(s) = s; the assignment
action,(set i := j)(ℓ)(s) = s[i 7→ ℓ(j)] (wheres[i 7→ v](k) = s(k) if k 6= i, andv
otherwise); and action composition,(a1; a2)(ℓ) = a1(ℓ) ◦ a2(ℓ).

We can now define our first class of automata.

Definition 1. A TOPL automatonwith m registers, operating onn-tuples, is a tuple
A = 〈Q, q0, s0, δ, F 〉 where:

– Q is a finite set of states, with initial oneq0 ∈ Q and final onesF ⊆ Q;
– s0 ∈ S is an initial store;
– δ ⊆ Q× Λ×Q is a finite transition relation.

A configuration x is a pair(q, s) of a stateq and a stores; we denote the set of
configurations byX = Q × S. The initial configuration is(q0, s0). A configuration is
final when its state is final. The configuration graph of a TOPL automatonA as above

is a subset ofX × Σ × X . We write x1
ℓ
→A x2 to mean that(x1, ℓ, x2) is in the

configuration graph ofA (we may omit the subscript ifA is clear from the context).

Definition 2. LetA be a TOPL automaton. Theconfiguration graphof A consists of

exactly those configuration transitions(q1, s1)
ℓ
→A (q2, s2) for which there is a TOPL-

automaton transition(q1, (g, a), q2) ∈ δ such that(s1, ℓ) |= g anda(ℓ)(s1) = s2.
ThelanguageL(A) of A is the set of words that label walks from the initial configura-

tion to some final one:L(A) = { ℓ1 . . . ℓk | x0 initial, xk final,∀i ≤ k. xi−1
ℓi→A xi }.

A TOPL automaton isdeterministicwhen its configuration graph contains no two dis-
tinct transitions that have the same sourcex1 and are labeled by the same letterℓ, that

is, x1
ℓ
→ x2 andx1

ℓ
→ x3 with x2 6= x3.
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Example 3.Consider the language{ abc ∈ V 3 | a 6= c andb 6= c }. It is recognized by
the following TOPL automaton with2 registers over the alphabetΣ = V . The values
in the initial stores0 can be arbitrary.

– Q = {1, 2, 3, 4}, q0 = 1 andF = {4};
– δ = {(1, (true, set 1), 2)}∪{(2, (true, set 2), 3)}∪{(3, (neq 1 and neq 2, nop), 4)}.

Example 4.For a more involved example, let us consider two languages overΣ = V 2:

L = { (v1, v2)(v2, v3)(v3, v4) . . . (vm−1, vm)(vm, v1) | m > 1 ∧ ∀i. vi ∈ V }

L′ = {w′ | ∃w ∈ L. w is a subsequence ofw′ }

q0

q1

q2

set 1:=1; set 2:=2

true, nop

eq 21, set 2:=2
true, nop

eq 21 and eq 12

true, nop

(We say thatℓ1 . . . ℓm is asubsequenceof ℓ′1 . . . ℓ
′
n if there ex-

ists a strictly increasingf : [m] → [n] such thatf(i) = j
only if ℓi = ℓ′j .) To account for chaining, asL requires, we
will use two registers, one forv1 and one for the second com-
ponent of the last seen letter. To account for all subsequences,
asL′ requires, we will use nondeterminism. In particular, the
stateq1 hastwo loops, one guarded bytrue and another guarded
by eq 21.

Relation to Register Automata.There is a natural connection between TOPL automata
andRegister Automata[21,24]. In particular, register automata are TOPL automata with
n = 1 and labels fromΛR ⊆ Λ, where

ΛR = { (fresh, set i) | i ∈ {1, ...,m} } ∪ { (eq i, nop) | i ∈ {1, ...,m} }

and fresh ≡ (neq 1 and neq 2 and · · · and neqm).3 In fact, we can show that the
restrictions above are not substantial, in the sense that TOPL automata are reducible to
register automata, and therefore equally expressive. In the following statement we use
the standard injectionf : (V n)∗ → V ∗ such thatf(L(A)) = { v11 . . . v

n
1 · · · v1k . . . v

n
k |

(v11 , . . . , v
n
1 ) · · · (v

1
k, . . . , v

n
k ) ∈ L(A) }.

Proposition 5 (TOPL to RA). There exists an algorithm that, given a TOPL automa-
tonA, builds a register automatonA′ such thatL(A′) = f(L(A)). If A hasm regis-
ters, |δ| transitions,|Q| states, and works overn-tuples, thenA′ has2m+ 1 registers,
|δ′| = O(n(2m)2m|δ|) transitions andO((2m)m|Q|+ |δ′|) states.

High-level AutomataTOPL automata seem to be lacking the convenience one would
desire for verifying actual programs. In particular, when writing down a monitor for a
specific violation, one may naturally not want to specify allother possible behaviours of
the program (which may, though, be of relevance to other monitors). In fact, program
behaviours not relevant to the violation under consideration can beskipped, ignored
altogether. A possible solution for the latter could be to introduce loops with empty
guards and actions, with the hope to consume the non-relevant part of the program

3 Here a register automaton corresponds directly to what in [24] is called a 1N-RA.
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behaviour. However, such a solution would not have the desired effect: the empty loops
could also consume input relevant to the monitored violation.

The above considerations lead us to introduce a new kind of automaton where inputs
can be skipped. That is, at each configurationx of a such an automaton, if an input does
not match any of the guards of the available transitions fromx the automaton will skip
that input and examine the next one. In order to accommodate cases where we want
specific transitions to happen consecutively, without skipping in between, we allow our
automata to operate on sequences of letters, rather than single ones.

Definition 6. A high-level TOPL automaton (hl-TOPL)is a tupleA = 〈Q, q0, s0, δ, F 〉
where:

– Q is a finite setQ of states, with initial oneq0 ∈ Q and final onesF ⊆ Q;
– s0 ∈ S is an initial store;
– δ ⊆ Q× Λ∗ ×Q is a finite transition relation.

Although the definition of the syntax of high-level automatais very similar to that of
ordinary TOPL automata, their semantics is quite different. A high-level configuration
(hl-configuration) is a pair(x,w) of a configurationx and a wordw; we denote the
set of hl-configurations byY = X × Σ∗. We think ofw asyet to be processed. A hl-
configuration isinitial when its configuration is the initial configuration; that is,it has
the shape((q0, s0), w). A hl-configuration isfinal when its state is final and its word
is the empty word; that is, it has the shape((q, s), ǫ), whereq ∈ F andǫ is the empty

word. The hl-configuration graph is a subset ofY × Σ∗ × Y . We write y1
w
→֒A y2 to

mean that(y1, w, y2) is in the hl-configuration graph ofA.
The following concept simplifies the definition of the hl-configuration graph. For

each stores and sequence of pairs(gi, ai) of guards and actions (i = 1, . . . , d), we
construct a TOPL automaton

T
(

s, (g1, a1), . . . , (gd, ad)
)

with set of states{0, . . . , d}, out of which0 is initial andd is final, initial stores, and
transitions(i−1, (gi, ai), i) for eachi = 1, . . . , d. Recall that, in this case,ℓ1 . . . ℓd
is accepted by the automaton when there exist configurationsx0, x1, . . . , xd such that

x0 = (0, s) andxi−1
ℓi→ xi, for eachi = 1, . . . , d. If the store ofxd is s′ we say that

the automaton can acceptℓ1 . . . ℓd with stores′.

Definition 7. Theconfiguration graphof a hl-TOPL automatonA consists of two types
of transitions:

– Standard transitions, of the form ((q1, s1), ww
′)

w
→֒ ((q2, s2), w

′),
when there exists(q1, λ̄, q2) ∈ δ such thatT (s1; λ̄) can acceptw with stores2.

– Skip transitions, of the form (x, ℓw)
ℓ
→֒ (x,w),

when no standard transition starts from(x, ℓw).

ThelanguageL(A) ofA is the set of words that label paths from an initial hl-configuration

to a final one:L(A) = {w1 . . . wk | y0 initial, yk final,∀i ≤ k. yi−1
wi

→֒ yi}.
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Remark 8.Note that a TOPL automatonA can be technically seen as a high-level one
with singleton transition labels. However, its language isin general different from the
one we would get if we interpretedA as a high-level machine. For example, letA be
the TOPL automaton consisting of one transition labelled with the guardeq 1, from
the initial state to the final state. The alphabet isΣ = V and the initial store has one
register containing valuev. The language ofA consists of one word made of one letter,
namelyv. On the other hand, because of skip transitions, the language ofA seen as a
hl-TOPL automaton consists of all words that contain the letterv.

Example 9.Consider the following hl-TOPL automaton with2 registers over the alpha-
betΣ = V = {A,B}.

– Q = {1, 2, 3}, q0 = 1 ands0 = (A,B) andF = {3},
– δ consists of

(

1,
[

(eq 2, nop), (eq 1, nop), (eq 2, nop)
]

, 2
)

and
(

1,
[

(eq 1, nop)
]

, 3
)

.
The language of this is automaton consists of those words in which the firstA is not
surrounded by twoBs.

We next present transformations between the two different classes of automata we
introduced. First, we can transform TOPL automata to high-level ones by practically
disallowing skip transitions: we obfuscate the original automatonA with extra transi-
tions to a non-accepting sink state, in such a way that no roomfor skip transitions is
left.

Proposition 10 (TOPL to hl-TOPL). There exists an algorithm that, given a TOPL
automatonA with |Q| states, at mostd outgoing transitions from each state, and guards
with at mostk conjuncts, it builds a hl-TOPL automatonA′ with |Q|+ 1 states and at
most(d+ kd)|Q| transitions such thatL(A) = L(A′).

The converse is more difficult. A TOPL automaton simulates a given hl-TOPL one
by delaying decisions. Roughly, there are two modes of operation: (1) store the current
letter in registers for later use, and (2) simulate the configuration transitions of the
original automaton. The key insight is that Step 2 is entirely a static computation. To
see why, a few details about Step 1 help.

The TOPL automaton has registers to store the last few letters. The states encode
how many letters are saved in registers. The states also encode a repartition function
that records which TOPL register simulates a particular hl-TOPL register or a particular
component of a past letter. The repartition function ensures that distinct TOP registers
hold distinct values. Thus, it is possible to perform equality checks between hl-TOPL
registers and components of the saved letters using only therepartition function. Sim-
ilarly, it is possible to simulate copying a component of a saved letter into one of the
hl-TOPL registers by updating the repartition function. Because it is possible to eval-
uate guards and simulate actions statically, the run of the hl-TOPL automaton can be
completely simulated statically for the letters that are saved in registers.

Proposition 11 (hl-TOPL to TOPL). There exists an algorithm that, given a hl-TOPL
automatonA, builds a TOPL automatonA′ such thatL(A) = L(A′). If A is over the
alphabetV n with m registers,|Q| states, and|δ| transitions of length≤ d, thenA′ is
over the alphabetV withm′ = m+(d− 1)n registers,O(d2(m+1)m|Q|) states, and
O(d2(m+ 1)(m+n)|δ|) transitions.

8



Remark 12.Although Propositions10and11 imply that hl-TOPL and TOPL automata
are equally expressive, the transformations between them are non-trivial and substan-
tially increase the size of the machines (especially in the hl-TOPL-to-TOPL direction).
This discrepancy is explained by the different goals of the two models: TOPL automata
are meant to be easy to analyse, while high-level automata are meant to be convenient
for specifying properties of object-oriented programs. The runtime monitors implement
the high-level semantics directly.

Since both TOPL and hl-TOPL automata can be reduced to register automata, using
known results for the latter [24] we obtain the following.

Theorem 13. TOPL and hl-TOPL automata share the following properties.
1. The emptiness and the membership problems are decidable.
2. The language inclusion, the language equivalence and theuniversality problems

are undecidable in general.
3. The languages of these automata are closed under union, intersection, concatena-

tion and Kleene star.
4. The languages of these automata are not closed under complementation.

The first point of Theorem13 guarantees that monitoring with TOPL automata is
decidable. On the other hand, by the second point, it is not possible to automatically
validate refactorings of TOPL automata. Closure under regular operations, apart from
negation, allows us to write specifications as negation-free regular expressions. The
final point accentuates the difference between property violation and validation.

4 TOPL Properties

In this section we describe the user-levelTemporal Object Property Language (TOPL),
which provides a programmer-friendly way to write down hl-TOPL automata relevant
to runtime verification. The full syntax of the language was presented in [18]. Below we
give the main ingredients and define the translation from thelanguage to our automata.

A TOPL property comprises a sequence oftransition statements, of the form

source -> target: label

where source andtarget are identifiers representing the states of the described automa-
ton. The sequence of statements thus represents the transition relation of the automaton.
Each property must include distinguished verticesstart anderror, which correspond
to the initial and (unique) final states respectively.

The set of labels has been crafted in such a way that it captures the observable
events of program executions. Observable events for TOPL properties are method calls
and returns, calledevent ids, along with their parameter values. The set of event ids is
given by the grammar:

E ::= call m | ret m

wherem belongs to an appropriate set ofmethod names. Each method name has an
arity, which we shall in general leave implicit. The setVL of possible parameter values

9



is a set of values specified by the programming language (e.g.Java) plus a dummy value
⊥. The set of all values isV = VL ∪ E.

Labels of TOPL properties refer to registers viapatterns. A registerv is called a
property variableand has three associated patterns:

– the uppercase patternV matches any value and writes it in the property variablev;
– the lowercase patternv reads the value of the property variablev and only matches

that value; and
– the negated lowercase pattern!v reads the value of the property variablev and only

matches different values.
In addition, every element ofV acts as a pattern that matches only the value it denotes,
and a wildcard (*) pattern matches any value. The set of all patterns is denoted byPat.
A transition label can take one of the three forms:

l ::= call m(x1, . . . , xk) | ret x := m | x := m(x1, . . . , xk)

wherex, x1, . . . , xk ∈ Pat. Note that the latter two forms are distinct – the last one
incorporates a call and a matching return. Finally, a TOPL property iswell-formedwhen
it satisfies the conditions:

(i) each label must contain an uppercase value pattern at most once;
(ii) any use of a lowercase pattern (i.e. a read) must be preceded by a use of the

corresponding uppercase pattern (i.e., a write) on all paths fromstart.
From now on we assume TOPL properties to be well-formed.

From TOPL to automata.We now describe how a TOPL propertyP yields a corre-
sponding hl-TOPL automatonAP . First, ifn is the maximum arity of all methods inP ,
the alphabet ofAP will be:

ΣP = E × V n+1
L

where the extra register is used for storing return values. Note thatΣP follows our previ-
ous convention of alphabets: it is a sub-alphabet ofΣ = V n+2. For example, ifP has a
maximal arity 5, the eventcall m(a, b, c)would be understood as(call m,⊥, a, b, c,⊥,⊥)
byAP . Here the first component is the event id, the second is a fillerfor the return value,
the next three are the parameter values and the rest are paddings which are used in order
for all tuples to have the same length. The eventret r = m would be understood as
(ret m, r,⊥,⊥,⊥,⊥,⊥) byAP .

We include inAP one register for each property variable inP and, in order to match
elements fromV , we include an extra register for each element mentioned byP (this
includes all the method names ofP ). Each extra register contains a specified value in
the initial state ofAP and is never overwritten. The rest of the registers in the initial
state are empty. We writePatP for the set of patterns of property variables appearing
in P .

We next consider how labels are translated. The first two forms of label (call and
ret) describe observable events and are translated into one-letter transitions inAP ,
while the latter form is translated into two-letter transitions. Let{1, . . . , N} be the
set of registers ofAP . We define three functions:reg : PatP → (N ∪ {⊥}) asso-
ciates a register to each pattern (withreg(*) = ⊥), while grd : PatP × N → G and
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start

a

b

cd

error
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et(

∗)

j.n
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()i.next()

(b) Property3

start

a b

error

X := input()

∗

(!sanitize)(∗)
X := make(x, ∗)

X := make(∗, x)

sanitize(x)

sink(x)

(c) Property4

Fig. 3. TOPL formalisations of the example properties from Section2.

act : PatP × N → A give respectively the guard and action correspoding to each
pattern and register. We set:

grd(x, j) =































true if x = V

eq reg(v) j if x = v

neq reg(v) j if x = !v

eq reg(x) j if x ∈ V

true if x = *

act(x, j) =































set reg(v) := j if x = V

nop if x = v

nop if x = !v

nop if x ∈ V

nop if x = *

We can now interpret labels ofP into labels ofAP . For each a labell of P , we define
its translation[[l]] = [([[l]]G, [[l]]A)], where[[−]]G and[[−]]A are given as follows.

[[l]]G =

{

grd(m, 1) and grd(x1, 3) and . . . and grd(xk, k+2) if l = call m(x1, . . . , xk)

pred(m, 1) and eq reg(x) 2 if l = ret x := m

[[l]]A =

{

act(x1, 3) and . . . and act(xk, k+2) if l = call m(x1, . . . , xk)

act(x, 2) if l = ret x := m

Finally, for the labelx := m(x1, . . . , xk), observe its right-hand-side refers to a call,
while its left-hand-side refers to a return. We take this label to mean thatm is called
with parameters matchingx1, . . . , xk and returns a value matchingx, and no event is
observed in the meantime. This is because an intermediate call, for instance a recursive
call, could disconnect the method call and the return value.Thus, this label translates
into a transition of length two:

[[x := m(x1, . . . , xk)]] = [[call m(x1, . . . , xk)]] [[ret x := m]]

Examples.Figure 3displays the formal versions of the first three properties that are
discussed inSection 2.
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(a) This example illustrates how multiple related objects are tracked. In statetwo,
the property tracks all pairs of two iteratorsx and y for the same collectionc. If
x.remove() is called, then stateyBad becomes active, which precludes further use of
y’s methods. StatexBad is symmetric.

(b) This example illustrates how chaining of values is tracked, while at the same
time tracking multiple related objects. Recall that Property (3) refers to the code in
Figure 2(on page4). In statea, the iteratori refers to the strings or some substring
of s. In stateb, the itreratorj refers tos. As opposed to the previous property, the two
iteratorsi andj are not necessarily for the same collection, but rather for acollection
and one of its sub-collections. This property does not referto the Java standard library,
which does not implement ropes. There exist, however, several independent libraries
that follow the pattern inFigure 2(e.g.http://ahmadsoft.org/ropes/).

(c) This example illustrates sanitization of values, in addition to chaining. In statea,
the property keeps track of the tainted objectx. An object istainted if it comes from
a specific input method or was made from tainted objects, and was not sanitized. A
tainted object must not be sent to asink.

Of course, the input of the TOPL compiler is not in graphical form. Below we
include the actual representation for a property of type (c)without the sanitization op-
tion. It specifies actual methods that provide tainted inputs, make tainted objects out
of tainted objects, and constitute sinks.4 We refer the reader to [18] for more example
properties.

property Taint

prefix <javax.servlet.http.HttpServletRequest>

prefix <java.lang.String>

prefix <java.sql.Statement>

start -> start: *

start -> tracking: X := *.getParameter[*]

tracking -> tracking: *

tracking -> tracking: X := x.concat(*)

tracking -> tracking: X := *.concat(x)

tracking -> error: *.executeQuery(x)

5 Implementation and Experiments

The TOPL tool5 checks at runtime whether Java programs violate TOPL properties. It
consists of a compiler and a monitor (seeFigure 4, left).

Given the bytecode of a Java project and several TOPL properties, the compiler
produces instrumented bytecode and a hl-TOPL automaton. Aninstrumented method
emits a call event, runs the original bytecode, and then emits a return event. Emitting
an event is encoded by a call to the methodcheck(Event) of the monitor. TheEvent
structure contains an integer identifier and an array ofObjects. The identifier is unique

4 Note that, to ease the task of writing TOPL properties, we have included aprefix directive:
prefix p produces from every method namem, an extra namepm; it further produces, from
any transition involvingm, a similar transition involvingpm.

5 http://rgrig.github.com/topl
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Bytecode
Instrumenter

Automaton
Generator

TOPL Compiler

original
bytecode

TOPL
properties

hl-TOPL
automaton

instrumented
bytecode

TOPL
Monitor

JVM

Number of tracked active configurations

reference ≤ 0 ≤ 10
1 ≤ 10

2

tomcat5.3±0.1 5.4±0.1 5.6±0.2 9.0±0.3

pmd 5.2±0.4 5.4±0.2 12.2±0.3 47.7±10.7

h2 6.6±0.2 9.5±0.2 130.1±12.2 timeout

Fig. 4. Left: Architecture of the TOPL tool.Right: Experimental Results. Times are in seconds,
averaged over10 runs (not in convergence mode).

for each site from which the methodcheck is called. The compiler achieves two tasks
that are interdependent: instrumenting the bytecode, and translating properties into an
automaton. The instrumentation could be done on all methodsof the Java project, but
this would lead to high runtime overhead. Instead, the compiler instruments only the
methods that are mentioned by the TOPL properties to be checked. Conversely, the
translation of properties into automata depends on the Javaproject’s code. To see why,
consider a transition guarded in a property by the method name patternm. The compiler
instruments all the methods whose (fully qualified) names match the patternm, and all
the methods that override methods whose names match the patternm, thus taking into
account inheritance. All these instrumented methods emit events with identifiers from
a certain set of integers, which depends on the inheritance structure of the Java project.
The method name patternm is essentially compiled into a set of integer event identifiers.

The monitor is an interpreter for the hl-TOPL automaton thatthe compiler produces.
Its implementation closely follows the semantics fromSection 3. For example, the mon-
itor maintains a set of active configurations, which are those reachable by a path labeled
by the events seen so far. There are, however, several differences. First, the number of
active configurations is not bounded in theory, but a bound may be enforced in prac-
tice. Monitoring becomes slower as the number of active configurations increases. As
a pragmatic compromise, the user may impose an upper bound, thus trading soundness
for efficiency. That is, if the user imposes a bound then monitoring is faster, but property
violations may be missed (on the other hand, a reported violation of a property is always
a real violation). Second, the implementation includes several optimizations. For exam-
ple, the guards produced by method name patterns, which require the current event id
to be from a certain set of integers, is implemented as a hashtable lookup rather than as
a linear search, as the formal semantics would suggest. Third, the implementation saves
extra information in order to provide friendlier error messages. For instance, the user
may ask the TOPL monitor to save and report the path taken in the configuration graph,
or full call stack traces for each event.

Experimental Results.We measured the overhead on the test suite DaCapo [13], ver-
sion 9.12. DaCapo is a collection of automated tests that exercise large portions of code
from open-source projects and the Java standard libraries.DaCapo itself has been used
for many experiments by the research community. Hence, we did not expect to find any
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bugs, but aimed instead at measuring the overhead. We checked two types of properties
with TOPL. First, properties that express correct usage of the standard Java libraries.
Second, properties that express temporal constraints which we extracted from the code
comments of three open-source projects (H2, PMD, Tomcat) included in DaCapo. H2 is
a database server for which we checked properties on the calling order of some interface
methods. For example, a client should not attempt to ask for arow from a cursor un-
less the latter has been previously advanced. PMD looks for bugs, dead code and other
problems in Java code. One of the five properties we checked is“Only if a scope replies
that it knows a name, it can be asked for that name’s definition”. Tomcat is a highly
concurrent servlet server. Servlets are Java programs running in a webserver, extracting
data fromServletRequests and sending data toServletResponses. A response has
two associated incoming channels: a stream and a writer. They should not be both used
concurrently. But the servlet, before forwarding the response, must callflush on the
stream, on the writer, or on the response itself. This is one of the properties we checked.
Interestingly, while experimenting with Tomcat, TOPL discovered a concurrency bug
(a data race) in the DaCapo’s infrastructure which would manifest sometimes asnull
dereference.

Although our tool is not currently optimised, we measured both time and space over-
head. It turns out that space overhead is negligible, below the variance caused by the
randomness of garbage collection. Thus, we only report on time overhead, inFigure 4
andTable 1. The relative overhead is meaningful only if the reference runtime is not
close to0, and this is most distinctively the case for test eclipse whose runtime is over
10 s. The (geometric) average overhead in that case is×1.5 with ≤ 3 active configura-
tions, and×1.6 with ≤ 10 active configurations. Figure4 shows the effect of tuning
the active configurations in terms of overhead. All experiments were performed on an
Intel i5 with 4 cores at3.33GHz with 4GiB of memory, running Linux 2.6.32 and Java
VM 1.6.0 20.

6 Related work.

JavaMOP[23] and Tracematches[2] are based on slicing: A slice is a projection of
a word over a finite alphabet; different slices are fed, independently, to machines that
handle finite alphabets. Tracematches use regular expressions to specify recognisers
over finite alphabets. JavaMOP supports several other logics, via a plugin mechanism,
and slices are assigned categories, which can be match/failor taken from some other
set. Because slices are analyzed independently, it not possible to express examples such
as (1) and (4), which use an unbounded number of register assignments.

Quantified Event Automata (QEA)[6] extend the slicing mechanism of JavaMOP
with the goal of improving expressivity. Similarly to TOPL automata, QEAs have guards
and assignments, which can be arbitrary predicates and transformations of the memory
content respectively. In contrast, our automata impose specific restrictions, which fol-
low the expressive power of RAs. In addition, QEAs introducequantifiers, which can
be seen as a way to impose a hierarchy on slices. Systems basedon machines with
parametric transition rules, such asRuleR[9], LogScope[7] andTraceContract[8], are
related to QEAs and are also very similar in spirit to the TOPLapproach. RuleR is tuned
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original HasNext UnsafeIteratorUnsafeMapIteratorUnsafeFileWriter
st=3st=10 st=3 st=10 st=3 st=10 st=3 st=10

avrora 8.1 27.8 60.5 163.3 323.1 194.5 179.9 8.3 5.9
batik 1.2 18.1 3.0 3.8 3.8 3.1 3.3 1.3 1.2
eclipse 17.4 24.2 24.0 30.9 41.7 27.2 28.0 22.9 22.8
fop 0.3 0.9 1.9 3.5 3.6 2.7 2.7 0.3 0.3
h2 6.2 5.9 6.8 8.3 20.0 13.5 11.2 6.4 6.0
jython 1.9 19.8 46.1 81.5 83.0 62.8 62.7 1.9 1.8
luindex 0.8 0.8 0.8 0.8 0.9 1.0 0.9 0.8 0.9
lusearch 1.5 1.5 1.5 15.0 16.0 13.8 12.8 1.5 1.7
pmd 3.1 19.9 42.6 93.5 240.3 102.6 105.6 3.2 3.3
sunflow 3.9 3.8 3.9 4.0 3.8 3.9 3.9 3.9 4.3
tomcat 2.5 4.2 8.3 22.9 50.9 30.0 31.0 2.6 2.7
xalan 1.5 14.5 7.1 425.0 360.9 272.0 276.5 1.5 1.2

Table 1. Experiment on small properties (taken from [25]) run on the DaCapo benchmarks (in
convergence mode). HasNext checks that no iterator is advanced without first enquiring hasNext.
UnsafeIterator checks that no iterator is advanced after the iterated collection has been modified.
UnsafeMapIterator checks that no iterator on keys/values of a map is advanced after the map
has been updated. UnsafeFileWriter checks that no file is written to after it was closed. Column
original gives the running times (in seconds) for projects without instrumentation of Java stan-
dard libraries. The other columns report instrumented runs, with a maximum of 3 and 10 active
configurations.

towards high expressivity and in particular can handle context-free grammars with pa-
rameters, which go beyond the reach of TOPL. By comparison, TOPL automata seem a
simpler formalism, and this paper demonstrates how they areclosely related to standard
automata-theoretical models.

QVM [3] is a runtime monitoring approach tailored to deployed systems. It achieves
high efficiency by being carefully implemented inside a Javavirtual machine, checking
properties involving a single object, and being able to tuneits overhead on-the-fly. On
the other hand, TOPL is designed for aiding the programmer during development and
testing, and therefore focusses instead on providing a precise and expressive language
for specifying temporal properties. For instance, TOPL canexpress properties involv-
ing many objects. Both QVM and TOPL let the programmer tune the overhead/coverage
balance.ConSpec[1] is a language used to describe security policies. AlthoughCon-
Spec automata have a countable number of states, they are deterministic and therefore
cannot express the full range of TOPL properties.

From the techniques used mostly for static verification of object-oriented programs,
typestates[28] are probably the most similar to TOPL. A modular static verification
method for typestate protocols is introduced in [11]. The specification method is based
on linear logic, and relations among objects in the protocolare checked by a tailored
system of permissions. Similarly, [15,10] provide a means to specify typestate proper-
ties that belong to a single object. The specified propertiesare reminiscent of contracts
or method pre/post-conditions and can deal with inheritance. In [17] the authors present
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sound verification techniques for typestate properties of Java programs, which we envis-
age that can be fruitfully combined with the TOPL paradigm. Their approach is divided
into several stages each employing its own verifier, with progressively higher costs and
precisions. Every stage focuses on verifying only the partsof the code that previous
stages failed to verify.

A specification language for interface checking aimed at C programs, calledSLIC,
is introduced in [5]. SLIC uses non-determinism to encode universal quantification of
dynamically allocated data and allows for complex code in the automaton transitions;
while TOPL specifications naturally express universally quantified properties over data
structures and, for effectiveness reasons, there is a limiton the actions performed dur-
ing automaton transitions. Simple SLIC specifications are verified by the SLAM veri-
fier [4].

Similar investigations have been pursued by the functionalprogramming commu-
nity. In [16] contracts are used for expressing legal traces of programsin a functional
language with references. The contracts specify traces as regular expressions over calls
and returns, thus resembling our automata, albeit in quite adifferent setting. The speci-
fications are function-centered and, again, capturing inter-object relations seems some-
what tricky.

Finally, as demonstrated in previous sections, TOPL automata are a variant of reg-
ister automata [21,24], themselves a thread in an extensive body of work on automata
over infinite alphabets (see e.g. [27]). RAs form one of the most well-studied paradigms
in the field, with numerous extensions and variations (e.g. [14,12,27]).
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A Proofs

TOPL automata are are a superclass of register automata. It is relatively harder to es-
tablish that TOPL automata are at most as expressive as register automata. There are
three main ingredients in the proof. First, tuples(v1, . . . , vn) are unpacked into words
v1 . . . vn; correspondingly, transitionsq → q′ become pathsq → q1 → · · · → qn−1 →
q′. Second, registeri is simulated by registerr(i), wherer ∈ [m] → [m] is encoded in
the state, such that values are not repeated in registers, asrequired by register automata.
Third, locally fresh values are written to an extra register, because register automata
never ignore such values.

On its own, the second ingredient is the same as the proof of Kaminski and Francez [21]
that their M-automata are equally expressive to register automata. In the proof below,
however, the first two ingredients (unpacking tuples and ensuring that values do not
repeat) are blended together to improve the bounds. The encoding of the functionr
leads to amm expansion, in the worst case. It turns out that a similar function is needed
for unpacking tuples, which would lead to another similar expansion if the first two
ingredients would not be mixed.

Consider the label(eq 1 2, set1 := 1), with the alphabetV 2. When tuples are un-
packed, it would be tempting to replace it by the two labels,(true, set 1) and(eq 1, nop),
one for each component of the tuple. But, this would be incorrect, as the second com-
ponent should be compared to the old value of register1. The solution is to add extra
registers and a function similar tor that keeps track of which register simulates which
register.

Proposition 5 (TOPL to RA) There exists an algorithm that, given a low-level TOPL
automatonA, builds a register automatonA′ such thatL(A′) = f(L(A)), where
f
(

(v1, . . . , vn)
)

= v1 . . . vn extends to languages as follows

f(L(A)) = { f(v1) . . . f(vk) | v1 . . . vk ∈ L(A) }

If A hasm registers,|δ| transitions,|Q| states, and works overn-tuples, thenA′ has
2m+ 1 registers,|δ′| = O(n(2m)2m|δ|) transitions, andO((2m)m|Q|+ |δ′|) states.

Proof. Each stateq of A is encoded by(2m)m states(q, r) of A′, one for eachr ∈
[m] → [2m]. While in a state(q, r), registerr(i) of A′ simulates registeri of A. Each
transition(q, (g, a), q′) in A is encoded by paths

(q0, r0)
(g1,a1)
−−−−→ (q1, r1)

(g2,a2)
−−−−→ · · ·

(gn,an)
−−−−−→ (qn, rn)

with q0 = q andqn = q′. For eachr0 there are at most(2m+ 1)n such paths, because
each(qj , rj) has at most2m+ 1 successors, as described below.

The following invariants are maintained along the path. Thevalues held by regis-
tersr0([m]) are not changed – they simulate the values thatA holds in stateq. The
guardsgj use only the current letter and the registersr0([m]). The values held by reg-
istersrn([m]) in state(qn, rn) are the values thatA holds in stateq′. In intermediate
states(qj , rj), the registersrj([m]) hold a mixture of the values held byr0([m]) and
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those held byrn([m]) in state(qn, rn). A more precise description of the mixture fol-
lows: Let the actiona(≤j) be obtained from the original actiona by filtering out assign-
ments(set i′ := j′) with j < j′. Then registersrj([m]) in state(qj , rj) simulate what
the registers ofA would be in stateq′ if a would be replaced bya(≤j).

The invariants mentioned in the previous paragraph are maintained by constructing
the guardsgj and the actionsaj as follows.

Let Ig be the set{ i | eq i j occurs ing } of registers that must equal the current
componentj; similarly, letI ′g = { i | neq i j occurs ing }. If |r0(Ig)| ≥ 2 or |r0(Ig) ∩
r0(I

′
g)| ≥ 1, then(qj−1, rj−1) has no successor. Ifr0(Ig) = {i}, then(qj−1, rj−1)

has exactly one successor, and the guardgj is eq i. If r0(Ig) = ∅, then(qj−1, rj−1)
has|[2m] − r0(I

′
g)| + 1 successors with the guardsfresh and, respectively,eq i for

i ∈ [2m]− r0(I
′
g).

The actionaj and the functionrj are computed from the original actiona, the previ-
ous functionrj−1, and from the guardgj , which is described in the previous paragraph.
Let Ia = { i | a writes componentj to registeri }. First a target register inA′ is picked,
and then the saving of componentj in registersIa is simulated. The targetk ∈ [2m],
which is needed only ifIa 6= ∅, is picked as follows:

k =

{

i if gj is eq i

min
(

[2m]− r0([m])− rj−1([m]− Ia)
)

if gj is fresh

The actionaj depends ongj and onIa.

aj =

{

nop if gj is eq i, or Ia = ∅

set k if gj is fresh, andIa 6= ∅

Finally, the repartition function is updated to reflect thatregistersIa are now simulated
by k.

rj(i) =

{

k if i ∈ Ia

rj−1(i) if i /∈ Ia

At this point the labels have the form(eq i, nop) or (fresh, set i) or (fresh, nop).
Only the latter is disallowed by the definition of register automata. It can be handled
by adding one register, without significantly increasing the number of transitions. First,
each label(fresh, nop) is transformed into(fresh, set 2m+ 1). Second, for each transi-
tion labeled(fresh, a), we add a parallel transition labeled(eq 2m+ 1, a). ⊓⊔

Proposition 10 (TOPL to hl-TOPL) There exists an algorithm that, given a low-level
TOPL automatonA with |Q| states, at mostd transitions outgoing of each state, and
guards with at mostk conjuncts, builds a high-level TOPL automatonA′ with |Q|+ 1
states and at most(d+ kd)|Q| transitions such thatLρ(A′) = L(A).

Proof. For the automatonA compare the low-level configuration graph with the high-
level configuration graph. Each low-level transitionx1 →ℓ x2 corresponds to several
high-level standard transitions(x1, ℓw) →֒ℓ (x2, w), for all w. The high-level graph,
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however, also has skip transitions(x, ℓw) →֒ℓ (x,w) for configurationsx that have no
outgoing standard transitions. Thus, the low-level language and the high-level language
would agree if all low-level configurations would have at least one outgoing transition.

We obtainA′ from A by adding unit transitions that do not change the low-level
language, but ensure that all low-level configurations havean outgoing transition. First
we add a special stuck stateqstuck. Then, for each original stateq, we list the guards
g1, g2, . . . , gd of the outgoing transitions. The configuration(q, s) has no outgoing
transition for someℓ when(s, ℓ) 6|= gi for i ∈ [k]. So, we synthesize a guardg that
holds exactly in this situation. Informally, we want to add atransition fromq to qstuck
with the guardg = ¬g1 ∧ . . .∧¬gd and the actionnop. Such a guard is not expressible
in the TOPL guard logic. However, we can negate the simple guardseq andneq, we can
use distributivity to putg in disjunctive normal form, and we can simulate disjunction
by parallel transitions. Thus, if eachgi contains up tok simple conjuncts, we add at
mostkd transitions from stateq. ⊓⊔

Proposition 11 (hl-TOPL to TOPL) There exists an algorithm that, given a high-level
TOPL automatonAρ, builds a low-level TOPL automatonA such thatLρ(Aρ) =
L(A).

If Aρ is over the alphabetV n
ρ with mρ registers,|Qρ| states, and|δρ| transitions

of length≤ d, thenA is over the alphabetVρ with m = mρ + (d − 1)n registers,
O(d2(m+ 1)m|Qρ|) states, andO(d2(m+ 1)(m+n)|δρ|) transitions.

Proof. The set of states ofA is

Q = Qρ × {0, . . . , d− 1} × {0, . . . , d− 1} ×
(

[m] ⇀ [m]
)

When the high-level configuration

(

qρ, (v1, . . . , vmρ
)
)

, ℓ0 . . . ℓh−1

of Aρ is reached, one of the low-level configurations

(qρ, h, k, r), (u1, . . . , um)

of A is reached. Hereh is the length of the remembered history, whilek, r, u1, . . . ,um

vary subject to the following constraining invariants:

– the stores ofA are injective:ui 6= uj if i 6= j
– for i ∈ [mρ], the value of registeri of Aρ is stored in registerr(i) of A; that is,
ur(i) = vi

– for 0 ≤ k′ < h andℓk′ = (v′1, . . . , v
′
n) and1 ≤ i′ ≤ n, the i′th componentv′i′

of letter ℓk′ is stored in registerr(ι(k + k′, i′)) of A, whereι(k′′, i′) = mρ +
(k′′ mod d)n+ i′; that is,

ur(ι(k+k′,i′)) = v′i′

– r is undefined for register slots that are reserved for storingletters but are currently
unused; namely,r(ι(k + k′, i′)) is undefined for alli′ andk′ such that1 ≤ i′ ≤ n
andh ≤ k′ < d
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We consider in turn each stateq = (qρ, h, k, r). Its outgoing transitions are deter-
mined by the outgoing transitions ofqρ.

We must cater for two situations: Either more letters are arriving and we should
simulate storing them in the queue and possibly make a state transition, or no more
letters are arriving and we should simulate emptying the queue to see if we end up in
an accepting state.

Crucially, enough information is available to statically simulate receiving all the
letters in the queue. To see this, consider a transition inAρ out of qρ,

(qρ, [(g0, a0), . . . , (gd′−1, ad′−1)], q
′
ρ) with d′ ≤ h

We can assumed′ ≤ h as only transitions short enough to be evaluated with the received
letters may be taken.

Consider an assignment(set i := j) that appears inak′ . Suppose that the distribu-
tion of values just before this assignment is given byr′. This means that the registeri
of Aρ is simulated byr′(i), and that thejth component of letterℓk′ is simulated by
r′(ι(k + k′, j)). After the assignment is executed, the distribution of values is given by

r′′(i′) =

{

r′(ι(k + k′, j)) if i′ = i

r′(i′) otherwise

Thus, it is possible to statically find the register distribution function after each of the
d′ steps.

Let us writerk′ for the distribution function just before stepk′; in particular,r0 = r,
wherer is given by the stateq of A. Suppose now thatgk′ contains the conjunct(eq i j).
We can evaluate this conjunct statically by checking whether rk′(i) = rk′ (ι(k+ k′, j)).
Similarly, we can evaluate(neq i j) by checking whetherrk′(i) 6= rk′(ι(k + k′, j)) as
the store is injective. Thus we can evaluate all guardsg0, g1, . . . ,gd′−1.

If one of the guards is not true, we know that the transition would not be taken, if
the queue were to be emptied. If all guards are true, we know that the resulting state
is (q′ρ, h − d′, (k + d′) mod d, rd′). If h − d′ > 0 then we carry on simulating. If
h− d′ = 0 then we note ifq′ρ is final inAρ.

If we find that no transitions are taken, then we must compute the result of a skip
transition. This can also be done statically by incrementing k, decrementingh and re-
placing the distribution function by one that is undefined atι(k, i′) for i′ ∈ [n]. If
k − 1 > 0, we carry on simulating and ifk − 1 = 0, we note ifqρ is final inAρ.

If any of these simulations thus notices a final state, then(qρ, h, k, r) is final inA.
Now to handle the case of more incoming letters, we need to addtranstions. We

treat three cases: Firstly, if the queue is not full (h < d − 1) then we simply store
the current letter in the queue. Secondly, if the queue is full (h = d − 1) and none of
the transitions inAρ out of qρ has maximal length (lengthd), then we can statically
determine if we need to simulate a high-level standard transition or a skip transition and
what the resulting states would be. Thirdly, if the queue is full, and there is a transition
of maximal length, then we need to dynamically look at the current letter to determine
if that transition is taken and where it leads. Note that thisalso determines whether a
skip transition should be simulated.
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Caseh < d− 1. In this case all outgoing transitions ofq simply record the current
letter ℓ = (v1, . . . , vn). To maintain the injectivity of stores, only those components
of ℓ that are not already in some register must be stored. We consider(m+1)n distinct
situations: each of then components may be in one of them registers, or it may be fresh.
Such a situation is described by a functionp ∈ [n] ⇀ [m]. We add toA a transition

(qρ, h, k, r), (gp, ap), (qρ, h+ 1, k, rp)

The guardgp is constructed such that it ensures we are indeed in a situation described
by p; the actionap stores the fresh values ofℓ somewhere outside ofr([m]); the func-
tion rp records where the fresh values were stored and where the existing values already
were.

The guardgp is constructed as follows. Ifp(j) is undefined, which means thatvj
should be fresh, thengp contains conjuncts(neq i j) for i ∈ [m]. If p(j) is defined,
which means thatup(j) = vj , thengp contains the conjunct(eq p(j) j). These are all
the conjuncts ofgp.

We now fix some injectionσ from the set{vj | p(j) undefined} of fresh values
to the set[m] − r([m]) of unused registers. The actionap contains an assignment
(setσ(vj) := j) for eachj wherep(j) is undefined. Also

rp(ι(k
′, i′)) =











p(i′) if k′ = k + h andp(i′) defined

σ(vi′ ) if k′ = k + h andp(i′) undefined

r(ι(k′, i′)) otherwise

Caseh = d− 1, no outgoing transitions of lengthd. At this point the values in the
m registers ofA are enough to decide whether to simulate a standard or a skip tran-
sition ofAρ. The construction above is used to add transitions which save the current
letter. However, each such transition is added a number of times, one for each outgoing
transition inAρ. The targets of these transitions are modified to reflect the effect of
taking the transition. This can be determined statically asdescribed above. Specifically,
it is known at this point if any of the transitions can be taken. We only add the ones
that would (we cannot determine a target for the others anyway). If no transitions can
be taken, we simulate a standard transition. This is again done by storing the current
letter, but we also drop the letter at the front of the queue (by incrementingk and decre-
mentingh and replacing the distribution function by one that is undefined atι(k, i′) for
i′ ∈ [n]).

Caseh = d− 1, Aρ has an outgoing transition of lengthd. At this point the values
in them registers ofA together with the current letter are needed to decide whether to
simulate a standard or a skip transition ofAρ.

As in the case above, we can statically evaluate all transitions of length shorter than
d and add transitions for them. But we cannot add the encoding of a skip transition be-
cause it should only be taken if no standard transitions are.For each standard transition
of lengthd

(qρ, [(g0, a0), . . . , (gd−1, ad−1)], q
′
ρ),

we can statically evaluate up to the point right before the final guardgd−1. Thus we can
add an automata transition toA with (g′d−1, a

′
d−1) on it and target(q′ρ, 0, 0, r

′), where
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g′d−1 anda′d−1 are versions ofgd−1 andad−1 modified to refer tord−1 andr′ is a
version ofrd which is undefined on all indices pointing into the queue.

The guardg′d′−1 is constructed as follows: For all conjunctseq i j in gd′−1, g′d′−1

containseq rd′−1(i) j and for all conjunctsneq i j in gd′−1, g′d′−1 containsneq rd′−1(i) j.
Finally, we must also simulate a skip transition, but only tobe taken in case none

of the other transitions are. That is, if any of the short transitions are taken, we have no
skip transition. If none of the short transitions are taken,we construct a guard that is
true if none of the final guards for the maximal length transitions are. Guards to ensure
this are generated using the same construction employed in the proof ofProposition 10.
These are then combined with the construction in the previous case. ⊓⊔
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