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Abstract—We study the geometric aspects of the sentry

selection problem for a sensor network with randomly
distributed sensors each of which covers a small disc. The

problem is to partition the sensors into a predetermined
number of groups, so that, for each group, the sensing

regions of the sensors in that group together cover
the region of interest. After presenting some theoretical

results, we include descriptions of two fast partitioning
algorithms, together with the results of simulating them

on moderate-sized networks.
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I. INTRODUCTION

In this paper we shall study the problem of sentry se-

lection in a network consisting of many small wireless

sensors scattered at random over a large region for the

purpose of monitoring it. This is currently a well stud-

ied topic for two reasons. Firstly, the sensors themselves

have become progressively smaller and increasingly

mobile, so that it now makes sense to assume that

their locations are random, rather than given by some

predetermined arrangement, such as a grid. Secondly,

for many applications, the sensor batteries are not

rechargable. Once most of the sensor batteries have

failed, the network is permanently disabled. Even when

the batteries are rechargable, they cannot be recharged

while the sensor is sensing [12]. Consequently, in both

cases, it is very important to conserve energy, switching

off sensors as they become redundant and only switch-

ing them on again when absolutely necessary. It turns

out that the natural redundancy in a random network

makes this possible.

Most of the previous work in this area (see [10],

[21] and the references therein) has focused on protocol

design. Our purpose here is to examine the geometric

aspects of the problem. We will consider a random

static arrangement of sensors with a common sensing

range r, and our analysis will be based purely in terms

of the abstract set of sensing discs drawn in the plane.

Indeed, a good way to visualize the basic setup is to

picture a large number of identical small thin discs

scattered over a square tabletop: each disc represents

the sensing area of a sensor, and all other aspects of the

sensors (such as mobility and interference) are ignored.

It is important to distinguish between those mon-

itoring applications that require coverage and those

which only require percolation (termed “detectability”

in [14]). If the sensors are intended to detect a fire

originating anywhere in a large forest, every point of

the forest has to lie within range of some sensor, i.e.,

in one of the sensing discs. If, however, the sensors are

intended to detect a cougar moving through the forest,

full coverage is not necessary: all we need is that the
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cougar cannot wander across the (square) forest from

left to right without falling within range of a sensor. If

this is the case then we say that there is percolation in

the network. For percolation, the sensing discs do not

have to cover the whole region, but some of them must

form a (perhaps quite circuitous) barrier between two

opposite sides.

In this paper we shall consider those applications

requiring coverage, so that we are interested in detect-

ing fires rather than cougars. We remark, however, that

for the cougar detection problem, it is actually much

simpler to ensure that no cougars even enter the forest.

This can be achieved by merely guarding the forest

perimeter, and we are thus led to the topic of barrier

coverage in thin strips, which is the subject of [3]

and [4].

The distinction between percolation and coverage is

far greater for random networks than for grid-based

networks. For instance, consider a sensor network based

on a large square grid, with sensors located at points

(i, j) in the plane, where i and j are integers with

0 ≤ i, j ≤ 1000, say. In this model, r > 1/2
guarantees “percolation” (in the sense described above),

and r > 1/
√
2 guarantees coverage of the square

[0, 1000]2. But for random networks, coverage comes

at a much higher price. Let us suppose that we place

n = 106 sensors uniformly at random in the same

square [0, 1000]2, so that we have one sensor per unit

area, as before. It turns out that we need r ≈ 0.6 for

percolation (see [6] for this and related results), but, for

coverage, r has to be much larger: we need r ≈ 2.3.

Moreover, the threshold value r ≈ 0.6 for percolation is

an absolute constant (for sensors distributed at random

with one per unit area), while the threshold for coverage

is an increasing function of n, the total number of

sensors.

The reason for this is that coverage, unlike perco-

lation, is determined by the “holes” in the network.

As the number of sensors and the size of the region

increase (keeping one sensor per unit area), so does

the size of the largest hole. We will not have full

coverage unless this hole is covered, and, if there are

n sensors, the largest hole is typically so large that we

need to make r about
√

logn/π (more precisely we

need πr2 ≈ logn + log logn – see later) to cover it.

Of course, in our model, r is the same for each sensor,

so that for most of the rest of the region this measure

will be a tremendous overkill. Indeed, if πr2 = logn,

a typical point in our region will be covered by logn
sensing discs, so that the vast majority of the sensors

will actually be redundant.

However, perhaps we can exploit this redundancy in

the following manner. We would like to devise a rota

system so that each sensor can sleep for most of the

time. We plan to partition the set of sensors into k
groups, and arrange that only the sensors in group ℓ

are active in the ℓth time slot. After k time slots have

expired, we will repeat the process. In order to detect an

event (e.g. a fire) occurring anywhere and at any time,

it is necessary that the sensors in each group themselves

form a single cover of the sensing region. So, finally,

here is our basic question:

(I) For fixed n and k, how large should the sensing

radius r be to ensure that our n randomly placed sensors

can be partitioned into k groups, each of which covers

the sensing region A (of area n)?

We call this the problem of sentry selection, since each

of the groups is a group of sentries keeping watch over

the region while the others are sleeping. Clearly, if we

can devise such a partition, the lifetime of each sensor,

and consequently the entire network, will increase by

almost a factor of k (the sensors probably consume

some energy in sleep mode).

Of course, our hope is that the answer to Question

(I) will be “We only need to make r large enough to

ensure coverage”, a hope justified by the high level of

average coverage provided by such an r. However, there

is a problem. If we can partition the set of sensors into

k groups, each of which provides coverage, then the

original set of sensors must provide k-coverage: every

point of the sensing region must lie within the sensing

range of k sensors. So r also has to be large enough to

ensure this. Fortunately, it turns out that the necessary

increase in r is very small – ignoring boundary effects,

the threshold for k-coverage is only πr2 ≈ logn +
k log logn.

In any case, we are led to the following reformulation

of (I):

(II) Suppose that we have obtained a k-cover C of a

large sensing region A using randomly placed sensors.

What is the probability that we can partition C into k
single covers of A?

Note that this is essentially the same as (I), except that

we are now explicitly concerned with the gap between

k-coverage and “k-partitionability”. Also, note that we

have not yet specified the exact model and parameters,

details of which appear in the next section.

Leaving aside the random aspect of (I) and (II) for

the moment, we turn briefly to the topic of partitioning a

geometric k-cover into l ≤ k single covers, which has a

rich mathematical history. It was introduced by L. Fejes

Tóth in the 1970s, and, although there are now many

results in the area (see [18] and [19] for a sample), it is

surprising how little is known about some of the most

basic questions. Pach and Pálvölgyi [17] proved only

in 2013 that, for all k, there exists a k-cover of the

plane with unit discs that is not 2-partitionable. While

their constructions are complicated, there are simple

examples of 2-covers which are not 2-partitionable,
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and these examples play a central rôle in the solution

of Question (II). In fact, as part of our study, we

discuss a recent classification theorem for (non-random)

non-2-partitionable 2-covers of the plane with half-

planes, which, somewhat surprisingly, has implications

for random k-covers with discs and, consequently, the

solution of Question (II).

In three dimensions, a much older result of Mani-

Levitska and Pach [15] states that for any k, there

exists a k-cover of space with unit balls that is not 2-

partitionable. Of course, there is no need to consider

just unit balls, and the papers [17], [18] and [19]

contain results on planar covers with convex polygons,

infinite strips and straight lines. Many of these results

are negative, in the sense that there is usually, for

arbitrarily large k, a k-cover Ck of the plane with certain

shapes that is not even 2-partitionable. However, when

studying random coverings, such as those arising in

(I) and (II), we have a distinct advantage: perhaps all

the bad covers Ck occur with very small probability.

It turns out that this is indeed the case, at least for

discs, so that our eventual answer to (II) will be:

“The probability tends to one as the number of sensors

increases”. Detailed results are given in the next section.

From a practical point of view, it is no use knowing

that there is a partition if we cannot find it quickly.

Therefore, we must consider the following algorithmic

problem:

(III) Suppose we know that a certain k-cover C of a

large sensing region A using randomly placed sensors

is k-partitionable. Is there a fast algorithm for finding

the partition?

We will think of colouring the sensors (or, equivalently,

the sensing discs) with k colours, so that the sensors of

each colour form the parts of the partition. In this paper

we present two colouring/partitioning algorithms, and

our results suggest that the answer to (III) is “Yes”.

A. Related work

One of the earliest relevant papers was written by

Slijepcevic and Potkonjak [20], who discuss Question

(III), and provide a partitioning algorithm which runs in

time O(n2), based on the idea of minimizing the cov-

erage level of sparsely covered areas within one cover

(throughout this paper, n is the number of sensors).

Abrams, Goel and Plotkin [2] consider a variant of the

problem, where the objective is to partition the sensors

into covers so that the number of covers that include

an area, summed over all areas, is maximized. Finally,

Liu and Haenggi [13] present a lattice-based scheme for

selectively activating and de-activating randomly placed

sensors to conserve energy: however, this doesn’t result

in disjoint covers of the region, since a sensor might

be active in two different time slots.

More recently, in [22], the authors analyze the per-

formance of a randomized scheduling algorithm with

the aim of maximizing the probability of intruder de-

tection; in contrast, we propose an adaptive scheduling

algorithm for which the probability of intruder detection

is one. Adaptive scheduling algorithms have also been

considered in [7] and [1]. Ding, Wang and Xiao [7] aim

to partition the sensors in a network so that the sensors

of each group retain network connectivity (rather than

coverage); thus their work has little overlap with ours.

AbdelSalam and Olariu [1] consider an asynchronous

network where the sensors adjust their sleep time based

on their remaining energy and that of neighboring

sensors; however, their network is a tasking network

rather than a simple sensing network, and their aim

was to extend network lifetime while retaining a certain

quality of service, rather than to guarantee complete

coverage. To summarize, although several related ideas

and algorithms have been considered in the literature,

they all deal with different problems, and so none of

this previous work is directly comparable with ours.

The rest of this paper is organized as follows. In

Section II, we will first of all state problems (I) and

(II) precisely, before giving some theoretical results.

Then, in Section III, we will describe two colouring

algorithms, and present the results from both of them in

detail. We will see that there are surprising connections

between the theoretical and computational aspects of

the problem.

II. THEORETICAL RESULTS

Here are the exact specifications of our model. We

consider n points (representing sensors) placed uni-

formly at random in a unit (1 × 1) torus T , so that

the coordinates of every point are taken modulo one.

Boundary effects are not always negligible in problems

of this kind: however in this paper we shall avoid them

for simplicity. Surround each of our n points pi in T
by the open disc Dr(pi) of radius r ≪ 1 centred at pi.
We say that the union of these discs C forms a k-cover

of T if each point t ∈ T lies in at least k discs of

C, and that C is k-partitionable if the discs of C can

be coloured with k colours so that the discs of each

colour themselves form a 1-cover of T . Suppressing

the dependence on n, we will write Ek
r for the event

that C is a k-cover, and F k
r for the event that C is

k-partitionable. Note that problems (I) and (II) of the

introduction are, in this context, “What is P(F k
r )?” and

“What is P(F k
r |Ek

r )?” respectively.

Note also that we are using a different normalization

in this section: in the introduction we took one sensor

per unit area so as to compare our model to a lattice-

based model, whereas it is more convenient to perform

simulations in a fixed area, with an increasing number

(and, consequently, density) of sensors. Thus the ex-
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pected number of sensors in a sensing region is now

πr2n, as opposed to πr2.

Our first priority is to estimate P(Ek
r ). The following

theorem was proved by Janson [11], who extended a

result of Hall [9], who applied a method of Gilbert [8]

to a question of Moran and Fazekas de St Groth [16],

which was motivated by a problem in biology (on

antibodies).

Theorem 1. If

πr2n = logn+ k log logn+ x,

then

P(Ek
r ) → e−e−x/(k−1)!

as n → ∞.

The problem of determining P(Ek
r ) and P(F k

r ) ex-

actly seems hopelessly intractable. Hence, one goal

of our simulations is to estimate these probabilities

for moderate values of n. Although results such as

Theorem 1 are only asymptotic, our simulation results

suggest that the convergence is usually pretty rapid.

Here is the answer to Question (II):

Theorem 2. With r ∈ R and n, k ∈ N,

P(Ek
r \ F k

r ) ≤
ck

logn
.

Consequently, as long as P(Ek
r ) = Θ(1), P(F k

r |Ek
r ) =

1 − o(1). Putting this together with Theorem 1, we

obtain the following answer to Question (I).

Theorem 3. If

πr2n = logn+ k log logn+ x,

then

P(F k
r ) → e−e−x/(k−1)!

as n → ∞.

The proof of Theorem 2, which is rather complicated,

is given in [5]. The same paper also contains a short

proof of Theorem 1. Several steps in the proof of

Theorem 2 are also used implicitly in our colouring

algorithms, so we will postpone a more detailed dis-

cussion until the next section. For now, we only remark

that Theorem 2 is best possible, up to the value of the

constant ck.

III. ALGORITHMS AND OBSTRUCTIONS

As we have already remarked, if r is high enough

to guarantee k-coverage, most of our sensing region

T is very heavily covered. Consequently, we can just

colour the sensors with k colours completely at random

(so that each colour is used on each sensor with

probability 1/k) and hope for the best. If some part

B of T is covered c times by the discs Dr(pi), then

the probability pfail that our random colouring fails at

B, that is, the probability that B is not covered by discs

of each colour, satisfies

pfail ≤ k

(

1− 1

k

)c

≈ ke−c/k,

and so is usually very small since c will generally

be much larger than k. Indeed, this observation, to-

gether with the Lovász local lemma, can be used to

show that Theorem 2 holds as long as r is not too

close to the threshold for k-coverage. However, we

are most interested in precisely this threshold range.

For values of r just above the threshold, there will

be several “atomic” regions of T (topological com-

ponents of T \ ⋃

i ∂Dr(pi)) which are covered, say,

between k and 10k times. For these regions, pfail will

be (approximately!) somewhere between 10e−10 and

e−1, and, sooner or later, our colouring will in fact

fail on one of them. The following sections describe

two ways of avoiding this problem. The first, which

is fully distributed, involves recolouring, while the

second, centralized, algorithm starts by colouring the

thinly covered regions first.

A. Threshold recolouring

For this algorithm, the first step is to randomly colour

each sensor as above. Then, for each sensor p, we mea-

sure the total received power at p (assuming a path loss

law of the form P = d−α), if all the sensors receiving

the same colour as p were to transmit simultaneously.

If this power is above a certain threshold, we recolour

p. We do this simultaneously for all n sensors (or,

alternatively, in k rounds, one for each colour class),

and repeat. The hope is that successive iterates of this

process will converge to a more balanced colouring.

Note that this method ensures that two nearby sensors

coloured identically in one round are likely to receive

different colours in the next. Exactly what we mean

by “nearby” and “likely” is determined by the path

loss exponent α, which we can use to fine-tune the

algorithm. Also, for the simulation results below, the

threshold was chosen so that 30% of sensors were

recoloured in the first round: this threshold was then

fixed for subsequent rounds, up to a maximum of 10

rounds. Consequently, the algorithm runs in time O(1),
and requires O(n) operations in total. The pseude-

code for each trial run of the algorithm is presented

as Algorithm 1.

This algorithm has several noteworthy features. First,

there is some reason to hope that it will converge to a

colouring which is balanced, meaning that each colour

class not only covers T , but covers it uniformly, in some

sense. Second, there is no requirement that the nodes

can communicate: each node only needs to be able to

measure received power, and is independent in all other

aspects of its operation.
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Algorithm 1 Threshold recolouring

1: randomly place n sensors on the torus

2: color each sensor p randomly with one of k colours

3: if F k
r does not occur then

4: declare “random fail”

5: S ← colour sequence

6: calculate received power Pp from sensors of same

colour

7: set threshold θ to 70-th percentile of (Pp)
8: b← |{p : Pp > θ}| % number of “bad” sensors

9: bmin ← b

10: i← 0
11: while i < 10 and b > 0 do
12: i← i+ 1
13: re-colour each sensor for which Pp > θ

14: calculate received power Pp from sensors of

same colour

15: b← |{p : Pp > θ}|
16: if b < bmin then
17: bmin ← b

18: S ← colour sequence % save best colouring

19: end if
20: end while

21: end if
22: restore color sequence S

23: if F k
r occurs then

24: declare “recoloured”

25: end if

Table I and Table II show the results of simulating

this algorithm with path loss exponents α = 2 and

α = 4 respectively. For each combination of values

of r, k and n, 1000 runs were performed (with si-

multaneous recolouring in each iteration). The column

headed “random fail” indicates the number of random

arrangements of discs where random colouring failed,

the column headed “recoloured” indicates the num-

ber of remaining arrangements that were successfully

coloured by iterating the threshold recolouring algo-

rithm, and the final column indicates the number of

successes after recolouring. The program did not check

whether the original arrangement of (all) discs formed

a k-cover, although theory suggests that this is greater

than 0.99985 even in the worst case for the parameters

chosen. The results show that the recolouring was suc-

cessful at least half of the time (when random colouring

failed) for every combination of parameters tested, and,

owing to the possible presence of non-k-covers in the

cases where it failed, this is an underestimate of the

algorithm’s success rate.

The simulations were carried out using Matlabr

on a MacPro equipped with two 2.8 GHz quad-core

Intel Xeon processors and 8 GB RAM. To give an

indication of the execution time (on a single core) of

the algorithm, the simulation for r = 1/16, k = 2,

n = 2000 takes about 4 s per trial.

B. Freedom recolouring

The following colouring algorithm runs in time

O(n log n log logn), assuming reasonable distribution

1/r k n random fail recoloured successes
8 2 375 255 151 896
8 3 600 255 205 950
8 4 800 301 252 951
8 5 1050 261 230 969
16 2 2000 114 80 966
16 3 2600 444 343 899
16 4 3750 332 293 961
16 5 5000 245 226 981
32 2 8000 340 229 889
32 3 12000 484 381 897

TABLE I

THRESHOLD RECOLOURING WITH α = 2 (1000 TRIALS)

1/r k n random fail recoloured successes
8 2 375 272 171 899
8 3 600 244 182 938
8 4 800 300 245 945
8 5 1050 252 214 962
16 2 2000 105 73 968
16 3 2600 451 338 887
16 4 3750 314 268 954
16 5 5000 223 210 987
32 2 8000 356 264 908
32 3 12000 481 399 918

TABLE II

THRESHOLD RECOLOURING WITH α = 4 (1000 TRIALS)

of the locations of the sensors.

We first divide the torus into 2r×2r boxes, so that the

sensing region of any sensor in a box b only overlaps

with the sensing regions of sensors within one of the

nine boxes that are either equal, adjacent, or diagonally

adjacent to b. We shall base our running time estimates

on the assumption that no box contains more than

C log n sensors, for some constant C. On average, each

box contains Θ(logn) sensors in the critical regime,

and, for suitably large C, no box will contain more than

C log n sensors with high probability. The algorithm

proceeds in three phases.

Phase 1: We form a list of atomic regions that are

thinly covered. In our simulations, we took this to mean

regions with coverage at most s = 2k+1: however the

parameter s is adjustable. To create this list, for each

sensor p, we list the neighbours p1, . . . , pl of p, that is

the sensors whose sensing regions intersect that of p.

For each p, only sensors in nearby boxes need to be

checked, so that, under the above assumption, this will

take time O(log n) for each sensor.

The sensing region of each pi intersects the boundary

of the sensing region of p in an arc. Let θ−i and θ+i
be the angles of the beginning and end of this arc,

measured from p. We record in an array (η1, . . . , ηl)
whether or not this arc crosses the ray θ = 0, setting

ηi = 1 if it does cross θ = 0, and ηi = 0 otherwise.

Then the total coverage at the point θ = 0 on ∂D(p)
is just c =

∑l
i=1 ηi.

We order the angles θ±i ∈ [0, 2π], and then consider
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each angle θ±i in increasing order. If we encounter a

θ−i , we set ηi = 1 and increase c by 1. If we encounter

a θ+i , we set ηi = 0, and decrease c by 1. Thus the

arrays (ηi) and c track the sensor discs and coverage

level respectively, as we traverse ∂D(p). Each time the

coverage level c is at most the coverage limit s, we

record the set S = {pi : ηi = 1} of sensors that cover

this part of ∂D(p) in an array.

To increase efficiency, we only need to record S if

the coverage is at a local minimum, i.e., just after a

θ+i and just before a θ−j . Ordering the angles takes

O(l log l) time, and all other steps here take O(l), so

the total running time is now O(n logn log logn) over

all sensors. (By the above assumption, l ≤ 9C logn.)

Phase 2: We place the sets S in an array in order

of their freedom. The freedom of S is defined as the

number of uncoloured sensors in S minus the number

of missing colours, that is, colours that do not occur

as a colour of some p ∈ S. Initially, no sensor is

coloured and all k colours are missing, so the freedom

of each set S is just |S| − k. Note that there are only

s−k+1 = O(1) possible values for the freedom, and so

we can maintain the sets in order of freedom with only

a O(1) time penalty whenever we add or delete a new

set. There are also at most O(n log n) sets, although in

practice there are far fewer if s is chosen to be not too

large. Indeed, in practice we choose s so that the next

phase of the algorithm is not too slow.

Take a set S with smallest freedom. If this freedom

is negative, then we stop as the colouring has failed. If

all sensors in S are coloured, we discard S. Otherwise,

we pick an uncoloured sensor p ∈ S, and assign to p
at random any of the missing colours of S, that is, any

colour that has not been assigned to any p′ ∈ S. We

update the freedoms of the (at most O(log n)) other

sets containing p, and repeat until either the colouring

fails or there are no sets left. (A slight improvement

in the algorithm can be achieved by first constructing

the set M of missing colours that are also missing in

every other set S′ ∋ p of freedom 0. Then, if M 6=
∅, we colour p with a random colour from M . This

avoids reducing the freedom of another set to below 0,

resulting in the failure of the algorithm.)

The above colouring takes time O(log n) per colour

assignment, so at most time O(n logn) overall. We

have now coloured the sensors so as to cover the

“difficult” regions, unless the algorithm has failed.

Phase 3: The final stage of the colouring is to repeat

the first phase, finding the neighbours p1, . . . , pl of each

sensor in turn. As before, we calculate the angles θ±i
and initialize the array (ηi). This time, however, we

also maintain an array (n1, . . . , nk) of the number nj of

discs of colour i covering an arc. As before, we traverse

∂D(p) updating this array, incrementing nj when we

encounter a θ−i and pi has colour j, and decrementing

nj when we encounter a θ+i and pi has colour j. If

any nj becomes zero, we greedily assign colour j to

any uncoloured sensor pi that covers this interval (i.e.,

ηi = 1), incrementing ni in the process. If no such

uncoloured sensor exists then the colouring fails and

we stop.

The result, if successful, is a partial colouring of the

sensors such that each point is covered by sensors of

each colour.

The simulation was written in C, and the random

numbers were generated by a 16-bit version of ARC4.

All coordinate arithmetic was done to full double

precision.

C. Obstructions to partitionability

Whatever algorithm we use, some k-covers cannot

be k-coloured. Let us initially concentrate on the case

k = 2. Figure 1(a), Figure 1(b) and Figure 1(c)

illustrate three non-2-partitionable 2-covers. Although

there are other obstructions to partitionability, these

three together appear to account for the majority of

cases – see Table III. Referring to the figures, we are

only interested in the central region inside the small

central circle (which is not one of the disc boundaries

∂Dr(pi)). In each case, the central region is 2-covered,

but any attempt to partition the discs into two covers

is doomed to failure. For Figure 1(a), two of the

three “inner” discs (those which intersect at the very

centre) must be coloured identically, which means that

the discs of the other colour class cannot cover the

entire central region. In Figure 1(b), some two discs

which are adjacent in the cyclic order must be coloured

identically, leading to the same conclusion. Finally, in

Figure 1(c), the discs must be coloured alternately with

the two colours as we go round the figure, which means

that the very central atomic region is only covered by

discs of one colour.

The first two configurations, which we term C3 and

C5 respectively , are different from the third, A3. (An

explanation of this notation will be given in the next

section.) The reason is that the central region can be

made as small as one likes, as the configuration also

exists with half-planes. A3, however, owes its existence

to the curvature of the discs, and there is no equivalent

half-plane version. For this reason, when n is large, the

C3 and C5 configurations will dominate over the A3

configurations. Indeed, for large n, it is very unlikely

that the circular central region is large and intersects no

other discs. Consequently, the central region is usually

small, and, on its scale, the disc boundaries are almost

straight lines. For C3 and C5 this is possible, but for A3,

the small central circle is forced to be of a comparable

size to the discs themselves, making A3 less and less

likely to occur as n increases.

These facts point us towards the investigation of non-

2-partitionable 2-covers with half-planes. In [5], the

following theorem is proved.
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(a) C3

(b) C5

(c) A3

Fig. 1. Obstructions to 2-partitionability

Theorem 4. Suppose C is a finite 2-cover of R
2 with

half-planes that is not 2-partitionable. Then C contains

a C3 or a C5 configuration.

C3s and C5s are the configurations which occur with

probability Θ(1/ logn) and make Theorem 2 best pos-

sible for k = 2. In fact, for k ≥ 3, it turns out that

the principal obstructions to k-partitionability in a k-

cover are just non-2-partitionable 2-covers in which the

entire central region is covered by k−2 common discs.

All other obstructions occur with a lower asymptotic

frequency. To summarize, C3s and C5s (possibly buried

beneath other discs) are the principal obstacles to k-

colouring a k-cover when n is large.

D. Freedom recolouring results and statistics of ob-

structions

The results of 100000 runs of the freedom recolour-

ing algorithm for each case are displayed in Table III.

The key for the column headings is as follows. “ftkc”

indicates that the maximum number of discs allowed

by the program failed to k-cover T , Ci indicates that

the program found a Ci configuration, “fail” indicates

that the program succeeded in colouring the k-covered

regions, failed to k-colour the discs, and failed to

find an obstruction, and “succeed” indicates that the

program succeeded in k-colouring the discs.

The program also identified several different types

of “asymptotically low frequency” obstructions (such

as A3), listed in the middle columns of Table III. The

general notation Cn refers to a configuration containing

n k-covered regions covered by k − 2 common discs,

where, after these common discs are removed, each

region is only covered a pair of discs (Di, Di+1) of

sensor discs, where n is odd, and where the subscripts

are taken modulo n. Only C3 and C5 have half-plane

variants, although, as can be seen from the table, several

disc-C7s and even 4 disc-C9s were detected overall.

The remaining codes describe families of obstructions.

To describe them, we first define the equality graph.

This is a graph whose vertices are the discs, and in

which two vertices Di and Dj are joined by an edge

if there are some two exactly k-covered regions A and

B such that the symmetric difference of the sets of

discs covering A and B is exactly {Di, Dj} (see Figure

2). The reason for the terminology is that two vertices

joined by an edge correspond to discs which must be

coloured with the same colour. With this convention,

Bn refers to the existence of a k-covered region in

which two of the covering discs are forced to be the

same colour due to a path of length 1
2 (n − 1) in the

equality graph, and An refers to the existence of an n-

covered region where too many discs are forced to be

the same colour by the equality graph. Actually, Cn

is a special case of Bn, which is a special case of

Ak, but the program only lists the highest ranked bad

configuration with respect to the order

C3 > C5 > · · · > B3 > B5 > · · · > A3 > · · · > KC.

Finally, KC indicates that the program failed to colour

the discs so that the exactly k-covered regions were

covered by discs of each colour, but that none of the

above bad configurations was detected.

In all the simulations, there were no instances where

3-coverage did not imply 2-partitionability, although

such instances do in fact exist, from the results in [17].

There were, however, some instances where 4-coverage

might not have implied 3-partitionability. Figure 3

shows graphs of P(Ek
r ) and P(F k

r ) estimated from the

simulations.
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1/r k ftkc C3 C5 KC A3 A4 A5 A6 A7 A8 B3 B5 B7 B9 C7 C9 fail succeed
4 2 0 4042 839 0 278 2 0 0 0 0 0 0 0 0 60 4 207 94568
8 2 0 3442 414 0 125 0 0 0 0 0 0 0 0 0 4 0 69 95946
16 2 0 2822 324 0 56 0 0 0 0 0 0 0 0 0 0 0 38 96760
32 2 0 2322 215 0 48 0 0 0 0 0 0 0 0 0 0 0 16 97399
64 2 0 2116 188 0 33 0 0 0 0 0 0 0 0 0 0 0 8 97655
128 2 0 1857 149 0 22 0 0 0 0 0 0 0 0 0 0 0 7 97965
4 3 0 4050 334 18 0 564 4 0 0 0 1528 601 30 1 0 0 5630 87240
8 3 0 3584 314 2 0 365 5 0 0 0 1176 257 1 0 0 0 2807 91489
16 3 0 3180 226 2 0 303 2 0 0 0 903 156 0 0 0 0 1857 93371
32 3 0 2931 223 1 0 284 0 0 0 0 738 106 0 0 0 0 1223 94494
64 3 0 2681 198 0 0 202 3 0 0 0 552 67 0 0 0 0 933 95364
128 3 1 2478 169 0 0 125 1 0 0 0 454 56 0 0 0 0 782 95934
4 4 0 3763 246 229 0 0 637 16 1 0 2501 621 25 0 0 0 14584 77377
8 4 0 3606 241 118 0 0 501 7 0 0 1945 326 1 0 0 0 8330 84925
16 4 0 3382 216 73 0 0 368 6 0 0 1610 213 0 0 0 0 5325 88807
32 4 0 3127 176 55 0 0 335 3 0 0 1307 165 0 0 0 0 3736 91096
64 4 0 2959 159 36 0 0 307 1 0 0 1121 129 0 0 0 0 2947 92341
128 4 2 2767 175 35 0 0 245 4 0 0 931 98 0 0 0 0 2471 93272
4 5 0 3645 208 430 0 0 0 614 20 0 2979 593 15 1 0 0 25702 65793
8 5 0 3545 190 260 0 0 0 541 12 0 2528 357 1 0 0 0 15841 76725
16 5 0 3365 191 163 0 0 0 458 7 1 2104 274 0 0 0 0 10526 82911
32 5 0 3235 168 141 0 0 0 399 8 0 1727 196 0 0 0 0 7812 86314
64 5 1 3092 149 95 0 0 0 315 8 0 1481 186 0 0 0 0 6675 87998
128 5 8 2879 167 76 0 0 0 296 9 0 1340 121 0 0 0 0 5878 89226

TABLE III

SIMULATION RESULTS FOR FREEDOM RECOLOURING ALGORITHM

A

B C

D D

D

1

2

3

D1 D
3

D
2

A,C A,B

B,C

Fig. 2. The equality graph

Note that for these simulations, discs were only

added until k-coverage was achieved, so that the algo-

rithm was always run on a “worst-case” k-cover. This

is in contrast to the threshold recolouring simulation

results presented earlier.

IV. CONCLUSION

The sentry selection problem in wireless sensor net-

works is of both theoretical and algorithmic interest.

For the setup where n nodes are placed uniformly

at random on the unit torus, a recent result states

that randomly generated k-covers are k-partitionable

asymptotically almost surely. In other words, the gap

between k-coverage and k-partitionability vanishes as

the number of nodes increases. Together with an old

result on k-coverage, this shows that the area of the

sensing disc πr2 needs to be just slightly larger than

(log n+k log logn)/n for k-partitionability. Hence the

increase in r necessary to have k disjoint sets of

sensors, each covering the area, instead of just single

coverage, is rather small as n gets large – and the

benefit is a k-fold increase in network lifetime.

In this paper, we have examined some of the primary

obstructions to k-partitionability. The probability of

such obstructions occurring goes to zero as 1/ logn.

On the algorithmic side, we have introduced an im-

provement over random colouring that is based on

measuring the total power received from the nodes with

the same colour, and recolouring if the power exceeds a

threshold. This simple scheme “saves” about 80% of the

cases where random colouring was not successful. We

have also proposed an efficient centralized colouring

algorithm that runs in time O(n log n log log n) and

succeeds in almost all cases. Finally, we have presented

simulation results which provide detailed statistics on

the frequency of various obstructions to partitionabil-

ity. These shed light on recent theoretical results and

suggest directions for future research on geometric

partitioning problems.
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Fig. 3. Probabilities of coverage (black) and partitionability (gray)


