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Abstract 

Five bioactive glass compositions in the SiO2-P2O5-CaO-Na2O-CaF2 system (0 – 32 mol% CaF2) and 

Bioglass® 45S5 were evaluated for their apatite forming ability in serum-free and serum-containing 

cell culture media for up to seven days. While F- ions in low concentrations were found to enhance 

apatite formation, higher fluoride content caused formation of fluorite and calcite. The presence of 

serum proteins delayed apatite precipitation for all compositions, while Bioglass® 45S5, despite 

considerably higher phosphate content (2.6 vs. ≤1.1 mol% P2O5) and high concentrations of Ca2+ and 

PO4
3- in solution, formed only amorphous calcium phosphate. 

Highlights 

- Low concentrations of fluoride enhance apatite formation in bioactive glasses 

- Serum proteins retard apatite precipitation with minimal effect on ion release  

- Ion concentrations remain high at later time points in serum-containing media as a 

consequence of reduced apatite formation 

Keywords 

bioactive glass, serum proteins, in vitro, fluorapatite, cell culture medium 

1. Introduction 

Bioactive glass (BG) is known to bond to hard and soft tissues [1]. Fluoride-containing glasses are of 

particular interest owing to their ability to form fluorapatite, which exhibits better chemical stability 

than fluoride-free apatites [2]. Fluoride has well documented antibacterial properties [3], and in low 

concentrations fluoride ions increase bone mass and mineral density [4]. Furthermore, fluoride-

containing bioactive glasses enhance osteoblast proliferation, differentiation and mineralization [5]. 

Novel BG compositions are evaluated in vitro for their apatite forming ability in physiologically 

relevant test solutions such as SBF [6], Tris-buffer solutions [7], and cell culture media [8]. 

Dissolution and precipitation forms an amorphous calcium phosphate surface layer in the early 

reaction stages [9], which later undergoes crystallization to apatite by CO3
2-, OH-, and/or F- anion 

incorporation. This surface apatite is able to elicit an interfacial biological response, resulting in bond 

formation between tissues and the synthetic material, i.e., bioactive fixation [10]. However, pivotal to 

this bioactivity is controlling the release rates of ionic dissolution products, i.e., Ca2+ and Si4+ ions 

[11]. Dissolution kinetics and consequently the rate of apatite formation is directly related to atomic 

structure [12], which therefore are critical to in vivo performance. 

Although in vivo conditions do not parallel simulated in vitro conditions [13], certain proteins induce 

specific biological effects in simulated model systems [14]. Amino acids [15], proteins [16], and other 

organic molecules are rapidly adsorbed onto the glass surface and interfere with apatite formation and 



stability of the precipitated surface layers. The present work investigates the role of serum proteins in 

attenuating the in vitro apatite forming ability of fluoride-containing bioactive glasses. 

2. Materials and Methods 

Five BG compositions in the SiO2-P2O5-CaO-Na2O-CaF2 system were prepared by conventional melt-

quench route as described earlier [8, 17]. Bioglass® 45S5 was prepared as control (Table I). Glass 

powders were immersed in two dissolution media based on Eagle’s Minimal Essential Medium with 

Earle’s Salts (MEM). Briefly, both media contained 2.2 g/L NaHCO3, 20 mL/L HEPES buffer 

solution, and were nominally Si4+ and F- free; HC-MEM (pH=7.4) was serum-free, while HS-MEM 

(pH=7.3) contained 10% of heat-inactivated foetal bovine serum (Sigma-Aldrich) as described 

previously [8, 18]. Dissolution experiments, elemental analysis, characterization of glass powders by 

FTIR and XRD were performed as described previously [8]. 

One-way analysis of variance (ANOVA) with post hoc Bonferroni analysis (SPSS Statistics, v.20, 

IBM Corp.) was used for statistical analysis; p values < 0.05 were considered statistically significant. 

Mean values ± standard deviations are presented. 

Table I: Nominal glass compositions (mol%) 

Glass SiO2 P2O5 CaO Na2O CaF2 Classification 

Bioglass® 45S5 46.1 2.6 26.9 24.4 - 
fluoride-free 

F0 49.47 1.07 23.08 26.38 - 

F4 47.12 1.02 21.98 25.13 4.75 
low-fluoride 

F9 44.88 0.97 20.94 23.93 9.28 

F17 40.68 0.88 18.98 21.69 17.76 
high-fluoride 

F32 33.29 0.72 15.53 17.75 32.71 

 

3. Results and Discussion 

Glass dissolution, by ion exchange and dissolution of the silicate network through a combination of 

Si-O-Si bond breakage [19] and silicate chain dissolution [20], caused a rapid increase in Ca2+, Si4+ 

and F- concentrations between days 0 and 3. Conversely, P (or PO4
3-) depletion closely mirrored 

apatite formation. On day 3, concentrations of Ca2+ and PO4
3- were generally higher in the serum-

containing medium, HS-MEM (Figure 1). Between days 3 and 7, Ca2+ and Si4+ (not shown) 

concentrations decreased slightly, and F- concentrations remained approximately constant. PO4
3- 

concentrations decreased in both solutions; however, the decrease was much more pronounced in HC-

MEM, coinciding with faster apatite formation.  

On day 7, ionic concentrations were also generally higher in the serum-containing HS-MEM medium, 

with differences in Ca2+ and F- being less pronounced for low-fluoride glasses (F4 and F9). 



 

(Figure 1) 

At day 7, 45S5 (insets in Figure 1) serum containing media showed higher Ca2+ and PO4
3- 

concentrations than those of all other glasses, with the significantly higher phosphate concentration 

most likely to be due to an absence of apatite formation, and thus of PO4
3- sequestering from solution. 

The Ca2+ concentration for F0 was comparable to all fluoride-containing glasses, while PO4
3- 

concentration for F0 was lower than all fluoride-containing glasses (except F32). 

FTIR (Figure 2) and XRD (Figure 3) showed changes after BG immersion. In serum-free conditions 

(HC-MEM), apatite was detected as early as day 3 for the low-fluoride glasses. In the presence of 

serum (HS-MEM), apatite formation was delayed and could be detected for the low-fluoride glasses at 

7 days, while glass F17 only formed amorphous calcium phosphate (broad absorption band at 

566 cm-1). Owing to its high fluoride content, F32 only showed high intensity Bragg peaks 

corresponding to fluorite (CaF2) formation in both media. 



 

(Figure 2) 

Apatite formation increased with reaction time. For the fluoride-containing glasses, FTIR bands for 

PO4
3- at 1040 cm-1 became sharper while the 560-610 cm-1 domain resolved into two well-defined 

bands. These are characteristic of crystalline calcium orthophosphates including apatite. XRD showed 

presence of apatite-specific reflections and a shift in the position of the amorphous halo to lower 2θ-

values compared to the unreacted glasses [21], representing the ion-depleted glass. Apatite was also 

detected for F0 at 7 days of immersion in HS-MEM, while 45S5 showed an amorphous halo in XRD 

and a single broad absorption band at 566 cm-1 in FTIR, suggesting amorphous calcium phosphate or 

poorly crystalline apatite.  



 

(Figure 3) 

FTIR bands for CO3
2- at 710, 870 and 1400–1500 cm-1 indicated carbonate incorporation into the 

apatite. Only B-type CO3
2- substitutions are believed to occur in test solutions containing HCO3

- 

≤ 20 mmol L-1 [22]. However, both HC- and HS- media contain ≈26 mmol L-1 HCO3
-, and therefore 

the possibility of A-type substitutions exists. Indeed, the vibration at 1480 cm-1 has been attributed to 

a “minor A-type” CO3
2--substitution [23].  

The Ca:P (mol%) ratio increased with increasing CaF2 content. It is apparent that this Ca (but also 

fluoride) excess results in the formation of additional calcium-containing phases, i.e. calcite and 

fluorite. In contrast to previous experiments conducted using nominally carbonate-free media [17], all 

XRD patterns (except 45S5) were dominated by high intensity peaks associated with calcite, which 

increased in intensity with increasing calcium content. The limited availability of PO4
3- influenced the 

relative quantities of the different crystalline phases, particularly with respect to the amount of F- ions 

being incorporated into either fluorapatite or fluorite. Therefore following PO4
3- depletion, HCO3

- ions 

in solution and remaining Ca2+ ions form calcite, while excess F- and Ca2+ ions form fluorite. 



4. Conclusions 

Fluoride ions in low concentrations were clearly beneficial for apatite formation of BG, while higher 

fluoride content resulted in formation of fluorite and calcite. The presence of serum proteins delayed 

apatite precipitation for fluoride-containing glasses, while Bioglass® 45S5, despite a considerably 

higher phosphate content, formed only amorphous calcium phosphate. 
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Figure Captions 

Figure 1: Concentrations of Ca2+, P, and F- in culture media (a-c) HC-, and (d-f) HS-MEM after 

immersion of BG. Insets: (d) Ca2+ and (e) P concentrations for F0 and 45S5 at day 7 (HS-MEM). 

Figure 2: FTIR spectra of glasses after immersion for 3 days (grey) and 7 days (black) in (a) HC-

MEM and (b) HS-MEM. Apatite formation, as interpreted from the appearance of split PO4
3- (ν 4) 

peaks and broad sharp PO4
3- (ν 3) absorption band, is severely delayed in HS-MEM (arrows). 

Figure 3: XRD patterns of glasses after immersion for 3 days (grey) and 7 days (black) in (a) HC-

MEM and (b) HS-MEM. Inset: Detailed view of F4 in HC-MEM at day 7 showing characteristic 

reflections for apatite in the 30-35° 2θ range. 

 


