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Abstract 

Previous data have unveiled a novel autoregulatory feedback loop between iASPP and p63 

in the stratified epithelia; this involves two microRNAs, miR-574-3p and miR-720, and is 

critical for epidermal homeostasis. The iASPP oncoprotein, an inhibitory member of the ASPP 

(apoptosis stimulating protein of p53) family, is a key inhibitor of p53 and NF-κB and is highly 

expressed in many cancers. Non-melanoma skin cancer, comprising of cutaneous squamous 

carcinoma (cSCC) and basal cell carcinoma, is currently the most common malignancy in the 

UK. In view of this newly-identified iASPP-p63 axis, I hypothesised a potential role for 

dysregulation of this feedback loop in the pathogenesis of cSCC and aimed to assess the role 

of iASPP in human cSCC. 

 

Protein and mRNA expression patterns were assessed in a panel of 10 cSCC cell lines 

generated by our group. In addition, immunostaining of iASPP and p63 was performed in 107 

cSCC clinical samples of variable differentiation status. The data reveal an overall increase in 

expression of iASPP and ΔNp63 in cSCC but also suggest a significant alteration of the cellular 

localisation of iASPP dependent on the differentiation status of the tumour. To further assess 

the effects mediated by the iASPP/p63 axis, iASPP and p63 have been silenced by RNAi 

technology in a subset of cSCC cell lines. Whilst data shows the direct effects of iASPP and 

p63 upon each other’s expression are maintained in cSCC, epigenetic dysregulation of the 

feedback loop at the microRNA level may be occurring via a novel p63 regulator, miR-211-

5p. Functionality of iASPP in cSCC (proliferation, apoptosis, cell motility/migration and 

invasiveness) provides evidence for a role of iASPP in preventing epithelial-mesenchymal 

transition in cSCC via a p63/miR-205-5.  

 

These findings provide potential future directions for development of clinical biomarkers and 

novel therapeutic targets for cSCC and may ultimately provide the tools for tackling the 

increasing morbidity and mortality associated with this malignancy. 
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Chapter 1: Introduction 

1.1. The human skin 

The human skin is a large multi-functional organ that plays a key role in protecting the body 

from a variety of potentially damaging environmental elements. The defensive barrier the 

skin forms acts as a safeguard from harmful pathogens, UV radiation and physical injury. In 

addition to this environmental protection, the skin is also capable of controlling fluid loss 

from the body and can regulate the temperature of the body due to its expansive blood 

supply and ability to excrete sweat (Fuchs, 2007).  

 

The human epidermis is a stratified squamous epithelium which forms the outermost layer 

of the skin (Kalinin et al., 2002). Within the epidermis there are four main compartments: 

the basal layer, spinous layer, granular layer and stratum corneum (Figure 1.1) (Fuchs, 1990; 

Proksch et al., 2008). The basal layer of the skin sits on the basement membrane consisting 

of extracellular matrix (ECM) proteins and growth factors. The basement membrane anchors 

the epidermis to the dermis located below and can act as a barrier preventing tumour cells 

from metastasising through to the dermis and beyond (Liotta et al., 1980). The basal layer 

comprises rapidly dividing keratinocyte cells that differentiate as they migrate towards the 

spinous and granular layer of the skin. Here, keratinocytes produce both keratins 14 and 5 

enabling the formation of the cytoskeleton (Byrne et al., 1994). Stem cells move from the 

basal layer towards the spinous and granular layers where they begin the process of terminal 

differentiation. During this stage there is a shift in keratin expression to keratin 1 and 10, 

these keratins form larger bundles of keratin filaments offering a more solid structure (Byrne 

et al., 1994). Once cells reach the stratum corneum they are committed to terminal 

differentiation and become flattened forming an impermeable barrier before being shed and 

replaced by cells below (Fuchs & Raghavan, 2002).  
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Figure 1.1. Epidermal layers of the skin. The human epidermis consists of four main sections: the 

basal layer, spinous layer, granular layer and the stratum corneum. The cells become increasingly 

differentiated as they migrate towards the surface of the skin. Figure adapted from Proksch et al. 

(2008). 

 

 

1.2. Skin cancer 

The three most common forms of human skin cancer are cutaneous melanoma, squamous 

cell carcinoma (SCC) and basal cell carcinoma (BCC) (Rigel et al., 2005). Non-melanoma skin 

cancer, that includes SCC and BCC, is increasing and is estimated to be the cause of at least 

100,000 new cases per year in the UK (Madan et al., 2010). Although more common, BCC is 

less likely to metastasise compared to SCC (Madan et al., 2010). Currently melanoma is 

responsible for 75% of skin cancer deaths in the Western world (Schadendorf and Hauschild, 

2014). While non-melanoma skin cancer, as a whole, has a lower metastatic potential than 

melanoma, the large number of people affected by non-melanoma skin cancer mean there 

is not only a significant burden on patients but also on the healthcare services tasked with 

treating them (Eedy, 2000).  
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1.2.1. Causes of cutaneous SCC 

SCC can develop on the head and neck, thyroid, oesophagus, lung, penis, prostate, vagina, 

cervix and bladder. However the most common area for SCC to develop is on sun exposed 

sites of the skin – cutaneous SCC (cSCC). The biggest risk factor for cSCC is UV light from the 

sun. In accordance with this, cSCC is found to develop at a higher incidence in fair skinned 

people and on sun exposed surfaces, for example, on the face and the back of hands (Figure 

1.2) (Diepgen & Mahler, 2002; Healy et al., 2004). Proof of this can be found in the discovery 

that regular use of sun cream containing a high Sun Protection Factor (SPF) can result in a 

decline of cSCC cases and that tanning devices can cause a 2.5-fold increase in cSCC 

(Thompson, 1993; Samarasinghe & Madan, 2012). Darker skinned people are also at risk of 

cSCC but to a much lesser extent, however, this is heightened in areas of the skin with 

preexisting inflammatory skin conditions, burn injuries or trauma e.g., scars (Diepgen & 

Mahler, 2002). Additionally, a new observation worth noting is the increasing incidence of 

cSCC in the younger population in traditional ‘non-sun exposed’ areas, for example the trunk. 

Evidence suggests a potential socioeconomic role for this increase, that is, an increased 

affluence potentially allows for more leisure-related sun exposure (Deady et al., 2014).  
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Figure 1.2. Clinical presentation of cSCC. Images of patients diagnosed with cSCC. cSCC predominantly 

develops on sun exposed surfaces of the face, ear and back of hand. Clinical photos kindly provided 

by Prof Catherine Harwood. 

 

At present, UVB, with a wavelength of 290-320 nm, is considered the prime source of UV 

radiation to induce skin cancer (Pfeifer et al., 2005). UVB causes direct DNA damage and can 

create cyclobutane pyrimidine dimers (CPDs) and pyrimidine (6-4) pyrimidone 

photoproducts [(6-4)PPs] causing CC→TT and C→T transitions (Yoon et al., 2000). If not 

repaired correctly prior to DNA replication, these transition mutations can be incorporated 

into the DNA sequence. In the case of patients with xeroderma pigmentosum or patients 

suffering from other disorders containing compromised DNA repair systems, these CPDs and 

(6-4)PPs are unable to be excised by DNA repair systems thus making them extremely 

susceptible to skin cancer (Pfeifer et al., 2005). Although most of the research to date has 

focused on UVB as the main contributor to cSCC, more efforts are now focusing on the role 
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of UVA in cSCC. UVA has a longer wavelength (320–400 nm) than UVB and can cause indirect 

oxidative damage to DNA, via reactive oxygen species. The reactive oxygen species react with 

guanine to form 8-hydroxy-deoxyguanosine and in turn result in a mutation causing a G→T 

transversion (Bachelor & Bowden, 2004). Recently, a study has been performed linking cSCC 

developed in immunosuppressed patients to immunosuppressive drug ciclosporin A and UVA 

as both are able to induce the expression of activating transcription factor 3 which can 

downregulate p53 (Dziunycz et al., 2014). Prior to this study O’Donovan et al. (2005) 

suggested that immunosuppression of patients with azathioprine, a drug able to induce 

chronic oxidative stress, may actually be involved in inducing cancer. The relevance of this is 

described in section 1.2.3. 

 

UV light however, is not the sole cause of cSCC and people who are immunosuppressed, for 

example, patients who have undergone organ transplantation, tend to be diagnosed with 

the disease approximately 15 years younger and display a more aggressive form of the 

disease than immunocompetent individuals (Harwood et al., 2013; Rosen et al., 2009). The 

risk of developing cSCC after organ transplantation is 65-250 fold higher than in non-

transplant individuals (Madan et al., 2010). Taken together, these findings highlight the 

importance of the immune system in preventing the development of cSCC. In addition, 

patients undergoing cancer treatment for a different cancer to cSCC can often present cSCC 

due to the disruption of signalling pathways by cancer therapies, for example, patients 

undergoing treatment with BRAF inhibitors for metastatic melanoma have an increased 

chance of developing cSCC (Boussemart et al., 2013). Furthermore, individuals who have 

been exposed to chemical carcinogens (such as arsenic and tobacco amongst others) and 

those who suffer from genetic disorders, for example, xeroderma pigmentosum or albinism 

are all at high risk of developing cSCC (Diepgen & Mahler, 2002).  

 

Not all cSCCs arise on sun exposed sites. Recently a lot of work has been performed 

attempting to prove a link between HPV and cSCC. The human papillomavirus (HPV) family 

contain several high-risk HPVs known to cause cancer. Nearly all cervical cancer is caused by 

HPV with 70% being caused by high-risk HPV-16 and 18 (Winer et al., 2006). Aside from 

cervical cancers several other cancers are associated with HPV including anal, oropharyngeal, 

vulvar, vaginal and penile cancers (Gillison et al., 2008) and also a proportion of head and 

neck SCC. PCR-based epidemiological studies have provided evidence for this link finding HPV 

DNA in over 80% of immunosuppressed and 30% of immunocompetent cSCCs (Harwood and 

http://www.ncbi.nlm.nih.gov/pubmed/?term=Gillison%20ML%5BAuthor%5D&cauthor=true&cauthor_uid=18980286
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Proby, 2002). Although this, along with several other studies, has shown a high incidence of 

human papillomavirus infection in cSCC, given that a high proportion of ‘normal’ skin 

(ranging from 42-87%) also harbours the infection, the role for HPV in cSCC remains unclear 

(Aldabagh et al., 2013). 

 

1.2.2. Progression of cSCC 

cSCC occurs in the epidermis of the skin and arises due to the overproliferation and increased 

invasiveness of keratinocytes (Ratushny et al., 2012). cSCC tumours are formed by an initial 

thickening of the skin leading to an indurated plaque. These can present as papules, nodules 

or ulcerated lesions (Vivier, 2002). cSCC cases can arise from a premalignant lesion known as 

actinic keratosis (AK), however not all AKs progress to cSCC (Criscione et al., 2009). Typically, 

it has been suggested that patients with less than five AK lesions have a less than 1% chance 

of progressing to cSCC. In contrast, patients with 20 or more AK lesions have a 20% chance 

of progressing to cSCC (Ratushny et al., 2012). Prior to invasive cSCC, preinvasive stage of 

cSCC termed carcinoma-in-situ or Bowen’s disease may form (Figure 1.3). 
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Figure 1.3. Progression of cSCC. Patient diagnosed with three different stages of cSCC. Clinical photo 

kindly provided by Prof Catherine Harwood. 

 

 

cSCC can be grouped into well, moderate and poorly differentiated based on the 

differentiation status of the cells in the tumour (Figure 1.4). Poorly differentiated tumours 

are usually more aggressive and have a higher risk of metastasising. Other high risk factors 

that can determine the incidence of metastasis include the immunosuppression status of the 

patients and the initial location of the tumour, for example tumours located on the ear or lip 

have a higher chance of metastasising (Brantsch et al., 2008). In addition the size and depth 

of tumour affect the aggressiveness - tumours ≤2 mm in depth rarely metastasise, those >6 

mm have a metastatic rate of 16% (Breuninger et al., 1990; Brantsch et al., 2008). The most 

common cause of cSCC related deaths is due to the tumour metastasizing.  
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Figure 1.4. Haematoxylin & eosin sections demonstrating the differentiation statuses of cSCC. In 

well differentiated tumours, tumour cells are abnormal but tend to resemble normal keratinocytes. 

Well differentiated tumours are similar to the normal epidermis having basal cells located at the 

border of the tumour with cells maturing/differentiating towards the central tumour mass. The centre 

of a well differentiated tumour mass contains ‘keratinous pearls’. Poorly differentiated tumours on 

the other hand contain highly abnormal cells which do not fully differentiate and are able to invade 

deeper.  

Moderately 

differentiated 

Poorly 

differentiated 

Well 

differentiated 
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1.2.3. Genetic development of cSCC 

Mutations in p53 are deemed to be an early event in cSCC formation (Boukamp, 2005). 

Transition mutations can be found in a high proportion of cSCC cases in the tumour 

suppressor gene, p53 (Brash et al., 1991). p53 is a crucial regulator of the cell cycle and 

apoptosis and it is hypothesised that this early occurrence of mutated p53 allows the cell to 

become more resistant to apoptosis in turn, allowing the cell to harbour additional genetic 

changes. Upon cell damage, p53 can either mediate DNA repair or activate apoptosis. When 

mutated, p53 loses its ability to protect the cell in this manner resulting in uncontrolled cell 

growth (Prives & Hall, 1999). Mutations in p53 have been widely observed in cSCC with 69% 

to over 90% of invasive cSCC containing this mutation (Ziegler et al., 1994; Samarasinghe & 

Madan, 2012). In addition to p53, another member of the p53 family, p63, has also been 

implicated in cSCC, though this is discussed later in the chapter. 

 

cSCC is a genetically heterogeneous disease, and in addition to p53 mutations, many other 

mutations are required before a premalignant lesion becomes metastatic. Inactivation of 

CDKN2A gene, which encodes for tumour suppressor genes p16INK4a and p14ARF via different 

reading frames, was found to be prevalent in cSCC. Ordinarily, p16 INK4a acts as a tumour 

suppressor inhibiting cyclin-dependent kinases from phosphorylating, and inactivating 

retinoblastoma protein. p14ARF binds to MDM2 preventing degradation of p53. Both lead to 

prevention of cell cycle progression (Saridaki et al., 2003; Brown et al., 2004). Accordingly, 

inactivated CDKN2A leads to uncontrolled cell growth (Figure 1.5).  

 

A further tumour suppressor gene which has been the attention of much recent study in 

cSCC is Notch 1, with approximately 60% of cSCC harbouring a Notch 1 mutation (Forbes et 

al., 2010). The Notch family consists of four receptors: Notch 1, 2, 3 and 4. The Notch 

receptors are transmembrane receptors that upon ligand binding to the outer section of the 

receptor become cleaved and the intracellular (and now active) domain is released into the 

cell and travels to the nucleus. Once in the nucleus, activated Notch binds to DNA-binding 

protein RBP-J and is able to activate the transcription of a variety of different genes (South 

et al., 2012). In the skin, Notch can activate genes involved in exiting the cell cycle and the 

promotion of differentiation and thus functions as a tumour suppressor (Nguyen et al., 

2006). Nguyen et al., (2006) showed that Notch1 is able to suppress p63 levels in 

keratinocytes and in turn high levels of p63 are able to inhibit the activity of Notch1 (Nguyen 

et al., 2006). In addition, IRF6, a target of Notch1, together with Notch1, has tumour 
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suppressive functions and is able to inhibit p63 (Restivo et al., 2011). In cSCC decreased IRF6 

and Notch1 signalling can result in the upregulation of p63 expression (Restivo et al., 2011). 

Thus it is unsurprising that in cSCC both Notch1 and IRF6 are mutated (Figure 1.5). 

 

Mouse models depicting cSCC can have a high frequency of activating mutations in the 

oncogene, RAS. In contrast, studies in human cSCC models found that RAS mutations were 

present in human cSCC but at a lower incidence of around 10-20% (Boukamp, 2005). Further 

oncogenes implicated in the molecular pathogenesis of SCC include amplification of c-myc 

and activation of EGFR, a negative regulator of Notch 1 (Pelisson et al., 1996; Kolev et al., 

2008). 

 

 

 

Figure 1.5. Genetics of SCC. Proposed diagram of the molecular pathways of cSCC. Green denotes a 

loss of function; red denotes a gain of function. Genes harbouring mutations (mut), amplifications 

(amp), or deletions (del) are shown. Figure adapted from Stransky et al. (2011). 
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1.2.4. Chromosome abnormalities in cSCC  

Due to the genetic heterogeneous profile of cSCC the key events in cSCC tumourogenesis are 

not clearly defined. In order to refine this several studies have published data exploring 

recurrent aberrations on chromosomes of cSCC samples (Quinn et al., 1994a; Quinn et al., 

1994b; Popp et al., 2000; Ashton et al., 2003; Clausen et al., 2006; Purdie et al., 2007; Purdie 

et al., 2009). Currently several chromosomal aberrations have also been implicated in cSCC 

including loss of heterozygosity at positions 9p, 3p, 2q, 8p, 13 and 17p and gain at positions 

3q and 8q (Quinn et al., 1994a; Quinn et al., 1994b; Popp et al., 2000; Ashton et al., 

2003; Clausen et al., 2006; Purdie et al., 2007; Purdie et al., 2009). These studies were carried 

out using a variety of different techniques such as comparative genomic hybridisation, 

microsatellite instability (MSI) mapping and more recently higher resolution single 

nucleotide polymorphism (SNP) microarrays showing a high consistency between the 

techniques. Purdie and colleagues (2009) investigated these chromosomal aberrations 

further finding a correlation with the differentiation status of the tumour. Well-

differentiated tumours had fewer chromosomal aberrations compared to moderately and 

poorly differentiated tumours. 

 

Recent data has also implicated the importance of telomere profile in cSCC. Leufke et al. 

(2014) discovered a relationship between short/homogeneous telomeres and a simple 

karyotype profile versus a more complex karyotype with long/heterogeneous telomeres. 

These two subtypes of telomere length suggest two different tumour initiation mechanisms.  

 

1.2.5. MicroRNA development of cSCC 

MicroRNA are small non-coding sections of RNA, usually 21-24 nucleotides, which are able 

to repress the translation or initiate the degradation of their target gene. MicroRNA play a 

crucial role in mammalian regulation of genes and are involved in the vast majority of human 

cellular processes (Filipowicz et al., 2008). Each microRNA has the capacity to target multiple 

genes. MicroRNA is synthesised by the process summarised in Figure 1.6. RNA polymerase II 

facilitates the transcription of a primary miRNA transcript. From here the Drosha/DiGeorge 

syndrome chromosomal region 8 (DGCR8) microprocessor complex cleaves the primary 

miRNA transcript into a precursor miRNA transcript via the formation of a hairpin loop. The 

precursor miRNA transcript is then exported from the nucleus to the cytoplasm by GTP-

mediated exportin-5. Once in the cytoplasm the dicer complex attaches to the pre-miRNA 

http://www.nature.com/jid/journal/v129/n6/full/jid2008408a.html#bib23
http://www.nature.com/jid/journal/v129/n6/full/jid2008408a.html#bib2
http://www.nature.com/jid/journal/v129/n6/full/jid2008408a.html#bib6
http://www.nature.com/jid/journal/v129/n6/full/jid2008408a.html#bib22
http://www.nature.com/jid/journal/v129/n6/full/jid2008408a.html#bib23
http://www.nature.com/jid/journal/v129/n6/full/jid2008408a.html#bib2
http://www.nature.com/jid/journal/v129/n6/full/jid2008408a.html#bib2
http://www.nature.com/jid/journal/v129/n6/full/jid2008408a.html#bib6
http://www.nature.com/jid/journal/v129/n6/full/jid2008408a.html#bib22
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and undertakes additional cleavage of the pre-miRNA to form a double-stranded section of 

RNA containing a mature miRNA strand and a passenger miRNA strand. The mature miRNA 

strand becomes integrated into the RNA-induced silencing complex (RISC) whilst the 

passenger miRNA strand is degraded. This complex can now bind to its complementary 

mRNA resulting in the inhibition of translation of the target gene or its degradation 

(Filipowicz et al., 2008; Davis-Dusenbery & Hata, 2010). 

 

 

http://www.ncbi.nlm.nih.gov/pubmed/?term=Davis-Dusenbery%20BN%5Bauth%5D
http://www.ncbi.nlm.nih.gov/pubmed/?term=Hata%20A%5Bauth%5D
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Figure 1.6. MicroRNA synthesis. Primary miRNA transcripts are transcribed in the nucleus by RNA 

polymerase II before being processed by drosha and exported to the cytoplasm via Exportin-5. In the 

cytoplasm the pre-miRNA is processed by dicer then subsequently integrated into the RISC complex 

where it is processed further to produce a mature miRNA. Figure adapted from Davis-Dusenbery & 

Hata (2010). 

http://www.ncbi.nlm.nih.gov/pubmed/?term=Davis-Dusenbery%20BN%5Bauth%5D
http://www.ncbi.nlm.nih.gov/pubmed/?term=Davis-Dusenbery%20BN%5Bauth%5D
http://www.ncbi.nlm.nih.gov/pubmed/?term=Davis-Dusenbery%20BN%5Bauth%5D
http://www.ncbi.nlm.nih.gov/pubmed/?term=Davis-Dusenbery%20BN%5Bauth%5D
http://www.ncbi.nlm.nih.gov/pubmed/?term=Hata%20A%5Bauth%5D
http://www.ncbi.nlm.nih.gov/pubmed/?term=Hata%20A%5Bauth%5D
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Research into microRNA in cancer, including cSCC, has increased in the last few years and 

several studies report the up- and down-regulation of microRNA in different disease types. 

Due to the ability of microRNA to bind to their complementary mRNA, microRNA can either 

be oncogenic or tumour suppressive depending on the gene they are repressing. For 

example, Table 1.1 shows this difference in regulation in recent studies that have been 

performed in cSCC. This is not an exhaustive list.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

 

 

 

 

 

 

MicroRNA expression in cSCC has been further researched comparing differences in the 

levels of microRNA between primary cSCC and metastatic cSCC. A recent publication found 

up-regulation of miR-4286, miR-200a-3p and miR-148-3p in metastatic cSCC compared to 

primary cSCC and down-regulation of miR-1915-3p, miR-205-5p, miR-4516 and miR-150-5p 

Table 1.1. MicroRNA implicated in cSCC. 

Upregulation  Downregulation Study 

hsa-miR-21  
hsa-miR-184 

hsa-miR-203 Dziunycz et al., 2010 

hsa-miR-135b 
hsa-miR-424 
hsa-miR-766 

hsa-miR-378 
hsa-miR-145 
hsa-miR-140-3p 
hsa-miR-30a 
hsa-miR-26a 

Sand et al., 2012 

- hsa-miR-124 
hsa-miR-214 

Yamane et al., 2012 
 

- hsa-miR-125b Xu et al., 2012 
Zhou et al., 2013 

hsa-miR-365 - Zhou et al., 2013 
Zhou et al., 2015 

hsa-miR-21  
hsa-miR-31 
hsa-miR-205 

- 
 

Bruegger et al., 2013 
 

- hsa-miR-193b 
hsa-miR-365a 

Gastaldi et al., 2014 

- hsa-miR-199a-5p Wang et al., 2014b 
Kim et al., 2015a 
 

hsa-miR-31 - Wang et al., 2014a 

- hsa-miR-20a Zhou et al., 2014 

hsa-miR-135b - Olasz et al., 2015 
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(Gillespie et al., 2015). These recent findings may provide useful biomarkers for metastatic 

cSCC. 

 

1.2.6. Management of cSCC 

Non-invasive treatments for non-metastatic cSCC are scarce and there are limited treatment 

options for metastatic SCC (Madan et al., 2010). At present, surgery is the most common 

form of treatment for non-metastatic cSCC. Unsurprisingly, however, this can come with 

disadvantages including scarring, a need for skin grafts and a poor cosmetic outcome. 

Standard surgery, that is surgery followed by a post-operative pathologic assessment, has a 

high success rate however excision of difficult areas may require the need for plastic 

reconstruction (Stratigos et al., 2015). Alternatively a more precise technique named Mohs 

micrographic surgery allowing microscopic examination of the excision margins during the 

surgery, removing one layer of tissue at a time allows the surgeon to ensure complete 

removal of the tumour whilst conserving normal tissue (Stratigos et al., 2015). 

 

Radiotherapy may be used as an alternative to surgery in cases where surgery is not an 

option i.e., if the patient has inoperable cSCC or refuses surgery, or may be used as an 

adjuvant therapy. Treatments such as cryotherapy or electrodesiccation and curettage may 

be used but to a much lesser extent due to their lack of specificity. Photodynamic therapy 

with aminolevulinic acid or methyl aminolevulinate is another alternative treatment that 

uses a photosensitising agent which can be taken up by cancer cells. Upon light exposure the 

photosensitive agent reacts with oxygen present in the cell, killing the cell. Although specific 

and less invasive than surgery, photodynamic therapy is unable to target invasive tumours 

but is used for Bowen’s disease and AK (Stratigos et al., 2015).  

 

Chemotherapeutic drugs including cisplatin, doxorubicin, 5-flurouracil and bleomycin, have 

all been trialled for the treatment of advanced cSCC (Guthrie et al., 1990; Sadek et al., 1990; 

Khansur et al., 1991; Cartei et al., 2000). These drugs have been used both alone and in 

combination but with limited clinical activity (Cranmer et al., 2010). Potentially promising 

results have however been shown using a more targeted approach with EGFR inhibitors, 

particularly in metastatic cSCC where overexpression of EGFR can be observed (Maubec et 

al., 2005; Maubec et al., 2011; Lewis et al., 2012).  
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1.3. iASPP 

1.3.1. Background 

iASPP is part of the ‘apoptosis stimulating proteins of p53’ (ASPP) family that consists of three 

members: ASPP1, ASPP2 and iASPP. All of these members are characterised by their ability 

to interact with the tumour suppressor, p53 (Trigiante & Lu, 2006). Whilst ASPP1 and ASPP2 

play a pro-apoptotic role with p53, enhancing its binding to pro-apoptotic proteins (Samuels-

Lev et al., 2001), iASPP, the inhibitory member of the ASPP family, plays an oncogenic role 

by inhibiting p53-induced apoptosis (Bergamaschi et al., 2003 and 2006). IASPP was first 

discovered in 1999 by Yang et al., as a p65 rel A binding protein (Rel A- Associated- Inhibitor, 

RAI) and was then subsequently identified in Caenorhabditis elegans and in humans as iASPP, 

the most evolutionary conserved inhibitor of p53, encoded by the PPP1R13L gene 

(Bergamaschi et al., 2003).  

 

iASPP is largely expressed in epithelial cells and therefore can be found in the skin and heart. 

iASPP expression has also recently been observed in the retinal ganglion cells in the central 

nervous system (Wilson et al., 2014). Mouse models containing a deletion mutation in 

PPP1R13L present an altered phenotype to wild-type mice with cardiac and skin 

abnormalities that lead to the development of a rapidly progressive cardiomyopathy, open 

eyelids at birth and wavy hair (Herron et al., 2005; Toonen et al., 2012). Cattle that contain a 

frameshift mutation in PPP1R13L also exhibit similar phenotypes to the deletion mice 

including cardiomyopathy and a woolly coat (Simpson et al., 2009).  

 

1.3.2. Structure & location 

iASPP was initially discovered as a 477 amino acid protein but the full length of iASPP was 

later established as an 828 amino acid protein (Yang et al., 1999; Slee et al., 2004). The ASPP 

family members all contain a similar C-terminal domain consisting of a proline-rich region, 

four ankyrin repeats and a SH3 domain (Figure 1.7). It is this C-terminal domain which proves 

to be important for the nuclear localisation of iASPP and enables iASPP to bind to its binding 

partners (Slee et al., 2004). p53 preferentially binds to this domain along with p65/Rel A and 

Bcl-2 among others (Gorina & Pavletich, 1996; Sullivan & Lu 2007). Later studies have also 

demonstrated the ability of iASPP to interact with the additional members of the p53 family, 

p63 and p73 (Robinson et al., 2008; Chikh et al., 2011; Notari et al., 2011). Although full 

length iASPP is largely located in the cytoplasm, many of the proteins iASPP is able to interact 
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with are predominantly located in the nucleus e.g., p53, p63 and NF-κB, which potentially 

indicates a vital role for iASPP cellular localisation signals (Trigiante & Lu, 2006). iASPP does 

not contain a nuclear localisation signal, however is still able to enter the nucleus (Slee et al., 

2004). Recent work demonstrated that iASPP is able to enter the nucleus via an importin-

independent mechanism - the RaDAR (RanGDP/Ankyrin repeat) pathway. The Ankyrin 

repeats present in the C-terminus of iASPP, specifically two adjacent 13th hydrophobic 

residues harbour a code enabling RanGDP to bind and complex with nuclear transport factor 

2 resulting in the import of the complex into the nucleus (Lu et al., 2014). 

 

Some researchers have speculated that the important role iASPP plays in interacting with 

nuclear based transcription factors demonstrates that it is the nuclear form of iASPP that is 

the most active (Lu et al., 2013). Recent publications from both melanoma and prostate 

cancer show a strong association between the expression of a phosphorylated form of 

nuclear iASPP and metastatic disease (Lu et al., 2013; Morris et al., 2014). Taking the above 

information into account however, it is therefore difficult to explain why iASPP is highly 

expressed in the cytoplasm in a broad range of tumour types (Jiang et al., 2011; Liu et al., 

2012; Cao et al., 2013). iASPP is distinct from its family members as it lacks the α-helical 

domain on its N-terminal region that its family members contain (Figure 1.7). The N-terminus 

of iASPP is important for its cytoplasmic location within the cell (Slee et al., 2004). In the 

normal skin, iASPP has mainly nuclear basal expression but becomes largely cytoplasmic in 

the differentiated epithelial cells (Notari et al., 2011).  

 

 

 

 

 

 

Figure 1.7. ASPP family structures. The three members of the ASPP family have similar structures. 

While ASPP1 and ASPP2 contain an α-helical domain, iASPP lacks this domain and contains fewer 

amino acids. Figure adapted from Sullivan & Lu (2007). 
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1.3.3. Function 

1.3.3.1. Anti-apoptotic 

Tumour suppressor gene p53 is a crucial regulator of apoptosis (Vousden and Lu, 2002). Upon 

stimulation by ASPP family members, ASPP1 and ASPP2, p53 is able to bind to the promotors 

and transcriptionally activate proapoptotic genes (Samuels-Lev et al., 2001). Despite the high 

sequence homology between the ASPP family, the third member of the ASPP family, iASPP, 

has an opposing function to ASPP1 and ASPP2 and is able to inhibit p53-induced apoptosis 

by binding to the p53 DNA binding domain via the c-terminal domain (Robinson et al., 2008). 

Currently, the anti-apoptotic activity of iASPP is well established in the field. Studies of iASPP 

in transformed cancer cells have demonstrated its role as a p53-dependent inhibitor of 

apoptosis with cells containing wild type p53 showing increased UV and cisplatin-induced 

apoptosis when treated with siRNA against iASPP (Bergamaschi et al., 2003). IASPP is able to 

inhibit p53-induced apoptosis by binding to p53 and preventing its transcriptional activity on 

proapoptotic BAX and PIG3 promoters (Figure 1.8) (Bergamaschi et al., 2003). A role for iASPP 

as a p53-independent inhibitor of apoptosis has also recently emerged. Using a p53-deficient 

cancer cell line, H1299, Cai et al. (2012b) were able to show iASPP binding to and inhibiting 

the transcriptional activity of p53 family members – p63 and p73 on proapoptotic genes. 
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Figure 1.8. The contrasting roles of iASPP in the cell. Research has shown conflicting roles for iASPP’s 

apoptotic activity in the cell. Largely, upon DNA damage in tumourigenic cell lines, iASPP is able to 

inhibit pro-apoptotic genes and thus is able to contribute to the anti-apoptotic behavior of the cell. In 

non-tumourigenic cell lines iASPP is able to inhibit anti-apoptotic NFκB activity leading to a pro-

apoptotic outcome. Figure adapted from Trigiante & Lu (2006).  
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1.3.3.2. Pro-apoptotic  

Before the oncogenic role of iASPP was characterised, iASPP was originally identified as a 

potential negative regulator of the NFκB signaling pathway, binding p65/rel A binding protein 

(Yang et al., 1999). P65/Rel A is a subunit of the NFκB complex which is involved in the 

immune and inflammatory responses of the cell and can inhibit apoptosis. Laska et al. (2007) 

demonstrated that in non-transformed cells, silenced for iASPP and treated with etoposide, 

there was a reduction of apoptosis and that treatment with an NFκB inhibitor on these cells 

reversed this effect. When repeated on transformed cells this effect did not occur suggesting 

that the pro-apoptotic effects of iASPP are limited to non-transformed cells (Figure 1.8). 

Conversely, data recently published using melanoma cell lines as a model also provides 

evidence for a pro-apoptotic role of iASPP, this time in transformed cell lines. In melanoma 

cell lines iASPP promotes apoptosis via the acetylation and thus stablisation of p53 and p73 

isoform - TAp73, through acetyltransferases p300 and CBP (Kramer et al., 2015). 

 

1.3.3.3. Inhibitor of autophagy 

A recent study performed by our group (Chikh et al., 2014) also supports the notion 

presented by Laska et al. (2007) that iASPP does not always play an anti-apoptotic role in 

non-transformed cells. Chikh et al., 2014 have demonstrated another novel function of iASPP 

in HaCaT and N-TERT cells showing that silenced iASPP in keratinocytes did not cause an 

increase in apoptosis but rather triggered an increase in autophagy providing a role for iASPP 

as a novel autophagy inhibitor (Figure 1.9). HaCaT and N-TERT cells depleted of iASPP had 

decreased levels of Noxa, a pro-apoptotic member of the Bcl-2 family. When HaCaT and N-

TERT cells were treated with UV to trigger apoptosis, cells depleted for iASPP did not show 

an increase in apoptosis as previously observed in several cancer models. Further 

investigation provided evidence that cells depleted of iASPP had increased expression of 

several markers of autophagy. Conversely, increased iASPP expression reduces the formation 

of the Atg5–Atg12–Atg16L1 complex preventing LC3 lipidation and therefore 

autophagososome formation in human keratinocytes (Mizushima et al., 2011).  
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Figure 1.9. The role of iASPP in autophagy. In non-transformed cells silenced iASPP is able to decrease 

NOXA expression resulting in the inhibition of apoptosis. Furthermore, silenced iASPP deregulates 

mTORC signalling, a classical signalling pathway which normally controls the autophagy process and 

increases the interaction of ATG5/12 with ATG16L1 required for autophagosome formation leading to 

an increase in autophagy. Figure adapted from Chikh et al. (2014).  
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1.3.3.4. Cellular adhesion 

The effects of iASPP on epidermal homeostasis have recently been investigated. iASPP is able 

to regulate epidermal adhesion in normal keratinocytes whereby depletion of iASPP from 

keratinocytes triggered a deregulation of the junctional complex integrity (Chikh et al., 2011). 

Upon silencing of iASPP, several genes involved in cell-matrix adhesion, for example β1 

integrin, desmosmal and adhesion proteins including PERP and Claudin 1, amongst others 

were downregulated. The importance of iASPP in maintaining cell junctions is also clear in 

mouse cardiomyocytes where iASPP deficient mice develop arrhythmogenic right ventricular 

cardiomyopathy (ARVC) known to cause defects in desmosome integrity (Notari et al., 2015). 

 

1.3.3.5. Proliferation/differentiation 

iASPP is a promoter of proliferation and an inhibitor of differentiation. Cells depleted for 

iASPP display reduced proliferation caused by delayed cell-cycle progression. This decrease 

in proliferation was detected in HaCaT cells depleted for iASPP. Bromodeoxyuridine kinetic 

analysis showed that iASPP was able to alter cell-cycle progression, delaying entry into G1 

phase. Complementing these data was the finding that cyclin D2 expression, necessary to 

permit the cells to cycle through G1/S phase, is reduced upon iASPP knockdown. iASPP 

regulation of proliferation is not limited to a non-tumour setting. Several papers support the 

notion of iASPP controlling cell proliferation in a cancer setting. Depletion of iASPP in 

prostate, bladder and gastric cancer cell lines, in addition to NSCLC, glioblastoma and 

hepatocellular carcinoma cells causes a negative effect on the cells’ ability to proliferate 

(Pang et al., 2010; Lu et al., 2010; Zhang et al., 2011; Lin et al., 2011; Chen et al., 2011, Li et 

al., 2011; Lu et al., 2013; Morris et al., 2014; Wang et al., 2015a). In melanoma the 

HEDGEHOG/GLI-E2F1 axis positively modulates iASPP’s ability to regulate cell proliferation 

(Pandolfi et al., 2015). Chen et al. (2014b) showed the negative effect iASPP had upon 

depletion from oral tongue squamous cell carcinoma cell lines. However, currently no 

reports have documented the effects of iASPP on cell proliferation in cSCC. 

 

Although depletion of iASPP inhibits the proliferation of the cell, iASPP is also implicated in 

differentiation and stratification of the epidermis. When the normal epidermis is depleted of 

iASPP the thickness of the epidermis increases. This observation was correlated with an 

increase in the expression of both involucrin and loricrin, markers of keratinocyte terminal 

differentiation (Chikh et al., 2011). The latter effect has been further confirmed by a report 

using a transgenic mouse in which iASPP expression is controlled by the Cre/loxP 
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recombination system (Notari et al., 2011). In this mouse when iASPP was depleted the 

number of cells increased in the epidermis compared to control. As this study and previous 

studies have shown that iASPP deficiency reduces the proliferation of the cell, the 

observation of a thicker epidermis upon iASPP silencing was shown to occur due to an 

increase in differentiation (Notari et al., 2011). 

 

1.3.3.6. Senescence 

This reduction in proliferation observed in cells hinted at a possible role for iASPP in cellular 

senescence. Senescence was originally described as a process that limited the proliferation 

potential of cells (Hayflick, 1965). The p53 family members are able to control senescence 

via transactivating/repressing genes (Guo et al., 2009; Notari et al., 2011; Rufini et al., 2013). 

Using mouse embryonic fibroblast cells depleted for iASPP Notari et al. (2011) found these 

cells stained positive for β-galactosidase, a commonly used marker for senescence, 

confirming a role for iASPP in inhibiting cellular senescence. 

 

1.3.4. iASPP regulation 

At present there is a shortage of data concerning the upstream mechanisms of regulation of 

iASPP. The majority of research performed so far has instead focussed on the effects of iASPP 

in various transformed and non-transformed cell models. However, several studies have 

started to investigate the regulation of iASPP and are described below. 

 

1.3.4.1. p63 

Robinson et al. (2008) previously demonstrated that iASPP and p63 were able to bind based 

on structural evidence. Using solid-phase binding assays it was demonstrated that iASPP was 

also able to bind p63 at a 3-fold higher affinity than ASPP2 (Robinson et al., 2008). Based on 

the above information and the finding that iASPP and p63 are able to colocalise in the normal 

skin, a series of experiments by our group were performed in the stratified epithelia and 

linked iASPP to p63 and, in turn, demonstrated a feedback loop involving two microRNAs 

(Chikh et al. 2011). Chikh et al., (2011) proved, via chromatin immunoprecipitation using 

HaCaT cells, that p63 was a direct transcriptional regulator of iASPP, able to bind directly to 

the promoter of iASPP. HEK293 cells over expressing p63 showed a sequential increase of 

iASPP expression, confirming the ability of p63 to positively regulate iASPP, whilst silencing 
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of p63 in primary keratinocytes decreased the expression of iASPP at both the protein and 

mRNA level. 

 

1.3.4.2. Phosphorylation 

Recently it was demonstrated in human melanoma cells that iASPP could form homodimers 

via its N-terminus interacting with its C-terminus. These homodimers reside in this form in 

the cytoplasm. Upon phosphorylation at S84/S113 by cyclin B1/CDK1, iASPP is unable to form 

homodimers and can translocate to the nucleus and expose its p53 binding site, leading to a 

decrease in p53 activity (Lu et al., 2013). In accordance with this theory, melanoma cells 

exhibited a high phosphorylated nuclear iASPP expression profile. Prostate cancer also 

contains phosphorylated nuclear iASPP and this phosphorylated form of nuclear iASPP 

correlates with the metastatic disease (Morris et al., 2014). 

 

1.3.4.3. Hedgehog signalling 

The Hedgehog signalling pathway is frequently activated in melanoma and is able to impair 

p53 function (Stecca et al., 2007). Using the recent finding that melanoma contains 

phosphorylated iASPP able to inhibit wild-type p53, Pandolifi et al., (2015) investigated 

whether the Hedgehog signalling pathway was regulating iASPP. It was discovered that 

Hedgehog pathway directly regulates E2F1 which, in turn, positively regulates iASPP 

expression, enabling the inhibition of p53 signalling (Figure 1.10). Additionally, the hedgehog 

pathway is able to increase the levels of cyclin B1 and CDK1 providing further activation of 

iASPP via phosphorylation as described in the previous section (Pandolifi et al., 2015). 

 

http://www.ncbi.nlm.nih.gov/pubmed/?term=Stecca%20B%5BAuthor%5D&cauthor=true&cauthor_uid=17392427
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Figure 1.10. Regulation of iASPP in melanoma. E2F1, a downstream target of Hedgehog signaling, is 

able to regulate iASPP expression, in turn inactivating p53. Hedgehog signalling effectors GLI1 and 

GLI2 regulate cyclin B1/CDK1, responsible for the phosphorylation and activation of iASPP. Figure 

adapted from Pandolifi et al. (2015). 
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1.3.4.4. MicroRNA 

Until recently there was a lack of information regarding the regulation of iASPP by microRNA. 

Several studies however, have now been performed indicating a role for microRNA in the 

regulation of iASPP. To date four publications have demonstrated the ability of miR-124 to 

downregulate iASPP in a variety of disease models (Zhao et al., 2013; Liu et al., 2013a; Lui et 

al., 2013b; Chen et al., 2014a). In prostate, glioblastoma and colorectal cancer cell lines 

luciferase assays confirmed the direct interaction of miR-124 with iASPP (Liu et al., 2013a; 

Zhao et al., 2013; Chen et al., 2014a). The result of this regulation of iASPP by miR-124 was a 

decrease in cell proliferation in all cell line models tested. Additionally, miR-124 was proven 

to directly target iASPP and promote neuronal death after cerebral ischemia in mouse brain 

samples (Lui et al., 2013). Interestingly in cSCC, the expression of miR-124 was significantly 

downregulated both in vitro and in vivo (Yamane et al., 2013). 

 

1.3.4. iASPP and cancer 

As described above, iASPP has been well-documented as an inhibitor of both p53-dependent 

and p53-independent apoptosis. Due to this oncogenic activity in the cell it is therefore to be 

expected that iASPP is involved in a cancer setting. As mentioned previously, Bergamaschi et 

al. (2003 & 2006) demonstrated that iASPP is upregulated in human breast carcinoma. Cell 

lines depleted for iASPP but containing wild type p53 showed an increase in apoptosis when 

treated with increasing UV and cisplatin concentrations. Similarly, Zhang et al. (2005) showed 

an upregulation of iASPP expression in acute leukaemia compared to normal bone marrow 

cells. Moreover, several studies have correlated the upregulation of iASPP expression to a 

cancer phenotype. The majority of these studies into iASPP and cancer have been 

observational, that is, detecting high levels of iASPP in cancer cell lines and clinical samples. 

Regardless, studies carried out in colorectal adenoma and carcinoma, leukaemia, 

hepatocellular carcinoma, prostate and ovarian cancers, non-small cell lung carcinoma, 

glioblastoma and endometrial endometrioid adenocarcinoma all provide evidence that 

iASPP is an oncogenic protein (Saebo et al., 2006; Liu et al., 2009; Lu et al., 2010; Chen et al., 

2010; Jiang et al., 2011; Zhang et al., 2011; Li et al., 2011; Liu et al., 2010; Lin et al., 2012).  

 

More recent publications into the role of iASPP in cancer have delved further. The role of 

iASPP in melanoma has been extensively studied by Lu et al., (2013). As discussed earlier, in 

melanoma, iASPP resides as a dimer in the cytoplasm until its phosphorylation by cyclin 

B1/CDK1 allowing monomeric entry into the nucleus. Once in the nucleus iASPP is able to 
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inactivate wild type p53. In agreement with these results is the finding that high nuclear 

iASPP expression is associated with poor patient survival and metastatic melanoma (Lu et al., 

2013). Furthermore treatment of mice containing highly aggressive melanoma with JNJ-

7706621, a CDK1 inhibitor, reduced both the tumour size and weight (Lu et al., 2013). Follow-

up work was carried out in prostate cancer, where phosphorylated nuclear iASPP was 

detected in prostate cancer cell lines. In this cell model however, high cytoplasmic iASPP 

expression was also associated with metastasis and prostate-cancer specific death. 

 

High iASPP expression has also recently been discovered in head and neck, and cervical 

squamous cell carcinomas (Liu et al., 2012; Cao et al., 2013). In head and neck SCC both 

protein and mRNA levels of iASPP were upregulated in HNSCC tissues and cell lines. In 

particular cytoplasmic iASPP was an independent prognostic factor for HNSCC patients whilst 

the expression of both nuclear and cytoplasmic iASPP correlated with shorter disease free 

survival (Liu et al., 2012). Conversely in cervical SCC, although cytoplasmic iASPP expression 

was also detected in the tumours, only nuclear iASPP expression correlated with shorter 

disease free survival and was an independent prognostic factor for overall survival (Cao et 

al., 2013).  

 

1.3.5. iASPP and chemoresistance 

The role of iASPP in chemoresistance was also researched in ovarian cancer where a strong 

link between iASPP and chemoresistance to paclitaxel was detected in ovarian cancer (Jiang 

et al., 2011). In ovarian cancer cell lines paclitaxel induces mitotic catastrophes. Through the 

discovery that iASPP was able to inhibit mitotic catastrophes in cells with mutated or loss of 

p53, Jiang et al. (2011) speculated that iASPP was able to inhibit mitotic catastrophes in a 

p53 independent manner. Additionally the data show that iASPP elevated levels of separase 

– a cysteine protease involved in the mitotic catastrophe - by degrading securin, an inhibitor 

of separase. Cao et al., (2013) also found a strong correlation between high iASPP expression 

and increased chemoresistance and radioresistance in cervical cancer. Interestingly, Cao et 

al. (2013) discovered a role for nuclear iASPP in chemoresistance whereas Jiang et al. (2011) 

found predominantly cytoplasmic expression of iASPP in the tumour and thus demonstrated 

a potential link between cytoplasmic iASPP expression and chemoresistance. Recent 

contradictory data come from melanoma cells demonstrating that in cells depleted for iASPP, 

breast metastasis suppressor 1 - an E3 ubiquitin ligase - is able to destablise 
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acetyltransferases p300 and CBP (responsible for the stablisation of p53 and TAp73) and 

actually promote chemoresistance (Kramer et al., 2015). 

 

1.3.6. iASPP therapeutics 

The predominant role of iASPP as an oncogene in cancer would suggest that it could be 

manipulated for therapeutic advantage. Another key aspect of iASPP that would make it an 

attractive candidate to target the tumour is the fact that iASPP is rarely mutated in cancer. 

Targeting a drug towards p53 for example, particularly in cSCC would be challenging due to 

its high mutation rate. Targeting iASPP may enable the reactivation of the apoptotic pathway 

that has been lost in so many cancers and thus prove to be a key target. On the other hand, 

targeting iASPP directly may not be the most ideal solution due to its importance for cell 

homeostasis, particularly in the skin. Therefore designing therapeutics aimed downstream 

of iASPP could provide better targets. Additionally, emerging evidence seems to suggest the 

effects of iASPP on the cell may be location and cell type specific. These are additional 

important factors that need taking into account. 

 

At present a handful of drugs have been discovered to have an effect on iASPP. RITA 

(reactivation of p53 and induction of tumour cell apoptosis) can prevent p53 from binding to 

iASPP and thus increase apoptosis in tumour cells (Issaeva et al., 2004). Simvastatin, a 

cholesterol-lowering drug, decreases the expression of iASPP and increases the levels of 

apoptosis in melanoma cells (Wang et al., 2013). In melanoma cells it has been shown that 

nuclear iASPP is phosphorylated by Cyclin B1/CDK1. Treatment with JNJ-7706621, a CDK1 

inhibitor, results in a better p53-dependent apoptotic response, particularly when used in 

combination with Nutlin-3 (an mdm2 inhibitor) (Lu et al., 2013). Furthermore a small peptide 

derived from p53 linker region, A34, has been developed and is able to bind to iASPP allowing 

the release of p53 to bind to the promoters of pro-apoptotic genes in U2OS osteosarcoma 

and MKN-45 gastric cancer cells (Qui et al., 2015). Injection of MKN-45 cells into nude mice 

followed by treatment A34 slowed tumour growth. MiR-124 recently found to regulate iASPP 

is also a promising therapeutic target (Zhao et al., 2013; Liu et al., 2013a; Lui et al., 2013; 

Chen et al., 2014a). 
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1.4 p63 

1.4.1. Background 

p63 is part of the p53 family and was first discovered by Yang et al. (1998) to be expressed 

in the basal epithelial cells in the epidermis of the breast, skin, cervix, urothelium and 

prostate, amongst others. Initial studies into p63 generated a lot of confusion due to 

seemingly conflicting roles of p63 in various cellular processes, including cancer. It has since 

been discovered that p63 is able to play conflicting roles in a variety of cancers due to its 

many different isoforms (Su et al., 2013). 

 

1.4.2. Structure & location 

p63 is encoded by the Tp63 gene which is located on chromosome 3q27-28. Like all the 

members of the p53 family, the p63 isoforms have the same core structures in common: a 

transactivation domain, a DNA binding domain and oligomerization domain, and are able to 

form tetramers via their oligomerization domains to enable their stability (Figure 1.11) (Yang 

et al., 1998). 

 

p63 is found in many different isoforms as a result of alternative splicing and alternative 

promoters. Two different promoters give rise to two main subgroups of p63: ΔNp63 and 

TAp63. The TAp63 subgroup contains a transactivation domain, a DNA binding domain, and 

oligomerization domain. The ΔNp63 subgroup lacks the transactivation domain present in 

the other members of the family (Murray-Zmijewski et al., 2006).  
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Figure 1.11. Structure of p63 isoforms. (A) The human p63 gene structure encoded by 16 exons with 

alternative splicing promoter sites (P1 and P2) giving rise to TA and ΔN isoforms and alternative 

splicing sites giving rise to splice variants. (B) The two subgroups of p63; TAp63 and ΔNp63 containing 

DNA binding domain (DBD), oligomerisation domain (OD), a second transactivation domain (TA2), 

sterile alpha motif (SAM), and a post-inhibitory domain (PID). Figure adapted from Murray-Zmijewski 

et al. (2006). 
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TAp63 and ΔNp63 have very different functions, with TAp63 playing a predominantly tumour 

suppressive role and ΔNp63 playing an oncogenic role (Su et al., 2013). Moreover ΔNp63 can 

actually antagonize TAp63, p73 and p53 and block their activity (Yang et al., 1998; Liefer et 

al., 2000; Ratovitski et al., 2001; Rocco et al., 2006; Marcel et al., 2012). In addition to the 

two subgroups, further subcategories are created as a result of alternative splicing on the 3’ 

end which can generate α, β, γ, δ and ε isoforms. All of these isoforms contain the DNA 

binding domain and the oligomerization domain (Yang et al., 1998; Mangiulli et al., 2009). In 

addition, the α and β forms contain a second transactivation domain and the α forms contain 

a sterile alpha motif and a post-inhibitory domain, which respectively are required for 

protein-protein interactions and to mask the transactivation domain of TAp63α preventing 

its activation (Thanos & Bowie, 1999; Straub et al., 2010).  

 

p63 is predominantly a nuclear protein, and thus is expressed in the nucleus in the basal cells 

of the epidermis and also in a variety of cancers, including squamous cell carcinomas (Di 

Como et al., 2002). Cytoplasmic p63, however, has also been detected in certain cancers, for 

example, in melanoma and prostate cancer (Dhillon et al., 2009; Matin et al., 2013). 

 

1.4.3. Function 

1.4.3.1. Embryonic tissue 

p63 null mice are unable to survive long after birth due to severe dehydration and display 

truncated limbs and deformed craniofacial structures (Mills et al., 1999; Yang et al., 1999). 

One of the key functions of the skin is to control fluid loss from the body. The skin of these 

mice, however, was unable to differentiate leaving it in an unstratified state. Although initial 

studies using p63 null mice had reported similar phenotypes, their explanation as to the role 

of p63 in the developmental process of the skin differed and still remains a controversial 

topic (Mills et al., 1999; Yang et al., 1999). Subsequent studies have been performed to try 

to understand this difference.  

 

Candi et al., (2006) created p63 null mice expressing either ΔNp63α or TAp63α to investigate 

the potentially diverse roles of the two promoter variants. From these data, and previous 

data from one of the initial mouse models, it was found that mice expressing ΔNp63α were 

able to develop a basal layer of skin while mice expressing TAp63α were unable to form the 

skin. ΔNp63 was expressed in the basal layers and was able to activate early differentiation 
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markers and TAp63 was expressed in the suprabasal layers and activated late stage markers 

(Figure 1.12). These data, and data from Laurikkala et al. (2006), suggest that ΔNp63α is key 

to the development and proliferation of the epidermis and that only subsequent TAp63α 

expression allows differentiation of the cell.  

 

These data have, however, been criticsed by Koster et al. (2007) due to the inability of the 

researchers to recover the normal phenotype when expressing both ΔNp63α and TAp63α. 

Koster et al. (2004) had previously claimed their model demonstrated that the expression of 

TAp63 was the initial key stage of epidermal development. They showed that expression of 

only TAp63 in single layered lung epithelia was sufficient to initiate stratification and that 

overexpression of TAp63 prevented the differentiation of the cells. At present this is still a 

debated topic (Koster et al., 2007; Candi et al., 2008). 

 

 

 

 

 

Figure 1.12. p63 and the development of the skin. ΔNp63 is expressed in the basal layers of the skin 

and is involved in the proliferation of the basal cells. TAp63 is expressed later and aids the expression 

of proteins involved in differentiation. Figure adapted from Candi et al. (2006). 

1.4.3.2. Adult tissue 
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In adult tissue, ΔNp63 is the predominant isoform expressed in the mature epidermis and 

ensures its maintenance (Parsa et al., 1999). ΔNp63 is found in the basal cells of the adult 

epidermis and loses expression as the cells differentiate towards the surface. In cancer it is 

also ΔNp63 which behaves as an oncogene. In addition to cancer, p63 has been found to play 

a role in cellular senescence and ageing. Mice p63+/- display signs of accelerated ageing e.g., 

skin lesions, alopecia and severe degenerative disc disease of the spine and thus live for a 

shorter period of time (Flores et al., 2005; Keyes et al., 2005).  

 

Further investigation into this phenomenon showed evidence for the involvement of both 

isoforms. TAp63 conditional knockout mice age prematurely, developing both blisters and 

skin ulcerations and also give rise to senescence of hair follicle-associated dermal and 

epidermal cells (Su et al., 2009). Supporting the notion of opposing roles ΔNp63α 

overexpression resulted in premature ageing correlating with decreased expression of Sirt1, 

a protein known to promote longevity in mice (Sommer et al., 2006). 

 

1.4.4. Regulation 

1.4.4.1. Post-translational modifications  

Rapidly changing p63 protein levels are often observed in cell studies. These differences 

might be the result of post-translational modifications which affect protein stability and 

perhaps functionality of p63, although the mechanism of most of these modifications are not 

yet well defined.  

 

The phosphorylation of TAp63 results in stabilisation of the protein. Several kinases have 

been implicated in the phosphorylation of TAp63. TAp63 can become phosphorylated when 

the cell is subjected to DNA damage, for example in cells subjected to cisplatin treatment, 

protein kinase c-abl, phosphorylates TAp63 stabilising the protein and activating the pro-

apoptotic pathway (Gonfloni et al., 2009). TAp63γ can become phosphorylated by IKKβ and 

Plk1, preventing the apoptotic function of TAp63 in liver cancer cells (MacPartlin et al., 2008; 

Komatsu et al., 2009). In contrast, phosphorylation of ΔNp63 by ATM, CDK2 or p70s6K in 

HNSCC cells treated with cisplatin resulted in ΔNp63 becoming degraded (Huang et al., 2008). 

Similar findings were also reported by Westfall et al., (2005) who demonstrated that in cells 

which had undergone UV and paclitaxel treatment, ΔNp63 became phosphorylated and 

consequently degraded.  
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Other post-translational modifications leading to the degradation of p63 include 

ubiquitination, sumoylation and acetylation. Several studies have demonstrated a role for 

sumoylation in controlling ΔNp63 (Huang et al., 2004; Ghioni et al., 2002; Vivo et al., 2009). 

TAp63α contains a sumoylation site on the C-terminus and sumoylation of TAp63α has been 

shown to repress its transcriptional activity (Straub et al., 2010). TAp63 and ΔNp63 can 

become ubiquitinated and thus degraded by ITCH, an E3 ubiquitin ligase (Rossi et al., 2006). 

ΔNp63α can become targeted for degradation by the downregulation and destabilisation of 

scaffold proteins that can activate E3 ubiquitin ligases (Li et al., 2009). 

 

1.4.4.2. ASPP family 

As detailed in the previous section, it has recently been demonstrated that p63 was able to 

control iASPP at the protein and mRNA level in the stratified epithelia (Chikh et al., 2011). 

Conversely, it was found that when the expression of iASPP was inhibited, the protein 

expression of p63 decreased but the mRNA levels were unaffected. It was discovered that 

this absence of change in p63 mRNA levels upon iASPP silencing was due to two microRNA, 

miR-720 and miR-574-3p. The microRNA expression increases when iASPP is silenced and, in 

turn, cause a decrease in the expression of p63, providing evidence for their involvement in 

inhibiting p63 translation (Figure 1.13) (Chikh et al., 2011).  
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Figure 1.13. IASPP/p63 autoregulatory feedback loop. In the stratified epithelium p63 is regulated 

via iASPP and miR-574-3p and miR-720. p63 is able to regulate itself via the feedback loop, when p63 

is expressed at high levels it promotes the expression of iASPP, which can in turn, inhibit the two 

microRNA able to control p63. When iASPP is silenced, the microRNA are able to bind to p63 and 

repress its translation. Figure adapted from Chikh et al. (2011).  

 

 

Partially conflicting data came from Notari et al. (2011) however, using p53-null cell lines 

Saos-2 and H1299. These cells were transfected with ΔNp63 and TAp63 in the presence of 

exogenous iASPP. In these conditions cells exhibited 50% less transcriptional activity (using 

keratin 14 and envoplakin as a read out) than cells without exogenous iASPP, suggesting that 

iASPP binds p63 and inhibits its transcriptional activity (Notari et al., 2011). The expression 

levels of both ΔNp63 and TAp63 were unaffected in the presence of exogenous iASPP. This 

correlates with the finding that increased levels of p63 promote cellular senescence in MEFs, 

thus iASPP, an inhibitor of senescence/differentiation, may carry out this role via repressing 

the downstream activity of p63 (Notari et al., 2011).  

 

Previous studies also had showed the ability of the other members of the ASPP family being 

able to bind to p63 (Robinson et al., 2008). A recent study by Tordella et al. (2013) generated 

an SCC mouse model via an ASPP2 deletion. As mentioned previously, ASPP2 is a part of the 

ASPP family and has a similar structure to iASPP. The ASPP2 deletion inversely correlated 

with upregulation of p63. The data demonstrate that ASPP2 can repress p63 via NFκB 

pathway and thus can behave as a tumour suppressor in SCC via this route. 
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1.4.4.3. MicroRNA 

Prior to the discovery of miR-574-3p and miR-720 controlling the expression of p63, Yi et al. 

(2008) generated a mouse model overexpressing miR-203 and found that the mice died at 

birth due to dehydration, a similar phenotype to that originally observed in p63 knockout 

mice (Mills et al., 1999; Yang et al., 1999). In the same year both Yi et al. (2008) and Lena et 

al. (2008) demonstrated that miR-203, located in the skin, was able to target and repress 

ΔNp63 thus inhibiting its stem cell maintenance and proliferative ability (Figure 1.14). In 

addition, Lena et al. (2008) showed that miR-203 could become upregulated upon genotoxic 

damage and regulate ΔNp63 in head and neck cancer. Later Scheel et al. (2009) discovered 

miR-302 was an important microRNA regulator of TAp63. It was shown that miR-302 was 

able to repress TAp63 in germ cells. In support of this model they found that upregulation of 

miR-302 in testicular cancer cells repressed TAp63 (Figure 1.14). Since these initial 

discoveries several additional microRNA have been found to regulate the different p63 

isoforms. Table 1.2 lists some of these microRNA. 

 

Table 1.2. Reported MicroRNA regulating p63. 

MicroRNA  Isoform  Cell type  Study  

miR-203  ΔNp63  Epithelia  Lena et al., 2008; Yi et al., 2008 

miR-196a2 ΔNp63 Breast Kim et al., 2013 

miR-92  ΔNp63  Myeloid cells  Manni et al., 2009 

miR-125b  ΔNp63  Hailey-Hailey 
keratinocytes; oral SCC 

Manca et al., 2011; Boldrup et al., 
2012 

miR-130b  ΔNp63  Keratinocytes  Rivetti di Val Cervo et al., 2012  

miR-720  ΔNp63  Keratinocytes  Chikh et al., 2011  

miR-574-
3p 

ΔNp63  Keratinocytes  Chikh et al., 2011 

miR-92a TAp63 Acute promyelocytic 
leukaemia 

Sharifi et al., 2014 

miR-302  TAp63  Germ line  Scheel et al., 2009 

miR-21  TAp63  Glioblastoma  Papagiannakopoulos et al., 2008; 
Quintavalle et al., 2012 
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Figure 1.14. MicroRNA control of p63. miR-203 and miR-302 are able to control ΔNp63 and TAp63 

respectively. miR-203 is able to repress ΔNp63 to promote skin differentiation and miR-302 is able to 

repress TAp63 and enable germ cell maturation. Figure adapted from Blandino & Moll (2009). 

 

 

1.4.5. p63 and cancer 

p63, although mutated in other disease types, such as ectodermal dysplasia and cleft 

lip/palate syndrome, is very rarely mutated in cancer, though a few mutations do exist (Rinne 

et al., 2007). Chromosome 3q27-28, where p63 is located, is often amplified in a range of 

cancers. Early studies, investigating a role for p63 in cancer, produced a lot of conflicting 

data. It is now known that this was due to antibodies being raised against the DNA binding 
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domain and thus were unable to discriminate between the different isoforms on p63. We 

now know that the TA and ΔN isoforms of p63 have different functions and this is clear in 

cancer. ΔNp63 is often found at high levels in cancer and thus plays an oncogenic role in the 

tumour, TAp63, on the other hand, can be found expressed at low levels in malignancies 

consistent with a tumour suppressor role.  

 

TAp63 has been shown to behave in a similar fashion to the tumour suppressor p53. TAp63 

has a broad range of transcriptional targets including cell cycle arrest gene CDKN1A, and 

apoptosis genes including PUMA, NOXA and BAX indicating its importance in the regulation 

of the cell and cancer (Su et al., 2013). TAp63 has also been shown to regulate dicer, a gene 

essential for microRNA synthesis (described in section 1.2) and miR-103b, a microRNA found 

to play a role in metastasis and is therefore potentially very important in regulating 

microRNA and metastasis (Su et al., 2010). In cancer, mutant p53 and TGFβ are able to bind 

to TAp63 and inhibit its anti-metastatic functions (Su et al., 2013). In bladder carcinoma and 

head and neck squamous cell carcinoma, a loss of TAp63 expression has been correlated with 

increased invasiveness of the tumour (Park et al., 2000; Su et al., 2010). In addition, TAp63 

knockout mice developed metastatic tumour phenotypes (Su et al., 2010). In mouse models 

TAp63 behaves like a tumour suppressor gene by inhibiting the proliferation of adult stem 

cells and inducing senescence (Guo et al., 2009; Su et al., 2009).  

In some instances however, TAp63 does not appear to be solely limited to playing a tumour 

suppressive role. A recent study into p63 and melanoma found that not only the ΔNp63 

isoform but also TAp63 was able to confer chemoresistance in melanoma (Matin et al., 2013). 

 

ΔNp63, on the other hand, can be found in keratinocytes with a high proliferative potential 

(Parsa et al., 1999). ΔNp63 has been shown to be upregulated in several cancers including 

squamous cell carcinomas. Crook et al. (2000) found high levels of ΔNp63 expression in 

nasopharyngeal carcinomas and Hibi et al. (2000) demonstrated high levels of ΔNp63 

expression in both human head and neck, and lung SCC. An increasing number of studies are 

also providing evidence for ΔNp63 in cSCC when compared to normal skin (Senoo et al., 2001; 

Reis-Filho et al., 2002; Wrone et al., 2004; Dotto and Glusac, 2006; Alomari et al., 2014). In 

addition to this, p63 expression could potentially be used as a diagnostic marker for SCC 

(Lewis et al., 2005; Kargi et al., 2007; Khayyata et al., 2009; Ocque et al., 2011). 
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1.4.6. p63 therapeutics 

As mentioned previously, targeted therapy towards p53 in cSCC is difficult due to the high 

mutation rate of p53. However, if by targeting tumour suppressor TAp63, we could reinstate 

some of the cellular pathways normally controlled by p53 this would prove advantageous 

(Bell & Ryan, 2008). Just like iASPP, p63 has a low mutation rate in tumours and therefore, 

from this perspective, could make an ideal target for therapy. The different isoforms of p63 

that exist could also provide a greater scope for targets. For example, if decreasing or 

inhibiting ΔNp63 expression could prove too catastrophic for the body’s normal cells, 

increasing TAp63 could provide a better alternative.  

 

Zangen et al. (2005) found that upon cisplatin treatment in SCC cells, ΔNp63α became down 

regulated and proapoptotic protein TAp73 became stabilised. Encouragingly, this 

phenomenon appears only to occur in SCC cells and not in the normal epithelial cells 

(Deyoung et al., 2006). In addition, targeting down- or up-stream targets of these isoforms 

could be an alternative therapeutic angle. Inhibiting post-translational modifications of 

TAp63, for example, ubiquitination or sumoylation could increase the pro-apoptotic activity 

of TAp63 in the tumour (DeYoung & Ellisen 2007). Further investigation into understanding 

the role of p63 in the tumour could provide us with more targets to enable us to manipulate 

the expression of p63.  

 

1.5. Hypothesis and aims 

Recently, our group published a report demonstrating a link between iASPP and p63 via an 

autoregulatory feedback loop encompassing two novel microRNA, miR-574-3p and miR-720, 

in the stratified epithelia (Chikh et al., 2011). It was found that this feedback loop was 

essential for epithelial homeostasis as its effects were implicated in various cellular processes 

including adhesion, differentiation and proliferation. The aim of this research project is to 

dissect the role of iASPP, a novel crucial regulator of epidermal homeostasis, in keratinocyte 

skin carcinogenesis and to establish if the novel p63/iASPP feedback loop described is 

maintained or dysregulated in cSCC. Due to the importance of iASPP in maintaining cell 

homeostasis and the number of studies demonstrating an oncogenic role for iASPP in cancer, 

it is hypothesised that this feedback loop will be altered in cSCC. 
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The specific aims for this thesis are to explore: 

 

1. The expression patterns and localisation of iASPP and p63 in cSCC 

2. The integrity and regulation of iASPP/p63 autoregulatory feedback loop in cSCC 

3. Pathophysiological effects of iASPP in cSCC 
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Chapter 2: Materials and Methods 

 

2.1. Cell culture 

HEK293, HaCaT and human primary fibroblast cells were maintained in Dulbecco’s Modified 

Eagle’s Medium (DMEM) (Life Technologies, UK) supplemented with 10% Foetal bovine 

serum (FBS, LabTech, UK), 2mM L-glutamine (Sigma, UK), 5000U/ml Penicillin and 5000μg/ml 

Streptomycin (pen/strep, Life Technologies, UK).  

 

Cutaneous squamous cell carcinoma (cSCC) cell lines generated by the London Cancer 

Research UK Skin Tumour Laboratory and the N-TERT cell line were maintained in DMEM:F12 

media at a 1:1 ratio (Life Technologies, UK) supplemented with 10% FBS, 2mM L-glutamine, 

5000U/ml Penicillin, 5000μg/ml Streptomycin. An additional keratinocyte supplement was 

added to the media containing 5μg/ml transferrin (Sigma, UK), 0.4μg/ml hydrocortisone 

(Sigma, UK), 10-10M cholera toxin (Sigma, UK), 5μg/ml insulin (Sigma, UK), 2x10-11M 

lyothyronine (Sigma, UK) and 10ng/ml epidermal growth factor (Serotec, UK).  

 

All cell cultures were grown at 37°C in a 5% CO2 atmosphere. Cell lines were passaged or 

pelleted upon reaching approximately 70% confluency. Prior to passaging, cells were washed 

in phosphate buffered saline (PBS, Life Technologies, UK) to remove any dead cells/cell 

debris and subsequently detached with trypsin:EDTA 1:1 (Life Technologies, UK), before 

being neutralised with media. Cells were then pelleted by centrifugation at 1200rpm for 5 

min and either resuspended in media and reseeded, or frozen for experimental use at -80˚C. 

Cells required for freezing were trypsinised and pelleted as stated above before being 

resuspended in a solution of 90% FBS and 10% dimethyl sulphoxide (Sigma, UK). Cells were 

aliquoted in cryotubes and frozen at -80˚C before being stored long term in liquid nitrogen. 

To recover cells from frozen, cells required thawing at 37°C before being washed in media 

and subsequently resuspended and seeded in media. The media was then replaced after 24 

h. 

 

During differentiation assays, cells were maintained in EpiLife® medium (60µM Ca2+) (Life 

Technologies, UK) and supplemented with Human Keratinocyte Growth Supplement (Life 

Technologies, UK). To stimulate terminal differentiation cells were treated with 2mM Ca2+ 

(Sigma, UK). 
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2.2. p63 plasmid preparation 

p63 plasmids were kindly donated by G. Melino (MRC, Leicester). The pcDNA3.1 vector 

expressing an N-terminally HA-tagged protein was used. Chemically competent Escherichia 

coli cells (One shot® TOP10; Invitrogen™, USA) were transformed with 20ng DNA using a heat 

shock technique. Briefly, the DNA and plasmid were incubated together for 20 min on ice 

before being placed in a water bath at 37°C for 1 min then returned to ice. Following this 

500μl Luria Bertani (LB) medium (Sigma, UK) was added and incubated at 37°C, shaking for 

1h allowing expression of the antibiotic resistance marker. A 250μl aliquot of transformed 

cell suspension was spread evenly onto plates containing the appropriate antibiotic, in this 

case ampicillin. Plates were prepared by dissolving LB agar into ddH20 and heating before 

adding ampicillin (150 μg/ml) to ensure selective bacterial growth. Plates were incubated 

overnight at 37°C. The following day individual colonies were picked from the plates and 

incubated with 4ml LB medium plus ampicillin (150 μg/ml) at 37°C on a shaker for 5h. 

Following this, an additional 200ml of LB medium (+ ampicillin 150 μg/ml) was added and 

left overnight on a shaker at 37°C. Cultures were then pelleted and the DNA was isolated 

using the Qiagen (UK) Plasmid Maxi Kit (High Speed) protocol. The DNA concentration was 

measured using a Nanodrop® ND-1000 Spectrophotometer (Thermo Fisher Scientific, USA). 

 

2.3. Stable infection with short hairpin RNA (shRNA)  

SMARTvector 2.0 Lentiviral shRNA particles were purchased from Dharmacon, GE 

Healthcare, UK. Three different constructs containing sequences targeting iASPP were tested 

(Table 2.1). The human cytomegalovirus (hCMV) promoter drives the expression of the gene 

targeting construct. Cells were transduced with shRNA lentiviral particles at a MOI 2 using 

polybrene (5μg/ml) (Merck Millipore, USA) to enhance the transduction of cells. The 

transduction efficiency was measured by assessing the percentage of cells expressing 

turboGFP after transduction. Cells were selected with puromycin (2.5μg/ml) due to a 

puromycin resistance gene present in the plasmid. 
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2.4. Short interfering RNA (siRNA) 

Cells were silenced using transfection reagent DharmaFECT 1 (Dharmacon, GE Healthcare, 

UK) according to the manufacturer’s instructions. A pool of 3 Silencer® siRNA sequences 

targeting exons 5, 6, 8 and 11 (Ambion, Life Technologies, UK) were used to silence p63 

(Table 2.2). A pool of 4 ON-TARGET plus SMART pool (Dharmacon, GE Healthcare, UK) were 

used to silence iASPP (Table 2.2). The individual siRNA sequences were purchased and tested 

alone to ensure that pooling the siRNAs delivered the most effective knockdown. Non-

targeting siRNA (Dharmacon, GE Healthcare, UK) was used as a control to ensure the 

targeted siRNA had no unspecific effects. Initial optimisation assays were performed using 

siGLO (Dharmacon, GE Healthcare, UK).  

 

 

 

 

 

 

 

 

 

 

 

 

Briefly, siRNA at a concentration of 50nM, was incubated with 4μl DharmaFECT 1 in a 6-well 

plate containing pen/strep-free media. Optimal p63 knock down was observed at 48h and 

iASPP knock down at 72h. 

 

Table 2.1. ShRNA targeting sequences. 

Vector Gene target sequence Source Clone ID 

hCMV-TurboGFP GGAGTAAAGTCTAGCAGGA SH-003815-01-10 

hCMV-TurboGFP AGTCGCTGGCCATGAAACA SH-003815-02-10 

hCMV-TurboGFP AAGGACAACCTCACTAGCG SH-003815-03-10 

Table 2.2. SiRNA targeting sequences. 

Gene SiRNA ID Gene target sequence 

p63 siRNA ID 4893 GGUUGGCACUGAAUUCACG 

siRNA ID 217144 CGUAUUCCACUGAACUGAA 

siRNA ID 217143 GCACACAAUUGAAACGUAC 

iASPP siRNA J-003815-05 AGUAAAGUCUAGCAGGAUA 

siRNA J-003815-06 GCACGGGUGUUGGCGGAAA 

siRNA J-003815-07 GCAGACGUCGAGCAGAGUA 

siRNA J-003815-08 UCGAGAAGUGCGACCCUUA 
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2.5. Pre-miR™ miRNA Precursors & Anti-miR™ miRNA Inhibitor 

Pre-miR miRNA precursors and anti-miR miRNA inhibitors (Ambion, Life Technologies, UK) 

were transfected into the cell using DharmaFECT 1 according to the manufacturer’s 

instructions. Pre-miR and anti-miR negative controls were used to ensure there were no 

unspecific effects of the pre-miR precursors and anti-miR inhibitors respectively.  

 

2.6. Total RNA extraction, first strand cDNA synthesis & quantitative PCR 

Total RNA were extracted using the miRNeasy Mini Kit (Qiagen, UK) according to the 

manufacturer’s instructions. The RNA concentration for each sample was measured using a 

Nanodrop ND-1000 spectrophotometer at an absorbance of 260nm (Thermo Fisher 

Scientific, USA). From the extracted RNA, 500ng was used to undergo first strand cDNA 

synthesis via the SuperScript® VILO™ cDNA synthesis kit (Life Technologies, UK), used 

according to the manufacturer’s instructions. A PTC-225 Peltier thermal cycler (MJ 

Research, Canada) was programmed to 25˚C for 10 min, 42˚C for 60 min, followed by 85˚C 

for 5 min. 

 

Quantitative-PCR reactions were performed by making a 20μl reaction mixture consisting of 

50μg cDNA, 1μM of both forward and reverse primers and a 2X using Maxima SYBR® 

Green/ROX qPCR Master Mix (Thermo Fisher Scientific, USA) (Table 2.3). The reaction was 

run using a three-step protocol with the AB7500 Fast Realtime PCR System (Applied 

Biosystems, UK) (Table 2.4). All reactions were performed in triplicate on a 96-well plate and 

GUS, a housekeeping gene, was used to normalise the samples.  

 

The comparative CT method (ΔΔCT) was used to analyse the data. The average of the triplicate 

CT values for the housekeeping control gene were subtracted from the average CT values of 

the gene of interest = ΔCT. The ΔΔCT was calculated as the ΔCT of the test sample minus the 

ΔCT of the calibrator sample. The fold changes of expression were then calculated using the 

2-ΔΔCT formula (Livak and Schmittgen, 2001). 
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Table 2.3. Oligonucleotide primer sequences used for Q-PCR. 

Primer Sequence 5’ – 3’ Annealing temp (˚C) Reference 

Forward Reverse 

TAp63 (detects all isoforms of gene) GGTGCGACAAACAAGATTGAG GAAGGACACGTCGAAACTGTG 62 Chikh et al., 2011 

ΔNp63 (detects all isoforms of gene) GGAAAACAATGCCCAGACTC GAAGGACACGTCGAAACTGTG 60 Chikh et al., 2011 

iASPP TCCTTTGAGGCTTCACCCTG CGTGGATTTCCTCATCATCACCG 64 Chikh et al., 2011 

GUS AAACGATTGCAGGGTTTCAC CTCTCGTCGGTGACTGTTCA 60 Matin et al., 2013 

Zeb1 GTCCAAGAACCACCCTTGAA TTTTTGGGCGGTGTAGAATC 60 Biddle et al., 2011 

Zeb2 CGGTAGTGAGTCATAATGGT GTCTCCTTGAGTCAGTAGTC 60 Unpublished data 

(Ankit Patel) 

E-cadherin GAACGCATTGCCACATACAC AGCACCTTCCATGACAGACC 60 Biddle et al., 2011 

Twist 1 GTCCGCAGTCTTACGAGGAG CCAGCTTGAGGGTCTGAATC 60 Biddle et al., 2011 

Vimentin CCCTCACCTGTGAAGTGGAT GACGAGCCATTTCCTCCTTC 60 Biddle et al., 2011 
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2.7. MicroRNA extraction, TaqMan® microRNA reverse transcription & quantitative PCR 

MicroRNA extraction was carried out using the miRNeasy Mini Kit (Qiagen, UK) according to 

the manufacturer’s instructions. The RNA concentration for each sample was measured 

using a Nanodrop ND-1000 spectrophotometer at an absorbance of 260nm. From the 

extracted RNA, 2ng was used to undergo reverse transcription using TaqMan® microRNA 

synthesis kit (Applied Biosystems, UK) according to the manufacturer’s instructions. Primers 

were purchased from Ambion, Life Technologies, UK. The thermal cycler was programmed 

to 16˚C for 30 min, 42˚C for 30 min, followed by 85˚C for 5 min. 

 

Quantitative PCR reactions were performed with the product from the reverse transcription 

reaction using the TaqMan MicroRNA Assay (Applied Biosystems, UK). Briefly, reverse 

transcription products were incubated along with a TaqMan microRNA probe and a TaqMan 

Universal PCR Master Mix. All reactions were performed in triplicate on a 96-well plate and 

RNU48, a housekeeping control, was used to normalise the samples. The reaction was run 

using an AB7500 Fast Realtime PCR System (Applied Biosystems, UK) (Table 2.5). The CT 

values for the microRNA of interest were normalised to the CT value for RNU48. The miRNA 

samples were analysed using the ΔΔCT method as described in section 2.6. 

 

 

Table 2.5. Thermal cycling conditions for TaqMan qPCR 

Temperature ˚C Time No. of cycles 

95 10 min 1 

95 15 s 40 

60 60 s 

Table 2.4. Thermal cycling conditions for SYBR green qPCR. 

Step Temperature ˚C Time No. of cycles 

UDG pre-treatment 50 2 min 1 

Initial denaturation 95 10 min 

Denaturation 95 15 s 40 

Annealing 60-65 (depending 

upon primer used) 

30 s 

Extension 72 30 s 
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2.8. MicroRNA array 

Total RNA was extracted from si-iASPP or non-targeting siRNA treated cSCC cell lines using 

miRNeasy Mini Kit (Qiagen, UK), as described previously. Samples were then sent to the 

Cancer Genomics Lab, Fondazione Edo ed Elvo Tempia, Italy. MiRNA expression profiling was 

carried out using the one-colour labelling method. Labelling, hybridization, washing and slide 

scanning were performed following manufacturers’ protocols (Agilent Technologies, USA).  

 

Briefly, 100ng of total RNA was dephosphorylated and denatured; then a ligation and 

labeling step with Cy3 performed. Samples were hybridised to oligonucleotide glass arrays 

with sequences representing probes of 2006 human microRNAs from the Sanger database 

v19 (Human miRNA 8x60K Microarray Version 19, Agilent Technologies, USA). After 20 h 

slides were washed and scanned using an Agilent C dual-laser microarray scanner. Images 

obtained were analysed using Feature Extraction software v10.5. 

 

Raw data extracted from each image were processed using R statistical environment and the 

linear modelling for microarray analysis library. A filtering function was applied to select only 

‘well above background’ features. Cy3 median signal was log transformed and background 

subtracted using the ‘normexp’ method, with an offset of 20. Between-array normalisation 

was applied, using the ‘quantile’ method and signals from replicated probes were averaged. 

For each cSCC cell line and each unique probe, the non-targeting control signal was 

subtracted from si-iASPP treated signal and a moderate t-test was applied to detect 

differentially expressed microRNAs. Slight modulation in terms of fold-change was accepted 

(+/- 1.25 FC) provided p-values were less than 0.01. 

 

2.9. Luciferase reporter assay 

The luciferase reporter assay was carried out to detect the effect of miR-211-5p-mediated, 

post-transcriptional regulation on p63. The luciferase assay requires a plasmid containing the 

3’ UTR of p63 and a plasmid containing a mutant 3’ UTR as a control. The 3’ UTR plasmid was 

already available in the lab but the mutant 3’ UTR was generated, as it is required to be 

specific for each individual microRNA. 

 

Mutagenic primers were designed using the guidelines supplied with the QuickChange II XL 

Site-Directed Mutagenesis Kit (Agilent Technologies, USA). Mutant 3’ UTR plasmid was 
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generated using QuickChange II XL Site-Directed Mutagenesis Kit according to the 

manufacturer’s instructions. Briefly, site-Directed Mutagenesis was carried out via thermal 

cycling combining a PfuUltra high fidelity DNA polymerase, mutagenic p63 primers and p63 

plasmid. The reaction allows the primers to extend producing a mutant plasmid containing 

staggered nicks. Following this, the parental DNA template was digested using Dpn I 

endonuclease (specific for methylated and hemimethylated DNA – the plasmid DNA 

template was isolated from a dam+ Escherichia Coli strain), selecting for the mutated DNA. 

The mutated DNA was then transformed into XL10-Gold ultracompletent cells and plated 

onto ampicillin containing agar plates. Mutant DNA was isolated using the Qiagen Plasmid 

Mini kit (Qiagen, UK). The DNA concentration was measured using a Nanodrop® ND-1000 

Spectrophotometer. 

 

HEK293 cells were seeded in triplicate in a 96 well plate at a density of 1.5 x 104 cells/well. 

The following vectors were used: psiCHECK™2-containing p63 3’UTR-firefly luciferase 

reporter and psiCHECK™2-containing mutant p63 3’UTR-firefly luciferase reporter. The 

following day cells were transfected with 10ng/μl plasmid using 30ng/μl polyethylenimine. 

Cells were left for 24h before being further transfected with Pre-miR as described in section 

2.5. Cells were left for 48h. The Dual-Glo® Luciferase Assay System (Promega, USA) was used 

to determine the interaction between 3’UTR p63 and miR-211-5p, according to the 

manufacturer’s instructions. The efficiency of transfection was normalised to Renilla 

luciferase activity. 

 

2.10. In situ hybridisation of microRNA 

Sections (5μm) were cut from paraffin tissue blocks obtained from Barts and the London NHS 

Trust (REC approval number 08/S1401/69) and sent to our collaborators at the University of 

Cologne, Germany. In situ hybridisation was carried out using the same technique described 

in Chikh at al. (2011). LNA probes of miR-574-3p and miR-720 oligonucleotides from Exiqon 

(Denmark) were labelled with DIG Oligonucleotide 3’-End Labelling Kit as described in the 

manufacturer’s protocol (Roche Diagnostics, Germany). A control oligonucleotide from the 

Roche Kit was used as negative control.  

 

Sections were deparaffinised in 100% xylene for 5 min followed by three incubations in 100%, 

90% and 70% ethanol for 5 min before being washed in ddH20. Sections were permeabilised 
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with 0.2% pepsin in 0.2M HCl for 15 min at 37°C. Sections were incubated twice in 0.1M 

glycine in PBS for 3 min at RT to stop pepsin digestion. Sections then underwent DNA-

digestion by incubation with DNase 50U/ml for 1h at 37°C. Any endogenous peroxidase 

activity was inactivated by incubating sections in 3% H2O2 in methanol for 20 min at RT. 

Sections were washed twice for 3 min in ddH2O then washed twice for 3 min in 2X saline 

sodium citrate (SSC; 0.3M NaCl, 0.03M Na3C6H5O7). Prehybridisation mix (50% formamide, 

2X SSC, 0.05M Na2HPO4, 0.5% SDS, 1mM EDTA, 10mg salmon sperm DNA) was heated for 2 

min at 95°C, applied to the sections and put on a heat plate at 90°C for 2 min. Slides were 

placed in a wet chamber for 1-2h at RT. The prehybridisation mix with 1pmol/50μl DIG 

labelled-probe was then applied to the sections. Slides were put on a heat plate (90°C) for 2 

min, then put in a wet chamber and incubated at RT overnight. Slides were washed twice in 

2X SSC for 15 min at RT, once in 1X SSC for 15 min at RT and once in 0.5X SSC for 15 min at 

RT.  

 

Detection of DIG‐labelled probes was done with anti‐DIG‐POD Fab fragments (Roche) in a 

1:100 dilution and TSA Biotin System (Perkin‐Elmer, USA) according to the manufacturer's 

protocol. All incubation steps were performed in a wet chamber. Sections were blocked with 

0.5% blocking solution for 30 min. Anti-digoxigenin-POD Fab fragments (Roche, UK) were 

diluted 1:1000 and applied to the slides and incubated at RT for 30 min, followed by 3 washes 

with PBS, each 5 min. Amplification of the signal was carried out by diluting Biotinyl Tyramide 

Reagent 1:50 in Amplification Diluent and incubating for 20 min at RT, followed by three 

washes with PBS, each 5 min. Streptavidin-HRP was diluted 1:100 and incubated with the 

slides for 30 min at RT, followed by three washes in PBS, each 5 min. 3,3′-Diaminobenzidine 

(DAB) staining was carried out using a DAB substrate Kit for peroxidase (Vector Laboratories, 

UK). Sections were counterstained with haematoxylin and coverslips were applied to slides 

with DePeX (Serva, Germany). Images were taken on Nikon Eclipse 80i (Japan). 

 

2.11. Protein extraction – NP40 lysis buffer 

Cells were pelleted and washed in PBS prior to undergoing protein extraction with ice-cold 

lysis buffer (1M tris, 2.5M NaCl, 10% glycerol, 0.5M glycerophosphate, 1% Tween 20, 0.5% 

nonidet P40) containing 1X EDTA-free Complete Protease Inhibitor (Roche, UK) for 10 min. 

Cells were subjected to rapid freeze/thawing between dry ice and a 37˚C water bath before 

being vortexed and centrifuged at 13,000 rpm for 5 min. The supernatant was transferred to 
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a new Eppendorf and the protein concentration was measured using the Bradford assay 

according to the manufacturer’s instructions (BioRad, USA). The Bradford assay works by 

producing a coloured compound directly proportional to the amount of protein present in 

the sample, the protein concentration was then analysed at a wavelength of 595nm on a 

Synergy HT Multi-Mode Microplate Reader (Bio-Tek, USA). The protein concentrations are 

determined from a bovine serum albumin (BSA) standard curve, formed using BSA 

concentrations between 0-10μg (x-axis) and the absorbance readings (y-axis). Protein 

samples were then boiled at 95˚C for 5 min with 1X NuPage® LDS Loading Buffer 

(Invitrogen™, USA) to denature the protein. 

 

2.12. Protein extraction – urea lysis buffer 

Both attached and floating cells were pelleted and washed in PBS prior to undergoing protein 

extraction with urea buffer (8M urea, 1M thiourea, 0.5% CHAPS, 50mM DTT and 24mM 

spermine) (Morris et al., 2014). The higher molecular weight iASPP band is mainly present in 

mitotic cells that may be found floating in the media. Protein concentrations were 

determined as described in section 2.11. 

 

2.13. Protein extraction - subcellular fractionation 

Extraction of cytoplasmic and nuclear proteins was performed using a NE-PER Nuclear and 

Cytoplasmic Extraction Kit (Thermo Fisher Scientific, USA), according to the manufacturer’s 

instructions. Briefly, cells were pelleted before being treated with Cytoplasmic Extraction 

Reagent I, after 10 min on ice Cytoplasmic Extraction Reagent II was added. Cells were 

vortexed and centrifuged for 5 min at maximum 13000 rpm. Immediately following this the 

supernatant (cytoplasmic extract) was transferred to a clean tube and kept at -80 ˚C until 

required. The insoluble fraction was suspended with Nuclear Extraction Reagent and 

incubated on ice for 40 min. Tubes were vortexed every 10 min within this period then 

centrifuged at 13000 rpm for 10 min. The supernatant (nuclear extract) was transferred to a 

clean tube and kept at -80 ˚C until required. Protein concentrations were determined as 

described in section 2.11. To ensure the specificity of the kit GAPDH and Lamin A, cytoplasmic 

and nuclear markers, respectively, were used. 

 



66 
 

2.14. Western blotting 

Protein samples were run on SDS-PAGE gels comprising of a stacking gel and a resolving gel 

(Table 2.6 & 2.7). The percentage of resolving gel was modified depending upon the 

molecular weight of the protein of interest. iASPP and p63 were run on a 10 % gel. Typically 

20-40μg of protein was loaded into each well. A Benchmark Protein marker (Invitrogen™, 

USA) was used as a reference for the molecular weight of the protein of interest. Gels were 

run in a Mighty Small Electrophoresis Unit (Hoefer, USA) with a 1X SDS-PAGE running buffer 

(250mM tris, 1.92M glycine, 1% SDS) at 150V until the proteins had fully resolved.  

 

 

 

 

 

 

 

 

 

 

Table 2.7. 10% resolving gel (10 ml) 

Components Volume (ml) 

30% acrylamide solution  1.7  

1M Tris pH 8.8 1.3  

10% sodium dodecyl sulphate  0.05  

10% ammonium persulphate  0.05  

Tetramethylethylenediamine 0.002  

ddH2O 1.9  

 

  

Once the running process was complete the gel was transferred onto a cassette containing 

1 sponge, 2 pieces of blotting paper and a nitrocellulose transfer membrane (Amersham, 

Protran, GE Healthcare, UK), all pre-soaked in 1X transfer buffer (250mM Tris, 1.92M glycine, 

20% methanol). Two further pieces of pre-soaked blotting paper and a pre-soaked sponge 

with placed on top of the gel to form a complete sandwich. The cassette was then positioned 

Table 2.6. Stacking gel (3 ml) 

Components Volume (ml)  

30% acrylamide solution  0.5  

1M Tris pH 6.8 0.38  

10% sodium dodecyl sulphate  0.03  

10% ammonium persulphate  0.03  

Tetramethylethylenediamine 0.003  

ddH2O 2.1  
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in a Mini-PROTEAN® (BioRad, USA) transfer tank containing 1X transfer buffer and run for 2h 

at 350mA. 

 

Once the transfer had completed, membranes were blocked in PBS containing 0.1% Tween 

and 5% milk for 1h on a rocker at RT to eliminate any unspecific binding of the antibody. 

After blocking, the membrane was incubated with the appropriate primary antibody diluted 

in PBS containing 0.1% Tween and 5% milk on a rocker overnight at 4˚C (Table 2.8).  

 

The membrane was then washed 3 times for 5 min in PBS/Tween 0.1% before being 

incubated with the appropriate horseradish peroxidase-conjugated secondary antibody 

(DAKO, USA) at a dilution of 1:10,000 in PBS containing 0.1% Tween and 5% milk for 1h on a 

rocker at RT. Membranes were then subjected to three further 5 min washes with 

PBS/Tween 0.1% before the secondary antibody was detected by adding ECL Plus (GE 

Healthcare, UK) to the membrane for 1 min and exposed to autoradiography film (Santa Cruz, 

USA). Films were developed with an automated developing machine. Densitometry analysis 

was carried out on the films using Image J. 
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2.15. Immunohistochemistry 

Paraffin-embedded tissue samples were obtained from Barts and the London NHS Trust (REC 

approval number 08/S1401/69). Tissue samples were fixed in 10% formal saline solution 

before being embedded in paraffin wax. Upon use, tissue blocks were cut by a microtome at 

approximately 3-4 microns and mounted onto a positively charged slide. Sections were 

dewaxed in xylene twice for 3 min and rehydrated in alcohol twice for 3 min before being 

placed in running water for 5 min. Antigen retrieval was then performed. Sections to be 

stained for iASPP were microwaved in a vector antigen unmasking solution pH6 for 35 min. 

Sections to be stained for p63 were microwaved in Tris-EDTA unmasking solution pH9 for 35 

min. Following antigen retrieval, sections were placed in running water for 5 min before any 

endogenous peroxidase activity was blocked by incubation with 3% hydrogen peroxide 

solution for 15 min. Sections were washed three times in wash buffer before Normal Horse 

Serum (Vector R.T.U. kit, Vector Laboratories, UK) was applied for 20 min. The serum was 

then flicked off and the primary antibody was added at the appropriate concentration diluted 

Table 2.8. Primary antibodies. 

Antibody 
(species and 
type) 

Manufacturer and 

product Code  

 

Western 
blot 
dilution 

Immunocyto-
chemistry 
dilution 

Immunohisto-
chemistry 
dilution 

iASPP (Mouse 
monoclonal) 

Sigma A4605 1:1000 1:400 - 

iASPP (Rabbit 
polyclonal) 

Abcam ab34898 - - 1:300 

p63 H137 (Rabbit 
polyclonal) 

Santa Cruz sc-8343 1:300 1:150 1:150 

GAPDH (Rabbit 
polyclonal) 

Abcam ab9485 1:2500 - - 

Cyclin D2 (Rabbit 
polyclonal) 

Cell signalling 
#3741 

1:500 - - 

Lamin A (Rabbit 
polyclonal) 

Cell signalling 
#2032 

1:500 - - 

Involucrin 
(Mouse 
monoclonal) 

Abcam ab68 1:500 - - 

Zeb1 (Rabbit 
polyclonal) 

Atlas Antibodies 
HPA027524 

1:500 - - 

p53 DO-1 (Mouse 
monoclonal) 

Santa Cruz sc-126 1:500 - - 

LC3 (Rabbit 
polyclonal) 

Cell signalling 
#2275 

1:500 - - 
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in antibody diluent (Table 2.8). Negative control sections were applied with antibody diluent 

without antibody. Sections were incubated at RT for 1h then washed three times in wash 

buffer. Universal Biotinylated Secondary Antibody (Vector R.T.U. kit, Vector Laboratories, 

UK) was added to the sections for 30 min, sections were washed in wash buffer twice then 

incubated with Vectastain Elite ABC Reagent (Vector R.T.U. kit, Vector Laboratories, UK) for 

30 min. Sections were washed 3 times with wash buffer then incubated for 5 min with DAB 

solution before being washed in running water for 5 min. Slides were loaded into a machine 

staining rack, stained with haematoxylin then cover-slipped. Slides were scanned using a 

slide scanner (NanoZoomer 2.0-HT, Hamamatsu, Japan) situated in Core Pathology, 

Pathology Department, Royal London Hospital. 

 

Scoring was carried out independently by myself and Consultant Pathologist, Dr Hasan Rizvi. 

Any discrepancies were resolved by a second round of analysis. A score index was obtained 

as a product of staining intensity (negative = 0; weak = 1; moderate = 2 and strong = 3) and 

percentage of positive tumour cell staining (negative = 0; 1-25% = 1; 26–50 % = 2; 51-75 % = 

3 and 76-100% = 4) (Luo et al., 2012; Liu et al., 2012). The score index was carried out for 

both nuclear and cytoplasmic staining in both the tumour and any perilesional epidermis 

present. For statistical analysis a score of ≤4 was considered low expression and ≥6 as high 

expression. 

 

2.16. Immunocytochemistry 

Cells were fixed in 4% paraformaldehyde (PFA) for 10 min followed by two 5 min washes in 

PBS. Cell membranes were permeabilised in 0.3% Triton X-100 for 2 min at RT. Coverslips 

were then washed twice with PBS for 10 min to remove any residual detergent. To avoid 

non-specific reaction, cells were incubated with 5% goat serum/PBS for 30 min. After 

removal of the serum, cells were incubated with primary antibody diluted in 5% goat 

serum/PBS overnight at 4°C (Table 2.8). Cells were washed 3 times for 10 min in PBS before 

being incubated with the appropriate fluorophore-conjugated secondary antibody (Dako, 

USA, diluted 1/500 in 5% PBS/goat serum) for 1 h at RT in the dark. Cells were washed twice 

for 10 min in PBS then incubated with 10μg/ml 4',6-diamidino-2-phenylindole (DAPI) for 10 

min followed by two washes in PBS for 10 min. Coverslips were mounted onto a glass slide 

using Vectashield Mounting Medium (Vector Laboratories, USA) to prevent photobleaching 
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over time. Mounted slides were stored at 4˚C protected from light and viewed with a Zeiss 

upright 710 confocal (Germany). 

 

2.17. Annexin-V binding assay  

When cells undergo apoptosis, phosphatidylserine, usually located on the inner membrane 

of the cell becomes exposed on the surface of the cell. Annexin-V is able to bind to exposed 

phosphatidylserine and thus is used as a marker for apoptosis. To induce apoptosis, cells 

were treated with chemotherapeutic drugs etoposide and cisplatin for 18 h. After treatment, 

adherent cells and any floating cells in the supernatant were collected and pelleted before 

being washed in PBS. Cells were resuspended in 400μl 1X Becton Dickinson Annexin V Binding 

Buffer (BD Pharmingen™, USA). To this, 5μl Annexin-V-FTIC was added and tubes were 

incubated in the dark at RT for 15 min. After incubation, 200ng/ml DAPI was added to tubes 

as a marker for cell viability. Dead cells will take up DAPI more readily than live cells which 

will pump DAPI out. Cells were sorted at 10-20,000 events using a BD FACS Canto II Flow 

Cytometer (BD Biosciences, USA).  

 

Results were analysed using the Becton Dickinson FACSDiva software version 6.1.03. Cells 

were classed as apoptotic if they were Annexin-V-FITC positive and DAPI positive or negative 

- right hand side quadrants of scatter plot.  

 

2.18. Transwell cell migration assay 

Cells were plated onto a 24 well plate containing Transwell® polycarbonate membrane cell 

culture inserts (Corning®, USA). The lower chamber of the wells contained 500µl of 10 % FBS-

containing media and the upper chamber of the wells contained 200μl of 2% FBS-containing 

media, acting as a chemoattractant for the cells. Cells were seeded at a density of 1 x 104 

cells in the 2% FBS-containing media and were incubated with the inserts for 24 h. After 

incubation, cells were washed once with PBS and fixed in 4% PFA for 15 min at RT. After 

fixing, wells were washed twice in PBS for 5 min before 0.1% (w/v) crystal violet was added 

to the wells and incubated for 4 min at RT. Wells were washed again before the non-migrated 

cells on the top of the membrane were removed with a cotton-wool bud. The migrated cells 

on the underside of the membrane were counted using a light microscope (Biddle et al, 

2011). 
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2.19. Cell proliferation assay 

Cells were seeded onto a 12 well plate on day 0 (10,000 cells per well). On days 3, 5 and 7 

cells were detached and counted using a haemocytometer. 

 

2.20. Colony forming assay 

Cells were seeded at a density of 1000 cells per well on a 6-well plate and left for 10 days 

with a medium change every 3 days. After 10 days, cells were washed once with PBS and 

fixed in 4% PFA for 15 min at RT. After fixing, plates were washed twice in PBS for 5 min 

before crystal violet was added to the wells and incubated for 4 min at RT. Colonies of 50 

cells or more were counted (Franken et al., 2006). 

 

2.21. Organotypic culture 

Organotypic cultures were produced using a combination of Collagen I, Rat Tail (Corning®, 

USA) and Matrigel® Basement Membrane Matrix (Corning®, USA) to mimic in vitro the 

epidermis of the skin (Nystrom et al, 2005). Organotypic gels were produced using 1:1 ratio 

of Type I collagen to Matrigel. Briefly, 7 volumes of Collagen:Matrigel were mixed on ice with 

1 volume of 10X DMEM. The solution was neutralised with NaOH before 1 volume of FBS and 

1 volume of 5x105 human primary fibroblasts, resuspended in DMEM medium containing 

10% FBS, were added. Millicell Hanging Cell Culture Inserts (polyethylene terephthalate, 0.4 

µm, Merck Millipore, USA) were placed into a 12-well plate before 400μl of organotypic 

solution was added to each and left for 1h at 37˚C at 5% CO2 to polymerise. cSCC cell lines 

were trypsinised and resuspended at a density of 5x105 in 300μl. To ensure a confluent layer 

of cSCC cells covered the surface of the gel prior to air exposure, the cell suspension was 

added to the top of the gel and 1ml of medium was added to the bottom of the well. Inserts 

were incubated at 37˚C at 5% CO2 for 24h. After incubation the medium on the top of the gel 

was aspirated creating a liquid/air interface for the cells. Culture medium was changed every 

2 days and the organotypic cultures were maintained at 37˚C at 5% CO2 for 10 days. Each 

experiment was performed in duplicate and repeated three times. Organotypic cultures 

were fixed for 1h in 4% PFA before being processed in an embedding machine. Slides were 

scanned using a slide scanner (NanoZoomer 2.0-HT, Hamamatsu, Japan) situated in Core 

Pathology, Pathology Department, Royal London Hospital. CellProfiler image analysis 

software was used to analyse the invasion index of cells. 
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2.22. Cell motility assay 

Cells were seeded onto a 12-well plate at a density of 5x104 cells/ml. The following day plates 

were placed into a CO2 incubation chamber set to 37 °C. A Zeiss Axiovert 200M live cell 

imaging microscope (Germany) was used to take images of each well every 10 min for 8h. 

Metamorph Image Analysis Software was used to track the motility of the cells. Each 

different experimental condition was performed in duplicate and repeated three individual 

times. Three videos were taken per well, within those three images, 10 cells were tracked 

over 8h using the Metamorph Image Analysis Software.  

 

2.23. Statistics 

Microsoft Excel software was used to perform Student’s t-tests. An unpaired, two tailed t-

test was used to determine if two sets of data were significantly different from each other. 

A p-value of less than 0.05 was considered statistically significant. 

 

A multivariate logistic regression was used to calculate odds ratios and 95% confidence 

intervals (95% CIs) using R version 3.0.2 stats library. A p-value of less than 0.05 was 

considered statistically significant. 
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Chapter 3: Expression patterns and localisation of iASPP and p63 

3.1 Introduction and Aims 

p63 is a master regulator of the skin. p63 null mice are unable to survive long after birth due 

to severe dehydration, a result of the skin being unable to differentiate (Mills et al., 1999; 

Yang et al., 1999). p63, although mutated in other disease types, such as ectodermal 

dysplasia and cleft lip/palate syndrome, is very rarely mutated in cancer, though a few 

mutations do exist (Rinne et al., 2007). Chromosome 3q27-28, where p63 is located, is often 

amplified in a range of cancers (Heselmeyer et al., 1996). Early studies investigating a role 

for p63 in cancer produced a lot of conflicting data. It is now known that this was due to 

antibodies being raised against the DNA binding domain. These antibodies were unable to 

discriminate between the different isoforms on p63. It is now known however that the TA 

and ΔN isoforms of p63 have different functions and this is clear in cancer.  

 

In bladder carcinoma and head and neck SCC, loss of TAp63 expression has been correlated 

with increased invasiveness of the tumour (Park et al., 2000; Su et al., 2010). In mouse 

models TAp63 behaves like a tumour suppressor gene by inhibiting the proliferation of adult 

stem cells and inducing senescence (Guo et al., 2009; Su et al., 2009). In some instances 

however, TAp63 does not appear to be solely limited to playing a tumour suppressive role. 

A recent study from our group found both the ΔNp63 and TAp63 isoforms were able to 

confer chemoresistance in melanoma (Matin et al., 2013).  

 

ΔNp63 which can be found in keratinocytes with a high proliferative potential lacks the N 

terminus and appears to have a dominant negative role on TAp63 and p53 inhibiting their 

activity and conferring an oncogenic phenotype (Yang et al., 1998; Parsa et al., 1999; Su et 

al., 2013). ΔNp63 has been shown to be upregulated in several cancers including SCC. Crook 

et al. (2000) found high levels of ΔNp63 expression in nasopharyngeal carcinomas and Hibi 

et al. (2000) demonstrated high levels of ΔNp63 expression in both human head and neck, 

and lung SCC. A handful of studies have also been performed demonstrating higher levels of 

ΔNp63 in cSCC when compared to normal skin (Senoo et al., 2001; Reis-Filho et al., 2002; 

Wrone et al., 2004; Dotto and Glusac, 2006; Alomari et al., 2014). So far, studies focussing 

on cSCC have been fairly limited in terms of sample size. 
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iASPP is largely expressed in epithelial cells and is a key regulator of epithelial homeostasis. 

Mouse models containing a deletion mutation in PPP1R13L, which encodes for iASPP, 

present an altered phenotype to wild-type mice with skin abnormalities (Herron et al., 2005; 

Toonen et al., 2012). iASPP has been well documented as an inhibitor of p53-induced 

apoptosis and thus is known to play an oncogenic role in the cell. It is therefore to be 

expected that iASPP would be involved in a cancer setting. Bergamaschi et al. (2003 and 

2006) demonstrated that iASPP is upregulated in human breast carcinoma and similarly, 

Zhang et al. (2005) showed increased iASPP expression in acute leukaemia. Furthermore, 

several studies have linked iASPP to a number of other cancers including colorectal adenoma 

and carcinoma, leukaemia, hepatocellular carcinoma, prostate and ovarian cancers, non-

small cell lung carcinoma, glioblastoma, endometrial endometrioid adenocarcinoma and 

melanoma (Saebo et al., 2006; Liu et al., 2009; Lu et al., 2010; Chen et al., 2010; Jiang et al., 

2011; Zhang et al., 2011; Li et al., 2011; Liu et al., 2010; Lin et al., 2012; Lu et al., 2013). In 

addition to the above mentioned cancers, high iASPP expression has also recently been 

discovered in head and neck, and cervical SCC (Liu et al., 2012; Cao et al., 2013). Both of these 

studies have been carried out looking at SCC cell lines and SCC clinical samples. To the best 

of my knowledge no studies have been performed on iASPP in cSCC.  

 

Due to the importance of iASPP and p63 in the skin and the oncogenic tendencies they have 

in cancer, I wanted to investigate iASPP and p63 in cSCC. Although several genes have been 

implicated in SCC pathogenesis the key molecular signalling pathway remain unclear. 

Investigating the role of iASPP and p63 in cSCC provides the potential for novel data on the 

molecular basis of squamous cell carcinogenesis.  

 

Aims for this chapter: 

1. Analyse the expression patterns of both iASPP and p63 in a panel of cSCC cell lines 

via qRT-PCR and western blot 

2. Carry out immunohistochemical staining of iASPP and p63 in a range of cSCC tissue 

samples 

3. Score and correlate iASPP and p63 staining in cSCC tissues with clinicopathologic 

characteristics of cSCC patients 

4. Explore the cellular location of iASPP in cSCC 
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3.2 Results 

3.2.1. High expression of iASPP and ΔNp63α found in a panel of cSCC cell lines 

It has been well documented that both iASPP and p63 are upregulated in many cancers. The 

expression profile of iASPP in cSCC, however, has not yet been studied. In addition, p63 has 

undergone limited study in cSCC. To address this issue a panel of 10 human cSCC cell lines 

were analysed for both iASPP and p63 protein levels. cSCC cell lines were generated by the 

London Cancer Research UK Skin Tumour Laboratory (Table 3.1). Cell lines were generated 

from an equal number of immunocompetent and renal transplant patients. Each cell line had 

previously undergone targeted exome sequencing for p53, Notch 1 and 2, and Ras mutation. 

Six out of the ten cell lines had mutated p53 compared to seven containing Notch1 

mutations, both of which are characteristics of cSCC (Brash et al., 1991; Forbes et al., 2010). 

An immortalised normal keratinocyte cell line (N-TERT) was included in the screening panel 

as a ‘normal’ control. 

 

 

iASPP was initially discovered as a 477 amino acid protein but the full length of iASPP was 

later established as an 828 amino acid protein (Yang et al., 1999; Slee et al., 2004). The full 

length isoform of iASPP is deemed to be 100 KDa in size (Slee et al., 2004). Prior to 

investigation into cSCC cell lines, optimisation experiments were performed to ensure that 

the antibody targeted against iASPP recognised the full length isoform. Two antibodies were 

Table 3.1. cSCC cell lines. 

Cell line Differentiation 

Status 

Patient status Tp53 

status 

Notch 1 

status 

Notch2 

status 

NRAS 

status 

PM2 Pre-malignant Renal transplant Mutant Mutant Mutant Mutant 

SCCIC4 Well Immunocompetent WT WT WT WT 

SCCT1 Well Renal transplant Mutant Mutant Mutant WT 

SCCIC15 Moderate Immunocompetent WT Mutant WT WT 

SCCIC18 Moderate Immunocompetent Mutant Mutant WT WT 

MET1 Moderate Renal transplant Mutant Mutant Mutant WT 

SCCIC1 Moderate Immunocompetent Mutant Mutant Mutant WT 

SCCT8 Poor Renal transplant Mutant WT Mutant WT 

SCCT11 Poor Renal transplant WT WT Mutant WT 

SCCIC8 Poor Immunocompetent WT Mutant WT WT 

WT: wild type 
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chosen for investigation Sigma (A4605) and Abcam (ab34898). Sigma (A4605) provided the 

clearest signal and was chosen for further use.  

 

p63 is found in several distinct isoforms. Preliminary experiments assessed which antibodies 

were able to recognise all the p63 isoforms and additionally contain no cross reactivity with 

p73, as has previously been documented with a popular p63 antibody, 4A4 (Rosenbluth et 

al., 2009). To aid the detection of the different p63 isoforms in cSCC, HEK293 cells were 

transfected with plasmids containing the different isoforms of p63; ΔNp63 α, β, γ and TAp63 

α, β, γ. Cell lysates from transfected cells were run alongside a sample of lysates from cSCC 

cells as markers for p63 isoforms (Figure 3.1). Two different antibodies were tested that had 

no known p73 cross reactivity; p63 H129 and p63 H137 (Santa Cruz). The p63 H137 antibody 

detected all transfected isoforms of p63 and was selected for further study. Earlier research 

had shown ΔNp63 to be the predominant isoform expressed in cancer due to its oncogenic 

tendencies. In the small sample of cSCC cell lines I found the ΔNp63α isoform to have the 

strongest expression (Figure 3.1).  

 

 

 

Figure 3.1. Expression of p63 isoforms. (A) Western blot with HEK293 cells transfected with p63 

isoforms demonstrates the effectiveness of H137 p63 antibody alongside a sample of cSCC cell lines. 

 

To ensure validity of western blot results, three different housekeeping proteins were tested 

to ensure no variance of levels between cell lines. Antibodies against housekeeping genes 

glyceraldehyde 3-phosphate dehydrogenase (GAPDH), beta-actin and alpha-tubulin were 

tested. GAPDH was chosen due to its stable expression in cSCC cell lines and also had the 

most appropriate molecular weight for the percentage gels in use. 
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Using the optimised antibodies and conditions, lysates from the panel of 10 cSCC cell lines 

along with lysate from the N-TERT cell line were run on a 10% SDS-PAGE gel and probed for 

p63 and iASPP (Figure 3.2A). The protein bands detected on the western blot films 

underwent densitometry analysis using Image J (Figure 3.2B). Western blot data illustrates a 

slight overall increase of iASPP protein expression in the cSCC cell line panel compared to N-

TERT control. ΔNp63α protein expression data also shows a general increase in cSCC cell lines 

compared to N-TERT (IC8 p=0.0024). These data were in keeping with the predicted outcome 

due to the widespread publications on the oncogenic activity of iASPP and ΔNp63α. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



78 
 

 

Figure 3.2. High expression of iASPP and ΔNp63α protein found in a panel of cSCC cell lines. (A) A 

panel of cSCC cell lines and a normal keratinocyte cell line (N-TERT) were screened for iASPP and 

ΔNp63α protein expression by western blotting. Cell lysates were run on a 10% SDS-PAGE gel and 

probed for iASPP and p63. GAPDH was used as a loading control. A representative western blot is 

shown. (B) Densitometry analysis showing the average iASPP and ΔNp63α protein expression levels 

when normalised to GAPDH and N-TERT. Error bars represent the SEM for three independent 

experiments. Statistical analysis was performed using a two-tailed, unpaired Students t-test. 

Experiments were corrected for multiple testing. P-value ≤ 0.005 = *. 

N
-T

ER
T

T1
1

T1 IC
1

5

T8P
M

2

IC
1

8

M
et

 1

IC
1

IC
8

IC
4

100

72

37

iASPP

ΔNp63α

GAPDH

0

2

4

6

8

10

12

R
e

la
ti

ve
 Δ

N
p

6
3

α
p

ro
te

in
 

e
xp

re
ss

io
n

 n
o

rm
al

is
e

d
 t

o
 

N
-T

ER
T

*

*

**

0

0.5

1

1.5

2

2.5

R
e

la
ti

ve
 iA

SP
P

 p
ro

te
in

 
e

xp
re

ss
io

n
 n

o
rm

al
is

e
d

 t
o

   
   

  
N

-T
ER

T

*

kDa

(A)

(B)

*



79 
 

Previous research has demonstrated a role for p63 in differentiation (Candi et al., 2006). 

iASPP is an inhibitor of differentiation and a promoter of proliferation (Chikh et al., 2011; 

Notari et al., 2011). For this reason it was interesting to correlate the differentiation status 

of the cells with iASPP and p63 protein expression. Poorly differentiated tumours tend to be 

more aggressive compared to well differentiated tumours. Although the levels of expression 

of both iASPP and ΔNp63α are variable between the cSCC cell lines, there appears to be no 

trend towards the differentiation status of the cell line and/or iASPP and ΔNp63α protein 

expression. It could be that there is no definitive pattern or another possibility could be that 

the cells, after being cultured from the patient, lose their differentiation profile. Western 

blotting with an antibody against involucrin, a molecular marker for keratinocytes 

differentiation, showed inconsistencies between the expression of involucrin and the 

apparent status of the cell (Figure 3.3) (Watt, 1983). 

  

 

 
 

 

Figure 3.3. Differentiation profile of cSCC cell lines. Representative western blot of cSCC cell lines 

probed with involucrin. GAPDH was used as a loading control. 
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3.2.2. High iASPP and ΔNp63 mRNA levels in a panel of cSCC cell lines 

In addition to checking the protein expression levels of iASPP and ΔNp63, mRNA levels were 

also studied. Primers previously used in work published by Chikh et al., (2011) were used for 

detecting mRNAs encoding ΔNp63 and the full length iASPP isoform. TAp63 primers were 

also used for initial tests but due to low mRNA levels only ΔNp63 was chosen for further 

study. RNA was extracted from lysates and reverse transcribed into cDNA before being 

analysed by qPCR. Three different housekeeping genes were tested to ensure consistency 

between the cell lines; beta-glucuronidase (GUS), actin and GAPDH. GUS was chosen to use 

as an internal control for all further experiments due to its stable expression in cSCC. 

 

Figure 3.4 shows an overall increase in both iASPP and ΔNp63 mRNA levels compared to N-

TERT. Two of the 10 cSCC cell lines tested showed significantly higher ΔNp63 levels compared 

to N-TERT (PM2 p=0.0004; Met1 p= 0.0045). But none of the cSCC cell lines showed 

significantly higher levels of iASPP compared to N-TERT. Interestingly, the pre-malignant cell 

line PM2 displayed significantly higher ΔNp63 levels compared to N-TERT correlating with 

the increase in ΔNp63 protein expression observed in Figure 3.2, hinting that perhaps 

amplification of p63 is an early event in SCC (Massion et al., 2003). iASPP protein levels in 

Figure 3.2 correlate with iASPP mRNA levels in Figure 3.4. p63 mRNA levels in Figure 3.4 show 

slight discrepancies compared to protein levels in Figure 3.2, however, the majority of cell 

lines follow the same pattern of expression. Additionally, there is a degree of variation 

among the cell lines and there appears to be no trend between the differentiation status of 

the cell line and/or iASPP and ΔNp63 mRNA levels. However, the above data are in keeping 

with the current research published on iASPP and ΔNp63 showing elevated levels in cancer. 

 

It could perhaps be argued that the data in Figures 3.2 and 3.4 are limited due to the fact 

that both densitometry and qPCR cSCC cell line results are normalised to the N-TERT cell line. 

The N-TERT cell line is limited in its comparison with normal human primary keratinocytes 

(NHKs) due to the N-TERT cell line being immortalised by overexpressing the telomerase 

reverse transcriptase enzyme. NHKs contain telomeres on the ends of their chromosomes; 

these become shortened every time a cell divides, eventually leading to senescence of the 

cell. By expressing the telomerase reverse transcriptase enzyme in N-TERT cells, telomeres 

do not become shortened and thus are immortalised. Deletions of the CDK2NA/INK4A locus 

are also present in these cells (Dickson et al., 2000). These studies were originally performed 

using lysates collected from a range on NHKs and the cSCC cell line data were normalised to 
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these. Due to large result variation within the NHK group however, and differences in the 

expression of apparent housekeeping control genes between NHKs and cSCC cell lines, 

possibly due to the different conditions they require to grow, the N-TERTs were deemed a 

more suitable comparator.  
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Figure 3.4. High levels of iASPP and ΔNp63 mRNA found in a panel of cSCC cell lines. A panel of cSCC 

cell lines and N-TERT were screened for iASPP and ΔNp63 mRNA by qRT-PCR. Housekeeping gene GUS 

was used as an internal control. mRNA levels of cSCC cell lines were normalised to N-TERT control. 

Error bars represent the SEM for three independent experiments performed in triplicate. Statistical 

analysis was performed using a two-tailed, unpaired Students t-test. Experiments were corrected for 

multiple testing. P-value ≤ 0.005 = *, ≤ 0.001 = **. 
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3.2.3. iASPP is highly expressed in human cSCC tissues  

In order to validate the cell line data it was important to ensure the results were consistent 

in human tissue. A total of 106 cSCC tumours (well, moderately and poorly differentiated) 

were collected, stained and scored (Table 3.2). Tumours varied in terms of their 

clinicopathological characteristics providing a broad spectrum of samples. Normal skin 

sections were also included as a control. For iASPP staining, two antibodies were chosen for 

testing, Sigma (A4605) and Abcam (ab34898). Abcam (ab34898) had the least background 

staining and was chosen for further study. Several antigen retrieval conditions (pH of 

retrieval buffer, microwave versus waterbath and antigen retrieval time) were carried out to 

ensure specific and clean staining. Optimisation experiments were carried out in both normal 

skin and cervical sections where staining of iASPP had previously been published (Chikh et 

al., 2011; Notari et al., 2011). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 3.2. Clinicopathologic characteristics of cSCC patients. 

Variables Number of patients Percentage of patients 

Age: 
  67 
  68 

 
51 
55 

 
48.1 
51.9 

Sex: 
  Female 
  Male 

 
33 
73 

 
31.1 
68.9 

Tumour Site: 
  Trunk 
  Upper limb 
  Lower limb 
  Head and neck (total): 
    Cheek 
    Forehead 
    Neck 
    Scalp 
    Temple 
    Ear/Nose/Lip/Eyelid 

 
15 
36 
16 
39 
1 
5 
4 
16 
2 
11 

 
14.2 
34.0 
15.1 
36.8 
0.9 
4.7 
3.8 
15.1 
1.9 
10.4 

Differentiation Status: 
  Well 
  Moderate 
  Poor 

 
52 
43 
11 

 
49.1 
40.6 
10.4 

Immune Status: 
  Renal transplant recipient 
  Immunocompetent 
  Other 

 
62 
32 
12 

 
58.5 
30.2 
11.3 
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Previous reports have described iASPP as a predominantly cytoplasmic protein; however, in 

the skin iASPP can be also expressed in the nucleus in the basal layer of the epidermis (Chikh 

et al., 2011; Notari et al., 2011). Consistent with this, the normal skin sections expressed 

predominantly nuclear iASPP (Figure 3.5A). A negative control containing no primary 

antibody was included along with a further control containing rabbit IgG to ensure no 

unspecific binding of the secondary antibody (Figure 3.5A). 

Tumour sections showed variable nuclear and/or cytoplasmic iASPP staining (Figure 3.3B). 

To document this, both myself and consultant histopathologist, Hasan Rizvi, scored the 

sections based upon the intensity and percentage of cytoplasmic staining in both the 

tumour/perilesional epidermis versus the intensity and percentage of nuclear staining in 

both the tumour/perilesional epidermis. Scores were then combined; any discrepancies 

were resolved by a second round of consensus scoring. A score index was obtained as a 

product of staining intensity (negative = 0; weak = 1; moderate = 2 and strong = 3) and 

percentage of positive tumor cell staining (negative = 0; 1-25% = 1; 26–50 % = 2; 51-75 % = 3 

and 76-100% = 4) (Luo et al., 2012; Liu et al., 2012). As the final immunoreactive score was 

calculated by multiplying the scores of staining intensity and the proportion of positive 

tumour cells, a score ≤4 was considered as patients with low expression and ≥6 as those with 

high expression (Table 3.3) (Luo et al., 2012; Liu et al., 2012). The scoring index obtained from 

each tumour was correlated with the clinicopathologic features of the patient (Table 3.3). 

The cut off of ≤67 and ≥68 years old was chosen as 67 years old was the median age of the 

patient sample. Statistical analysis was performed by Dr Ai Nagano at the Bioinformatics 

Unit, Barts Cancer Institute. A multivariate logistic regression was used to calculate odds 

ratios and 95% confidence intervals (95% CIs) using R version 3.0.2 stats library. Variables 

considered in the model were age, sex, tumour location, differentiation status and immune 

status. High odds ratio means high expression of nuclear iASPP or cytoplasmic iASPP. 

Although clearly a trend has emerged regarding the staining of nuclear and cytoplasmic 

iASPP and the differentiation status of the cell, the data are currently non-significant. The 

data comparing the differentiation status of the tumours is limited due to a low number of 

poorly differentiated samples available. Due to their relatively less common incidence, the 

tumour panel consists of only 11 poorly differentiated tumours compared to 43 moderate 

and 52 well differentiated tumours. 

Graphs display the average staining index score (Figure 3.6). The scoring data show that in 

the normal epidermis, iASPP is nuclear in a high proportion of cells with relatively low 
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cytoplasmic staining (Figure 3.6A). In comparison, in the collective tumour samples there 

appears to be a switch with a high percentage of cells now expressing cytoplasmic iASPP and 

less cells expressing nuclear iASPP. The scoring data was also compared to the differentiation 

status of the tumour (Figure 3.6B and C). Data shows a trend in the differentiation status 

versus the scoring index of nuclear and cytoplasmic iASPP staining compared to the ‘normal 

epidermis’ taken from the same differentiation set. iASPP nuclear staining occurs at a higher 

percentage in the well differentiated tumours and decreases as the tumours become less 

well differentiated. The cytoplasmic staining follows the same pattern but inversely. It is also 

noteworthy that the patterns of iASPP localisation and differentiation are conflicting in the 

normal skin versus the tumour. In the normal skin iASPP is nuclear in the basal proliferating 

cells and becomes cytoplasmic upon differentiation in the suprabasal layers (Notari et al., 

2011). In the tumour cells iASPP is highly nuclear in the well differentiated cells and less 

nuclear in the poorly differentiated cells. 

Recent publications from both melanoma and prostate cancer show a strong association 

between nuclear iASPP expression and metastatic disease (Lu et al., 2013; Morris et al., 

2014). Cao et al. (2013) found a strong correlation between high nuclear iASPP expression 

and increased chemoresistance and radioresistance in cervical cancer. Some researchers 

have speculated that the important role iASPP plays in interacting with nuclear based 

transcription factors e.g., p53, p63 and NF-κB, demonstrates that it is the nuclear form of 

iASPP that is the most active (Yang et al., 1999; Bergamaschi et al., 2003; Notari et al., 2011; 

Lu et al., 2013). In contrast, here I have shown that nuclear iASPP appears to be lost in the 

more aggressive tumour and that cytoplasmic iASPP is most prominent in the cSCC compared 

to normal skin. Support for the data from this project comes from publications showing high 

iASPP expression in the cytoplasm in a range of tumour types including HNSCC, ovarian 

cancer, cervical SCC, non-small cell lung cancer, hepatocellular carcinoma and conversely, 

prostate cancer (Chen et al., 2010; Lu et al., 2010; Zhang et al., 2011; Jiang et al., 2011; Liu et 

al., 2012; Cao et al., 2013). This conflicting data could suggest that the location/function of 

iASPP is cell type specific. 
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Figure 3.5. iASPP is highly expressed in human cSCC. (A) Immunohistochemical optimisation 

experiments for iASPP staining using normal human skin. Representative images of a negative no 

antibody control, negative rabbit IgG control and a positive control are shown. Brown staining 

represents iASPP, blue staining is negative. (B) Representative images of nuclear and cytoplasmic 

iASPP stained well, moderate and poorly differentiated cSCC tumours. Scale bar represents 200 μm, 

magnified image scale bar represents 50 μm. 

Well 
differentiated

Nuclear iASPP and cytoplasmic iASPP Cytoplasmic iASPP

Moderate
differentiated

Poorly 
differentiated

No primary antibody control Rabbit IgG control Positive control (A)

(B)
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Table 3.3. Correlations between iASPP expression and clinicopathologic variables. 

Variables N 

Nuclear iASPP expression  Cytoplasmic iASPP expression 

Low 
(n) 

High 
(n) 

Low 
(%) 

High 
(%) 

Odds Ratio (95% Cl) 
p-value 

Low 
(n) 

High 
(n) 

Low 
(%) 

High 
(%) 

Odds Ratio (95% Cl) 
 

p-value 

Age 
≤ 67 years old 
≥ 68 years old 

  
51 
55 

 
27 
33 

 
24 
22 

 
52.9 
60 

 
47.1 
40 

 
 1 [Reference] 
 0.87 (0.33 - 2.26) 

 
 
0.837 

 
33 
33 

 
18 
22 

 
64.7 
60 

 
35.3 
40 

 
 1 [Reference] 
 1.13 (0.41 - 3.10) 

 
 
0.791 

Sex 
Female 
Male 

  
33 
73 

 
19 
41 

 
14 
32 

 
57.6 
56.2 

 
42.4 
43.8 

 
 1 [Reference] 
 1.30 (0.51 - 3.35) 

 
 
0.620 

 
30 
55 

 
3 
18 

 
90.9 
75.3 

 
9.1 
24.7 

 
 1 [Reference] 
 1.69 (0.62 - 4.97) 

 
 
0.325 

Tumour site 
Upper limb 
Lower limb 
Head and neck 
Trunk 

 
36 
16 
39 
15 

 
17 
11 
24 
8 

 
19 
5 
15 
7 

 
47.2 
68.8 
61.5 
53.3 

 
52.8 
31.3 
38.5 
46.7 

 
 1 [Reference] 
 0.45 (0.12 - 1.62) 
 0.59 (0.21 - 1.67) 
 0.92 (0.25 - 3.33) 

 
 
0.247 
0.333 
0.860 

 
25 
6 
25 
10 

 
11 
10 
14 
5 

 
69.4 
37.5 
64.1 
66.7 

 
30.6 
62.5 
35.9 
33.3 

 
 1 [Reference] 
 3.55 (0.97 - 14.04) 
 0.84 (0.27 - 2.53) 
 0.79 (0.18 - 3.06) 

 
 
0.059 
0.751 
0.716 

Differentiation 
status 
Well 
Moderate 
Poor 

 
 
52 
43 
11 

 
 
26 
25 
9 

 
 
26 
18 
2 

 
 
50 
58.1 
81.8 

 
 
50 
41.9 
18.2 

 
 
 1 [Reference] 
 0.73 (0.29 - 1.82) 
 0.22 (0.03 - 1.02) 

 
 
 
0.595 
0.086 

 
 
38 
23 
5 

 
 
14 
20 
6 

 
 
73.1 
53.5 
45.5 

 
 
26.9 
46.5 
54.5 

 
 
 1 [Reference] 
 2.46 (0.94 - 6.70) 
 3.08 (0.73 - 13.81) 

 
 
 
0.062 
0.122 

Immune Status 
RTR 
Immunocompetent 
Other 

 
62 
32 
12 

 
34 
20 
7 

 
28 
12 
5 

 
54.8 
62.5 
58.3 

 
45.2 
37.5 
41.7 

 
 1 [Reference] 
 1.32 (0.43 - 4.12) 
 0.91 (0.25 - 3.26) 

 
 
0.800 
0.901 

 
39 
18 
9 

 
23 
14 
3 

 
62.9 
56.2 
75.0 

 
37.1 
43.8 
25.0 

 
 1 [Reference] 
 0.85 (0.26 - 2.68) 
 0.84 (0.19 - 3.20) 

 
 
0.719 
0.887 
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Figure 3.6. A decrease of nuclear and increase of cytoplasmic iASPP staining is correlated the 

differentiation status of the tumour. (A) Graph displaying the average staining index score of nuclear 

and cytoplasmic iASPP in the total tumour sample versus total epidermal sample. (B) Graphs displaying 

average staining index score of nuclear and cytoplasmic iASPP in the well, moderate or poorly 

differentiated tumour sample versus total epidermal sample. (C) Graphs displaying average staining 

index score of both nuclear and cytoplasmic iASPP, respectively, compared to the differentiation 

status of the tumour. Error bars represent the standard deviation. 
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3.2.4 p63 is highly expressed in human cSCC tissues  

 

p63 is a commonly used diagnostic marker for SCC (Lewis et al., 2005; Kargi et al., 2007; 

Khayyata et al., 2009; Ocque et al., 2011). Additionally, a couple of reports have also 

suggested that p63 can be used as a marker for poorly differentiated SCC (Kargi et al., 2007; 

Alomari et al., 2014). 

 

The same panel of 107 tumours were stained for p63 (Table 3.4). An antibody was used that 

detects all p63 isoforms, Santa Cruz H137 (Figure 3.1). Considering the cell line data and 

previous literature, however, it is reasonable to assume that it is ΔNp63 that is being 

detected in the samples. Extracting protein from a microdissected SCC tumour, running the 

protein on a gel and western blotting with a p63 antibody to recognise all the isoforms could 

be a way to prove this. Optimisation experiments were carried out on normal skin sections 

where staining of p63 had previously been published (Figure 3.7A) (Reis-Filho et al., 2002; Di 

Como et al., 2002). In normal skin ΔNp63 is expressed in the basal layer of the epidermis. All 

stained sections were scored independently by myself and consultant histopathologist Hasan 

Rizvi. A score index was obtained as described in section 3.2.3. 

 

p63 is predominantly a nuclear protein and is expressed in the nucleus in the basal cells of 

the epidermis and also in a variety of cancers, including SCC (Reis-Filho et al., 2002; Di Como 

et al., 2002). Cytoplasmic p63, however, has been detected in certain cancers, for example, 

in melanoma and prostate cancer (Dhillon et al., 2009; Matin et al., 2013). In this cSCC sample 

set sections positive for p63 showed a strong brown nuclear stain (Figure 3.7B). In contrast 

to iASPP, p63 stained sections were scored based upon the intensity of nuclear staining and 

the percentage of cells stained, no cytoplasmic p63 staining could be detected (Table 3.4). 

Both the tumour and any perilesional normal epidermis found within the same section were 

scored. The normal epidermis was used as an internal control to assess any difference 

between tumour and non-tumour cells. It is interesting to note, however, that as p63 is so 

highly expressed in the normal epidermis I was unable to see any additional increase of 

expression in the tumours, unlike in the previous cell line data. From the panel of tumours 

and normal skin sections stained for p63, all sections showed a high percentage of cells 

stained for nuclear p63 staining regardless of tumour versus non-tumour cells or tumour 

differentiation stage (Figure 3.8 A, B and C). These data do not support previous suggestions 

that p63 expression may be used as a marker of poorly differentiated SCC.  
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In the previous section I had described how iASPP displayed a predominantly cytoplasmic 

phenotype in the tumour compared to the perilesional epidermis. Chikh et al. (2011) had 

reported that in the normal epidermis iASPP and p63 were able to interact via an 

autoregulatory feedback loop. Data in the normal skin had shown a partial co-localisation of 

iASPP and p63. In this scenario, however, it appears that iASPP and p63 are no longer able to 

colocalise in cSCC, particularly in the moderate and poorly differentiated samples. Images 

analysed of both nuclear and iASPP staining from the same section of the tumour show a 

lack of co-localisation between iASPP and p63 suggesting that the autoregulatory feedback 

loop may be dysregulated in some SCC tumours (Figure 3.7B). These data are supported 

further by the staining cSCC tissues with fluorescently tagged secondary antibodies against 

both p63 and iASPP (Figure 3.9). Co-staining of iASPP and p63 in cSCC tumours shows the 

lack of co-localisation occurring within the tumour between iASPP and p63. p63 staining is 

found exclusively in the nucleus of the tumour cells and iASPP staining is predominantly 

cytoplasmic.  

 

 



92 
 

 

 

Figure 3.7. p63 is highly expressed in human cSCC. (A) Immunohistochemical optimisation 

experiments for p63 staining using normal human skin. Representative images of negative no antibody 

control, negative rabbit IgG control and a positive control are shown. Brown staining represents p63, 

blue staining is negative. (B) Representative images of p63 stained well, moderate and poorly 

differentiated cSCC tumours. Scale bar represents 200 μm, magnified image scale bar represents 50 

μm. 

No primary antibody control Rabbit IgG control Positive control
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Table 3.4. Correlations between p63 expression and clinicopathologic variables. 

Variables N 
Nuclear p63 expression 

Low (n) High (n) Low (%) High (%) 

Age 
≤ 67 
≥ 68 

  
51 
56 

 
0 
0 

  
51 
56 

 
0 
0 

 
100 
100 

Sex 
Female 
Male 

  
34 
73 

 
0 
0 

  
34 
73 

 
0 
0 

 
100 
100 

Tumour site 
Upper limb 
Lower limb 
Head and neck 
Trunk 

 
37 
16 
39 
15 

 
0 
0 
0 
0 

 
37 
16 
39 
15 

 
0 
0 
0 
0 

 
100 
100 
100 
100 

Differentiation status 
Well 
Moderate 
Poor 

 
52 
44 
11 

 
0 
0 
0 

 
52 
44 
11 

 
0 
0 
0 

 
100 
100 
100 

Immune Status 
Renal transplant recipient 
Immunocompetent 

 
62 
33 

 
0 
0 

 
62 
33 

 
0 
0 

 
100 
100 
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Figure 3.8. p63 expression is not correlated with differentiation status of tumour. (A) Graph 

displaying staining index score of p63 in the total tumour sample versus total epidermal sample. (B) 

Graphs displaying staining index score of p63 in well, moderate or poorly differentiated tumour 

sample versus total epidermal sample. (C) Graphs displaying a staining index score of p63 compared 

to the differentiation status of the tumour. Error bars represent the standard deviation. 
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Figure 3.9. Localisation of iASPP and p63 in cSCC tumour. cSCC tumour immunostained for iASPP 

(green), p63 (red) and DAPI (blue). iASPP, p63 and DAPI images were merged. Scale bars represent 

20μm. 
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3.2.5 Location of iASPP and ΔNp63α in a panel of cSCC cell lines 

To explore whether the panel of cell lines screened in section 3.2.1 display the same 

phenotype as the tumour sample set, tissues were fixed and stained with 

immunofluorescence antibodies targeted against iASPP and p63 (Figure 3.10). As expected, 

p63 was consistently nuclear in all cell lines. The location of iASPP within the cell was also 

fairly consistent with the tissue data, with all of the cSCC cell lines largely expressing 

cytoplasmic iASPP. The only other major difference between tissue and cell line was the 

absence of iASPP cytoplasmic and nuclear variance between the differentiation status of the 

cell lines. This could be attributed to the potential discrepancies between the patients’ 

tumour differentiation status and the differentiation status of the cell once cultured as 

mentioned earlier. 

This data also complements the findings from section 3.2.4 that iASPP and p63 may no longer 

co-localise. The implications of this lack of co-localisation on the feedback loop are 

researched further in chapter 4. 
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Figure 3.10. Localisation of iASPP and p63 in a panel of cSCC cell lines. A panel of cSCC cell lines and 

N-TERT were fixed and immunostained for iASPP (green), p63 (red) and DAPI (blue). iASPP and p63 

images were merged. 
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Melanoma contains high levels of nuclear iASPP correlating with metastatic disease (Lu et 

al., 2013). Lu et al., (2013) have recently reported that in the cytoplasm, iASPP exists as an 

anti-parallel homodimer with the N-terminus interacting with the C-terminus. 

Phosphorylation of iASPP at S84/S113 by cyclin B1/CDK1 prevents iASPP residing in a 

homodimer structure and enables monomeric iASPP to shuttle to the nucleus, resulting in 

increased p53 binding and inhibition. Lu et al. (2013) suggest that nuclear iASPP is the active 

form of iASPP. Phosphorylated nuclear iASPP migrates slower on a SDS-PAGE gel than 

unphosporylated iASPP thus the existence of both nuclear and cytoplasmic iASPP in 

melanoma cell lines presents as a doublet band on a western blot.  

 

In light of this publication and the volume of conflicting data supporting the importance of 

cytoplasmic versus nuclear iASPP expression, I wanted to determine whether 

phosphorylated iASPP was detectable in cSCC. I hypothesised due to my data and previous 

reports on nuclear/cytoplasmic iASPP that the function/location of iASPP may be cell type 

specific. Cytoplasmic iASPP was predominantly expressed in the more aggressive cSCC 

tumours and in all cSCC cell lines tested by immunofluorescence. It was predicted that there 

would be an absence of phosphorylated nuclear iASPP in cSCC. In the western blots in section 

3.2.1 I was unable to detect an upper phosphorylated band. However, the protocol used was 

different from Lu et al. (2013). Using the same protocol from Lu et al. (2013) I still failed to 

see a second band in cSCC cell lines and N-TERT (Figure 3.11A). A melanoma cell line, Mel 

505, was included as a positive control. Support for this data comes from Morris et al. (2014) 

who show that western blotting with HaCaT lysates also displayed little or no phosphorylated 

iASPP, suggesting a cell type specificity for this iASPP post-translational modification form. 

 

To support these data, a subcellular fractionation was performed with N-TERT and several 

cSCC cell lines (Figure 3.11B). The cytoplasmic and nuclear fractions of the cells were 

separated and purified before being run on a gel and western blotted with an iASPP antibody. 

It is noteworthy here, that the nuclear iASPP detected is of the same molecular weight as the 

cytoplasmic iASPP, thus no upper phosphorylated band was identified as the nuclear 

fraction. This finding could either be as a result of different buffer use or suggest a cell type 

dependent phosphorylation of iASPP i.e., in cSCC iASPP may exist in the nucleus in an 

unphosphorylated form. Regardless of this, the data produced were in accordance with my 

hypothesis that in cSCC cells iASPP is expressed predominantly in the cytoplasm compared 

to the nucleus.  
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Figure 3.11. Localisation of iASPP and p63 in a panel of cSCC cell lines. (A) Three cSCC cell lines, N-

TERT and melanoma cell line Mel505 lysed with urea buffer western blotted for iASPP. GAPDH was 

used as a loading control. Arrow points to phosphorylated iASPP. (B) Cytoplasmic (C) and nuclear (N) 

proteins were extracted from three cSCC cell lines. Extracts were run on a 10% SDS-PAGE gel and 

blotted for iASPP. Lamin A and GAPDH were used as controls for nuclear and cytoplasmic proteins 

respectively. 
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3.2.6 Calcium differentiation of cell lines alters the localisation of iASPP in cSCC cell lines 

Data have shown that in the normal skin iASPP is both cytoplasmic and nuclear. cSCC tumour 

data shows that the less differentiated the tumour the less nuclear iASPP is and the more 

cytoplasmic it becomes. In cSCC cell lines iASPP is predominantly cytoplasmic. I therefore 

wanted to see if I could create a model whereby altered differentiation of the cells could 

produce a different iASPP phenotype. To do this I thawed cSCC cell lines in EpiLife Medium, 

with 60µM calcium supplemented with human keratinocyte growth supplement. In order to 

stimulate differentiation of the cell lines, the calcium concentration was increased to 2mM 

(Pillai et al., 1988). Aside from the morphological change in the cells, differentiation of the 

cell lines was assessed by measuring involucrin expression, a marker of keratinocyte terminal 

differentiation (Figure 3.12A) (Watt, 1983) with western blotting. Cells were either treated 

with 2mM Ca2+ or left untreated in EpiLife. Lysates collected from these cells underwent 

subcellular fractionation isolating both the nuclear and cytoplasmic fractions. Lysates were 

western blotted for iASPP. Lamin A and GAPDH were used as controls for nuclear and 

cytoplasmic proteins respectively. Densitometry analysis was performed using image J to 

quantify the western blots.  

 

Chikh et al. (2011) found that upon terminal differentiation in normal keratinocytes, total 

iASPP expression decreased. Here I have shown using two cSCC cell lines, IC4 and IC15, that 

treatment of cells with 2mM Ca2+ slightly increased nuclear iASPP and marginally decreased 

cytoplasmic iASPP (Figure 3.12B). Although not significant this trend fits with the previous 

data in this project showing that the more differentiated the cell/tumour is the more nuclear 

iASPP is present. Reduction of nuclear iASPP correlates with the inability of cancer cells to 

completely differentiate. 
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Figure 3.12. Calcium differentiated cSCC cells express higher levels of nuclear iASPP. (A) Involucrin 

levels of cSCC cell lines treated with 2uM Ca2+ for 48h. Representative images show cell line 

differentiation. Scale bars represent 20μm.  (B) Subcellular fractionation experiments nuclear and 

cytoplasmic iASPP expression during low Ca2+ conditions (EpiLife) versus high Ca2+ conditions. High 

exposure and low exposure relate to the exposure of the film. Lamin A and GAPDH were used as 

controls for nuclear and cytoplasmic proteins respectively. (C) Densitometry analysis showing the 
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average iASPP protein expression levels when normalised to GAPDH or Lamin A. Error bars represent 

the SEM for three independent experiments.  

3.3. Summary 

Non-melanoma skin cancers (NMSC) are a huge and increasing health burden globally with 

substantial morbidity, mortality and costs to healthcare providers (Guy et al., 2015). cSCC is 

the second most common NMSC with more than one million cases a year in the US (Rogers 

et al., 2015). Thus, cSCC morbidity and mortality are largely unacknowledged and 

underestimated. Demonstrating that both iASPP and p63 are highly expressed in cSCC 

provides novel data on the molecular basis of squamous carcinogenesis. 

 

The role of iASPP and p63 in cSCC was investigated using a panel of 10 cell lines generated 

from a varied population of patients with differing immunocompetence status, ages, genders 

and p53 and Notch1 mutations. An immortalised normal keratinocyte cell line (N-TERT) was 

used as a ‘normal’ control. p63 is found in several distinct isoforms. Consistent with 

published data, the predominant p63 isoform expressed in the cSCC cell lines was the isoform 

predominantly expressed in cancers due to its oncogenic tendencies, ΔNp63α (Yang et al., 

1998; Parsa et al., 1999; Su et al., 2013). ΔNp63 was expressed highly at the protein and 

mRNA level in all the cSCC cell lines compared to N-TERT. The levels of ΔNp63 protein and 

RNA expression, however, did not appear to correlate with any of the features of the cell 

lines, including the differentiation status of the cell line. 

 

To support this finding that ΔNp63 is highly expressed in cSCC cell lines I stained and scored 

107 cSCC tumours for p63. As p63 is often highly expressed in the normal epidermis it was 

difficult to say whether there was an additional increase of expression in the tumours. 

Interestingly, a couple of previous reports highlighted that p63 expression may correlate with 

poorly differentiated SCC (Kargi et al., 2007; Alomari et al., 2014). In this chapter, however, 

all cSCC tumours showed a high percentage of cells stained for nuclear p63, regardless of 

tumour versus non-tumour cells or tumour differentiation stage. The data from this chapter 

therefore do not support previous suggestions that p63 expression may be used as a marker 

of poorly differentiated SCC (Kargi et al., 2007; Alomari et al., 2014). As Kargi et al. (2007) 

were working on poorly differentiated lung carcinomas in biopsy tissues and Alomari et al. 

(2014) stained only poorly differentiated cSCC tumours, their observations about p63 and 

the differentiation status of the cell may differ. My findings support previous discoveries that 

strong nuclear p63 staining is present in cSCC (Reis-Filho et al., 2002; Wrone et al., 2004; 
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Dotto and Glusac, 2006). These data were further supported by immunofluoresence staining 

of p63 in the cSCC cell lines. In all cSCC cell lines p63 expression was strong and nuclear.  

 

In parallel to p63 staining, iASPP expression patterns were also analysed in cSCC. Consistent 

with p63 expression data, iASPP expression at both the protein and RNA level was also high 

compared to N-TERT in all cSCC cell lines. The expression, however, could not be correlated 

with the mutational status of p53, Notch 1 or RAS, or differentiation status of the cell lines. 

In order to translate these findings into an in vivo setting, 106 cSCC tumours were stained 

and scored for iASPP protein expression. In the tumours I observed both high 

cytoplasmic/nuclear iASPP expression.  

 

However, it was noted that the location of iASPP in the cell appeared to differ between 

tumour sections. Overall, the tumours contained less nuclear iASPP staining compared to the 

perilesional epidermis. Further investigation into this phenomenon found a correlation 

between nuclear/cytoplasmic iASPP staining and differentiation status. The well 

differentiated tumours contained higher levels of nuclear iASPP and lower levels of 

cytoplasmic iASPP compared to the poorly differentiated tumours and vice versa the poorly 

differentiated tumours expressed higher levels of cytoplasmic iASPP and lower levels of 

nuclear iASPP compared to well differentiated tumours. Lu et al. (2013) argued that nuclear 

iASPP was the active form of iASPP in melanoma cells. Data from this chapter show 

cytoplasmic iASPP is predominately expressed in cSCC and also its highest levels correlate 

with the worst prognostic cases (poorly differentiated cSCC). However, the strong 

cytoplasmic and weak nuclear staining of iASPP observed in the tumour set was not 

completely surprising as various studies beforehand had noted the oncogenic effects of 

cytoplasmic iASPP (Chen et al., 2010; Lu et al., 2010; Zhang et al., 2011; Jiang et al., 2011; Liu 

et al., 2012; Cao et al., 2013).  

 

The location of iASPP was further investigated in the panel of cSCC cell lines. Recent reports 

contradict the function of nuclear versus cytoplasmic iASPP. In this chapter cytoplasmic 

iASPP was predominantly expressed in the more aggressive cSCC tumours. In melanoma and 

prostate cancer it has recently been reported that phosphorylation of iASPP at S84/S113 by 

cyclin B1/CDK1 prevents iASPP residing in a homodimer structure and enables monomeric 

iASPP to shuttle to the nucleus, resulting in increased p53 binding and inhibition (Lu et al., 

2013; Morris et al., 2014). I therefore wanted to determine whether phosphorylated iASPP 
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would also be detectable in cSCC cells. Following the same protocol from Lu et al. (2013) I 

was unable to detect a higher molecular weight second band in cSCC cell lines and N-TERT. I 

included a melanoma cell line expressing the phosphorylated nuclear iASPP band as a 

positive control. Our data is supported by Lu et al. (2013) who also showed HaCaT cells 

displayed little or no phosphorylated iASPP. This suggests cell type specificity for this iASPP 

post-translational modification form. Immunofluorescence cell line data supported the 

observation that iASPP appeared to be mainly cytoplasmic in the cSCC cell lines. Further 

investigation into the location of iASPP via subcellular fractionation supported these findings 

showing high cytoplasmic expression in the cell. Interestingly the nuclear fraction observed 

in cSCC cell lines was the same molecular weight as cytoplasmic iASPP thus failing to show 

any upper phosphorylated band in the nuclear fraction. This could be either the consequence 

of different buffer used or suggest once more a cell type-specificity of iASPP phosphorylation. 

It also hints to a potential expression of an un-phosphorylated nuclear iASPP at least in this 

cell lineage. 

 

In vitro experiments were performed to mimic the in vivo tumour data. cSCC cells were 

pushed into terminal differentiation via treatment with calcium to assess the effects of 

differentiation upon iASPP localisation. Subcellular fractionation of the differentiated cSCC 

cells showed higher nuclear expression in high calcium conditions compared to low. That is, 

when cells are well differentiated nuclear iASPP is high. These data were slightly 

contradictory to the pattern of expression of iASPP in the normal skin. In the normal skin, 

iASPP has mainly nuclear basal expression but becomes largely cytoplasmic in the 

differentiated epithelial cells (Notari et al., 2011). On the other hand this data correlates with 

the in vivo tumour data that well differentiated tumours express higher nuclear iASPP than 

poorly differentiated tumours.  

 

In the normal epidermis, both iASPP and p63 displayed a nuclear (and cytoplasmic in the case 

of iASPP) phenotype. In normal skin samples p63 and iASPP colocalise and function via an 

autoregulatory feedback loop. Immunofluoresence analysis of both iASPP and p63 staining 

in cSCC tissue and cSCC cell lines found a lack of colocalisation between iASPP and p63. This 

therefore raises the question of whether this difference in location of iASPP and p63 in cSCC 

may cause the autoregulatory feedback loop to be disrupted and will be investigated in 

chapter 5. 
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Chapter 4: iASPP/p63 autoregulatory feedback loop in cSCC 

4.1. Introduction and aims 

The ASPP family members; ASPP1, ASPP2 and iASPP, all contain a similar C-terminal domain 

consisting of a proline-rich region, ankyrin repeats and a SH3 domain (Trigiante and Lu, 

2006). It is this domain which proves to be the most important for binding partners of both 

iASPP and the other ASPP proteins (Iwabuchi et al., 1994; Bergamaschi et al., 2003). p53 

preferentially binds to this domain along with p65/Rel A and Bcl-2, among others (Gorina 

and Pavletich, 1996; Sullivan and Lu, 2007). Later studies demonstrated the ability of iASPP 

to interact with the additional members of the p53 family - p63 and p73 (Robinson et al., 

2008; Chikh et al., 2011; Notari et al., 2011). ASPP1 and ASPP2 bind p63 initiating the 

transactivation of p63 on the promoters of proapoptotic genes including Bax, PIG3 and 

PUMA (Bergamaschi et al., 2004). Expanding on this work, Robinson et al. (2008) used solid-

phase binding assays to demonstrate that iASPP was also able to bind p63 and surprisingly 

at a 3-fold higher affinity than ASPP2 binds p63. This led to the speculation that iASPP too 

was involved in the regulation of p63.  

  

A recent report from our group has demonstrated a link between iASPP and p63 via an 

autoregulatory feedback loop encompassing two novel microRNA, miR-574-3p and miR-720, 

in the stratified epithelia (Figure 4.1) (Chikh et al., 2011). Briefly, it was found that, upon 

silencing of p63 in keratinocytes, the expression of iASPP was downregulated at both the 

protein and mRNA level. Conversely, when the expression of iASPP was inhibited, the protein 

expression of p63 was decreased but the mRNA levels were unaffected. Interestingly, it was 

discovered that this absence of change in p63 mRNA levels upon iASPP silencing was due to 

the expression of two microRNAs, miR-720 and miR-574-3p. MiR-574-3p and miR-720 levels 

increased when iASPP was silenced, in turn, causing a decrease in the expression of p63. 

These experiments provided evidence that miR-574-3p and miR-720 could inhibit p63 

translation in keratinocyte cell lines. This feedback loop is essential for epithelial homeostasis 

and is implicated in various cellular processes including adhesion, differentiation and 

proliferation (Chikh et al., 2011). 
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Figure 4.1. iASPP/p63 autoregulatory feedback loop in the stratified epithelium. Figure adapted 

from Chikh et al. (2011). 

 

Further support for the iASPP/p63 axis came from iASPP knockout mice (Notari et al., 2011). 

iASPP was able to maintain cell homeostasis in the stratified epithelium of mouse skin and 

oesophagus via regulating the transcriptional activity of p63 (Notari et al., 2011). 

Additionally, studies on both NSCLC cell lines and mouse prostate epithelium showed the 

effect of iASPP on p63 (Cai et al., 2012b; Morris et al., 2014). In the prostate epithelium, 

iASPP knock out mice exhibit a decrease of p63-expressing basal cells. It is of note that in 

prostate cancer where loss of p63 is a well-documented event, nuclear iASPP expression 

increased (Morris et al., 2014). Further investigation into this phenomenon has yet to be 

carried out. 

 

A handful of key reports have shown the importance of iASPP and p63 in the epithelium, in 

particular, the stratified epithelium of the skin (Notari et al., 2011; Chikh et al., 2011; Morris 

et al., 2014). Taking these data into account it was deemed important to investigate the 

interaction of iASPP and p63 in a system where the normal homeostasis of the skin is 

dysregulated. In this project cSCC has been used as a model. In the previous chapter, iASPP 

and p63 were highly expressed in both cSCC tissues and cSCC cell lines. Additionally, the 

location of iASPP differed in cSCC tissue compared to normal skin. For these reasons it was 

p63 iASPP 

miR-720 
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hypothesised that the iASPP-p63 feedback loop previously characterised in human 

normal/immortalised keratinocytes may have become dysregulated in cSCC. During 

dysregulation, the levels of iASPP and p63 would no longer be controlled. Taking this 

hypothesis into consideration a dysregulated system in cSCC could provide a target/targets 

for designing much needed therapeutics combating cSCC. Alternatively a component of this 

hypothesised dysregulation could be used as a potential marker for cSCC. 

 

Aims for this chapter: 

1) Identify a suitable silencing technique for p63 and iASPP in cSCC cell lines 

2) Establish whether iASPP and p63 are still able to affect the expression of each other 

via the feedback loop in cSCC cell lines and determine the effect of iASPP 

nuclear/cytoplasmic location upon this 

3) Confirm whether the two microRNA identified in the initial feedback loop (miR-574-

3p and miR-720) are still involved in p63 regulation via iASPP 

4) Discover any additional microRNA in cSCC, in relation to iASPP and p63, using a 

microRNA array 
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4.2. Results 

4.2.1. Identification of suitable silencing techniques for iASPP and p63 in cSCC cell lines 

To facilitate the investigation into iASPP/p63 in cSCC cell lines, the levels of iASPP and p63 

expression needed to be manipulated. Various techniques are available for the silencing of 

genes within cell lines. Chikh et al. (2011) used small interfering RNA (siRNA) against iASPP 

and p63 in HaCaT, N-TERT and normal human keratinocytes but were also able to stably 

transfect both HaCaT and N-TERT cells with short hairpin RNA (shRNA). ShRNA silencing 

enabled a more in-depth investigation of the feedback loop. Considering this, a robust 

silencing system to allow the investigation into iASPP and p63 in cSCC had to be established. 

 

ShRNA are stem-loop RNA structures comprising of two complementary 19–22 base pairs 

connected by a loop of 4–11 nucleotides able to enter the cell via a viral vector (Moore et 

al., 2014). Once inside the cell shRNA is reverse transcribed and directly integrated within 

the DNA in the nucleus. Here, the shRNA is transcribed and exported out into the cytosol 

where it is processed by the enzyme, dicer, into siRNA duplexes. The siRNA binds to target 

mRNA which is subsequently degraded by the RNA induced silencing complex (RISC) (Moore 

et al., 2014). For the purpose of the current research, stably knocked down cells via shRNA 

were generated. Stably transfected cell lines have a high percentage of silenced cells and the 

silencing is sustained for many passages. In accordance with this, HaCaT, N-TERT and three 

individual cSCC cell lines; IC4, IC15 and IC18 were stably knocked down for iASPP using 

Dharmacon® SMARTvector® 2.0 Lentiviral shRNA particles. As this project is predominantly 

focussing on iASPP, only shRNA against iASPP was purchased. The Dharmacon® 

SMARTvector® 2.0 system provides ready-to-use viral particles eliminating the need to 

produce the lentivirus via packaging plasmids and a packaging cell line. Three unique shRNA 

constructs were tested against iASPP. Lentivirus was chosen over retrovirus (used by Chikh 

et al. 2011) as previous studies in our laboratory had found that stably knocking down iASPP 

in an alternative cancer cell line (melanoma) with retroviral particles resulted in the 

knockdown only lasting for 1-2 passages. Lentiviruses are a subtype of retrovirus, but unlike 

retrovirus, are able to infect both dividing and non-dividing cells, enabling a larger selection 

of cell types to be targeted (Song and Yang, 2010). 

 

Only cells with a low passage number were used for the present experiment as the 

transduction efficiency of the lentivirus is greater in these conditions. The number of 

lentiviral transducing units to be added was optimised using a multiplicity of infection (MOI) 
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of 2. Cells passaged post-transduction were positively selected with puromycin due the 

presence of a puromycin resistance gene. In addition, passaged cells were actively 

transfected with the viral particle, that is, they were able to fluoresce green due to a GFP tag. 

Two out of the three unique shRNA constructs were able to produce at least a 50% 

knockdown in protein expression (Supplementary Figure 4.1 – Chapter 8, Appendix page 

222). Despite these positive outcomes, the cell had seemingly developed a system to 

overcome the silencing of iASPP after 1-2 passages. Unfortunately, the same passaging issue 

that occurred in melanoma cells with retrovirus also occurred in cSCC cells with lentivirus. 

 

iASPP is an essential gene required for the cell to proliferate. In this scenario, it is plausible 

that the cell (in particular a cancer cell) is unable to function without iASPP and will develop 

a mechanism to overcome this silencing. It is also plausible that the silencing could be lost 

due to methylation of the promoter driving shRNA expression. The promoter used in this 

vector was a cytomegalovirus (CMV) promoter. Published research has demonstrated the 

ability of the CMV promoter to undergo methylation-dependent silencing (He et al., 2005).  

 

Due to the lack of stable knockdown and for the purpose of this research, cells had to be 

transiently transfected with siRNA. SiRNA is a double stranded RNA molecule of 

approximately 21-23 base pairs long. SiRNA differs from shRNA as it is transfected straight 

into the cytosol and incorporated directly into the RISC. SiRNA is not integrated into the DNA 

and because of this it is a transient transfection. A pool of three validated Silencer® siRNA 

sequences (Ambion, Life Technologies) – siRNA-1; siRNA-2 and siRNA-3, were used for 

silencing all p63 isoforms and a pool of 4 ON-TARGET plus SMARTpool (Thermo Scientific) 

were used to silence iASPP. During the initial phase of optimisation a non-treated control as 

well as a non-targeting siRNA control was used. A non-treated control was included initially 

to ensure that no significant effects were observed on protein or mRNA levels when treated 

with the non-targeting siRNA. 

 

SiRNA can be transfected into the cell via many routes (Fire et al., 1998; Reynolds et al., 

2004). For this project both si-iASPP and si-p63 were transfected into the cell via transfection 

reagent DharmaFECT 1, a lipid based formula with low toxicity and high efficiency for most 

cell lines. Knockdown efficiency was optimised using differing concentrations of siRNA, 

differing volumes of transfection reagent and differing incubation time points. SiGLO, a 

transfection indicator was used as an initial means to analyse the toxicity versus efficiency of 
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DharmaFECT 1. It was deemed that a concentration of 50nM for 72h for si-iASPP and a 

concentration of 50nM for 48h for si-p63 were optimal (Supplementary Figure 4.2 - Chapter 

8, Appendix page 223). The iASPP and p63 siRNA pools had previously been used in our group 

for other cell lines. To ensure no adverse effects the pools were deconvoluted and each 

individual siRNA was transfected into the cSCC cells, protein was extracted and samples were 

run on a 10% SDS-PAGE gel and blotted for iASPP/ΔNp63α (Figure 4.2A, 4.3A). 

 

All p63 siRNA three constructs generated an effective knockdown of ΔNp63; however the si-

pool marginally provided the best knockdown (Figure 4.2A). Although Chikh et al. (2011) had 

shown the effect of iASPP on both TAp63 and ΔNp63, the levels of TAp63 are almost 

undetectable at the protein level thus ΔNp63 was the primary focus of this chapter. In all 

three cell lines a strong knockdown was achieved using the p63 si-pool with a silencing 

efficiency of over 70% observed at both mRNA and protein level, as a result si-pool was used 

to the rest of the project (Figure 4.2B & C). Densitometry analysis of western blots was used 

to quantify the silencing efficiency at the protein level. Si-iASPP-1 and si-iASPP-4 

demonstrated a slight knockdown at the protein level, however, the biggest knockdown was 

observed with the si-iASPP pool (Figure 4.3A). In all three cSCC cell lines a knockdown 

efficiency between 70-80% for mRNA and 60-90% for protein levels was observed, as a result 

si-pool was used to the rest of the project (Figure 4.3B and C).  
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Figure 4.2. Silencing of p63 in cSCC cells. (A) cSCC cells were either untreated (control), treated with 

a non-targeting control (si-control), silenced for p63 using individual siRNA (si-1, si-2, si-3) or si-pool. 

Protein was extracted and analysed by western blotting for p63 knockdown. GAPDH was used as a 

loading control. (B) Three cSCC cells (IC4, IC15, IC18) with control, si-control and si-p63 (si-pool) 

samples treated 50nM siRNA and lysed at 48h. Protein was analysed by western blotting for ΔNp63α. 

GAPDH was used as a loading control. Densitometry analysis shows the fold change compared to 

control in three independent experiments normalised to GAPDH. (C) QRT-PCR shows the fold change 

ΔNp63 mRNA levels of three independent experiments performed in triplicate relative to control. Si-

control and si-p63 (si-pool) samples were treated with 50nM siRNA and lysed at 48h. Housekeeping 

gene GUS was used as an internal control. Error bars represent the SEM of three independent 

experiments. Statistical analysis was performed using a two-tailed, unpaired Student’s t-test, 

comparing the si-control to si-pool. P-value < 0.05 = *, ≤ 0.01 = **, ≤ 0.001 = ***. 
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Figure 4.3. Silencing of iASPP in cSCC cells. (A) cSCC cells were either untreated (control), treated with 

a non-targeting control (si-control), silenced for iASPP using individual siRNA (si-1, si-2, si-3, si-4) or si-

pool. Protein was extracted and analysed by western blotting for iASPP knockdown. GAPDH was used 

as a loading control. (B) Three cSCC cells (IC4, IC15, IC18) with control, si-control and si-iASPP (si-pool) 

samples were treated with 50nM siRNA and lysed at 72h. Protein was analysed by western blotting 

for iASPP. GAPDH was a loading control. Densitometry analysis shows the fold change compared to 

control, in protein expression levels of iASPP in three independent experiments normalised to GAPDH. 

(C) QRT-PCR shows the fold change of iASPP mRNA levels of three independent experiments 

performed in triplicate normalised to control. Si-control and si-iASPP (si-pool) samples were treated 

with 50nM siRNA and lysed at 72h. Housekeeping gene GUS was used as an internal control. Error 

bars represent the SEM of three independent experiments. Statistical analysis was performed using a 

two-tailed, unpaired Student’s t-test, comparing the si-control to si-pool. P-value < 0.05 = *, ≤ 0.01 = 

**, ≤ 0.001 = ***. 
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4.2.2. Validation of the iASPP/p63 autoregulatory feedback loop in N-TERT cells 

Robinson et al. (2008) demonstrated the ability of p63 to bind to iASPP. This is supported by 

Chikh et al. (2011) who demonstrated, via chromatin immunoprecipitation, the ability of p63 

to bind to the iASPP promoter in HaCaT cells. Despite conflicting evidence from Notari et al. 

(2011) and Cai et al. (2012b) who both failed to see an effect on p63 protein expression levels 

upon iASPP silencing, Chikh et al. (2011) found that reduction of p63 resulted in a decrease 

of iASPP at the protein and mRNA level. In addition reduction of iASPP led to a decrease in 

p63 at the protein level but not the RNA level (as it was later discovered that microRNA was 

controlling p63 translation).  

 

This work was carried out in HaCaT cells and confirmed in N-TERT and primary human 

keratinocyte cells. To enable the investigation of iASPP and p63 into cSCC cells, validation 

experiments of previous observations carried out in our group were performed in N-TERT 

cells. Here, N-TERT cells were transiently silenced for iASPP and p63 expression, as discussed 

in the previous section, and the effects on ΔNp63 and iASPP protein and mRNA levels were 

evaluated via western blot and qRT-PCR (Figure 4.4A and B). In accordance with the earlier 

data, silencing of p63 in N-TERT cells confirmed reduction of the protein and mRNA levels of 

iASPP compared to si-control (p=0.0011). In addition, silencing of iASPP decreased the 

protein expression of ΔNp63α but not the mRNA levels. The previous research had 

demonstrated this lack effect of si-iASPP on ΔNp63 mRNA was due to microRNA control, this 

will be discussed in more detail in the next section.  
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Figure 4.4. iASPP/p63 autoregulatory feedback loop in N-TERT cells. (A) N-TERT samples (control, si-

control, si-iASPP/p63 - si-pool) were analysed for both iASPP/p63 protein expression by western 

blotting. GAPDH was used as a loading control. (B) mRNA from N-TERT si-control, si-iASPP/p63 (si-

pool) samples analysed by qRT-PCR for iASPP/p63. Housekeeping gene GUS was used as an internal 

control. mRNA levels were normalised to si-control. Error bars represent the SEM of three 

independent experiments. Statistical analysis was performed using a two-tailed, unpaired Student’s t-

test, comparing the si-control to si-pool. P-value ≤ 0.01 = **. 

 

 

 

 

 

**

100

72

37

kDaC
o

n
tr

o
l

Si
-c

o
n

tr
o

l

Si
-

p
6

3

N-TERT

C
o

n
tr

o
l

Si
-c

o
n

tr
o

l

Si
-

iA
SP

P

0

0.2

0.4

0.6

0.8

1

1.2

1.4

R
e

la
ti

ve
 Δ

N
p

6
3

 m
R

N
A

 l
e

ve
ls

 

0

0.2

0.4

0.6

0.8

1

1.2

R
e

la
ti

ve
 iA

SP
P

 m
R

N
A

 le
ve

ls
 

iASPP

GAPDH

ΔNp63α

(A)

(B)



117 
 

4.2.3. In cSCC, p63 knockdown affects iASPP at the protein and mRNA level but iASPP 
knockdown affects p63 at only the protein level  

The previous section had validated the published data and an appropriate system had been 

established to silence both iASPP and p63. The aim of this section was to discover if p63 and 

iASPP were functioning in the feedback loop in cSCC.  

 

To investigate this work in cSCC, three cSCC cell lines were selected from a larger panel of 

well characterized human cSCC cell lines. Cell lines IC4, IC15 and IC18 were chosen for further 

study. The selection of these cell lines were based on several criteria. I wanted to select a 

sample set that would reflect the differences in cSCC in the general population to allow us to 

find a common mechanism enabling the discovery of a broad targeted therapy. All three cell 

lines were taken from individual patients (Table 4.1). IC4 and IC18 were derived from shin 

and the ear, respectively. As a result of the tumour site being a sun exposed region of the 

body both tumours are UV-induced. Interestingly, IC4 has wild type p53 and Notch1 and IC18 

mutated p53 and Notch1. IC4 was derived from a well-differentiated tumour and IC18 from 

a moderately differentiated tumour.  

 

Table 4.1 Characterisation of cSCC cell lines 

Cell 

line 

Gender Age Immune status Tumour 

Site 

Differentiation 

status of 

tumour 

p53 

mutation 

Notch1 

mutation 

IC4 Female 73 Immunocompetent Shin Well Wild type Wild type 

IC18 Male 81 Immunocompetent Ear Moderate Mutation Mutation 

IC15 Male 73 Immunocompetent Penis Moderate Wild type Mutation 

 

 

IC15 was chosen for further study as the initial tumour site for IC15 was on the penis. As the 

location of this tumour is not classically a sun exposed area (as with most cSCCs) the tumour 

was genotyped by PCR and was found to be an HPV-16 infected cSCC (Karin Purdie, 

unpublished data). The human papillomavirus (HPV) family contain several high-risk HPVs 
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known to cause cancer. Nearly all cervical cancer is caused by HPV with 70% being caused by 

high-risk HPV-16 and 18 and several other cancers are associated with HPV including anal, 

oropharyngeal, vulvar, vaginal and penile cancers ((Winer et al., 2006; Gillison et al., 2008). 

IC15 has wild type p53. HPV-16 infected tumours do not tend to have mutant p53 as E6-AP 

is able to cause wild type p53 proteasomal degradation (Scheffner et al., 1990; Huibregtse et 

al., 1991; Busby-Earle et al., 1994). Notch1 mutations display a similar pattern; in HNSCC wild 

type Notch tends to be present in a higher proportion of HPV-positive tumours (Rettig et al., 

2015). In this case however IC15 cell line does have mutated Notch1.  

 

Both IC4 and IC15 express reasonably high levels of both iASPP and p63. IC18 has lower levels 

of expression of both (Figure 3.2). ΔNp63 and iASPP protein and mRNA levels were analysed 

when iASPP and p63 were respectively silenced in cSCC (Figure 4.5 and 4.6). The data 

displayed similar results to those generated in section 4.2.2 from N-TERT cells and the 

previous research by Chikh et al. (2011). When p63 was silenced in cSCC cells this significantly 

reduced both the protein (IC4 p=0.0219, IC15 p=0.0005, IC18 p=0.0001) and mRNA levels 

(IC4 p=0.00006, IC15 p=0.0022, IC18 p=0.0008) of iASPP (Figure 4.5A and B). The analysis was 

performed by western blot and qRT-PCR respectively. This occurred in all of the three cell 

lines regardless of their mutation/UV status. Silencing of iASPP significantly reduced the 

protein levels of ΔNp63α (IC4 p=0.0016, IC15 p=0.0012, IC18 p=0.0003) but did not affect the 

mRNA levels of ΔNp63 (Figure 4.6A and B).  

 

iASPP was originally identified as an inhibitor of p53 (Bergamaschi et al., 2001). p63 and p53 

are able to bind to the same promotor region of iASPP, thus endogenous p53 expression was 

investigated in cSCC cell lines silenced for iASPP (Robinson et al., 2008). Protein lysate 

extracted from iASPP depleted cell lines was run on a 10% SDS-PAGE gel and blotted with a 

mouse monoclonal anti-p53 antibody (DO-1, Santa Cruz) able to react with both wild-type 

and mutant full length p53 (Figure 4.6C). In agreement with data previously published in 

normal skin (Chikh et al., 2011), there was no effect on full length p53 expression in all three 

cell lines regardless of the mutation state (Figure 4.6).  

http://www.ncbi.nlm.nih.gov/pubmed/?term=Gillison%20ML%5BAuthor%5D&cauthor=true&cauthor_uid=18980286
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Figure 4.5. Silenced p63 reduces iASPP expression in cSCC. (A) Samples from three cSCC cell lines 

(control, si-control, si-p63 - si-pool) were analysed for both iASPP/ΔNp63α protein expression by 

western blotting. GAPDH was used as a loading control. Densitometry analysis shows the fold change, 

compared to control, in protein expression levels of iASPP in three independent experiments 

normalised to GAPDH. (B) mRNA from si-control, si-p63 (si-pool) samples analysed by qRT-PCR for 

iASPP. Housekeeping gene GUS was used as an internal control. mRNA levels were normalised to si-

control. Error bars represent the SEM of three independent experiments. Statistical analysis was 

performed using a two-tailed, unpaired Student’s t-test, comparing the si-control to si-pool. P-value < 

0.05 = *, ≤ 0.01 = **, ≤ 0.001 = ***. 
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Figure 4.6. Silenced iASPP reduces ΔNp63α protein but not mRNA expression in cSCC, independently 

of p53. (A) Samples from three cSCC cell lines (control, si-control, si-iASPP - si-pool) were analysed for 

both iASPP/ΔNp63α protein expression by western blotting. GAPDH was used as a loading control. 

Densitometry analysis shows the fold change, compared to control, in protein expression levels of 

ΔNp63α in three independent experiments in three cSCC cell lines normalised to GAPDH (B) mRNA 

from si-control, si-iASPP (si-pool) samples analysed by qRT-PCR for ΔNp63. Housekeeping gene GUS 

was used as an internal control. mRNA levels were normalised to si-control. (C) Samples from three 

cSCC cell lines (control, si-control, si-iASPP - si-pool) were analysed for both iASPP/full length p53 

protein expression by western blotting. GAPDH was used as a loading control. Error bars represent 

the SEM of three independent experiments. Statistical analysis was performed using a two-tailed, 

unpaired Student’s t-test, comparing the si-control to si-pool. P-value ≤ 0.01 = **, ≤ 0.001 = ***. 
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4.2.4. Silenced p63 affects the expression of both nuclear and cytoplasmic iASPP  

Reflecting on data in the previous section, it seems apparent that in our established cSCC cell 

lines the iASPP/p63 feedback loop is still intact. This is unexpected due to the fact that, as 

discussed in chapter 3, there appeared to be a difference between the location of iASPP and 

p63 in cSCC compared to the normal skin. In the tumour cells p63 is nuclear and iASPP 

predominantly cytoplasmic. To understand further the interaction of iASPP and p63 when 

iASPP is mainly cytoplasmic and p63 nuclear, a subcellular fractionation was performed in 

cSCC cells silenced for p63 (Figure 4.7). Previous research revealed that the C-terminus of 

iASPP, located in the nucleus, is responsible for binding members of the p53 family. The N-

terminus of iASPP is responsible for its cytoplasmic location. When lacking the N-terminus, 

iASPP is located in the nucleus. In accordance with this, it was hypothesised that depletion 

of p63 would largely affect the nuclear form of iASPP (Slee et al., 2004; Robinson et al., 2009). 

This hypothesis, however, does not provide an explanation as to why the feedback loop still 

appears to be completely intact when iASPP is not always nuclear.  

 

Results show that p63 is able to affect the expression of iASPP regardless of whether it is 

nuclear or cytoplasmic in three cSCC cell lines (Figure 4.7). When p63 is silenced both nuclear 

and cytoplasmic iASPP are decreased compared to the non-targeting control, although this 

is not statistically significant. Expression levels are analysed by western blot using lamin A 

and GAPDH as nuclear and cytoplasmic markers respectively. It is plausible that iASPP is 

affected by p63 in the nucleus and then shuttled out to the cytoplasm. However, further 

work would be required to investigate this. 
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Figure 4.7. Silenced p63 reduces both nuclear and cytoplasmic iASPP. Cytoplasmic (C) and nuclear 

(N) proteins were extracted from cSCC cells untreated, or treated with si-control or si-p63 (si-pool). 

Protein lysate was run on a 10% SDS-PAGE gel and blotted for iASPP. Lamin A and GAPDH were used 

as controls for nuclear and cytoplasmic proteins respectively. Graphs show densitometry analysis of 

three separate experiments. Statistical analysis was performed using a two-tailed, unpaired Student’s 

t-test, comparing the si-control to si-pool. Results were not statistically significant.  
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4.2.5. Silencing of iASPP does not appear to increase miR-574-3p or miR-720 in cSCC 

Due to the high expression levels of iASPP and p63 in cSCC it was surprising to us that the 

evidence obtained at this stage showed the iASPP/p63 feedback loop was not dysregulated. 

However, further investigation into these findings was required. Consistent with the previous 

findings reported, upon silencing iASPP, p63 mRNA expression was not affected but p63 

protein levels were significantly reduced. To rule out degradation of p63 protein, cells were 

treated with MG132, an inhibitor of proteasome-mediated degradation. This treatment did 

not restore expression of p63. Chikh et al., (2011) had described that silencing of iASPP in 

HaCaT cells increased endogenous expression of two microRNA, miR-574-3p and miR-720, 

which in turn, were essential for controlling p63. The combination of high levels of iASPP 

expression and the observation of low microRNA levels in the cSCC tumours would 

complement this finding.  

 

Prior to assessing the role of miR-574-3p and miR-720 in cSCC, silencing of iASPP was 

performed in N-TERT cells to observe an increased level of microRNA as previously reported 

(Figure 4.8A). This result however, has not been replicated. In this project no increase in miR-

574-3p or miR-720 is observed in N-TERT cells after iASPP depletion (Figure 4.8A). As in the 

previous study, microRNA levels were analysed via TaqMan qRT-PCR assays. RNU48, part of a 

small-nucleolar RNA (snoRNA) group of small noncoding RNAs, was used to normalise CT values 

generated by microRNA, as RNU48 had high CT values across different tissue types and 

displayed a low variability (Applied Biosystems; Mattick and Makunin, 2005) 

 

As the published findings by our group on the microRNA were performed in the HaCaT cell 

line, the experiment was repeated in HaCaT but with still no increase in microRNA after iASPP 

silencing (Figure 4.8B). A plausible reason to explain the difficulty in reproducing this finding 

could be that the previous data were performed with HaCaT cell lines stably knocked down 

for iASPP. Given that the target sequences of shRNA and siRNA are different could help to 

explain this anomaly. Perhaps unsurprisingly when the same experiments were performed 

in the cSCC cell lines there was also no increase observed in the microRNA levels when iASPP 

was silenced. The only slight increase observed was in miR-720 in IC18 cells; however this 

was not significant (Figure 4.8B). Although in the case of cSCC the overall lack of effect could 

potentially be explained by a loss of regulation by iASPP on the microRNA, these claims 

cannot be confirmed whilst the initial results in HaCaT cells are not reproducible.  
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Figure 4.8. Effect of silencing iASPP on microRNA levels in N-TERT and HaCaT versus cSCC cell lines. 

(A) N-TERT and HaCaT cells either treated with si-control or si-iASPP (si-pool) screened for miR-720 

and miR-574-3p levels by qRT-PCR. (B) Three cSCC cell lines (IC4, IC15, IC18) either treated with si-

control or si-iASPP screened for miR-720 and miR-574-3p levels by qRT-PCR. RNU48 was used as an 

internal control. mRNA levels were normalised to si-control. Error bars represent the SEM for three 

independent experiments. 
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4.2.6. In situ hybridisation staining of miR-574-3p and miR-720 shows low level 
expression in cSCC tissues  

As an alternative way to investigate the effect of iASPP on miR-574-3p and miR-720, I 

collaborated with colleagues from the University of Cologne, who had worked in the previous 

paper by Chikh et al. (2011). Previously our collaborators had shown a cytoplasmic and 

suprabasal expression of miR-574-3p and miR-720. Here, In situ hybridisation was performed 

in a series of cSCC human tumours to detect the levels miR-574-3p and miR-720. In situ 

hybridisation enables the detection of microRNA in tissue. The same probes designed for the 

initial study from Exiqon were used. Locked nucleic acids used in the detection probes are 

highly specific and have a higher sensitivity compared to standard DNA probes (Válóczi et al., 

2004). 

 

Eight cSCC tumours (three well, three moderate and two poorly differentiated) were 

compared to three sections of ‘normal’ skin (taken from breast reductions and an 

abdominoplasty). The staining of the sections were analysed by myself and Dr Martin 

Hufbauer, from the University of Cologne, for the intensity of cytoplasmic staining and the 

presence of nuclear staining. Of note is the observation that compared to the original 

staining in Chikh et al. (2011) additional nuclear staining in the normal skin can be reported 

(Figure 4.9). The protocol had since been optimised and refined providing a possible 

explanation for this difference. Unfortunately there was also a technical issue relating to the 

counterstaining of the sections with haematoxylin, another explanation as to why the normal 

skin staining differs from that published by Chikh et al. (2011). Regardless of these 

differences, the cSCC tissue staining showed that, irrespective of differentiation status, all 

tumours had a weak cytoplasmic staining of miR-574-3p and miR-720 and thus a decrease in 

the microRNA levels compared to the normal skin controls (Figure 4.9). The presence for high 

levels of iASPP and p63 in the cSCC tumour and a decrease of microRNA levels could perhaps 

signify that iASPP is controlling the microRNA. However this was a small sample size. 
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Figure 4.9. In situ hybridisation staining of miR-574-3p and miR-720 shows low level expression in 

cSCC tissues. (A) Representative images of in situ hybridisation experiment performed on normal 

human skin and human cSCC sections. Dark brown staining represents positive staining for miR-574-

3p and miR-720. Scale bar represents 100μM. 
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4.2.7. MiR-574-3p and miR-720 expression levels in cSCC cell lines  

In a bid to investigate the role of miR-574-3p and miR-720 further, a panel of 10 cSCC cell 

lines and N-TERT were screened for miR-574-3p and miR720 expression. It was proposed 

that the screening of cSCC cell lines compared to N-TERT may provide a validation of the in 

situ data. MicroRNA levels were analysed via TaqMan qRT-PCR assays. RNU48 was used to 

normalise CT values generated by microRNA. The screen showed an overall decrease in miR-

574-3p levels in cSCC compared to N-TERT (Figure 4.10). Six out of the ten cell lines were 

significantly decreased (T1 p=0.00001, IC1 p=0.00002, T11 p=0.001, T8 p=0.00002). The 

exception is Met 1, which showed an increased level compared to N-TERT, although the error 

bars are large. This decrease in miR-574-3p levels was expected due to the earlier finding in 

this report that p63 and iASPP are highly expressed in cSCC and is consistent with the in situ 

data. Higher iASPP expression is able to inhibit the microRNA activity and upregulate p63 

expression indicating a loss of control of the microRNA over p63.  

 

In contrast, an overall increase was observed in miR-720 levels in cSCC cell lines compared 

to N-TERT (Figure 4.10). However, this increase was not significant. These data are consistent 

with the qPCR data showing no relation of iASPP expression with miR-720. 
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Figure 4.10. An overall decrease in miR-574-3p and an increase miR-720 levels are observed in a 

panel of cSCC cell lines compared to N-TERT. A panel of cSCC cell lines and N-TERT were screened for 

miR-574-3p and miR-720 levels by qRT-PCR. Graphs show the fold change relative to N-TERT. RNU48 

was used as an internal control. Error bars represent the SEM of three independent experiments 

performed in triplicate. Statistical analysis was performed using a two-tailed, unpaired Student’s t-

test. Experiments have been corrected for multiple testing. P-value < 0.005 = *, ≤ 0.001 = **, ≤ 0.0001 

= ***. 
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4.2.8. Pre-miR-574-3p and Pre-miR-720 treatment of cSCC cells decreased the expression 
of ΔNp63α 

Data in the previous sections have been inconclusive. Silencing data had suggested iASPP 

was no longer controlling miR-574-3p and miR-720; however, this was unable to be 

validated. Conflicting data came from in situ hybridisation and cell line screen showing that 

cells with high levels of iASPP contained low miR-574-3p and miR-720, with the exception of 

the miR-720 cell line screen. Putting the interaction of iASPP with the microRNA aside, it was 

questioned whether the microRNA were still in control of p63. It was speculated that the 

high levels of p63 expressed in the tissue compared to the low levels of microRNA could 

signify a loss of microRNA control on p63.  

 

To investigate this further three cSCC cells were transfected with Pre-miR-574-3p and Pre-

miR-720. Pre-miR microRNA precursors, which act to mimic the effects of the microRNA, are 

taken up into the cell and processed via the RISC complex. Pre-miR microRNA precursors are 

transfected into the cell using DharmaFECT 1 in the same manner as siRNA transfection. Cells 

were transfected with 50nM Pre-miR microRNA Precursor and incubated for 48 hours. A Pre-

miR-control was used as a negative control containing a random sequence unable to exhibit 

any effect on microRNA function. An untreated control was also included to ensure no 

unspecific effects of the Pre-miR-control. QPCR TaqMan assays were used to validate the 

effectiveness of transfection using RNU48 as an internal control (Figure 4.11A). 

 

Western blot analysis of three cSCC cell lines transfected with Pre-miR-574-3p and Pre-miR-

720 show an inhibitory effect on ΔNp63α protein levels in Pre-miR treated cells compared to 

controls (Figure 4.11B). Transfection with Pre-miR-574-3p showed a stronger reduction of 

ΔNp63α than Pre-miR-720 treatment. There was no effect on iASPP at the protein level when 

Pre-miR where transfected into the cell as the cells were only treated with Pre-miR for 48 

hours – not enough time to see an effect on iASPP. These data confirm that, although in 

cancer cells it is unlikely that low levels of microRNA could still control high p63 levels, at 

least exogenous expression of miR-574-3p is still able to repress p63. Regardless of the 

interaction of iASPP with the microRNA these results could suggest a potential therapeutic 

route as a way of introducing microRNA control of p63 expression back into the tumour cell.  

 

Experiments using anti-miR (microRNA inhibitors) were also undertaken to try to establish 

whether p63 was still being controlled by the microRNA in cSCC. Anti-miR blocks the activity 



131 
 

of the microRNA. Treatment with anti-miR in HaCaT cells by Chikh et al. (2011) managed to 

rescue p63 expression that had been reduced by silencing of iASPP. This experiment was 

tested in cSCC cell lines however, the same phenotype could not be observed and the anti-

miRs looked like they may have had no effect (data not shown). It is noteworthy here though 

that trying to increase p63 levels in cSCC which were already very high would be difficult. 

Also, as these microRNA are expressed at low levels in cSCC, by blocking an already low 

microRNA level there potentially would not be much effect. 
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Figure 4.11. Treatment of cSCC cell lines with Pre-miR-574-3p/miR-720 decreases ΔNp63α 

expression. (A) QRT-PCR with IC4 cells was used to validate the effectiveness of Pre-miR-574-3p and 

Pre-miR-720 treatment. Graphs show the fold change Pre-miR treated cells compared to control. (B) 

Cells untreated (control), treated with a non-targeting control (Pre-miR control), treated with Pre-miR-

574-3p or Pre-miR-720. Protein lysates were run on western blot and ΔNp63α protein expression was 

determined. GAPDH was used as a loading control.  
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4.2.9. MicroRNA array on cSCC cell lines 

To clarify the results from previous sections regarding the effect of iASPP on microRNA in 

cSCC, a microRNA array was undertaken. For this experiment I cultured and transfected the 

cells, and extracted the microRNA. The microRNA array was then performed by Dr Giovanna 

Chiorino, Cancer Genomics Lab, Italy. RNA from three cSCC cell lines, IC4, IC15 and IC18 

treated with either non-targeting siRNA or si-iASPP were analysed along with N-TERT cells 

treated with either non-targeting siRNA or si-iASPP. Samples were hybridised to 

oligonucleotide glass arrays with sequences representing probes for 2006 human microRNAs 

from the Sanger database v19 (Human microRNA 8x60K Microarray Version 19, Agilent 

Technologies). For each cSCC cell line and each unique probe, the non-targeting control 

signal was subtracted from the si-iASPP treated signal and a moderate t-test was applied to 

detect differentially expressed microRNAs. Slight modulation in terms of fold-change was 

accepted (+/- 1.25 FC) provided p-values were less than 0.01. A heatmap containing the 

normalised expression values of the significantly upregulated microRNA in IC4 and IC18 cell 

lines upon iASPP silencing is shown (Figure 4.12A). 

 

During analysis of the microRNA array, it was noted that the cell line IC15 appeared to have 

a differing microRNA expression profile to the other two cSCC cells. When analysed together, 

11 microRNA were significantly upregulated upon iASPP silencing in IC4 and IC18 (Figure 

4.12A). When the fold changes of the same microRNA in IC15 were placed next to this data 

it was clear that these microRNA are not affected as in the other cell lines. When all three 

cell lines are analysed together only two microRNA are upregulated upon iASPP silencing. 

The reason for this difference could be due to the lineage of the IC15 cell line as the initial 

tumour site for IC15 was on the penis and is an HPV-16 infected cSCC. Due to the different 

origin of the IC15 cSCC cell line and thus the different genetic profile of this tumour, the focus 

for this project was on the IC4 and IC18 cell lines. The 11 upregulated microRNA identified in 

IC4 and IC15 were also compared to N-TERT. In the N-TERT cell line none of the microRNAs 

were upregulated suggesting a cSCC specific phenomenon.  

 

The purpose of undertaking the microRNA array was to discover how iASPP was able to 

regulate p63 at the protein but not mRNA level. As Chikh et al. (2011) had found in normal 

skin this was via miR-574-3p and miR-720 it was proposed that these microRNA would be 

upregulated in the new array. However, here it is important to note that whilst performing 

this research it was noticed that the Sanger microRNA database 84 had updated to show that 
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miR-720 is no longer considered to be a microRNA but in fact a tRNA (Schopman et al., 2010). 

Schopman et al. (2010) published a report highlighting evidence suggesting that next 

generation sequencing approaches are susceptible to misannotations. In the case of miR-

720, both miR-720 and tRNALeu have an identical 18 nucleotide sequence leading to this 

tRNA-microRNA mimicry. More recent findings have described miR-720 as a ‘microRNA-like’ 

tRNA fragment or tRNA-derived microRNA where a mature tRNA is cleaved yielding small 

RNA fragments that have the ability to silence genes like microRNA (Haussecker et al., 2010; 

Guzman et al., 2015). Despite these updates, several reports relating to miR-720 have been 

published since with no reference to this finding. With regard to this body of work, although 

the miR-720 appears to still be able to act as microRNA when overexpressed in cSCC cell lines 

(Figure 4.11B), it cannot be considered in the new microRNA array. In addition to the above 

finding the miR-574-3p was not shown to be upregulated in the cSCC cells nor in N-TERT cells. 

These observations suggest that technical differences in silencing may affect results 

differently. 
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Figure 4.12. MicroRNA array cSCC cell lines. (A) Heatmap displaying Log‐fold change values of 

microRNA detected in IC4 and IC18 cells. MicroRNA showing the greatest overexpression in cSCC cells 

treated with si-control versus si-iASPP (si-pool) are shown (B) Heatmap of microRNA showing the 

greatest overexpression in cSCC cells treated with si-control versus si-iASPP from IC4 and IC15, 

compared to N-TERT.  
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4.2.10. Identification and validation of microRNA targeting p63  

Before further validating the array findings by qRT-PCR it was important to determine which 

microRNA to focus on. From the 11 microRNA upregulated upon iASPP silencing, two 

microRNAs the miR-211-5p and the miR-328-3p were predicted to target p63 according to 

microRNA.org, miRDB.org and miRWalk 2.0. Additionally, a recent paper looking into 

microRNA feedback regulation of p63 in cancer progression speculated that miR-211-5p will 

target p63 (Lin et al., 2015). 

 

Data showing miR-211 behaving as an oncomir have been published for HNSCC, oral SCC and 

colorectal SCC (Chang et al., 2008; Cai et al., 2012a; Chu et al., 2013; Sümbül et al., 2015). 

Conflicting reports have come from melanoma, pancreatic and sebaceous carcinomas 

presenting miR-211 as a suppressor microRNA, suggesting a cell-type specific effect of miR-

211 (Mazar et al., 2010; Levy et al., 2010; Sakurai et al., 2011; Boyle et al., 2011; Xu et al., 

2012; Giovannetti et al., 2012; Maftouh et al., 2014; Tetzlaff et al., 2015). MiR-328 functions 

as a suppressor microRNA in glioblastoma, colorectal cancer, osteosarcoma breast cancer 

(Wu et al., 2012; Xu et al., 2012; Yang et al., 2014; Wang et al., 2015b; Yaun et al., 2015). An 

oncomir phenotype, on the other hand, has been associated with brain metastasis in NSCLC 

and glioma invasion (Arora et al., 2011; Delic et al., 2014). Additionally, conflicting reports in 

melanoma show miR-328 as both a suppressor and promoter in melanoma (Leidinger et al., 

2010; Li et al., 2015). Until now (to the best of my knowledge), no report has linked miR-211-

5p or miR-328-3p expression with a specific role in cSCC.   

 

In order to test these predictions the cSCC cell lines were treated with Pre-miR against miR-

211-5p and miR-328-3p and incubated for 48h to enable overexpression of miR-211-5p and 

miR-328-3p. To confirm overexpression, RNA was extracted and assayed by qRT-PCR (Figure 

4.13A). Once the methodology had been confirmed, protein was extracted from the cells and 

run on a western blot using an antibody against p63, and GAPDH was used as a loading 

control (Figure 4.13B). In this case IC15 was included. Here, only treatment with the miR-

211-5p was able to decrease the expression of p63. The effect of miR-211-5p was seen in all 

cell lines regardless of mutation/UV status. There was no effect on iASPP at the protein level 

when Pre-miR where transfected into the cell as the cells were only treated with Pre-miR for 

48 hours – not enough time to see an effect on iASPP. The miR-328-3p had no effect on p63 

(Supplementary Figure 4.3 – Chapter 8, Appendix page 224).  

 

http://www.microrna.org/
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To date, no reports have been published showing miR-211-5p targeting p63. A 3’UTR 

luciferase assay was performed to determine whether the miR-211-5p was able to interact 

specifically with p63 (Figure 4.13C). A Luciferase assay is able to detect the effect of 

microRNA on a target gene. Here, the 3’UTR of p63 was cloned into a PSI-check 2 vector 

containing Renilla luciferase, hRluc, as a primary reporter gene. The Renilla luciferase 

reporter gene enables the detection of changes as a result of microRNA inhibition. When the 

microRNA binds to the 3’UTR of its target gene the mRNA is cleaved, decreasing the Renilla 

luciferase signal. If the microRNA is not specific for the 3’UTR of a gene the mRNA is 

translated and the Renilla luciferase signal emitted. A secondary firefly reporter expression 

cassette enables the normalisation of the Renilla (Jin et al., 2013; TECHNICAL BULLETIN 

siCHECK™ Vectors, Promega). To ensure specificity of the technique, a PSI-check 2 vector 

containing a mutant 3’UTR p63 was also developed and used as a negative control. 

 

The end effect of the 3’UTR luciferase assay is a measure of Renilla luciferase signal. The 

3’UTR luciferase assay was performed in HEK293 cells where there is little endogenous p63. 

In cSCC cells expressing high endogenous levels of p63, any transfected Pre-miR-211-5p into 

this system may become diluted by binding to endogenous p63 and not the 3’UTR in the 

vector, thus weakening the signal. The results show a 32% decrease in luciferase activity 

upon miR-211-5p overexpression with 3’UTR p63 (p=0.00002). The data confirm previous 

findings from this project that miR-211-5p is able to bind and target p63. This was further 

confirmed by the fact that a reduction in fluorescence was not observed in cells containing 

mutant p63 (Figure 4.13C). 
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Figure 4.13. Mir-211-5p is able to target and affect p63 expression. (A) QRT-PCR was used to validate 

the effectiveness of Pre-miR-211-5p treatment. Graphs show the fold change compared to Pre-miR 

control. (B) Cells either untreated (control), treated with a Pre-miR control or with Pre-miR-211-5p. 

Lysates were run on western blot and ΔNp63α protein expression was determined. GAPDH was used 

as a loading control. (C) Luciferase assay performed in HEK293 cells. Expression of human p63 3’UTR 

in a luciferase reporter gene (psi-check 2) leads to diminished luciferase activity in the presence of 

miR‐211-5p. Plasmid containing mutant p63 3’UTR is included as a control. Error bars represent the 

SEM of three independent experiments performed in triplicate. Statistical analysis was performed 

using a two-tailed, unpaired Student’s t-test. P-value ≤ 0.001 = ***. 
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4.2.11. Silencing of iASPP increases miR-211-5p levels 

In section 4.2.10 data had shown miR-211-5p to be of importance to p63 regulation in the 

iASPP/p63 feedback loop. Confirmation of the effect of iASPP on miR-211-5p was therefore 

undertaken by qRT-PCR. As expected, silencing of iASPP resulted in a significant increase of 

miR-211-5p in IC4 (p=0.026) and IC18 (p=0.043) (Figure 4.14). Interestingly iASPP did not 

have an effect on miR-211-5p in N-TERT cells suggesting that this effect could be more 

specific to cancer cells.  

 

 

 

Figure 4.14. Validation of microRNA array by qRT-PCR. N-TERT and cSCC cells treated with si-control 

or si-iASPP (si-pool) were analysed by qRT-PCR for miR-211-5p expression. MicroRNA levels were 

normalised to internal control – RNU48. The fold change of si-iASPP compared to si-control is shown. 

Error bars represent the SEM for three independent experiments. Statistical analysis was performed 

using a two-tailed, unpaired Student’s t-test, comparing the si-control to si-pool. P-value < 0.05 = *. 

 

 

 

 

 

 

 

 

0

0.5

1

1.5

2

2.5

3

3.5

4

Si-control Si-iASPP

R
e

la
ti

ve
 m

iR
-2

1
1

-5
p

 le
ve

ls

IC4

*

0

0.5

1

1.5

2

2.5

Si-control Si-iASPP

IC18

*

0

0.2

0.4

0.6

0.8

1

1.2

Si-control Si-iASPP

N-TERT



141 
 

4.2.12. Overexpression of miR-211-5p is able to decrease the proliferation rate of the cell 

Several studies have documented iASPP’s physiological role in the cell. Chikh et al. (2011) 

found iASPP to be essential for cell proliferation in normal keratinocytes. A variety of studies 

demonstrate the importance of iASPP for proliferation in cancers including melanoma, oral 

squamous cell carcinoma, gastric, prostate, colorectal and bladder cancer, hepatocellular 

carcinoma, glioblastoma and NSCLC (Lu et al., 2010; Pang et al., 2010; Chen et al., 2010; Lin 

et al., 2011; Li et al., 2011; Zhang et al., 2011; Liu et al., 2011; Chen et al., 2014a; Chen et al., 

2014b; liu et al., 2014; Pandolfi et al., 2015; Wang et al., 2015a). Silencing of iASPP causes 

cells to proliferate slower than control. It was hypothesised that cells containing unaltered 

expression levels of iASPP but overexpressing miR-211-5p would behave in the same way as 

cells silenced for iASPP. A timecourse was carried out prior to this to see for how long the 

transient transfection of Pre-miR was stable. IC4 and IC18 cells were transfected with Pre-

miR-211-5p and samples were collected at 3, 5 and 7 days. Protein was extracted and cells 

were run on a 10% SDS-PAGE gel and blotted for ΔNp63α. Expression of ΔNp63α began to 

reappear at 7 days (Figure 4.15A). As a result a cell proliferation assay of up to 7 days was 

carried out on cells transfected with Pre-miR-211-5p. Cells were counted on days 3, 5 and 7. 

Both IC4 and IC18 cells transfected with Pre-miR-211-5p proliferated significantly slower 

than cells treated with Pre-miR-negative control (Figure 4.15B). 

 

Colony forming assays measure the ability of individual cells to survive and proliferate. 

Previously, expression of iASPP has been demonstrated to be required for cells to produce 

colonies (Chikh et al., 2011; Zhang et al., 2011; Liu et al., 2011; Lin et al., 2011; Li et al., 2011; 

Liu et al., 2013a; Wang et al., 2015a). Cells overexpressing miR-211-5p were plated at a 

density of 1000 cells/plate and left to proliferate for 10 days. Although the effects of miR-

211-5p appear to weaken at around 7 days, the initial transfection seemed sufficient in 

producing distinct results. After 10 days cells were fixed, stained with crystal violet and 

colonies of 50 cells or more were counted (Figure 4.15C) (Franken et al., 2006). Like the 

proliferation experiment it was hypothesised that cells containing unaltered expression 

levels of iASPP but overexpressing miR-211-5p would behave in the same way as cells 

silenced for iASPP. IC4 and IC18 cells overexpressing miR-211-5p formed significantly fewer 

colonies than cells expressing Pre-miR-negative control (IC4 p=0.0038; IC18 p=0.005). These 

data lead us to speculate that iASPP is able to control cell proliferation/colony formation via 

miR-211-5p. It is noted however that microRNA are often able to target several genes. 
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Figure 4.15. Pre-miR-211-5p treatment decreases the proliferation and colony forming ability of 

cSCC cells. (A) Time course showing the effect of cSCC Pre-miR-211-5p treated cells on ΔNp63α protein 

expression by western blot. (B) Growth curves of cSCC cells either treated with Pre-miR control or Pre-

miR-211-5p analysed for their proliferation. (C) Representative images shown of colony forming assay. 

Graphs demonstrate the fold change difference of colony formation between cells treated with Pre-

miR control or Pre-miR-211-5p. Error bars represent the SEM of three independent experiments 
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performed in triplicate. Statistical analysis was performed using a two-tailed, unpaired Student’s t-

test. P-value < 0.05 = *, ≤ 0.01 = **, < 0.001 = ***. 
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4.3. Summary  

The aim of this project was to dissect the role of iASPP, a novel crucial regulator of epidermal 

homeostasis, in keratinocyte skin carcinogenesis. I wanted to investigate if the novel 

p63/iASPP feedback loop discovered by Chikh et al. (2011) was maintained or dysregulated 

in cSCC. I hypothesised that this feedback loop would be altered in cancer.  

 

In this chapter it was discovered that the p63/iASPP axis was still intact in cSCC with silenced 

p63 able to downregulate iASPP at the protein and mRNA level and silenced iASPP in turn 

affecting the protein expression of p63 but not mRNA levels. MicroRNA array data enabled 

us to further investigate the inability of iASPP to downregulate p63 at solely the protein and 

not mRNA level. This led us to identify the importance of miR-211-5p expression, a microRNA 

that was predicted to target p63 but that had no published data on its actual ability to target 

p63. Research into the function of miR-211-5p in other cancers had provided conflicting 

evidence; however the role of miR-211-5p in cSCC has not been studied. Investigation into 

miR-211-5p provided evidence that iASPP physiological effects on the cell may be signalled 

at least in part through miR-211-5p (Figure 4.16). 

 

 

 

Figure 4.16. iASPP/p63 autoregulatory feedback loop. In normal keratinocytes miR-574-3p and miR-

720 are able to control the expression of p63 and in turn iASPP. In cSCC miR-211-5p is able to control 

the expression of p63. High levels of iASPP in cSCC result in the downregulation of miR-211-5p and, in 

turn, lack of p63 inhibition. 
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In this project, I have stained and scored human cSCC specimens and found high p63 

expression levels and high cytoplasmic/nuclear iASPP expression in the tumours. In support 

of this finding I have also screened a panel of 10 cSCC cell lines confirming high expression of 

iASPP and ΔNp63. Three cSCC cell lines with differing UV/mutation statuses were selected 

for further study: IC4, IC15 and IC18. Knockdown of p63 reduced the protein expression and 

mRNA levels of iASPP in cSCC cell lines. Consistent with these results, knockdown of iASPP 

reduced p63 protein expression. p63 mRNA levels remained the same when iASPP was 

silenced, as was observed in N-TERT cells by myself and Chikh et al. (2011), suggesting an 

extra layer of control in the feedback loop when iASPP is silenced.  

 

In HaCaT cells the extra layer of control between iASPP and p63 had come from microRNA, 

miR-574-3p and miR-720. In cSCC the levels of these microRNA were examined by screening 

our cSCC cell line panel and collaborating with colleagues in Germany to perform in situ 

hybridisation on cSCC tissue. These data showed us that miR-574-3p levels were decreased 

in our cell line panel and also had lower levels of expression observed in cSCC tissues 

compared to the normal skin sections. Levels of miR-720 were also reduced in cSCC tissues 

compared to normal skin; however, an increase was observed when screening cSCC cell lines. 

Although there is increasing literature characterising the role of miR-720, linking it with cell 

differentiation and tumour metastasis and it appears to behave in many contexts as a 

microRNA, we had noticed while performing our research that miR-720 was no longer 

classed as a microRNA but was now recognised as a tRNA (Schopman et al., 2010).  

 

MicroRNA are in control of p63 in HaCaT cells. In cSCC when p63 is overexpressed and 

microRNA levels are downregulated, at least in the tissue, this suggests that perhaps these 

microRNA are no longer controlling p63 in cSCC. To investigate this further we used anti-miR 

inhibitors but with limited success; it is possible that trying to inhibit already low levels of 

microRNA has a minimal effect on high levels of p63. What was successful though was the 

addition of pre-miR microRNA mimics in cSCC to decrease p63 expression. This confirmed 

that an artificial increase of microRNA is still sufficient to control p63 expression. We also 

investigated whether iASPP was still in control of miR-574-3p. In cSCC cell lines silenced for 

iASPP we did not observe an increase in microRNA levels suggesting that iASPP is no longer 

in control of the miR-574-3p. At present the above microRNA data remain to be validated by 

replication of the original findings in N-TERT cells. A plausible reason to explain difficulty in 
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reproducing this finding could be that the previous data was only performed in HaCaT cell 

lines stably knocked down for iASPP (therefore using another silencing sequence). 

 

MicroRNA array, luciferase assays and overexpression data in IC4 and IC18 cells silenced for 

iASPP provided a new target for iASPP and a novel regulator of p63 in cSCC – miR-211-5p. N-

TERT cells did not have this upregulation of miR-211-5p suggesting a cSCC-specific 

phenomenon. Interestingly, however, IC15 appeared to have a very different microRNA 

profile compared to IC4 and IC18, this is likely due to the fact that IC15 is HPV-16 induced 

and not UV-associated. Further analysis of miR-211-5p demonstrated its effects on 

proliferation and colony forming ability. iASPP had previously been shown to promote the 

proliferation and colony forming ability of cells of different origins. Overexpressing miR-211-

5p demonstrated similar effects to silencing iASPP, hinting at the fact that iASPP may be 

signalling through miR-211-5p. This could, however, just be because of the effect of miR-211-

5p on p63. Further research showing that iASPP is actually able to interact with miR-211-5p 

would need to be carried out to strengthen this research.  

 

In the previous chapter it was noted that the location of iASPP in the cell appeared to differ 

between tumour sections and this was investigated further in our panel of cSCC cell lines. 

The immunofluorescence and subcellular fractionation cell line data supported the 

observation that iASPP appeared to be mainly cytoplasmic and p63 nuclear in the cSCC cell 

lines and tumours. Reflecting on these results and data showing the p63/iASPP axis is still 

intact, a subcellular fractionation was performed with cSCC cells silenced for p63. Results 

show that p63 is able to affect the expression of iASPP regardless of whether it is nuclear or 

cytoplasmic. It is plausible that iASPP is affected by p63 in the nucleus and then shuttled out 

to the cytoplasm. However, further work would be required to investigate this. 

 

Research into the status in cSCC of a regulatory feedback loop responsible for maintaining 

cell homeostasis in human keratinocytes was undertaken with the hope of discovering a new 

biomarker and/or pathway to target therapeutically. Demonstrating that miR-211-5p is 

potentially downregulated in cSCC provides novel data on the molecular basis of squamous 

carcinogenesis. In this chapter I have discovered a novel way to reduce the expression of 

oncogenic p63 and additionally affect the downstream effects of the feedback loop in cSCC. 

By targeting miR-211-5p this can be done without altering the levels of iASPP, a protein which 

is essential for cell homeostasis. Although still in the early stages of research, the miR-211-
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5p could have the potential to become a target for cSCC therapy. Additionally, the discovery 

that miR-211-5p is not affected by iASPP in N-TERT cells leads me to speculate that 

involvement of miR-211-5p in cSCC is an exclusive event and therefore makes it a promising 

target for the future. 
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Chapter 5: Pathophysiological effects of iASPP in cSCC 

 

5.1. Introduction and aims 

The effects of iASPP on cell homeostasis in the skin have recently been investigated. Chikh 

et al. (2011) found that iASPP played a role in regulating epidermal adhesion and 

proliferation whereby depletion of iASPP in HaCaT cells triggered a deregulation of the cell 

junctional complex integrity. Upon the silencing of iASPP, several genes involved in cell-

matrix adhesion, for example β1 integrin, desmosmal and adhesion proteins including PERP 

and Claudin 1, amongst others, were down regulated. iASPP is implicated in the 

differentiation and stratification of the epidermis and iASPP depletion results in an increased 

epidermal thickness. This observation was correlated with an increase in the expression of 

both involucrin and loricrin, markers of keratinocyte terminal differentiation (Chikh et al., 

2011). The latter effect has been further confirmed by a report using an iASPP knockout 

mouse (Notari et al., 2011). In the same study the authors also reported that in mouse 

embryonic fibroblasts, iASPP was able to inhibit premature senescence in cells (Notari et al., 

2011). 

 

Silenced iASPP causes a negative effect on HaCaT cell proliferation due to delayed cell-cycle 

progression, with a reduction in cyclin D2 expression. In support of this effect on 

proliferation, a decline in the number of colonies formed upon treatment of HaCaT cells with 

shRNA against iASPP was observed (Chikh et al. 2011). Several papers also support a role for 

iASPP controlling cell proliferation in a cancer setting. Depletion of iASPP in prostate, bladder 

and gastric cancer cell lines in addition to non-small cell lung cancer (NSCLC), glioblastoma 

and hepatocellular carcinoma cells causes a negative effect on the cells ability to proliferate 

(Pang et al., 2010; Lu et al., 2010; Zhang et al., 2011; Lin et al., 2011; Chen et al., 2011; Li et 

al., 2011; Lu et al., 2013; Morris et al., 2014; Wang et al., 2015a). In melanoma the 

HEDGEHOG/GLI-E2F1 axis positively modulates iASPPs ability to regulate cell proliferation 

(Pandolfi et al., 2015). Chen et al. (2014b) showed the negative effect iASPP had upon 

depletion from oral tongue squamous cell carcinoma cell lines. However, no reports to date 

have documented the effects of iASPP on cell proliferation in cSCC.  

 

In prostate, glioblastoma and colorectal cancer cell lines the reduction of cell proliferation 

upon iASPP silencing was directly linked to miR-124 (Zhao et al., 2013; Chen et al., 2014a; Liu 



149 
 

et al., 2014). Luciferase assays confirmed the direct interaction of miR-124 with iASPP. 

Overexpression of miR-124 in prostate, glioblastoma and colorectal cancer cell lines had the 

same effect on proliferation as silencing iASPP. Interestingly in cSCC, the expression of miR-

124 was significantly downregulated both in vitro and in vivo (Yamane et al., 2013). 

 

Studies have demonstrated the role of iASPP as both a p53-dependent and p53-independent 

inhibitor of apoptosis (Bergamaschi et al., 2003; Cai et al., 2012b). Breast cancer cells 

containing wild type p53 show increased UV and cisplatin-induced apoptosis when treated 

with siRNA against iASPP (Bergamaschi et al., 2003). iASPP is able to inhibit p53-induced 

apoptosis by binding to p53 and preventing its transcriptional activity on pro-apoptotic BAX 

and PIG3 promoters (Bergamaschi et al., 2003). The overexpression of iASPP in NSCLC cells 

deficient of p53 was still able to trigger apoptosis by inhibiting pro-apoptotic transcriptional 

activity of p63 and p73 (Cai et al., 2012b). Although a well-documented inhibitor of apoptosis 

in a cancer setting, conflicting studies also support the notion presented by Laska et al. (2007) 

that iASPP does not always play an anti-apoptotic role (Pinto et al., 2010; Chikh et al., 2014). 

Laska et al. (2007) demonstrated that in non-transformed cells silenced for iASPP and treated 

with etoposide there was a reduction of apoptosis. Chikh et al., (2014) have demonstrated 

another novel function of iASPP in non-transformed cells showing that silenced iASPP in non-

transformed keratinocytes did not cause an increase in apoptosis but rather triggered an 

increase in autophagy, providing a role for iASPP as a novel autophagy inhibitor. Studies 

showing a reduction of apoptosis upon iASPP depletion in the cell are not solely limited to 

non-transforming cells. Pinto et al. (2010) speculate that iASPP may have a dual role in 

apoptosis in precancerous lesions, specifically, pituitary tumours. More recently, in 

melanoma iASPP displays a pro-apoptotic phenotype whereby treatment of melanoma cell 

lines, depleted for iASPP, with cisplatin causes a decrease in apoptosis through the 

interaction of iASPP with acetyltransferases p300 and CBP, which are able to acetylate and 

thus stabilize both p53 and TAp73. The activation and stabilization of both p53 and TAp73 

allows the transcriptional upregulation of pro-apoptotic genes (Kramer et al., 2015).  

 

Further research into other physiological effects of iASPP in a cancer setting has been very 

limited. At present, to the best of my knowledge, only a handful of studies have touched 

upon the effect of iASPP on the invasive potential of the cell. In addition, these studies have 

been observational studies reporting correlations between iASPP expression and invasive 

tumour tissue/metastasis (Liu et al., 2010; Cao et al., 2013; Kim et al., 2015b). At this time 
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there appears to be a lack of functional studies that investigate the actual role of iASPP in 

cancer. This is important research that needs to be carried out to enable a better 

understanding of why iASPP is so highly expressed in cancer and to provide ways of 

manipulating iASPP or its regulators/binding partners from a therapeutic perspective. 

Therefore the aims of this chapter are to: 

 

1) Investigate the role of iASPP on the proliferation of cSCC cell lines 

2) Discover whether iASPP plays a pro-apoptotic or anti-apoptotic role in cSCC cell lines 

3) Explore the effect of iASPP on the cells potential to invade/migrate 

4) Examine the pathways involved in these effects 
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5.2. Results 

5.2.1. iASPP is essential for cSCC proliferation  

The effect of iASPP on cell proliferation has been well documented in both the normal skin 

and various types of cancer (Pang et al., 2010; Lu et al., 2010; Zhang et al., 2011; Lin et al., 

2011; Chen et al., 2011, Li et al., 2011; Chikh et al., 2011; Notari et al., 2012; Lu et al., 2013; 

Zhao et al., 2013; Chen et al., 2014b; Liu et al., 2014; Morris et al., 2014; Pandolfi et al., 2015; 

Wang et al., 2015a). However to date, no studies have been performed analysing the effects 

of iASPP on cell proliferation in cSCC. Based on the previous research on the skin and other 

tumour types, it was hypothesised that iASPP would have a positive effect on cell 

proliferation.  

 

To investigate the role of iASPP on proliferation in cSCC cells, a growth curve was carried out 

comparing IC4, IC18 and IC15 cells silenced for iASPP. These three cSCC cell lines were used 

as a continuing model to study cSCC due to the differing mutational status and origin of the 

cells (Table 4.1). To enable the investigation into the role of iASPP on cell proliferation in 

cSCC, iASPP had to be silenced for enough time to allow the experiment to be carried out. To 

determine how long iASPP knockdown was effective for I carried out a time course 

experiment. cSCC cell lines were transfected with 50nM siRNA targeting iASPP and cells were 

pelleted on days 3, 5, 7 and 9. Cell lysates were run on a western blot and membranes were 

probed with an iASPP antibody (Figure 5.1). In the IC15 and IC18 cell lines iASPP was 

efficiently knocked down until day 9. The IC4 cell line was silenced until day 7, after this iASPP 

expression began to reappear.  

 

 

 

Figure 5.1. Timecourse of iASPP knockdown in cSCC cells. Western blot showing the duration of iASPP 

knockdown (si-iASPP – si-pool) compared to control and si-control over a total of 9 days in three 

different cSCC cell lines. 
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Using the silencing efficiency as a guideline, a proliferation assay was undertaken for 7 days. 

Cells were plated in triplicate wells, transfected with si-iASPP and si-control and then 

counted using a haemocytometer on days 3, 5 and 7. The data show that when iASPP is 

silenced, cells proliferated at a slower rate compared to si-control, demonstrating that, in 

these cells, iASPP is also required for the proliferation of cancer cells (Figure 5.2). Prior to 

undertaking these experiments, proliferation rates of cells transfected with si-control were 

compared to untreated cells to ensure no effects of si-control on proliferation.  

 

Chikh et al. (2011) had previously shown similar growth curves in HaCaT cells. Further 

support for this decrease in proliferation detected in HaCaT cells depleted for iASPP came 

from a bromodeoxyuridine kinetic analysis showing that iASPP was able to alter cell-cycle 

progression delaying entry into G1 phase. This was accompanied by a downregulation of 

cyclin D2 (Chikh et al., 2011). Cyclin D2 is required to complex with CDK4/6 to enable the cell 

to cycle through G1/S phase. Western blots performed with cSCC cell lysates silenced for 

iASPP show a downregulation of cyclin D2 expression levels supporting the previous findings 

in HaCaT cells and transferring them to a tumour setting (Figure 5.3).  

 

In the previous chapter I have shown that iASPP and p63 are controlled by an autoregulatory 

feedback loop, thus silencing iASPP leads to a decrease in p63 expression. ΔNp63 also 

regulates proliferation (Sbisà et al., 2006). The positive role of ΔNp63 regarding proliferation, 

taken together with the positive role for iASPP regarding proliferation found in this project, 

suggest that the feedback loop as a whole contributes to regulating cell proliferation (Sbisà 

et al., 2006). 
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Figure 5.2. Expression of iASPP affects the proliferation of cSCC cell lines. Growth curves of three 

individual cSCC cells treated with si-control or si-iASPP (si-pool) analysed for their proliferation over 7 

days. Error bars represent the SEM of three individual experiments performed in triplicate. Statistical 

analysis was performed using a two-tailed, unpaired Student’s t-test – no statistical significance was 

found. 
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Figure 5.3. iASPP silencing decreases cyclin D2 expression. Western blots show the effect of si-iASPP 

(si-pool) on cyclin D2. Cells were harvested 72 hours after transfection. GAPDH was used as a loading 

control. 

 

The effect of iASPP on proliferation was also investigated using a colony forming assay. A 

colony forming assay determines the ability of a cell to grow into a colony. Colony forming 

assays were carried out for 10 days in IC4, IC15 and IC18 cell lines transfected with either si-

iASPP or si-control. Cells were seeded at a density of 1000 cells per well in a 6-well plate 

(Figure 5.4A). After 10 days cells were fixed. Colonies of 50 cells or more were counted. 

Initially a total of 50 cells were counted and the size of this colony was noted, from then on 

colonies of a similar size were tallied (Franken et al., 2006). Although iASPP expression in the 

IC4 cell line in particular started to reappear at 7 days, the effects of iASPP knockdown were 

still able to be visualised. In all three cSCC cell lines, cells depleted for iASPP show a reduction 

in the number of colonies formed. In the case of IC4 and IC15 a significant reduction (Figure 

5.4B) (IC4 p= 0.05, IC15 p= 0.02) was observed. 
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Figure 5.4. Knockdown of iASPP reduces the colony forming ability of cSCC cells. (A) Representative 

images shown of colony forming assay in three cSCC cell lines. Purple staining represents cell colonies. 

(B) Graphs show the difference in the number of colonies formed between cells treated with si-control 

and cells treated with si-iASPP after 10 days (si-pool). Error bars represent the SEM of three 

independent experiments performed in triplicate. Statistical analysis was performed using a two-

tailed, unpaired Student’s t-test, comparing the si-control to si-pool. P-value ≤ 0.05 = *. 
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5.2.2. Investigation into the dual role of iASPP in apoptosis 

It has been well documented that iASPP can act as an inhibitor of apoptosis in cancer cells. 

However a handful of studies have reported a pro-apoptotic function of iASPP in both non-

transformed cells and precancerous lesions but also more recently in cancerous cells (Laska 

et al., 2007; Pinto et al., 2010; Kramer et al., 2015). Alongside the multiple roles of iASPP 

reported so far, recent data also demonstrated a role for iASPP as an autophagy inhibitor in 

the normal skin. I therefore wanted to investigate the role of iASPP in apoptosis in cSCC to 

determine if iASPP’s role was cell type specific (Chikh et al., 2014).  

 

Apoptosis was induced in cSCC cell lines using etoposide and cisplatin. These two 

chemotherapeutic drugs were chosen due their use in apoptotic models in previous studies 

involving iASPP (Bergamaschi et al., 2003; Liu et al., 2009; Kramer et al., 2015). Etoposide 

functions by binding to topoisomerase II and causes breakage of DNA strands leading the 

cells to apoptose (van Maanen et al., 1988). Cisplatin functions by crosslinking the DNA 

causing the cells to undergo apoptosis (Siddik 2003). Based on evidence from the majority of 

past cancer cell studies, it was predicted that there would be a significant increase in 

apoptosis upon iASPP silencing. To assess the effects of iASPP on apoptosis an Annexin-V-

FITC assay was used and cells were analysed by flow cytometry. Cells undergoing apoptosis 

expose phosphatidylserine on the surface of the cell that acts as a signal for the cell to be 

phagocytosed (Verhoven et al., 1995). Annexin-V is able to bind to exposed 

phosphatidylserine and thus is used as a marker for apoptosis. Cells were co-stained with 

DAPI, a fluorescent cell viability marker. DAPI is taken up by dead cells at a higher efficiency 

than live cells. The apoptotic cell population included Annexin V-FITC positive, DAPI negative 

and Annexin V-FITC positive, DAPI positive (right upper and lower quadrants of scatter plot; 

Figure 5.5A). Cells were treated with either si-control or si-iASPP prior to the addition of 

etoposide, cisplatin or no drug (non-treated). IC4, IC15 and IC18 cells were analysed. The 

majority of the literature to date describes the apoptotic role of iASPP as p53-dependent. To 

take into account any differences that may be observed due to the mutation status of p53, 

cell lines with both wild type and mutated p53 were included (Table 4.1). Representative 

scatter plots of IC4 are shown alongside graphs depicting the percentage of apoptotic cells 

(Figure 5.5A). 

 

cSCC cells silenced for iASPP and either untreated or treated with etoposide or cisplatin did 

not appear to have an increase in apoptosis (Figure 5.5B). Instead the levels of apoptosis 
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remain the same in si-iASPP treated cells compared to si-control treated cells or conversely 

become slightly decreased, though this was not significant. Chikh et al., (2014) have 

demonstrated that silenced iASPP in non-transformed keratinocytes did not cause an 

increase in apoptosis but rather triggered an increase in autophagy providing a role for iASPP 

as an inhibitor of autophagy. Perhaps cells of different lineages can behave differently with 

regard to iASPP.  
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Figure 5.5. Knockdown of iASPP does not appear to increase apoptosis in etoposide/cisplatin-

treated cells. (A) Representative scatter plots from IC4 cell line transfected with si-iASPP (si-pool) and 

si-control and treated with cisplatin and etoposide. Scatter in the top right quadrant (dead2) was 

classed as late apoptotic, the bottom right quadrant (apoptotic) was classed as early apoptotic, the 

top left quadrant (dead1) was classed as cell debris and the bottom left quadrant (live) was classed as 

live cells. (B) Three cSCC cell lines transfected with si-control and si-iASPP (si-pool) treated with 

etoposide or cisplatin for 18 h analysed by FACS. The apoptotic cell percentage is a combination of the 
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cells undergoing early and late apoptosis. Error bars represent the SEM of three independent 

experiments. Western blots show effective iASPP knockdown at the time of the experiment. GAPDH 

was used as a loading control. 

To investigate the role of iASPP with regard to apoptosis and cSCC further, I wanted to 

investigate whether depleting iASPP in cSCC was actually promoting autophagy. As 

mentioned above, using a combination of N-TERT, HaCaT and primary keratinocyte cells 

silenced for iASPP, no increase in apoptosis was observed. Instead keratinocytes silenced for 

iASPP displayed increased autophagy providing a role for iASPP as an inhibitor of autophagy 

(Chikh et al., 2014). To investigate this I ran cSCC cell lines treated with si-control and si-iASPP 

on a western blot and probed with an LC3 antibody. Additionally N-TERT cells both treated 

with si-control and si-iASPP were included as a positive control. When autophagy is induced, 

LC3-I becomes lipidated producing LC3-II (Kabeya et al., 2000). Although LC3-II has a higher 

molecular weight than LC3-I, LC3-II migrates more rapidly on an SDS–PAGE gel likely due to 

higher hydrophobicity associated with the phosphatidylethanolamine group to which it is 

conjugated (Barth et al., 2010). Consistent with Chikh et al. (2014) figure 5.6 shows that N-

TERT cells silenced for iASPP display higher levels of LC3-II compared to control. Interestingly, 

none of the cSCC cells depleted for iASPP showed higher levels of LC3-II lipidation. These data 

suggest that in cSCC iASPP may not be an inhibitor of autophagy. Of note, however, are the 

high levels of LC3-II and thus autophagy already occurring in non-silenced cSCC cells. A study 

into cSCC found an increased resistance of advanced stage cSCC cells to cisplatin treatment. 

Further investigation into this observation found that along with high levels AKT, high levels 

of autophagy were occurring in advanced cSCC, measured by high accumulation of LC3-II. 

Treatment of these resistant cells with AKT inhibition alongside autophagy inhibitor, 3-

methyladenine, enhanced the cytotoxicity of cisplatin (Claerhout et al., 2010). 
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Figure 5.6. In cSCC iASPP does not appear to be an inhibitor of apoptosis. N-TERT and three cSCC cell 

lines were depleted of iASPP (si-pool). Western blots were run and probed for LC3-I and LC3-II, a 

marker of autophagy. GAPDH was used as a loading control. 

5.2.3. Silencing iASPP increases cell motility and migration 

Although there have been numerous reports on the oncogenic role of iASPP in cancer, to 

date there have been no reports investigating the role of iASPP on cell migration/motility. A 

couple of papers have detailed the importance of iASPP in adhesion, although these have 

been carried out in non-cancerous cell models (Chikh et al., 2011; Notari et al., 2015). iASPP 

is integral in maintaining cell junctions. iASPP deficient mice develop arrhythmogenic right 

ventricular cardiomyopathy (ARVC) known to be caused by defects in desmosome integrity. 

Additionally, desmosomal complexes in HaCaT cells silenced for iASPP become dysregulated. 

Reduction in cell adhesion has been reported in many cancers and this reduction is 

correlated with increased cell migration and metastasis. It was interesting that the loss of 

iASPP expression caused defects in desmosomal integrity, a marker of cell invasion and 

metastasis. However, iASPP is predominantly regarded as an oncogene. Due to these 

conflicting ideas I wanted to investigate whether the loss of adhesion previously observed in 

cells depleted for iASPP was able to affect the motility of the cell. 

 

To investigate this, IC4, IC15 and IC18 cell lines, transfected with si-iASPP and si-control, were 

tracked using Metamorph Image Analysis Software. Each different experimental condition 

was performed in duplicate. Three time-lapse videos were taken per well and within those 

three images, 10 cells were tracked over 8h. Figure 5.7A shows a representative still image 

from an IC15 time-lapse video. This image shows the striking difference between cells 

treated with si-control compared to cells treated with si-iASPP. Cells treated with si-control 

adhere to each other forming tight cell colonies. In contrast, cells depleted for iASPP appear 

to form fewer cell-cell contacts and therefore fewer colonies. Metamorph Image Analysis 

calculated the mean velocity of each cell that was tracked. Cells silenced for iASPP in IC4 cell 

line had a significantly higher mean velocity that cells treated with si-control (Figure 5.7B) 

(p=0.005). Although the IC15 and IC18 mean velocity data was not significant they too 

displayed the same trend as IC4 showing an increase in mean velocity when depleted of 

iASPP. The apparent loss of cell-cell contacts in Figure 5.7A appears to cause the cell to 

become more motile. 
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Figure 5.7. Silenced iASPP can affect cell motility in cSCC. (A) Representative images from IC15 cell 

line silenced for iASPP and control. Scale bar represents 100 μm (B) Graphs demonstrate the mean 

velocity of three cSCC cell lines treated with si-control and si-iASPP (si-pool). Error bars represent the 

SEM of three independent experiments. Statistical analysis was performed using a two-tailed, 

unpaired Student’s t-test, comparing the si-control to si-pool. P-value ≤ 0.01 = **. 
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To investigate this increase in cell motility further I silenced two cSCC cell lines, IC4 and IC15 

for iASPP and measured the effect of iASPP on cell migration using transwell inserts (Figure 

5.8A&B) (Biddle et al., 2011). Cells were plated on the top of the inserts in medium containing 

2% FBS and left for 24 h to migrate through to the bottom of the well containing 10% FBS. 

Cells that had migrated through to the underside of the insert were fixed, stained with crystal 

violet and counted. In agreement with the hypothesis, the loss of adhesion in cells silenced 

for iASPP published previously, correlates with the finding that cSCC cells silenced for iASPP 

were able to migrate more than non-silenced cells. cSCC cells transfected with si-iASPP were 

able to migrate significantly more than cells treated with si-control (IC4 p=0.031, IC15 

p=0.045). Consistent with these findings, loss of ΔNp63α in SCC cell lines promoted cell 

migration and increased cell motility (Barbieri et al., 2006). These data provide evidence that 

it is not iASPP alone, but the autoregulatory feedback loop as a whole, that is able to control 

cell migration and motility. 
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Figure 5.8. Silencing of iASPP affects the migration of cSCC cells. (A) Representative images of two 

cSCC cell lines, IC4 and IC15, treated with si-control or si-iASPP (si-pool) undergoing migration. Scale 

bar represents 100 μm (B) Graphs show the number of cells migrated in si-control and si-iASPP (si-

pool) treated cells. Error bars represent the SEM of three independent experiments performed in 

duplicate. Statistical analysis was performed using a two-tailed, unpaired Student’s t-test, comparing 

the si-control to si-pool. P-value ≤ 0.05 = *. 
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5.2.4. Role of iASPP in invasion 

In order to investigate in more detail the effects of increased cell motility and migration upon 

depletion of iASPP, 3D organotypic cultures were produced. Organotypic cultures are 3D in 

vitro models used to investigate the invasion of tumour cells. Here, using cSCC cell lines, we 

were able to mimic the formation of cSCC tumours. The aim was to investigate the effect of 

iASPP on cell invasion. Organotypic cultures were produced using a combination of Collagen 

I and Matrigel® Basement Membrane Matrix in order to mimic in vitro the epidermis of the 

skin (Fusenig et al., 1983; Nystrom et al, 2005). Stromal cells are essential for a cancer cell to 

invade. Thus, in this case, human foreskin fibroblasts are included to help mimic the in vitro 

epidermis and also promote invasion of cancer cells into the dermis (Lewis et al., 2004). 

Organotypic cultures are typically left to incubate for 10-14 days. Due to the lack of success 

using shRNA as a silencing technique for iASPP (Chapter 4), IC4 and IC15 cells were treated 

with both si-control and si-iASPP. As observed in Figure 5.1, in IC15 cells at 9 days iASPP 

knockdown was still effective. However in the IC4 cell line iASPP expression began to 

reappear at 7 days. For this reason I chose to incubate the organotypics for the shorter time 

point of 10 days. Although iASPP expression may have reappeared after 7 days in the IC4 cell 

line I believe that the impact of iASPP knock down for up to 7 days is sufficient to observe 

any obvious difference in invasion pattern.  

 

Using Cell Profiler software an invasion index was calculated which takes into account the 

average depth of the tumour, the number of tumours and the area of invading tumour 

islands (Jenei et al., 2011). Figure 5.9A shows representative images of the organotypic 

cultures of IC4 and IC15 cell lines depleted for iASPP and control. The invasion index for IC4 

cells depleted for iASPP has no obvious differences compared to si-control (Figure 5.9B). 

Additionally, this is the same for IC15. However, when analysing the organotypic images, I 

noticed a minor difference in the size/number of colonies invading. In both cell lines depleted 

for iASPP the number of tumour islands invading looked to be increased but the size of these 

islands seemed to be smaller. Further analysis of this using the cell profiler software shows 

a non-significant trend towards an increase in the number of invading islands with iASPP 

depletion, but with the number of cells invading remaining stable (Figure 5.9C). 
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Figure. 5.9. 3D Organotypic models show cSCC silenced for iASPP affects invasion. (A) 

Representative images of 3D organotypic cell cultures using two cSCC cell lines, IC4 and IC15, 

treated with si-control or si-iASPP (si-pool). Scale bar represents 300μM. (B) Graphs display the 

invasion index of treated cSCC cells in 3D organotypic cell cultures. (C) Graphs display the number 

of invading clumps in si-control and si-iASPP (si-pool) treated cultures. Error bars represent the SEM 

of three independent experiments performed in duplicate. 
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5.2.5. MicroRNA array and qRT-PCR validation 

The discovery that depletion of iASPP promotes cSCC cells to become more 

migratory/invasive while also gaining resistance to apoptosis was surprising due to the 

commonly reported role for iASPP as an oncogene. Analysis of a microRNA array performed 

to investigate the effects on microRNA expression when iASPP is silenced in cSCC cells 

provided a possible insight into why iASPP has this effect on the cell. The data from the 

microRNA array showed that when iASPP is silenced, miR-205-5p becomes decreased in both 

IC4 and IC18 cell lines but not in N-TERT (Figure 5.11A). MiR-205-5p has recently been linked 

with p63 and epithelial-to-mesenchymal (EMT) marker - zinc finger E-box binding homeobox 

1 (ZEB1) - in bladder, prostate and breast cancer cells (Figure 5.10) (Tucci et al., 2012; Tran 

et al., 2012; De Cola et al., 2015). EMT is the process that enables an epithelial cell to adopt 

a mesenchymal cell phenotype allowing it to become more motile and invasive while also 

gaining a high resistance to apoptosis (Gregory et al., 2008). Expression of ZEB1 is a hallmark 

of EMT. ZEB1 promotes EMT by transcriptionally repressing adhesion protein E-cadherin 

(Sánchez-Tilló et al., 2010) 

 

In a lethal subset of bladder cancer cells, muscle-invasive bladder cancer, ΔNp63 is highly 

expressed (Tran et al., 2012). Conversely, in metastatic prostate cancer p63 expression is lost 

(Tucci et al., 2012). Despite these obvious differences in p63 function, both authors found 

the same signalling pathway to be functional in both prostate and bladder cancer. Consistent 

with the increase in ΔNp63 expression in bladder cancer cells is the high miR-205-5p 

expression linked to adverse clinical outcomes (Tran et al., 2012). In support of this 

association, in prostate cancer when p63 expression is downregulated, miR-205-5p is lost in 

human metastastic prostate cancer tumour samples (Tucci et al., 2012).  

 

The overexpression of both TAp63 and ΔNp63 in prostate cancer cell lines promoted an 

increase in miR-205-5p levels (Tucci et al., 2012). A chromatin Immunoprecipitation (ChIP) 

and luciferase reporter assay using the upstream region of miR-205-5p and subsequent 

transfection of ΔNp63 confirmed the ability of ΔNp63 to directly promote the miR-205-5p 

promoter (Tucci et al., 2012). Equally, silencing of ΔNp63α resulted in a decrease in miR-205-

5p expression in bladder cancer cell lines (Tran et al., 2012). Prior to these investigations, the 

miR-205-5p 3’UTR had been demonstrated to directly target ZEB1 (Gregory et al., 2008). The 

loss of ZEB1 along with several other markers including ZEB2, Twist and Vimentin, is a 

hallmark change of EMT (Kalluri & Weinberg, 2009), although a decrease in all markers is not 
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an essential measure of EMT (Biddle et al., 2011). p63 is able to negatively regulate EMT by 

indirectly targeting ZEB1 through miR-205-5p (Tucci et al., 2012; Tran et al., 2012).  

 

 

 

Figure 5.10. Schematic showing the relationship between p63, miR-205-5p and ZEB1 in relation to 

EMT. Figure adapted from Tran et al. (2012). 

 

Taking these previous discoveries into account and in light of the previous data in this chapter 

showing that silencing of iASPP increases the migration/motility of cSCC cells whilst also 

gaining resistance to apoptosis, it was hypothesised that a decrease in iASPP and therefore 

p63 (based on data in chapter 4) may result in a reduction in miR-205-5p - leading to an 

increase in ZEB1 levels and, in turn, promotion of EMT. Also noteworthy is the recent finding 

that ASPP2 binds and inhibits ZEB1 in breast cancer cells. It is the N-terminus of ASPP2 (1-

360 a.a.), however, that is able to repress ZEB1 through inhibiting B-catenin from 

transactivating ZEB1. The N-terminus of ASPP2 is different to the N-terminus of iASPP (Wang 

et al., 2014c). 

 

To validate the microRNA array results TaqMan qPCR were carried out. In all three cSCC cell 

lines silencing of iASPP resulted in a decrease of miR-205-5p, regardless of p53 mutation 



168 
 

status. In the case of IC4 and IC15 this was significant (Figure 5.11B) (IC4 p = 0.01; IC18 p = 

0.01). N-TERT cells depleted for iASPP did not display a change in miR-205-5p levels (Figure 

5.11B). 
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Figure 5.11. MicroRNA array and qRT-PCR validation. (A) Heat map displaying log‐fold change values 

of microRNA showing the greatest decrease in expression in IC4 and IC18 cSCC cells in contrast to N-

TERT cells treated with si-control versus si-iASPP (si-pool) - Agilent platform. (B) Cells treated with si-

control or si-iASPP (si-pool) were analysed by qRT-PCR for miR-205-5p expression. MicroRNA levels 

were normalised to internal control microRNA – RNU48. The fold change of si-iASPP compared to si-

control is shown. Error bars represent the SEM of three independent experiments performed in 

triplicate. Statistical analysis was performed using a two-tailed, unpaired Students t-test, comparing 

the si-control to si-pool. P-value ≤ 0.05 = *, ≤ 0.01 = **. 
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5.2.6. Depletion of miR-205-5p levels results in an increase of ZEB1 

Having established in the previous section that iASPP is able to modulate miR-205-5p 

expression in cSCC, I wanted to investigate whether miR-205-5p was able to control ZEB1 in 

cSCC. Previous studies investigating the relationship between miR-205-5p and ZEB1 had been 

performed in malignant mesothelioma, bladder, prostate, ovarian and breast cancer 

(Bracken et al., 2008; Gregory et al., 2008; Tran et al., 2012; Tucci et al., 2012; Fassina et al., 

2012; Wang et al., 2012; Chao et al., 2014; Lee et al., 2014a; Lee et al., 2014b; Zhang et al., 

2014; De Cola et al., 2015; Niu et al., 2015). To the best of my knowledge this relationship 

has not been studied in cSCC. 

 

To assess whether miR-205-5p was able to affect ZEB1 expression in cSCC, cell lines were 

treated with Anti-miR-205-5p, which are single stranded nucleic acids able to bind and 

specifically to target microRNA for inhibition. To ensure the specificity of this microRNA 

TaqMan qPCR assays were carried out assessing the effectiveness of Anti-miR on miR-205-

5p (Figure 5.12A). In both cell lines the levels of miR-205-5p were decreased by over 90%. An 

increase in ZEB1 levels can be observed in both cSCC cell lines transfected with Anti-miR-205-

5p, with IC18 having a significant increase (Figure 5.12B) (IC18 p = 0.04). 
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Figure 5.12. Depletion of miR-205-5p levels results in an increase of ZEB1. (A) QRT-PCR with IC4 and 

IC18 cells was used to validate the effectiveness of Anti-miR-205-5p treatment. Graphs show the fold 

change of Anti-miR treated cells compared to control. (B) QRT-PCR measuring the relative expression 

of ZEB1 in cells either treated with a non-targeting control (Anti-miR control) or treated with Anti-miR-

205-5p. MicroRNA levels were normalised to internal control microRNA – RNU48. The fold change of 

Anti-miR control compared to Anti-miR-205-5p is shown. Error bars represent the SEM of three 

independent experiments performed in triplicate. Statistical analysis was performed using a two-

tailed, unpaired Students t-test. P-value ≤ 0.05 = *. 
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5.2.7. Suppression of iASPP allows ZEB1 expression to increase 

My data show that silencing iASPP causes a decrease in miR-205-5p levels and that silencing 

of miR-205-5p promotes an increase of ZEB1 in cSCC. To confirm whether iASPP is able to 

indirectly affect ZEB1 expression levels, I silenced iASPP and measured the effect on ZEB1 by 

qPCR. In addition to ZEB1, I also investigated the levels of other EMT markers; ZEB2, Twist-1, 

E-cadherin and vimentin. In human bladder cancer cells Tran et al., (2012) found that 

silencing ΔNp63α and miR-205-5p increased the expression of both ZEB1 and ZEB2. Tucci et 

al., (2012) were able to demonstrate a relationship between ∆Np63/miR-205-5p and E-

cadherin. Loss of E-cadherin is associated with EMT (Kalluri & Weinberg, 2009). 

Overexpression of both ∆Np63 and miR-205-5p in prostate cancer cell lines increased E-

cadherin expression correlating with a decrease in EMT (Tucci et al., 2012). During the same 

treatments another EMT marker highly expressed such as vimentin, was decreased by 

overexpression of ∆Np63 and miR-205. Twist-1 expression is another commonly used marker 

for EMT (Kalluri & Weinberg, 2009). 

 

cSCC cell lines were silenced for iASPP and assessed by qPCR for the levels of ZEB1, ZEB2, 

Twist-1, E-cadherin and vimentin (Figure 5.13A). In all three cSCC cell lines analysed, ZEB1 

was significantly increased upon iASPP depletion (IC18 p = 0.0082; IC4 p = 0.0455; IC15 p = 

0.0039). No other significant trends were observed. The levels of ZEB1 were then 

investigated at the protein level by western blotting (Figure 5.13B). Consistent with the qPCR 

data, western blots showed silencing of iASPP in IC4 caused an increase in ZEB1 protein 

expression. This experiment has only been performed once however and is therefore still 

preliminary data. Future work will need to replicate and quantify this data. 
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Figure 5.13. Effect of iASPP on markers of EMT. (A) cSCC cell lines were silenced for iASPP (si-pool) 

and screened for markers of EMT by qRT-PCR. Housekeeping gene GUS was used as an internal 

control. Error bars represent the SEM of three independent experiments performed in triplicate. 

Statistical analysis was performed using a two-tailed, unpaired Students t-test, comparing the si-

control to si-pool P-value ≤ 0.05 = *, < 0.01 = **. (B) Western blot showing the effect of silencing iASPP 

on ZEB1 expression levels in IC4 cSCC cell line. GAPDH was used as a loading control. This Western 

blot was only performed once and is therefore a preliminary result. 
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5.2.8. Silencing p63 decreases miR-205-5p levels and increases ZEB1 expression 

p63 was initially found to be the regulator of the miR-205-5p/ZEB1 axis in bladder and 

prostate cancer and more recently in breast cancer (Tucci et al., 2012; Tran et al., 2012; De 

Cola et al., 2015). To date this has not been investigated in cSCC. To investigate whether this 

mechanism is occurring in cSCC cells I silenced two cSCC cell lines and using TaqMan PCR 

analysed the effects of this silencing on miR-205-5p. In both cell lines I observed a significant 

decrease in miR-205-5p upon p63 depletion (Figure 5.14A) (IC4 p = 0.0119; IC18 p = 0.0392). 

Following on from this I investigated the effects of silencing p63 in relation to ZEB1 levels. 

ZEB1 levels were analysed by qPCR. Both IC4 and IC18 cell lines silenced for iASPP displayed 

significantly higher levels of ZEB1 compared to si-control (Figure 5.14B) (IC4 p = 0.0260; IC18 

p = 0.0107). The levels of ZEB1 were then investigated at the protein level by western blotting 

(Figure 5.14C). Consistent with the qPCR data, western blots showed silencing of p63 in IC4 

caused an increase in ZEB1 protein expression. This experiment has only been performed 

once however and is therefore still preliminary data. Future work will need to replicate and 

quantify this data. 
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Figure 5.14. Effect of silencing p63 on miR-205-5p and ZEB1. (A) Cells treated with si-control or si-p63 

(si-pool) were analysed by qRT-PCR for miR-205-5p expression. MicroRNA levels were normalised to 

internal control microRNA – RNU48. The fold change of si-iASPP compared to si-control is shown. (B) 

cSCC cell lines were silenced for p63 and screened for ZEB1 by qRT-PCR. Housekeeping gene GUS was 

used as an internal control. Error bars represent the SEM of three independent experiments 

performed in triplicate. Statistical analysis was performed using a two-tailed, unpaired Students t-test, 

comparing the si-control to si-pool. P-value ≤ 0.05 = *. (C) Western blot showing the effect of silencing 

p63 on ZEB1 expression levels in IC4 cSCC cell line. GAPDH was used as a loading control. This Western 

blot was only performed once and is therefore a preliminary result. 
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5.3. Summary 

In order to understand why iASPP is so highly expressed in cSCC and thus what role iASPP 

plays in cancer, I wanted to investigate the pathophysiological effects of iASPP in cSCC. The 

effect of iASPP on cell proliferation previously been well documented in both normal skin 

and various types of cancer (Pang et al., 2010; Lu et al., 2010; Zhang et al., 2011; Lin et al., 

2011; Chen et al., 2011, Li et al., 2011; Chikh et al., 2011; Notari et al., 2012; Lu et al., 2013; 

Zhao et al., 2013; Chen et al., 2014b; Liu et al., 2014; Morris et al., 2014; Pandolfi et al., 2015; 

Wang et al., 2015a). Confirming these data in cSCC, I found that silencing iASPP greatly affects 

the ability of cSCC cells to proliferate. Further investigation into this observation found that 

the role of iASPP in proliferation was linked to cyclin D2 expression. Upon silencing of iASPP, 

the expression of cyclin D2, a cell cycle protein required to complex with CDK4/6 enabling 

the cell to cycle through G1/S phase, was decreased. These data supported previous findings 

in HaCaT cells and transferred them to a tumour setting (Chikh et al., 2011). The effect of 

iASPP on cell proliferation was also examined using colony forming assay. In all three cSCC 

cell lines, cells depleted for iASPP show a reduction in the number of colonies formed, 

supporting the previous data. 

 

iASPP has been well established as an inhibitor of apoptosis in cancer cells in both a p53 

dependent- and p53-independent manner (Bergamaschi et al., 2003; Cai et al., 2012b). 

However, although a well-documented inhibitor of apoptosis in a cancer setting, conflicting 

studies provide evidence that iASPP does not always play an anti-apoptotic role (Laska et al. 

2007; Pinto et al., 2010; Chikh et al., 2014). Studies reported a pro-apoptotic function of 

iASPP in both non-transformed cells and precancerous lesions but also more recently in 

cancerous cells (Laska et al., 2007; Pinto et al., 2010; Kramer et al., 2015). Chikh et al., (2014) 

also demonstrated another novel function of iASPP in the skin as an autophagy inhibitor. To 

explore the role of iASPP in relation to apoptosis in cSCC, apoptosis was induced in three 

cSCC cell lines using chemotherapeutic drugs, etoposide and cisplatin. To assess the effects 

of iASPP on apoptosis an Annexin-V-FITC assay was used and cells were analysed by flow 

cytometry. As the majority of the literature describes the apoptotic role of iASPP as p53-

dependent, cell lines with both wild type and mutated p53 were included to investigate any 

differences. cSCC cells silenced for iASPP and either untreated or treated with etoposide or 

cisplatin did not appear to have an increase in apoptosis. The percentage of cells undergoing 

apoptosis remained the same in si-iASPP treated cells compared to si-control treated cells. 

To investigate whether iASPP was involved in inhibiting autophagy instead of apoptosis, both 
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N-TERT and cSCC cell lines treated with si-control and si-iASPP were run on a western blot 

and probed with an LC3 antibody. Consistent with Chikh et al. (2014), N-TERT cells silenced 

for iASPP displayed higher levels of LC3-II, a marker of autophagy, compared to control. 

Interestingly, however, none of the cSCC cells depleted for iASPP showed higher levels of 

LC3-II lipidation providing evidence that in cSCC iASPP may not be an inhibitor of autophagy. 

In all three cell lines LC3-II expression was high compared to N-TERT. This apparent high level 

of autophagy could explain the resistance of si-iASPP cells to apoptosis. A study into cSCC 

found an increased resistance of advanced stage cSCC cells to cisplatin treatment and high 

levels of autophagy, measured by high accumulation of LC3-II (Claerhout et al., 2010). It 

would be interesting to test autophagy inhibitor, 3-methyladenine, on these cells and see if 

an increase in apoptosis was observed (Claerhout et al., 2010). 

 

Further research into other physiological effects of iASPP in a cancer setting has been very 

limited. At present, to the best of my knowledge only a few observational studies have 

reported correlations between iASPP expression and invasive tumour tissue/metastasis (Liu 

et al., 2010; Cao et al., 2013; Kim et al., 2015b). iASPP deficient mice develop ARVC known 

to be caused by a defect in desmosome integrity. Additionally, desmosomal complexes in 

HaCaT cells silenced for iASPP become dysregulated. It is interesting how loss of iASPP 

expression causes defects in desmosomal integrity, a marker of cell invasion and metastasis, 

but iASPP is predominantly regarded as an oncogene. To investigate this, cSCC cell lines were 

depleted of iASPP and their motility tracked using Metamorph Image Analysis Software. Still 

images from these experiments show cells treated with si-control adhere to each other 

forming tight cell colonies. In contrast, cells depleted for iASPP appear to form less cell-cell 

contacts and therefore fewer colonies. Additionally, cells silenced for iASPP had a higher 

mean velocity than cells treated with si-control. This apparent loss of cell-cell contact 

appears to cause the cell to become more motile. Investigating this further using transwell 

inserts measuring the effect of iASPP on cell migration showed that cSCC cells silenced for 

iASPP were able to migrate more than non-silenced cells.  

 

Investigating further the effects of increased cell motility and migration upon depletion of 

iASPP, 3D organotypic cultures were produced. Using Cell Profiler software, an invasion 

index, which takes into account the average depth of the tumour, the number of tumours 

and the area of invading tumour islands, was calculated (Jenei et al., 2011). The invasion 

index, however, showed no obvious differences between si-iASPP and si-control treated 
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cells. The only slight difference observed was the difference in the size/number of colonies 

invading. In both cell lines depleted for iASPP the number of tumour islands invading looked 

to be increased but the size of these islands seemed to be smaller. iASPP depletion induces 

a slight increase in the number of invading islands although the number of cells invading is 

still the same. 

 

The finding that iASPP had a role in inhibiting invasion/migration of cSCC cells whilst not 

playing an anti-apoptotic role was surprising in view of the reported role for iASPP as an 

oncogene. These features of iASPP observed in cSCC cell lines were consistent with the 

hallmarks of EMT. To investigate this further a microRNA array was performed with cSCC 

cells and N-TERT silenced for iASPP and non-targeting siRNA. Within this array one of the top 

microRNA downregulated upon iASPP depletion in cSCC but not N-TERT was the miR-205-5p. 

This microRNA had previously been demonstrated to interact and regulate ZEB1 expression, 

a hallmark of EMT. Additionally, a few papers had demonstrated the ability of p63 to control 

the miR-205-5p and in turn ZEB1, inhibiting EMT. In chapter 4 I have shown that iASPP is able 

to regulate p63 expression via miR-211-5p and that in turn p63 is able to directly regulate 

iASPP expression. Considering these data, I sought to discover whether iASPP was involved 

in this scheme of events to inhibit EMT. Firstly, I validated the microRNA array data showing 

that silencing of iASPP resulted in a decrease of miR-205-5p. I then proceeded to show that, 

in cSCC cells, miR-205-5p was still able to control ZEB1 expression. To prove that iASPP was 

linked to this pathway I silenced iASPP and checked the effect on ZEB1 levels in addition to 

other markers of EMT. QPCR and western data confirmed that iASPP was able to affect ZEB1 

expression. The involvement of p63 in this pathway in cSCC cell lines was confirmed by 

observing a decrease in miR-205-5p levels upon p63 silencing and an increase in ZEB1. Taken 

together these experiments imply that iASPP is an EMT inhibitor in cSCC.  
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Chapter 6: Discussion and future work 

 

6.1. Nuclear p63 and cytoplasmic iASPP are highly expressed in cSCC 

6.1.1. p63 and iASPP are highly expressed in cSCC in vitro 

Non-melanoma skin cancer has the highest incidence of any cancer in the UK. Both cSCC and 

BCC are classified as non-melanoma skin cancer. Although BCC is more prevalent than cSCC, 

cSCC presents greater morbidity and has a higher incidence of metastasis than BCC (Madan 

et al., 2010). The metastatic potential of cSCC is still low compared to melanoma however 

the morbidity on the patient and the cost of cSCC on the healthcare system is high (Eedy, 

2000; Guy et al., 2015). UV is the most important risk factor of cSCC, however, the direct 

molecular mechanism that causes cSCC is unclear. Several genes have been implicated 

including p53 and Notch1, both of which are tumour suppressor genes commonly mutated 

in cSCC (Brash et al., 1991; Ziegler et al., 1994; Forbes et al., 2010; South et al., 2012; 

Samarasinghe & Madan, 2012). Additionally, high expression/mutation of oncogenes EGFR, 

Ras, c-myc and p63 has also been documented (Pelisson et al., 1996; Senoo et al., 2001; Reis-

Filho et al., 2002; Wrone et al., 2004; Boukamp, 2005; Dotto and Glusac, 2006; Kolev et al., 

2008; Alomari et al., 2014). 

 

p63 contains two major isoforms; Np63 and TAp63. These isoforms can be further divided 

into splice variants; δ and ε (Yang et al., 1998; Mangiulli et al., 2009). Np63 is a well-

established oncogene that is able to repress TAp63, p73, full length p53, p53 isoform 

Δ133p53, and is highly expressed in many different cancers (Yang et al., 1998; Liefer et al., 

2000; Ratovitski et al., 2001; Rocco et al., 2006; Marcel et al., 2012). Expression of p63 is used 

as a marker for epithelial cancers such as cSCC and a handful of reports have demonstrated 

high p63 expression in cSCC (Senoo et al., 2001; Reis-Filho et al., 2002; Wrone et al., 2004; 

Dotto and Glusac, 2006; Alomari et al., 2014). TAp63 is documented as a tumour suppressor 

gene. However, recently in melanoma, TAp63 was shown to behave as an oncogene (Matin 

et al., 2013). In this study an antibody was used that detects all the isoforms of p63. In all 10 

of the cSCC cell lines analysed only Np63 was highly expressed, supporting previous 

published data. When compared to N-TERT cells, used as a control for ‘normal keratinocytes,’ 

p63 was highly expressed in all cSCC. Each cSCC cell line used in this study had undergone a 

targeted gene screen and thus the mutational status of p53, Notch1 and Ras was known. p53 

is a tumour suppressor gene and belongs to the same family as p63. Typically, p53 is mutated 
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in 60% of cSCC and this is reflected in the panel of cSCC cell lines used for this project. Several 

studies have investigated the effect of mutant p53 on p63. Mutant p53 is able to interact 

with TAp63 via its DBD leading to a decrease in the tumour suppressive transcriptional 

activities of TAp63 (Li and Prives 2007). Conversely, high levels of mutant p53 and 

upregulated expression of Np63 are often reported suggesting that mutant p53 may not 

have the same effect on Np63 as it does TAp63. p53 has a lower binding affinity for Np63 

than TAp63 (Gaiddon et al., 2001). Conflicting evidence shows that hot-spot R175H mutant 

p53 actually induces the expression of Np63 after DNA damage (Lanza et al., 2006).  

 

All but one of the cSCC cell lines used in this project were obtained from a typical sun exposed 

area, for example the scalp, the back of hand or ear. The IC15 cell line, however, although 

classified as an cSCC, arises from the penis and is HPV-16 positive. Thus, despite the wild type 

status of p53 in this cell line, in this instance, p53 is silenced by HPV oncoprotein E6 and is 

therefore non-functional. Notch1, a validated tumour suppressor gene in cSCC, is also 

mutated in approximately 60% of cSCC cases (Forbes et al., 2010; South et al., 2012). In our 

panel of cSCC cell lines Notch1 is mutated in 7/10 cell lines. This is unsurprising when coupled 

with the finding that Np63 is upregulated in cSCC. Wild type Notch1 is able to suppress p63 

levels in keratinocytes, however, high p63 expression inhibits Notch1 activity (Nguyen et al., 

2006; Restivo et al., 2011). Ras, a classic oncogene, is mutated in 10-20% of cSCC tumours 

and interacts with Np63 in the skin to promote proliferation of squamous cell carcinoma in 

mice (Keyes et al., 2011). Despite these interactions, when comparing both p63 protein and 

RNA expression to the mutational profile of the cell lines there appeared to be no strong 

correlation. There were also no correlations with clinicopathologic features such as 

immunocompetence status, age, site of tumour and differentiation status of tumour.  

 

iASPP is an inhibitor of p53 and has previously been considered as a potential therapeutic 

target for tumour p53 re-activation. iASPP is highly expressed in many tumours and our 

group has recently shown that it signals with p63 in a feedback loop in the skin (Chikh et al., 

2011). Structural studies showed that iASPP preferentially binds to p63 over p53 and 

additionally, binds p63 with a higher affinity than ASPP family member ASPP2, a validated 

interactor with p63 (Robinson et al., 2008). The expression levels of iASPP have been 

investigated in many cancers but, to date, not in cSCC. Recent studies have, however, 

demonstrated the importance of iASPP in HNSCC and cervical SCC (Liu et al., 2012; Cao et al., 

2013). In this study using 10 cSCC cell lines and N-TERT control I found an upregulation of 
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iASPP at both the protein and RNA level. As iASPP is already highly expressed in the normal 

skin there was only a slight increase in cSCC. There appeared to be no clear correlation 

between mutated p53 and iASPP levels. This was expected as data suggest iASPP works 

upstream from full-length p53 and does not signal through mutant p53 (Bergamaschi et al., 

2003; Bergamaschi et al., 2006). Additionally, no clear correlation between Notch1 and iASPP 

was observed. In the skin, p63 signals upstream of Notch1 and iASPP signals upstream of 

p63. Thus, high levels of iASPP may have indirectly signalled low levels of Notch1 (Nguyen et 

al., 2006; Restivo et al., 2011). iASPP is an inhibitor of differentiation in the normal skin. I 

therefore examined iASPP expression compared to the differentiation status of the cell lines, 

hypothesising that iASPP may be higher in the poorly differentiated tumours. In cSCC cell 

lines this proved not to be the case. However, the in vitro system of cSCC cell lines was 

probably unable to represent the alternative differentiation statuses of the tumours, as 

identified using involucrin, a marker of keratinocyte differentiation (Watt, 1983). 

 

6.1.2. Nuclear p63 and cytoplasmic iASPP are highly expressed in cSCC, both in vitro and 
in vivo 

In order to translate these findings into an in vivo setting tumours were stained for both 

iASPP and p63. In total 106 tumours were obtained from patients with differing 

clinicopathological features. The sample selection collected mirrored SCC in the general 

population as 73% of the tumours were from men and the majority of samples were from 

sun exposed sites with 39% on head and neck and 36% upper limb. In 92/106 (87%) tumours 

there was perilesional epidermis present allowing an internal control. Sections were scored 

for the percentage of cells stained multiplied by the intensity of the staining producing a 

scoring index. An antibody against all p63 isoforms was used. At the time of staining there 

was limited availability of specific Np63 antibodies suitable for staining. Based on the 

prominent expression of Np63 in all the cSCC cell lines, however, I could assume that it 

was Np63 that was positively stained. As mentioned previously, strong p63 expression is 

a marker for epithelial cancers and in particular cSCC. p63 is used as a marker due to its high 

expression in epithelial cells. For this reason it is also highly expressed in the normal skin. 

Therefore, no further increase in p63 staining could be observed in the tumours as all 

perilesional epidermal and cSCC samples scored positively for p63. A couple of reports had 

shown high p63 expression in poorly differentiated SCC (Kargi et al., 2007; Alomari et al., 

2014). In this case p63 was highly expressed regardless of differentiation status. Additionally, 
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in melanoma cells cytoplasmic p63 was expressed; however, in cSCC tumours p63 protein 

expression was limited to the nucleus (Matin et al., 2013). 

 

iASPP is located in both the nucleus and cytoplasm. When initially discovered as RAI (Rel A- 

Associated Inhibitor), iASPP was a nuclear protein (Yang et al., 1999; Slee et al., 2004) The 

later discovery of the full-length version of iASPP found the N-terminus responsible for its 

cytoplasmic location and the C-terminus, the one found in RAI, responsible for its nuclear 

setting (Bergamaschi et al., 2003; Slee et al., 2004). As the C-terminus and thus nuclear 

section of iASPP is responsible for binding to its binding partners such as p53, reports into 

iASPP in other SCC tumours finding that cytoplasmic iASPP expression in the tumour 

correlated with worse patient prognosis seem confusing. In HNSCC cytoplasmic iASPP was 

an independent prognostic factor (Liu et al., 2012). However, a strong case for nuclear iASPP 

was put forward by Lu et al. (2013). In melanoma, nuclear iASPP was highly expressed and 

phosphorylated via cyclin B/CDK1. Phosphorylated iASPP could be visualised on a western 

blot as a second slower migrating band. Treatment using JNJ-7706621, an inhibitor of CDK1 

and thus phosphorylation of nuclear iASPP, was able to reduce tumour size and growth in 

mouse melanoma models (Lu et al., 2013). Data published after this discovery by Morris et 

al. (2014) also primarily focussed on the importance of nuclear iASPP in prostate cancer and 

researchers were able to view this double iASPP band on western blot, denoting cytoplasmic 

iASPP and phosphorylated nuclear iASPP. Closer inspection of this paper, however, also 

showed the importance for cytoplasmic iASPP in prognosis.  

 

6.1.3. High cytoplasmic and low nuclear iASPP expression may be associated with a more 
aggressive tumour 

Due to these conflicting findings, iASPP was scored for the intensity and percentage of cells 

stained with nuclear iASPP and cytoplasmic iASPP separately. The data showed that the 

normal epidermis expressed high levels of nuclear iASPP and lower levels of cytoplasmic 

iASPP, as previously shown (Chikh et al., 2011, Notari et al., 2011). Interestingly, when 

comparing the normal epidermis to the tumours, there appeared to be a switch in staining 

with the levels of cytoplasmic iASPP rising and the levels of nuclear iASPP decreasing. This 

suggests that cytoplasmic iASPP may be more important for tumourigenesis of cSCC than 

nuclear iASPP. To investigate this further, collaborators from The Barts Cancer Institute 

performed a multivariate analysis of nuclear versus cytoplasmic iASPP staining compared 

with the clinicopathologic features of the patients. Although these data were not quite 
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significant, a trend was observed regarding the differentiation status of the tumour and 

location of iASPP. Not only is there a switch in staining from normal epidermis to tumour, 

but the intensity of this switch is dependent on the differentiation status of the tumour. The 

poorly differentiated and thus more aggressive tumours display much higher levels of 

cytoplasmic iASPP and are nearly all negative for nuclear iASPP. Due to the smaller numbers 

of poorly differentiated cSCC tumours, the power of the data were limited. However, the 

trend relating to differentiation is very striking and supports previous papers correlating 

cytoplasmic iASPP to worse prognosis (Jiang et al., 2011; Liu et al., 2012; Cao et al., 2013; 

Morris et al., 2014). Thus depletion of nuclear iASPP/increase of cytoplasmic iASPP may be a 

marker for aggressive cSCC. 

 

To investigate this phenomenon further, I fractionated cell lines into nuclear and cytoplasmic 

fractions and analysed the distribution of protein expression of iASPP. Fractionation of the 

cSCC cell lines confirmed the high cytoplasmic/low nuclear expression distribution observed 

in the tumours. I also stained cSCC cell lines for iASPP. To try to produce an in vitro model of 

the normal epidermis containing higher nuclear iASPP levels compared to cSCC and to see 

what effect the differentiation status had upon the location of iASPP, I stained N-TERT cells 

alongside a sample of cSCC cells of distinct differentiation stage. No correlation could be seen 

between iASPP location and differentiation in the cell lines. However, this was likely due to 

their loss of differentiation phenotype in culture as mentioned earlier. Furthermore, N-TERT 

cells showed predominantly cytoplasmic iASPP expression and therefore were not 

representative of the normal epidermis. This was potentially due to the artificial 2D 

environment that cells grow in. 

 

To investigate the cell lines further I attempted to recreate the in vivo differentiation status 

of the tumours in vitro. By adding calcium to cell lines I was able to induce a degree of 

differentiation (Pillai et al., 1988). This differentiation was confirmed by the upregulation of 

involucrin, a marker of keratinocyte differentiation (Watt, 1983). In support of what was 

observed in vivo I found that cells which were well differentiated expressed higher levels of 

nuclear iASPP. Cells grown in low calcium conditions and thus not as well differentiated, had 

higher cytoplasmic iASPP expression and lower nuclear expression, thus mimicking the 

tumour data. Although these in vitro data correlate with my tumour data, Chikh et al. (2011) 

found that in normal keratinocytes treated for an increasing period of time with calcium total 

iASPP expression actually decreased. As Chikh et al. (2011) did not separate the nuclear and 
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cytoplasmic fractions and as the nuclear fraction of iASPP is so low, the increase of nuclear 

iASPP would not have been evident in the total iASPP section. Thus these data do not 

contradict their finding. What is interesting is the role for iASPP in differentiation in normal 

keratinocytes, iASPP is an inhibitor of differentiation in the normal skin. iASPP is expressed 

in the nucleus of proliferating basal cells and becomes more cytoplasmic in well 

differentiated cells (Notari et al., 2011). This contradicts the findings of my tumour data and 

perhaps shows the differences between the role of iASPP in the tumour versus the non-

tumourigenic cells. Thus, I have identified an important difference in iASPP location when 

comparing normal skin to the tumour that could be used as a marker for cSCC. 

 

To investigate the issue of phosphorylated nuclear iASPP I used the cell lysis protocol from 

Lu et al. (2013). This is different to the lysis protocol I had been using previously. I wanted to 

determine whether phosphorylated iASPP could be detected in my cSCC cell lines and if so 

why nuclear iASPP did not appear to be the potential oncogenic target in cSCC that it was in 

melanoma. Using a melanoma cell line as a control I was able to observe this second upper 

phosphorylated band in the melanoma cell line but not in the cSCC or N-TERT cell line, 

confirming that the presence of phosphorylated iASPP may be cell type specific. This was 

further confirmed by Lu et al. (2013) who found no phosphorylated iASPP in HaCaT cells, an 

immortalised keratinocyte cell line. In the study on melanoma, high nuclear iASPP expression 

correlated with wild type p53 expression. The tumours expressing wild type p53 had high 

levels of nuclear phosphorylated iASPP along with high MDM2 and cyclin B1 expression (Lu 

et al., 2013). This observation provides further evidence that the importance of 

phosphorylated iASPP may be tumour specific as p53 is mutated in a high proportion of cSCC 

tumours. It would be interesting for future work to test other SCC cell lines for the presence 

of phosphorylated iASPP and determine why iASPP is not phosphorylated in SCC. It could be 

speculated that the reason I saw a decrease in nuclear iASPP expression in the poorly 

differentiated tumours was due to the inability of the antibody to detect phosphorylated 

iASPP. Lu et al. (2013), however, used the same antibody to detect phosphorylated iASPP as 

I do in this thesis.  

 

It is important to discover why the C-terminal nuclear fraction of iASPP that is responsible 

for gene binding is downregulated in cSCC. Why does full length iASPP with both nuclear and 

cytoplasmic sections locate to particular areas? iASPP does not have a nuclear localisation 

signal. However, a recent publication confirmed that iASPP was able to enter the nucleus via 
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an importin-independent mechanism (Lu et al., 2014). Slee et al. (2004) suggested that 

cytoplasmic iASPP may reside in the cytoplasm to prevent ASPP1 and ASPP2 (also 

predominantly cytoplasmic) binding to p53. p53 is expressed in the cytoplasm and thus the 

regulation of p53 via iASPP may also occur extranuclear and independent of transactivation. 

A study found that p53 lacking a DBD and thus lacking its transactivation function was still 

able to trigger apoptosis (Haupt et al., 1995; Chipuk et al., 2004). Cytoplasmic p53 is able to 

induce apoptosis via mitochondrial outer membrane permeabilization (MOMP), triggering 

the release of pro-apoptotic factors, cytoplasmic p53 also acts as an inhibitor of autophagy 

(Green and Kroemer 2009). Furthermore, studies found p53 was able to induce apoptosis in 

cells lacking a nucleus (Haupt et al., 1995 Chipuk et al., 2004).  

 

To further investigate this line of research the following experiments could be performed: 

 

1. Collect additional poorly differentiated samples. Staining of these samples with 

iASPP may provide statistical significance correlating high cytoplasmic/low nuclear 

iASPP expression with a poorly differentiated/more aggressive tumour.  

 

2. Generate constructs encoding different regions of iASPP representative to nuclear 

and cytoplasmic segments. Transfect iASPP plasmids into cSCC cell lines/mouse 

models and look for effects on tumour size and growth. Does cytoplasmic iASPP have 

a greater effect on the aggressiveness of the tumour/metastatic profile? 

 

3. Confirm the cell type specificity of iASPP phosphorylation by investigating whether 

iASPP is phosphorylated by CDK1 in cSCC. Screen the cell lines for cyclin B1 

expression and compare with melanoma cell lines. Test JNJ-7706621, a CDK1 

inhibitor, on cSCC cell lines/mice exhibiting cSCC tumours to assess the importance 

of phosphorylated iASPP in cSCC.  

 

6.2. p63 and iASPP are controlled by an autoregulatory feedback loop via miR-211-5p in 
cSCC  

6.2.1. iASPP and p63 are controlled by an autoregulatory feedback loop in cSCC 

In the normal skin p63 and iASPP colocalise in the basal epidermis where they both exist in 

the nucleus. The data obtained from the first chapter of this thesis, showing that in cSCC 



189 
 

tumours iASPP becomes less nuclear and more cytoplasmic, was therefore initially surprising. 

A handful of papers have now demonstrated the ability of p63 and iASPP to interact 

(Robinson et al., 2008; Chikh et al 2011; Notari et al., 2011; Cai et al., 2012b). In the normal 

skin p63 is able to directly interact with iASPP by binding to the iASPP promoter affecting its 

expression. In HaCaT and N-TERT cells silencing of p63 decreases the expression levels of 

iASPP and silencing iASPP decreases p63 (both TA and N) protein expression (Chikh et al., 

2011). Thus it was interesting to examine whether the p63-iASPP feedback loop reported in 

the normal skin was dysregulated in cSCC due to this change in iASPP location. In SCC, high 

levels of p63 correlate with low levels of ASPP2 expression (Tordella et al., 2013). Upon 

transfection of ASPP2 into cells, 70% of cells lost p63 expression. Further analysis found that 

cytoplasmic ASPP2 represses nuclear p63 expression via binding and counteracting IκB, 

enabling nuclear expression of RelA/p65 NF-κB to repress p63 expression (Tordella et al., 

2013). 

 

In order for genes to interact with each other they must be in the same location. To 

investigate the effects of p63 on iASPP I silenced p63 (all isoforms) in a subset of cSCC cell 

lines. Three cell lines were chosen for their differing levels of iASPP and p63 expression and 

also for their mutational status as determined by a targeted gene screen. Despite these 

differences and the apparent difference in iASPP location, silenced p63 was still able to 

reduce iASPP expression at both the mRNA and protein level. To investigate this further I 

used subcellular fractionation to separate the nuclear and cytoplasmic fraction in all three of 

the cell lines. Subcellular fractionation carried out in the previous chapter, found both 

cytoplasmic and nuclear iASPP present but cytoplasmic iASPP present to a much higher 

extent. When p63 was silenced in this instance it was observed that the expression of both 

nuclear and cytoplasmic iASPP was decreased. This was interesting as I had predicted that 

only nuclear iASPP would be reduced due to p63 transcriptionally regulating iASPP in the 

nucleus. One explanation for this could be that iASPP is targeted by p63 in the nucleus and 

then shuttled out into the cytoplasm. Although iASPP does not contain a nuclear localisation 

signal, it is able to enter the nucleus by an importin-independent mechanism via tha RaDAR 

(RanGDP/Ankyrin repeat) pathway (Lu et al., 2014). The Ankyrin repeats present in the C-

terminus of iASPP, specifically two adjacent 13th hydrophobic residues, harbour a code 

enabling RanGDP to bind and complex with nuclear transport factor 2 resulting in the import 

of the complex into the nucleus (Lu et al., 2014). Research into how iASPP exits the nucleus 

could shed further light on the feedback loop system. 
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As I had confirmed that p63 was able to affect the expression of iASPP in the cell I wanted to 

investigate whether iASPP affected p63 protein expression. In the study by Chikh et al. 

(2011), silencing of iASPP was able to affect p63 at the protein level but not the mRNA level. 

Additionally, Robinson et al. (2008) proved that iASPP binds to p63 directly regulating its 

activity. In chapter 4 of this thesis, my data show that silencing of iASPP affects p63 at the 

protein level only hinting at another level of control between iASPP and p63. This was 

independent of p53.  

 

6.2.2.MicroRNA control the iASPP/p63 autoregulatory feedback loop in cSCC 

A lot of data have been published showing the importance of microRNA in regulating genes. 

p63 is a good example of this and is the target of many microRNA. Chikh et al. (2011) showed 

that iASPP was able to regulate p63 in the normal skin via two microRNA, miR-574-3p and 

miR-720. Based on the previous evidence I wanted to identify whether miR-574-3p and miR-

720 were still controlled by iASPP and able to regulate p63 in cSCC. Whilst investigating this, 

it became apparent that miR-720 was no longer classified as a microRNA but a tRNA 

(Schopman et al., 2010). For the purpose of this thesis it was therefore excluded from study.  

 

To analyse the effects of iASPP on miR-574-3p, I silenced iASPP and measured the levels of 

miR-574-3p. In all three cSCC cell lines the levels of miR-574-3p did not increase suggesting 

that iASPP was no longer controlling miR-574-3p in cSCC. These data were later confirmed 

by a microRNA array showing that levels of miR-574-3p were not affected upon silencing of 

iASPP. Surprisingly, this was also the case in N-TERT cells leading us to speculate that silencing 

differences may be responsible - stable knockdown versus transient silencing. Despite these 

differences however the effect of miR-574-3p on p63 was still evident by overexpressing miR-

574-3p and witnessing a decrease in Np63 protein expression. This, coupled with the 

finding that in vivo miR-574-3p expression levels are very low in cSCC tumour tissue 

compared to the normal skin, could suggest a novel potential therapeutic approach for 

decreasing but not eliminating Np63 expression in cSCC by overexpressing miR-574-3p. 

 

As mentioned above, during this project I carried out a microRNA array to attempt to identify 

in cSCC a cell specific microRNA whose expression would be affected by silencing of iASPP 

and which could be an alternative to the microRNA reported by Chikh et al. (2011) in normal 
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keratinocytes depleted for iASPP. When analysing the data I focussed on microRNA that 

became upregulated upon iASPP silencing. Further to this using microRNA.org, miRDB.org 

and miRWalk 2.0, I identified microRNA that were predicted to target p63. Two microRNA; 

miR-328-3p and miR-211-5p, were upregulated upon iASPP silencing and predicted to target 

p63. Due to the ability of microRNA to target and regulate many different genes, microRNA 

frequently have conflicting roles in different cancers. This is evident with both the miR-328-

3p and miR-211-5p. MiR-328-3p is oncogenic in brain metastasis in NSCLC and glioma 

invasion. On the other hand, several studies have found tumour suppressive properties of 

miR-328-3p in glioblastoma, osteosarcoma, colorectal and breast cancer (Wu et al., 2012; Xu 

et al., 2012; Yang et al., 2014; Wang et al., 2015b; Yaun et al., 2015). MiR-211-5p has been 

found to promote tumourigenesis in oral, colorectal and HNSCC but suppresses 

tumourigenesis in melanoma, pancreatic and sebaceous carcinomas (Chang et al., 2008; 

Mazar et al., 2010; Levy et al., 2010; Sakurai et al., 2011; Boyle et al., 2011; Cai et al., 2012a; 

Giovannetti et al., 2012; Xu et al., 2012; Chu et al., 2013; Maftouh et al., 2014; Sümbül et al., 

2015; Tetzlaff et al., 2015).  

 

In order to test whether both the miR-328-3p and the miR-211-5p were able to actually 

target p63, pre-miR mimics of each microRNA were transfected into the cells and the 

expression of p63 was analysed. Interestingly, transfection of miR-211-5p caused a decrease 

in Np63 expression suggesting miR-211-5p was able to regulate p63. Over expression of 

miR-328-3p on the other hand, did not have an effect on p63 expression. This could be for a 

number of different reasons. Firstly, although target prediction programmes are a very useful 

starting point for discovering microRNA targets they are not context specific and do not take 

into account the levels of expression of both the microRNA and the gene in a particular cell. 

Moreover target prediction programmes do not consider how the expression of other genes 

that are targets of the same microRNA affect the binding of the microRNA to the predicted 

target (Barbato et al., 2009).  

 

Validation of the microRNA array by qPCR also highlighted the observation that this 

phenomenon was not occurring in N-TERT cells suggesting a tumour specific pathway. 

Additionally of note, is the difference in microRNA profile in the IC15 cell line. The IC15 cell 

line is an HPV-16 positive cell line and is therefore different to classic UV induced SCC. Despite 

the inability of iASPP to control miR-211-5p expression in IC15 cells, miR-211-5p was still able 

to target p63 and downregulate the expression in IC15 cells strengthening the evidence that 
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miR-211-5p may be a more universal target of p63. Transfection of HEK293 cells with a p63 

plasmid containing a luciferase reporter gene and Pre-miR-211-5p showed a reduction in 

luciferase activity of over 30% compared to transfection of mutant p63, i.e. one that miR-

211-5p is unable to bind to. HEK293 cells were used as a model due to their lack of detectable 

endogenous p63 expression. Transfecting a p63 plasmid into an already highly expressing 

p63 cSCC cell line may have weakened the result. Thus, this is the first report of the miR-211-

5p controlling p63 and could be used as a therapeutic target to help regulate oncogenic p63 

levels in cSCC. Once p63 had been confirmed as a direct novel target for miR-211-5p, the 

potential therapeutic effects of miR-211-5p were tested in an in vitro setting. Interestingly 

overexpression of miR-211-5p in cSCC was able to reduce the proliferation of cancer cells 

and limit the cSCC cells ability to form cell colonies. This finding supports data showing that 

iASPP is a regulator of proliferation in cSCC cells (Chapter 5) and highlights miR-211-5p as a 

potential therapeutic target able to regulate the downstream effects of iASPP without 

directly targeting iASPP itself.  

 

To investigate this line of research further, the following experiments could be performed: 

 

 A chromatin immunoprecipitation with iASPP and miR-211-5p to demonstrate 

whether iASPP is able to directly bind and target miR-211-5p. 

 

 Confirm the absence of effect of miR-211-5p in N-TERT cells in primary keratinocyte 

cell lines and perform in situ hybridisation staining of miR-211-5p in cSCC tumour 

sections compared to normal skin to help clarify if miR-211-5p could be a suitable 

therapeutic target/biomarker for cSCC. 

 

 Further characterise the epigenetic switch between normal skin and cSCC. Use an 

alternative silencing system, for example, an inducible lentiviral system or CRISPR to 

confirm that the miR-574-3p is no longer controlling iASPP in cSCC.  
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6.3. iASPP is essential for the proliferation of cSCC but is an inhibitor of EMT 

6.3.1. iASPP regulates the proliferation of cSCC cells in vitro 

iASPP is usually known as an oncogene due to its overexpression in several cancers and its 

ability to inhibit the apoptosis-inducing gene – p53 (Bergamaschi et al., 2003; Bergamaschi 

et al., 2006). Further to this, several studies have demonstrated that iASPP is essential for 

cell proliferation. Silencing iASPP and observing a decrease in cell proliferation has been 

observed many times, however, recently it was shown that, at least in the normal skin, iASPP 

was affecting cell proliferation via its ability to regulate cyclin D2, a gene essential for cell 

cycle progression past G1/S phase. Li et al. (2010) and Chikh et al. (2011) have confirmed the 

effect of iASPP on cyclin D proteins in glioblastoma and HaCaT cells, respectively. In support 

of these findings in a subset of cSCC cells, cell line growth was slowed when iASPP was 

depleted from the cell and protein analysis showed a decrease in cyclin D2 expression. 

Additionally, colony assays intended to measure the ability of a cell to grow into a colony 

were restricted when iASPP was silenced.  

 

The fact that ΔNp63 also regulates the proliferation of a cell and that iASPP and p63 are 

regulated via an autoregulatory feedback loop suggests that the proliferation of a cell is 

controlled not solely by iASPP or p63 but by the autoregulatory feedback loop as a whole 

(Sbisà et al., 2006). Further work is required in this area to investigate the mechanism of how 

iASPP is able to affect cyclin expression and whether downregulation of p63 also affects 

cyclin expression in this way. These data show the oncogenic potential of iASPP (and ΔNp63) 

in cSCC and the importance is highlighted by the finding that miR-211-5p is able to inhibit 

these effects downstream.  

 

6.3.2. Silencing of iASPP in cSCC cell lines does not increase apoptosis 

The ability of iASPP to inhibit apoptosis both dependent of p53 and independently of p53, 

via p63 and p73 instead, is well documented (Bergamaschi et al., 2003; Cai et al., 2012b). For 

this thesis I measured the percentage of cSCC cells undergoing apoptosis when silenced for 

iASPP compared to si-control. Cells were treated with the chemotherapeutic drugs 

etoposide, cisplatin and also in no-drug conditions. I hypothesised I would see an increase in 

apoptosis. However, although I observed an expected increase in apoptosis in cells treated 

with drugs compared to no drugs, I did not see a difference in percentage of apoptotic cells 

between cells expressing iASPP and cells depleted for iASPP. In contrast to the well-known 
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role of iASPP as an inhibitor of apoptosis, iASPP was first discovered as a p65/rel A binding 

protein (Yang et al., 1999). P65/Rel A is a subunit of the NFκB complex that is involved in the 

immune and inflammatory responses of the cell and can inhibit apoptosis. Although only 

investigated in non-transformed cells, Laska et al. (2007) demonstrated that cells silenced 

for iASPP and treated with etoposide had a reduction in apoptosis. Treatment of these cells 

with an NFκB inhibitor reversed this effect.  

 

In a cancer that is frequently mutated for p53, iASPP can induce apoptosis independently of 

p53, via p63 and p73. Interestingly iASPP is able to carry out apoptosis via p63 when it is 

tumour suppressive (Cai et al., 2012b). In cSCC however, p63 is predominantly oncogenic. 

Moreover, a reduction in iASPP expression reduces cell proliferation. Cells which proliferate 

at a slower rate are more resistant to apoptosis. Slowly proliferating cells are more resistant 

to chemotherapy than rapidly proliferating cells (Sultana et al., 2003). Furthermore, in the 

skin, iASPP has already been shown to be an inhibitor of autophagy and not apoptosis. 

Autophagy is the conserved process of intracellular degradation that occurs within a cell via 

fusion of a double-membraned organelle, known as an autophagosome, with a 

lysosome/vacuole (Xie and Klionsky 2007). Chikh et al., (2014) found that treatment of 

keratinocytes with both UVB and anti-cancer treatment staurosporine, cells silenced for 

iASPP exhibited a greater resistance to apoptosis. Keratinocytes depleted of iASPP had 

decreased levels of pro-apoptotic gene NOXA and increased levels of lipidated LC3, a marker 

of autophagy (Naik et al., 2007; Chikh et al., 2014). In contrast, in cSCC, I found no effect on 

LC3 lipidation when iASPP was silenced compared to control cells. These data were 

supported by the inclusion of N-TERT cells in which an increase in LC3 lipidation was observed 

upon iASPP depletion, highlighting the potential difference between normal and cancerous 

cells. High levels of LC3-II were observed in all cSCC cell lines. A previous study found that 

increased resistance of advanced stage cSCC cells to cisplatin treatment was, in part, due to 

high levels of autophagy (Claerhout et al., 2010). It could be speculated therefore that my 

panel of cSCC cells were resistant to apoptosis due to high LC3-II levels. Recent work 

described a controversial pro-apoptotic role for iASPP in melanoma. The data suggested that 

in melanoma iASPP could promote apoptosis via the acetylation and thus stabilization of p53 

and TAp73, through acetyltransferases p300 and CBP (Kramer et al., 2015). These data 

conflict with other results showing an apoptotic role in melanoma; nevertheless, it would be 

interesting in the future to investigate this further in cSCC.  
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6.3.3. cSCC cells silenced for iASPP display an EMT phenotype 

The result from the apoptosis assay was unexpected given the oncogenic activity of iASPP 

with regard to proliferation. However, this can be linked to the ability of iASPP to potentially 

inhibit EMT, of which resistance to apoptosis is a key hallmark (Lamouille et al., 2014). The 

first hints that iASPP may be involved in EMT came from the observation that when iASPP is 

depleted, cells become more motile and lose their cell-cell contacts. Support in the literature 

for these findings showed that iASPP was essential for cell-cell contact (Chikh et al. 2011; 

Notari et al., 2015). EMT is the process whereby epithelial cells transform into mesenchymal 

cells. During this process the epithelial cells lose their cell adhesion properties and become 

more migratory and invasive. Thus the process of EMT is commonly found in metastasising 

tumours (Lamouille et al., 2014). As well as increased motility in cells depleted for iASPP, cells 

were also able to migrate faster when depleted for iASPP. In correlation with these findings, 

loss of ΔNp63α in SCC cell lines promoted cell migration and increased cell motility (Barbieri 

et al., 2006). These data provide evidence that it is not iASPP alone but the autoregulatory 

feedback loop as a whole that is able to control cell migration and motility.  

 

Organotypic cultures generated with iASPP silenced cells provided clues that the invasion 

pattern of cSCC cells may change upon iASPP depletion. Although the number of cells 

invading was similar, the pattern of invasion was different. In 3D models, iASPP silencing 

produced smaller invading islands compared with the control ones. When invading tumour 

islands start to break up and become smaller they ultimately become more invasive and lead 

to metastasis. Conflicting evidence has correlated iASPP expression and invasive tumour 

tissue/metastasis (Liu et al., 2010; Cao et al., 2013; Kim et al., 2015b). However these studies 

were limited to observational findings. 

 

6.3.4. MiR-205-5p is downregulated in cSCC cells depleted for iASPP – releasing the 
control of EMT related gene – ZEB1 

During the analysis of the microRNA array performed in chapter 4, I had noticed a significant 

decrease in miR-205-5p in cSCC cells silenced for iASPP but not in N-TERT. MiR-205-5p is well 

known in the p63 field as several studies have shown p63 binds to and regulates miR-205-5p 

(Tran et al., 2012; Tucci et al., 2012). The finding in this thesis that iASPP and p63 are able to 

regulate each other via a feedback loop in cSCC made the effect of iASPP on miR-205-5p an 

interesting area in which to carry out further study. MiR-205-5p is an upstream inhibitor of 
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EMT, binding to and regulating EMT marker ZEB1. p63 has been shown to inhibit EMT; 

however, a contradictory report showed that Np63 was able to promote EMT via TGF in 

keratinocytes (Oh et al., 2011). Furthermore, a recent study also linked ASPP2 and ZEB1 in 

breast cancer cell lines where ASPP2 expression was capable of inducing MET, the reverse 

process of EMT. Overexpression of ASPP2 caused a decrease in ZEB1 expression (Wang et al., 

2014c). Thus I wanted to investigate the effects of both iASPP and p63 on miR-205-5p and 

ZEB1. 

 

QPCR validation experiments confirmed the effect of iASPP on miR-205-5p. Moreover, qPCR 

experiments performed when p63 was silenced in cSCC support the previous literature 

showing that silencing p63 has a negative effect on miR-205-5p levels. p53 is an inhibitor of 

EMT and miR-205-5p has a p53RE (Chang et al., 2011). However, like Tran et al. (2012), I was 

able to rule out p53 from the effect of p63 on miR-205-5p due to the presence of a p53 

mutation in the IC18 cell line. TAp63 is able to inhibit metastasis due to its ability to regulate 

Dicer, a component of the microRNA processing system (Su et al., 2012). Although a pan-p63 

siRNA is used, my data mainly focus on Np63. Due to the low/undetectable expression of 

TAp63 in cSCC cells, inhibition of TAp63 would not have been appreciated.  

 

QPCR experiments found that in cSCC cells, depletion of miR-205-5p causes an increase in 

ZEB1. To confirm whether iASPP and p63 were signalling upstream of miR-205-5p and 

promoting the downstream effects of ZEB1, both p63 and iASPP were silenced and ZEB1 

levels analysed. Upon silencing of both iASPP and p63, an increase in ZEB1 was observed. 

Although silencing of iASPP was able to increase ZEB1 expression, no effects were detected 

on the expression of the other EMT markers analysed. For EMT, however, it is not necessary 

for all EMT markers to change (Biddle et al., 2011). These findings confirm that iASPP and 

p63 signal upstream of miR-205-5p in order to mitigate its effects and are the first report of 

this kind in cSCC. These data provide a new function for iASPP in cSCC that has not been 

reported before.  
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Figure 6.1. iASPP/p63 autoregulatory feedback loop in cSCC. High expression levels of both iASPP 

and p63 maintain the feedback loop in cSCC and increase proliferation in the cells. Low levels of miR-

211-5p in the tumour prevent the inhibitory effects of the microRNA on p63. High iASPP and p63 

contribute towards high miR-205-5p expression, inhibiting EMT marker ZEB1 causing a decline in EMT. 

 

In chapter 3 of this thesis I described high cytoplasmic iASPP/low nuclear iASPP as a potential 

marker for poorly differentiated cSCC. Poorly differentiated cSCC is the most aggressive form 

of cSCC and is characterised by the break-up of large tumour islands into smaller invading 

islands. In these more aggressive invading cells, nuclear iASPP expression is lost, yet there is 

high cytoplasmic expression. In chapter 5 I have shown that iASPP is essential for 

proliferation and, consistent with this, cytoplasmic iASPP is highly expressed in these 

aggressive tumours. Contradictory evidence in chapter 5, however, describes iASPP as a 

potential inhibitor of EMT - a process more likely to occur in a more aggressive tumour. This 

raises some difficult questions relating to why the apparent tumourigenic cytoplasmic iASPP, 

highly expressed in aggressive tumours, would be also inhibiting EMT in these tumours. 

Conversely it could be speculated that it is nuclear iASPP mainly contributing to the EMT 

phenotype in cSCC and this may therefore explain the loss of nuclear iASPP in the aggressive 

tumours thus allowing EMT to take place. Given that cytoplasmic iASPP is the predominant 

form expressed in the cSCC cell lines - where a role for iASPP as an inhibitor of EMT has been 

developed however - needs further explaining. 
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Taken together these experiments imply that iASPP may be inhibiting EMT in cSCC. This 

seems paradoxical given the apparent oncogenic status of iASPP in cancer and the role of 

EMT in tumour metastasis. EMT however is a dynamic process and is only required for cells 

escaping the primary tumour. When researching the role of ΔNp63α in bladder cancer, Tran 

et al. (2012) came up against a similar issue. ΔNp63α is highly oncogenic yet seems to inhibit 

EMT in bladder cancer. Tran et al. (2012) however speculated that circulating tumour cells 

may express lower ΔNp63α than cells in the primary and metastatic tumour. iASPP may also 

follow the same pattern. In support of this I have shown that iASPP is essential for 

proliferation. Cells in transit do not proliferate. However, proliferation is essential for cells of 

a primary tumour or cells that have subsequently undergone mesenchymal-to-epithelial 

transition at a distant site (Tran et al., 2012; Tsai et al., 2012). At present there is a lot of 

attention on inhibiting EMT to prevent metastasis. Tsia et al. (2012), however, argue that 

therapeutically blocking EMT in SCC could be disadvantageous. After primary tumour 

removal there is often a delayed onset of metastasis. Tumour cells that undergo EMT and 

migrate to other sites of the body sometimes remain dormant in these sites. Delayed onset 

metastasis occurs when these dormant cells undergo reverse EMT (mesenchymal-to-

epithelial transition, MET) allowing the cells to proliferate and form metastases. Inhibiting 

MET may provide a better treatment angle by preventing dormant tumour cells from forming 

metastases (Tsia et al., 2012).  

 

To investigate this line of research further, the following experiments could be performed: 

 

 Determine whether iASPP has a direct effect on miR-205-5p or whether this is via 

p63: 

o Insert the miR-205 promoter region in a luciferase reporter gene and 

measure luciferase activity in the presence iASPP 

o Perform a ChIP experiment to assess whether iASPP binds to miR-205-5p 

directly. 

 Investigate whether nuclear and cytoplasmic iASPP have differing functions with 

regard to proliferation and EMT. 

6.4. Clinical relevance 

The finding that iASPP/p63 may exhibit a proliferative, oncogenic phenotype in cSCC coupled 

with an ability to inhibit EMT raises questions regarding the potential for iASPP/p63 as a 
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therapeutic in cSCC. By targeting iASPP/p63 we may slow down the growth of the tumour 

but also promote the cells to undergo EMT. Additionally, depleting iASPP/p63 from cSCC cells 

would need to be targeted to tumour cells, perhaps as topical therapy, limiting contact with 

normal skin as iASPP/p63 is essential for cell homeostasis. In melanoma, a small-

molecule inhibitor of cyclin B/CDK1, JNJ-7706621 that prevents the phosphorylation and 

nuclear localisation of iASPP has been shown to be effective in suppressing the growth of 

melanoma cells (Lu et al., 2013). In cSCC we have failed to show a phosphorylated version of 

iASPP in addition to showing a tumourigenic phenotype for nuclear iASPP over cytoplasmic 

iASPP. Using JNJ-7706621 may therefore only be relevant in specific cell types.  

 

Targeting iASPP in tumours with wildtype p53 is a popular concept in the literature. A34 (a 

small peptide derived from p53 linker) binds directly to iASPP and inhibits the iASPP-p53 

interaction (Qiu et al., 2015). In cSCC, however, where a high percentage of tumours actually 

express mutant p53, this may prove ineffective. Recent studies have found a handful of 

upstream targets of iASPP including miR-124 and the Hedgehog pathway (Zhao et al., 2013; 

Chen et al., 2014a; Liu et al., 2014; Pandolfi et al., 2015). Targeting these upstream molecules 

has been shown, however, to induce the activity of wildtype p53, which is not as relevant to 

cSCC. Additionally, depleting iASPP will still pose the same issues of EMT and the fact that 

iASPP is essential for the normal skin.  

 

Regardless of the therapeutic approaches for iASPP, loss of nuclear iASPP expression and 

increase of cytoplasmic expression in cSCC tumours could predict a worse outcome, however 

further work would need to be performed to prove this. Additionally, these data support the 

use of p63 expression in detecting cSCC tumours but do not support differences in p63 

expression relating to differentiation status of the tumour. 

 

MicroRNA are increasingly being considered for therapy against a variety of diseases 

including diabetes, inflammation, neurological disorders and, of particular relevance, cancer 

(Broderick and Zamore, 2011). Due to this interest, biotechnology companies are focusing 

on microRNA therapeutics. Even though research into microRNA is still at a relatively early 

stage, microRNA therapeutics are already entering clinical trials. Currently, a lot of research 

into cancer therapies focuses on targeting single genes. In many cases this only provides a 

limited response. The advantage to targeting microRNA is that they control several 

genes/pathways, eliciting a stronger response. This can, however, be a disadvantage as the 
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broad range of genes that one microRNA may target may include several oncogenes but also 

tumour suppressor genes in different cells/tissues. MicroRNA can be exploited in the clinic 

in two ways. Generating mimics to overcome a loss of function or antagonists to inhibit 

oncogenic microRNA (Bader and Lammers, 2011). The advantage of using mimics over 

antagonists is that they can be introduced into the cells using the same systems used for 

therapeutic siRNA (Bader and Lammers, 2011). Additionally, by expressing microRNA mimics 

there should be fewer off target effects in normal tissue that have high levels of these 

microRNA. One of the first microRNA mimics that may be used in a clinical setting is the miR-

34a. The company behind the drug, miRNA Therapeutics Inc, entered the drug MRX34 into 

phase I clinical trials in 2013 assessing the effects of the drug on primary liver cancer, SCLC, 

melanoma, lymphoma, ALL, CLL and multiple myeloma (www.clinicaltrials.gov).  

 

For this thesis, mimics of miR-574-3p/miR-211-5p or miR-205-5p could prove useful in 

treating cSCC. An advantage of treating cSCC is the capacity for local delivery, i.e., a topical 

treatment, increasing the bioavailability in diseased tissue and limiting off target effects on 

healthy tissue (Broderick and Zamore, 2011). By introducing these microRNA into 

tumourigenic cells we can increase the levels of these microRNA expressed in diseased cells 

enabling them to become less tumourigenic. For example, the expression of miR-574-3p in 

cSCC tissue by in-situ hybridisation staining was greatly decreased compared to the normal 

skin. Overexpressing miR-574-3p and miR-211-5p would allow the levels of p63 to be 

controlled but not depleted, as p63 is essential for the normal skin. Additionally 

overexpressing miR-211 and miR-574-3p is a way of inhibiting the oncogenic downstream 

effects of iASPP, for example cell proliferation without depleting iASPP, a gene essential for 

cell homeostasis in the stratified epithelia. 

 

Treatment using mimics against the miR-547-3p and miR-211-5p could prevent the 

oncogenicity of iASPP and p63. However, the findings from this thesis demonstrated that 

downstream of iASPP and p63 is the miR-205-5p functioning as an inhibitor of EMT. By 

treating cells with miR-211-5p/miR-574-3p we are decreasing the levels of p63 and, in turn, 

potentially decreasing the levels of miR-205-5p - increasing EMT. Further work would need 

to be done on the downstream effects of using miR-547-3p and miR-211-5p mimics. 

Alternatively, combination therapies combining miR-547-3p/miR-211-5p with miR-205-5p 

may block the proliferation of the cells in addition to preventing EMT. 
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Figure 6.2. Clinical relevance of iASPP/p63 feedback loop in cSCC. Inhibitors/regulators of iASPP; JNJ, 

A34 and miR-124 could potentially regulate iASPP levels in cSCC decreasing the proliferation rate of 

the tumour. Mimics against miR-211-5p and miR-574-3p decrease p63 expression. Combination 

treatment with these mimics and miR-205-5p mimic may prevent EMT stimulation. 
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6.5. Concluding remarks 

This thesis has focussed on investigations into the role of iASPP in cSCC and has sought to 

offer further understanding of the mechanisms occurring in cSCC. It is interesting that as in 

the normal epidermis, iASPP and p63 are still controlled by an autoregulatory feedback loop 

in cSCC – however from this thesis it is now known that in cSCC two additional microRNA are 

involved – miR-211-5p and miR-205-5p. Whilst the miR-211-5p has been identified as a novel 

regulator of p63, miR-205-5p was identified as being controlled by both iASPP and p63 and 

in turn affecting the EMT of the cell. In addition, insight into the difference in the location of 

iASPP in the cell has been provided – with a more cytoplasmic and less nuclear expression 

pattern occurring in the more poorly differentiated tumours. Taken together, the data 

presented here may provide new avenues for exploration in cSCC and potential novel 

therapeutic targets. 
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Supplementary figure 4.1. ShRNA in cSCC and N-TERT cell lines. (A) cSCC and N-TERT cells were either 

treated with a non-targeting control (sh-control), silenced for iASPP using individual shRNA (sh-1, sh-

2, sh-3). Protein was extracted and analysed by western blotting for iASPP knockdown. GAPDH was 

used as a loading control. (B) Immunofluorescence images of cells infected with GFP-tagged shRNA - 

sh-control, sh-1, sh-2, sh-3. 
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Supplementary figure 4.2. SiRNA optimisation. cSCC cell line IC15 treated with 50nM and 100nM 

siRNA for 48 and 72h (si-p63) or siRNA for 72 and 96h. GAPDH was used as a loading control. 
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Supplementary figure 4.3. Mir-328-3p overexpression is unable to affect p63 expression. Cells either 

untreated (control), treated with a Pre-miR control or with Pre-miR-328-3p. Lysates were run on 

western blot and ΔNp63α protein expression was determined. GAPDH was used as a loading control.  
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