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Abstract

The theory of large deviations can help to shed light on systems in non-equilibrium sta-

tistical mechanics and, more generically, on non-reversible stochastic processes. For this

purpose, we target trajectories in space–time rather than static configurations and study

time-extensive observables. This suggests that the details of the evolution law—such as

the presence of time correlations—take on a major role. In this thesis, we investigate

selected models with stochastic dynamics that incorporate memory by means of differ-

ent mechanisms, devise a numerical approach for such models, and quantify to what

extent the memory affects the large deviation functionals. The results are relevant for

real-world situations, where simplified memoryless (Markovian) models may not always

be appropriate.

After an original introduction to the mathematics of stochastic processes, we explore,

analytically and numerically, an open-boundary zero-range process which incorporates

memory by means of hidden variables that affect particle congestion. We derive the exact

solution for the steady state of the one-site system, as well as a mean-field approxima-

tion for larger one-dimensional lattices. Then, we focus on the large deviation properties

of the particle current in such a system. This reveals that the time correlations can be

apparently absorbed in a memoryless description for the steady state and the small fluc-

tuation regime. However, they can dramatically alter the probability of rare currents.

Different regimes are separated by dynamical phase transitions. Subsequently, we address

systems in which the memory cannot be encoded in hidden variables or the waiting-time

distributions depend on the whole trajectory. Here, the difficulty in obtaining exact an-

alytical results is exacerbated. To tackle these systems, we have proposed a version of

the so-called “cloning” algorithm for the evaluation of large deviations that can be ap-

plied consistently for both Markovian and non-Markovian dynamics. The efficacy of this

approach is confirmed by numerical results for some of the rare non-Markovian models

whose large deviation functions can be obtained exactly. We finally adapt this machin-

ery to a technological problem, specifically the performance evaluation of communication

systems, where temporal correlations and large deviations are important.
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Scientists have long been tempted to imagine that there is a way to represent a

real-world system in terms of a sheer number of variables, whose states at earlier times

uniquely determine their future states [8]. This view is in fact well accepted if we exclude

the realm of Quantum Physics. However, a complete knowledge of at least some such

variables is inaccessible in practice. Stochastic modelling is the selected way to cope with

such a lack of information; the general strategy is to approximate the influence of the

inaccessible information on future states simply with random noise. This thesis deals

with three important aspects of stochastic modelling, namely non-equilibrium dynamics,

large deviations, and memory, and is motivated in this introduction.

The importance of being unbalanced and rare

As a first step, rather than attempting to describe the state of all the single variables

one by one, we can represent the system as a smaller collection of random variables, i.e.,

functionals that can take on a set of possible different values (each with an associated

probability). In other words, the state of the system at time t is represented by a proba-

bility distribution for the configurations that the system can adopt, which we represent

by a column vector |P (t)〉. We still wish to incorporate causality in a stochastic process.

Hence, the next step is to write an evolution law of the form

|P (t)〉 = T(t− t0)|P (t0)〉,

1



Introduction

where T(t−t0) is an operator that encodes for the dynamics and can depend on the initial

time t0, as well as on the duration t− t0 of the evolution time, of course. We identify two

important classes of stochastic dynamics: those satisfying the Markov property and those

that do not. Roughly speaking, in a Markov process it is possible to make predictions

for the future behaviour based only on the present, and such predictions are as accurate

as those based on the knowledge of the past history.

As long as we focus on the typical behaviour of a system (that is, the values of the

most probable realisations of its random variables) some of the details of the evolution

law can be neglected. This approach is often appropriate when we deal with very large

systems, where the probability of a typical configuration overwhelms that of atypical

ones. However, there are situations in which the behaviour of interest is not typical,

but rather rare and atypical. For example, the transport of energy, particles, or vehicles

could be enhanced by exceptional coherent configurations, or occasionally delayed when

an instantaneous situation that will be later referred to as congestion or condensation

occurs [29]. Similarly, in communication or transportation networks it is very important

to predict how likely is to have interruptions or packet loss [31]. In climate science the

assessment of the likelihood of extreme weather is of central importance, even compared

to the prediction of the average global trend [4, 10]. Another reason for the interest in

rare events is that small observation scales are now accessible to some experiments, as

in molecular physics [5, 26]. Moreover, rare events help to shed light on the foundations

of non-equilibrium statistical mechanics, just as they play an important role in defining

the thermodynamic potentials in equilibrium Statistical Mechanics [34]. Specifically, our

focus is on rare values of time-extensive random observables, whose realisations are

determined by the details of the evolution law.

One of the major long-standing problems in Science is to characterise and predict

the behaviour of a macroscopic system, given its microscopic model. Statistical Mechan-

ics, as designated by the work of W. J. Gibbs [25], has been successfully applied to a

specific class of systems, whose stochastic dynamics obey a specific symmetry, known as

the detailed balance and are said, in the physics literature, to be at equilibrium. Roughly

speaking, the detailed balance requires that the number of transitions from a microscopic

state to another one, is equal to the number of those in the opposite direction. As we

will see later, this condition is strong but useful, as it greatly simplifies the analysis of

a stochastic process, when satisfied. When that is not the case, i.e., the state is unbal-

anced, the nett number of transitions defines a non-vanishing probability current, which

in turns can represent a physical observable such as the energy transfer or the parti-

cle drift (quantities which are often assumed to be time-extensive, i.e., to grow linearly

with time). We can hardly overestimate the importance of currents for applications, as

2
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they are naturally required to model transport, growth, damage, production, or any

other “activity” in a system, and are found across many applied disciplines, ranging

from Physics (e.g, rheology, quantum transport, molecular motors), engineering (vehicu-

lar traffic, electronic engineering, telecommunications), biology (chemotaxis, population

dynamics). Modern accounts of these topics are given, e.g., in the books of Mahnke et al.

[21] and Schadschneider et al. [29].

A distribution |P (t)〉 that does not vary with time, whilst permitting non-zero cur-

rents, is said to represent a non-equilibrium stationary state (NESS). Additionally, it is

often said that such currents characterise the NESS [36]. It is important to stress that,

to treat systems far from equilibrium, it is necessary to consider explicitly the micro-

scopic dynamics as NESSs do not necessary have an analytical expression as simple as

the detailed-balance one. As a consequence, analytical progress is challenging and in-

spires a research branch on exactly solvable models, which has the aim to provide some

insight into the foundations of physics [30]. While a general framework for the charac-

terisation of systems far from the thermal equilibrium is at a primitive stage, nowadays

large deviation theory plays a central role for building a comprehensive theory of these

systems [34]. This is the selected tool that allows us to evaluate the fluctuations of

time-extensive observables such as the currents.

Non-Markovian modelling

A better strategy to cope with the lack of information on the present state, is to sup-

plement the dynamical rules for the time-evolution of |P (t)〉 with a dependence on some

information on the past events (which can be regarded as memory). Such a strategy

adapts well to the realistic situation where we have an incomplete instantaneous descrip-

tion of the real-world system we wish to model, but we learned, from observations or

theory, the events that yield configurations changes at different instants are temporally

correlated [2, 4, 15, 17, 22–24, 27, 32, 33]. As shown throughout the thesis, this is the

essence of non-Markovian modelling.

Despite the fact that dealing with temporal correlations is often both useful and

appealing, non-equilibrium systems with memory have been investigated more rarely

than those without memory, due to limited analytical techniques for analysing non-

Markovian processes. We mention that, recently, some research focused on this niche: a

necessarily incomplete list of publications is, e.g., [1, 3, 7, 9, 11–14, 16, 19, 20, 28, 35],

see also the references therein.

3
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Our work intends to contribute in the same direction by analysing selected stochastic

models of non-equilibrium systems and developing numerical tools to deal with memory

in these systems. Along this thesis we demonstrate, both analytically and numerically,

that the fluctuations of time-extensive quantities cannot be predicted solely on the basis

of a Markovian description. The thesis is structured as follows. In chapter 1 we discuss

several aspects of stochastic processes, covering Markovian and non-Markovian stochas-

tic dynamics, equilibrium and non-equilibrium stationary states, the large deviation ap-

proach to non-equilibrium systems. We also introduce important algorithms to simulate

the stochastic dynamics. This chapter is organised in an original way to demonstrate

interesting links between the mathematics and physics literature and show some conse-

quences of the different ways to deal with time and temporal correlations in stochastic

processes.

Chapters 2 and 3 are based on Cavallaro et al. [7] and are mainly concerned with a

specific non-Markovian stochastic model of particles on lattice. Such a model incorporates

memory by means of “hidden” phases and is referred to as the on-off zero-range process

(on-off ZRP). After a general introduction to the interacting-particle systems (IPSs) and

their quantum Hamiltonian formulation, the on-off ZRP and its NESS are analysed in

chapter 2. Specifically, we derive its exact analytical expression for the single-site lattice

and a mean-field approximation for arbitrary lattice topology. In chapter 3 the large de-

viation properties of the particle current for the on-off ZRP are examined. We show that,

although the particle distribution is well described by an effective Markovian solution,

with a structure similar to the NESS, the probability of rare currents differs from the

memory-less case. In particular, we find evidence for memory-induced dynamical phase

transitions. The findings of this chapter are supported by numerical results, obtained

using the “cloning” algorithm of Lecomte and Tailleur [18], which has been conceived

for continuous-time Markov processes. In fact, this numerical scheme is applicable to the

on-off ZRP only because such a model possesses a Markov representation in terms of

hidden variables, while some classes of non-Markovian processes do not benefit of such

a representation.

To tackle the remaining classes of non-Markovian processes, we therefore devise a

more general algorithm. This is presented in chapter 4, along with exhaustive tests that

demonstrate the validity of the method using non-Markovian variants of an ion-channel

model and the totally asymmetric exclusion process, recovering results obtainable by

other means. General accuracy and performance issues of the cloning methods are also

considered. This chapter is based on the work published in Cavallaro and Harris [6].

Finally, chapter 5 is concerned with a real-world application of the cloning method of

chapter 4 to Queueing Theory. This exploits the analogies between the non-equilibrium

4
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physics of the IPSs and the technology of packet delivery in teletraffic engineering. In

fact, in both cases, non-Markovian modelling is appropriate and rare events are of main

concern. We demonstrate that the cloning algorithm of chapter 4 is suitable for the

analysis of packet traffic. The content of this chapter is intended to be expanded and

prepared for publication.

The thesis is concluded in chapter 6, where we outline some questions left open during

the research process and suggest some ideas that may further contribute to comprehend

memory in the framework of large deviations.
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We motivated the importance of including randomness in models of real-world sys-

tems in the previous chapter. In this chapter, we introduce the theory of stochastic

processes, which allows us to describe rigorously such models. A stochastic process is

defined as an ordered collection of random variables with values in S, indexed by some

set T [34]. Hereafter, we will implicitly consider S to be a discrete set, although most of

the results remains valid if S is continuous. On the other hand, T can either be the set of

natural numbers, when we say that the process evolves in discrete time, or T = [0,∞),

when the process is referred to as in continuous time. In fact, we think of T as the set

of some instants in time while the stochastic process represents the time-evolution of a
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Chapter 1. Stochastic processes

system. A specific realization of a stochastic process is called a sample path, trajectory

or history.

A typical choice is to assume that, conditional on its value at an instant in time, the

future value of a random variable does not depend on the previous ones. This case is

considered in sections 1.1 and 1.2, which deal with discrete-time and continuous-time

Markov processes, respectively. In sections 1.3 and 1.5 we relax this assumption, and

introduce semi-Markov and non-Markovian processes, respectively. The case where the

probability distributions become stationary in the long-time limit is discussed in sec-

tion 1.4, where we also discriminate between equilibrium and non-equilibrium situations.

In section 1.6 we introduce the large deviation approach to non-equilibrium stationary

states. Finally, some relevant numerical methods are presented in section 1.7.

1.1 Discrete-time Markov processes

We define a discrete-time Markov process as a sequence of random variables

X(0), X(1), X(2), . . . (1.1)

with the property that the probability of having a certain realisation of X(n), given the

values for X(0), X(1), . . . , X(n − 1), depends only on the value assumed by X(n − 1),

but not on X(0), X(1), . . . , X(n− 2), i.e.,

Prob{X(n) = xn|X(n− 1) = xn−1, . . . , X(1) = x1, X(0) = x0}
= Prob{X(n) = xn|X(n− 1) = xn−1}. (1.2)

This means that, for the conditional distribution of X(n), only the value assumed by

X(n − 1) is relevant. Roughly speaking, we can think that, after each step, the events

happened in the past do not contribute to the subsequent evolution, as if they were

forgotten. When the property (1.2) is not valid the stochastic process is said to be non-

Markovian. It is worth saying that the outcomes x1, x2, . . . are elements of S, but we can

safely think of them just as natural numbers, as we are dealing with discrete S. Such a

notation with subscripts has been chosen as we will need to consider ordered sequences

of configurations (x1, x2, x3, . . . , xn) corresponding to realisations of the process1.

The sequence (1.1) with the property (1.2) can describe the following physical situa-

tion. At a given integer-valued time t, the configuration adopted by a system is assumed

1We remark that, in a slight shift in notation, we will also use xi as a generic configuration label
independently of time.
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Chapter 1. Stochastic processes

to be xi. At time t + ∆t an instantaneous transition to a configuration xn occurs with

time-independent probability Txn+1,xn . The probability that no transition occurs, leaving

the configuration unchanged, is Txn+1,xn = 1−∑xn+1 6=xn Txn+1,xn . Applying this rule to

an initial state x0 generates the trajectory. Without loss of generality, the interval ∆t is

assumed to be equal to one.

In finite configuration space, it is convenient to group the probabilities Txj ,xi of jumps

from xi to xj (xj and xj being labels for generic configurations) into a matrix T with

entries [T]xj ,xi = Txj ,xi . By definition, such a matrix has only non-negative entries, i.e.

it is non-negative and is represented by a weighted directed graph or digraph G(T). This

is the set of the vertices corresponding to each element of S and the set of the edges

directed from xi to xj with weight Txj ,xi , whenever such a weight is non-zero. Within this

framework, a trajectory of a stochastic process is equivalent to a walk, i.e., a sequence

of edges that connect a sequence of vertices.

A digraph is called strongly connected if for each pair of vertices xj , xi, a walk from xj

to xi and a walk from xj to xi both exist (if there are walks only in one of the directions,

then the digraph is simply said to be connected). The important notion of irreducibility

of T is closely related to that the connectedness of G(T). Specifically, a matrix T is said

to be irreducible2 if S cannot be divided into two disjoint non-empty sets S1 and S2

such that [T]xi,xj = 0 for all xi ∈ S1 and xj ∈ S2. In addition to this, T is irreducible if

and only if G(T) is strongly connected [52]. In an irreducible matrix, for each xi, xj ∈ S,

there exist an integer n such that [Tn]xi,xj > 0.

A stronger property is that of primitivity. A matrix is referred to as primitive if

there exists at least one integer n such that [Tn]xi,xj > 0 for all configurations xi and

xj simultaneously, and is called imprimitive otherwise. An important necessary and

sufficient condition for T to be primitive is that it has only one real eigenvalue on the

spectral radius3. The equivalent graphical condition is that there is a walk of length n

between every pair of configurations in S.

Any outcome of the Markov chain (1.1) needs the initial probability mass distribu-

tion Prob{X0 = x} =: Px(0) to be fixed. We define the column vectors

|P (0)〉 =
∑
xi

Pxi(0)|exi〉 and |P (n)〉 =
∑
xi

Pxi(n)|exi〉, (1.3)

n = 1, 2, . . ., where |exi〉 is the column vector with the xi-th component equal to one

2An irreducible and non-negative matrix is also said to be essentially positive.
3When there are a number h of eigenvalues on the spectral radius, then the Markov chain is periodic

with period h.
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Chapter 1. Stochastic processes

and the remaining components equal to zero, while Prob{Xn = x} =: Px(n). Hence,

the probability mass at time n is given by |P (n)〉 = Tn|P (0)〉 while the probability

distribution at time n + 1 is related to that at time n through the Master equation

|P (n+ 1)〉 = T|P (n)〉.

A special probability mass distribution is the so called limiting distribution, i.e.,

lim
n→∞

|P (n)〉. (1.4)

An equally important distribution is the invariant distribution |P ∗〉, i.e., a distribution

that is not modified by the action of T:

|P ∗〉 = T|P ∗〉. (1.5)

We generically refer to both limn→∞ |P (n)〉 and |P ∗〉 as a stationary solution or distribu-

tion and use the same symbol |P ∗〉; in fact, for an irreducible primitive transition matrix

the limiting distribution exists and is unique and is equal to the invariant distribution4.

If an irreducible matrix is not primitive, then the limiting distribution does not exist.

However, it is possible to see that the invariant distribution has the same interpreta-

tion in both primitive and imprimitive cases, i.e., the component of |P ∗〉 is the long run

fraction of the time that the chain spends in the corresponding configuration, see e.g.,

reference [52]. This, in turn, allows us to interchange time average and ensemble average,

a property that in Physics is known as ergodicity5.

Hereafter, when dealing with Markov processes, we will only consider irreducible

primitive matrices (and strongly connected graphical representations). Moreover, in the

next section we will consider continuous-time Markov chains, where periodicity is not

permitted and it is not necessary to distinguish limiting from invariant distributions.

4This can be easily proven using the spectral representation and using the fact that the largest
eigenvalue dominates the long-time limit, see, e.g., reference [34]. In this thesis we are mainly concerned
with continuous-time processes and such a result is discussed in the next section.

5Hence irreducible chains are also said to be ergodic, although, in mathematical literature, this refers
to a stronger property.

11



Chapter 1. Stochastic processes

Figure 1.1: Representation of the trajectory w(t) of equation (1.7).

1.2 Continuous-time Markov processes

We now consider a family {X(t) : t ≥ 0} of RVs in S indexed by a time t ∈ [0,∞). Such

X is referred to as a continuous-time Markov process if

Prob{X(t) = xn|X(t0) = x0, . . . , X(tn−1) = xn−1} = Prob{X(t) = xn|X(tn−1) = xn−1}
(1.6)

for all x0, . . . xn−1, xn ∈ S and any sequence t0 ≤ . . . ≤ tn−1 ≤ tn ≤ t of times. A

convenient way to represent a portion of a trajectory w(t) of duration (t − t0) starting

in x0 at t0 is to write explicitly the sequence of instants where a jump occurs along with

the arrival configurations (see figure 1.1):

w(t) := (t0, x0, t1, x1, . . . tn−1, xn−1, tn, xn, t). (1.7)

We now use xj and xi as generic configuration labels. It is possible to prove (see ref-

erence [34]) that a continuous-time Markov process is defined when we have a set of

functions Txi,xj (t), encoding for Prob{X(tn) = xi|X(tn−1) = xj}, with t = tn − tn−1,
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Chapter 1. Stochastic processes

that satisfy

0 ≤ Txi,xj (t) ≤ 1 (1.8)

Txi,xj (t+ s) =
∑
xk

Txi,xk(t)Txk,xj (s) (1.9)∑
xi

Txi,xj (t) ≤ 1. (1.10)

Equation (1.10) deserves some explanation: if the equality is satisfied for all xj and t,

the process is said to be honest, otherwise, if there is a strict inequality for some xj

and t, the process is said to be dishonest. The contribution necessary to complete the

sum to one corresponds to the probability that the system escapes to infinity (if S is

not a finite set) at a finite time. This situation would make the formulation of a general

theory of continuous-time Markov processes quite involved. However, in this thesis, we

will not consider such a pathological case, focusing on situations where the system can

only escape to infinity in the limit as the time approaches infinity. We now make the

additional assumption that the functions Txi,xj (t) are continuous in time. It follows that,

over short intervals dt,

Txi,xj (dt) = gxi,xjdt+ o(dt) (xi 6= xj) (1.11)

Txi,xi(dt) = 1− gxidt+ o(dt) (1.12)

The quantities gxi,xj and gxi are referred to as transition rates and are typically grouped

into a matrix called generator of the process whose entries are [G]xi,xj = gxi,xj (if

xi 6= xj) or [G]xi,xi = −∑xj
gxj ,xi =: −gxi ; a used convention is to set gxi,xi = 0.

If [G]xi,xi = 0, the state xi is called absorbing, while if [G]xi,xi = −∞, it is called

instantaneous. Similarly, the quantities Txi,xj (t) are grouped into a family of matrices

{T(t)} that forms a standard semigroup. A semigroup {T(t)} is called standard if T(t)→
1 as t → 0. In the limit as dt → 0, equations (1.11) and (1.12) can be written as the

matrix form

lim
dt→0

T(dt)− 1
dt

= G. (1.13)

Dealing with standard semi-groups rules out dishonest processes. We can also impose

a stronger condition on {T(t)} and say that a semi-group is uniform if {T(t)} → 1

uniformly as t→ 0. A theorem guarantees that {T(t)} is uniform if and only supi[G]ii <

∞, which also rules out instantaneous states [34]. If we define the column vector |P (t)〉
analogously to the discrete-time case, from equation (1.13), along with |P (t + dt)〉 =

T(dt)|P (t)〉, we get the Master equation

d

dt
|P (t)〉 = G|P (t)〉, |P (t)〉 = exp (tG) |P (0)〉. (1.14)
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Equation (1.9) is the Chapman-Kolmogorov equation for a Markov process. Taking

the limit as s → 0 and using equations (1.11) and (1.12), we obtain the Kolmogorov

forward equations
dT(t)

dt
= G T(t); (1.15)

a similar argument, using the limit as t→ 0, gives the Kolmogorov backward equations

dT(t)

dt
= T(t) G. (1.16)

It is possible to prove that when {T(t)} forms a uniform semigroup with generator G,

then

T(t) = exp(tG) (1.17)

is the unique solution of the equations (1.15) and (1.16), subjected to the initial con-

dition T(0) = 1 [34]. For non-uniform semigroups, we will assume that equation (1.17)

remains valid with exp(tG) =
∑∞

n=0 Gntn/n!. As a consequence, the invariant distribu-

tion satisfies G|P ∗〉 = 0.

We now sketch some spectral theory. First of all, we consider a process with finite

number of states and generator G. Then it is possible to express G as

G = ΨΛΨ−1, (1.18)

where Λ is diagonal, the columns of Ψ are right eigenvectors of G, while the rows of

Ψ−1 are left eigenvectors of G. The diagonal entries of Λ are the eigenvalues λi of G.

Clearly, the set of eigenvectors form a basis in S, i.e.,

ΨΨ−1 = 1. (1.19)

From equation (1.17) we have

T(t) = Ψ exp(Λt)Ψ−1. (1.20)

Now, all the off-diagonal entries of G are non-negative, then, there exists a scalar k such

that M = G + k1 has only non-negative entries; consequently etG = e−ktetM. The first

factor is positive and we only need to study the second factor etM =
∑∞

n=0 Mntn/n!.

Now if we assume that M is irreducible (see section 1.1) we can always find an integer

n such that [Mn]xi,xj > 0 for each pair (xi, xj). Since all positive integer powers of

M appear in such series expansion, it follows that etM is strictly positive, and so is

etG, thus having only one real eigenvalue on the spectral radius (this is part of the

Perron–Frobenius theory of non-negative matrices, see, e.g., reference [52]). This excludes
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periodic behaviour in continuous time and ensures ergodicity (in the sense of section 1.1).

The largest eigenvalue governs the long-time behaviour of etG, as shown in the following.

Explicitly, the matrices Ψ and Ψ−1 can be expressed as

Ψ =
∑
i

|ψi〉〈ei|, (1.21)

Ψ−1 =
∑
i

|ei〉〈ψi|, (1.22)

where 〈ei| is the row vector with zero entries everywhere except for the i-th entry, which

is one, while |ψi〉 and 〈ψi| are the i-th eigenvectors, right and left respectively, of G.

Using these, it is possible to write equation (1.20) as

T(t) =
∑
i,j

|ψi〉〈ei|etλi |ej〉〈ψj | =
∑
i

|ψi〉〈ψi|etλi , (1.23)

where we made use of the Kronecker delta 〈ei|ej〉 = δi,j . It appears clear that the

dominant term, as t approaches infinity, is that with the largest eigenvalue, which we

call λ1. We now recall that the columns of G sum to zero, which implies that λ1 = 0 and

that the row vector 〈1| with all entries equal to one is the left eigenvector associated with

λ1 (i.e., 〈1|G = 0 ). As a consequence, we get limt→∞ T (t)|P (0)〉 = |ψ1〉, i.e., the leading

right eigenvector is the limiting distribution for the Markov process. Clearly, being an

eigenvector, this is also invariant.

Developing a general spectral theory in the case with infinite configuration space is

more difficult as the eventuality of a continuous spectrum must be taken into account. We

only mention here that an elegant spectral representation has been derived by S. Karlin

and J. L. McGregor [47] for a special but ubiquitous model, viz., the generalised birth-

death process. Such a model can be defined by its generator, i.e.,

G =


−α0 g1 0 0 . . .

α0 −α1 − g1 g2 0

0 α1 −α2 − g2 g3

...
. . .

 . (1.24)

Its spectral representation is written in terms of the polynomials Qx(λ), which are solu-

tions of

Tij(t) = wj

∫ ∞
0

etλQi(λ)Qj(λ) dµ(λ). (1.25)
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For such a system of equations, λ is real and Qi(λ) satisfies

wj

∫ ∞
0

Qi(λ)Qj(λ) dµ(λ) = δij , (1.26)

Q0(λ) = 1, gnQn−1 − (λ+ αn + gn)Qn(λ) + αnQn+1(λ) = 0, (1.27)

w0 = 1, wj =
α0, α1, . . . , αj−1

g1, g2, . . . , gj
. (1.28)

The main difficulty in applying such a result is in deriving µ(λ). In appendix A the

spectrum of a tridiagonal operator with constant entries is derived in detail, even without

imposing 〈1|G = 0.

It is worth mentioning that, in the simple case where all the upper diagonal terms of

the generator (1.24) are null while its lower diagonal entries are constant α, the birth-

death process reduces to a “pure birth” process. For this case, one is only interested

in the sequence of inter-event times—the sequence of configurations being trivial. This

defines a new process, called the Poisson process of intensity α, which is one of the

simplest and best known renewal processes [11].

All the continuous-time processes considered so far involve inter-event times that are

exponentially distributed. To see this, we study the joint probability ψxj ,xi(t) dt defined

as the probability that the transition xi → xj occurs during the infinitesimal interval

[t, t+dt) and the configuration xi survives until t. In terms of random variables, ψxj ,xi(t)

is the joint density function for the two random variables “time to the next jump” and

“next configuration”. We refer to it as the waiting-time density distribution (WTD). As

we decided to focus on discrete configurations xi ∈ S throughout this thesis, ψxj ,xi(t)

obeys the following normalization condition

∑
xj

∫ ∞
0

ψxj ,xi(t)dt = 1, ∀xi. (1.29)

We derive an explicit formula for ψxj ,xi(t) under the assumptions (1.11) and (1.12).

If we imagine that the time interval [0, t) is subdivided into k subintervals of length t/k,

where k > 1, for the probability that the move to xj occurs at the end of such an interval,

while nothing happens before, can be written as:

ψxj ,xi(t) dt = [1− gxit/k + o(t/k)]k [gxj ,xidt+ o(dt)]. (1.30)

Then, we divide by dt, and take the limit dt→ 0, we obtain

ψxj ,xi(t) = [1− gxit/k + o(t/k)]k gxj ,xi . (1.31)
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In the limit as k →∞, as the first factor is simply exp(−gxi t), we obtain

ψxj ,xi(t) = gxj ,xi exp(−gxit). (1.32)

Marginalising over all arrival configurations, we obtain that the time spent in a certain

state follows the exponential distribution ψxi(t) = gxi exp(−gxi t), which indeed has the

memory-less property. In discrete time, a similar argument shows that the duration of

stay in a state has a geometric distribution.

When the transition rates are functions of time we obtain a non-homogeneous Markov

process and we can no longer write the transition probabilities only as function of only

t, but instead

Txj ,xi(t, s) = Prob{X(s+ t) = xj |X(s) = xi}. (1.33)

The Kolmogorov forward and backwards equations can be generalised to this case, i.e.,

∂T(t, s)

∂t
= G(t) T(t, s), (1.34)

∂T(t, s)

∂s
= −T(t, s) G(s), (1.35)

while dealing with their general formal solutions is often not straightforward as the inter-

event times are, in general, non-exponentially distributed [12]. However such processes

can be regarded as Markov as the time is obviously known at any instant and it is thus

possible to make predictions on future states based on the present.

In the next section we tackle a different class of stochastic processes whose time

evolution can be written in terms of rates that depend on a random time (contrarily to

the time involved in non-homogeneous Markov processes).

1.3 Semi-Markov processes

In this section, we deal with a general class of continuous-time stochastic processes, where

the jumps occur after times which are not necessarily exponentially distributed, and the

probability of having a certain transition can depend on the time elapsed since the last

jump. This means that memory is lost after each jump, but not during the jump. In math-

ematical literature such processes are referred to as semi-Markov, while in physics they

are called continuous-time random walks (CTRWs). These were introduced in physics

to model transport on lattices [37, 53], and later used in many other contexts, e.g., to

describe quantum dots [19], temporal networks [39], animal movements [31], biochemical

reactions [21, 22], and single-molecule kinetics [55, 67], and financial markets [50].
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Chapter 1. Stochastic processes

1.3.1 General waiting-time distribution

To develop a theory of stochastic processes when the distribution of life-times are not

exponential, three main methods are available:

1) A first rough device is to the define an embedded Markov chain. This consists

of a new Markov chain on a coarse-grained set of time instants, equally spaced.

The interval between two consecutive instants is chosen so that the memory of

the previous instant becomes irrelevant. This method is not rigorous and carries

all the advantages/disadvantages of dealing with discrete-time Markov processes.

This thesis is not focused on embedded Markov chains (although some general

results of chapter 4 naturally apply to such cases).

2) A second antithetic solution consists of dividing the inter-event times into fictitious

stages, such that the time spent in each stage has an exponential distribution. The

resulting process is Markovian, but on an extended configuration space: in order to

define the process, we need to specify both the configuration and the stage of life

it has been reached. This device will be used to exploit some established results

from the theory of Markov processes.

An important case arises when a number k of stages are arranged in series. The total

waiting time for this case is the sum of k exponentially distributed waiting times

and has density distribution ψ(τ) neatly expressed through its Laplace transform

∫ ∞
0

e−ντψ(τ) dτ =
k∏
i=1

gi
gi + ν

, (1.36)

where gi is the rate associated with the stage i. A WTD satisfying equation (1.36)

is referred to as an Hypoexponential distribution, which represents an Erlang dis-

tribution when all the rates gi are equal [61].

More generically, it has been proved in [10] that any probability density distri-

bution having a rational Laplace transform f(ν), with k poles and numerator of

degree at most k, can be reproduced by a sequence of k exponential phases, not

necessarily arranged in series. The probability distributions with this property are

called Coxian (a subclass of phase-type distributions). Without loss of generality,

we can make the following partial fraction decomposition

f(ν) = p0 + q0p1
λ1

ν + λ1
+

k∑
i=2

q0 . . . qi−1pi

i∏
l=1

λl
ν + λl

, (1.37)
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where the poles are at −λi, i = 1, 2, . . . , k, pi−1 + qi−1 = 1 and pk = 1. Equa-

tion (1.37) has a simple interpretation in the time domain. At each stage i − 1,

there is a probability pi−1 of immediate escape and a probability qi−1 of entering

the stage i, whose WTD is exponential with rate λi. A thorough account of such

distributions can be found e.g., in W. J. Stewart [61].

3) A third option is to include a continuous supplementary variable called age or

expended life-time, which is measured from the instant when the last event occurred.

This also reflects the cases where a system is Markovian, but we do not have access

to the microscopic mechanisms involved in the dynamics of the system, but we have

instead information about the statistics of the times between jumps. This case is

more general than the devices of 1) and 2). D. R. Cox [10] argued that WTDs with

continuous supplementary variable have rational Laplace transforms with complex

poles.

We now focus on WTDs of the case 3). For convenience, we set ψxi,xi(τ) = 0. The

WTDs ψxj ,xi(τ), where xj , xi ∈ S, fully describe the dynamics of a semi-Markov stochas-

tic process in continuous time on a discrete set of configurations S, provided that the

initial state has been reached exactly at time t0. Otherwise, we need either to know the

time elapsed since the last jump or consider that the first WTD can be different from

the others. The probability density of observing a trajectory (1.7) hence is

%[w(t)] = φxn(t− tn)ψxn,xn−1(tn − tn−1) . . . ψ′x1,x0(t1 − t0)Px0(t0). (1.38)

A natural situation is when we observe a portion of a trajectory that started before

t0. In this case, ψ′x1,x0(t1 − t0) = ψx1,x0(t1 − t−1)/φx0(t0 − t−1), as it depends on the

time t−1 of the last jump before t0, being conditioned on the survival until t0. Also, in

this case, φ′xi(t) = φxi(−t−1 + t)/φxi(−t−1) where the probability that xi survives the

interval t− t0 is φ′xi(t− t0) = φxi(t− t−1)/φxi(t0 − t−1).

The WTDs ψxi,xi−1(τ) are joint probability densities for the transition age and the

destination state, represented by the variables τ and xi, respectively:

ψxi,xi−1(τ) = Prob{the jump is xi−1 → xi and the transition is at age τ}. (1.39)

A useful convention is to write the WTD in the form

ψxj ,xi(τ) = pxj ,xi(τ)× ψxi(τ), (1.40)
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with the normalization conditions
∑

xj
pxj ,xi(τ) = 1 and

∫∞
0 ψxi(τ)dτ = 1. Explicitly

equation (1.40) reads:

Prob{the jump is xi → xj and the transition is at age τ}
= Prob{the jump is xi → xj |the transition is at age τ}×Prob{the transition is at age τ}.

(1.41)

We will also find useful the following definition,

Pxj ,xi =

∫ ∞
0

ψxj ,xi(τ)dτ, (1.42)

which is the probability that, given that the system is in state xi, the next jump will be

to state xj . This gives us an alternative factorisation for the WTD,

ψxj ,xi(t) = Pxj ,xi × fxj ,xi(τ), (1.43)

where fxj ,xi(t) is the conditional probability that the transition is at age τ , given that

the configuration changes from xi to xj—this can also be expressed with fxj ,xi(t) =∫ t
0 ψxj ,xi(τ)dτ/pxj ,xi . Hence, equation (1.43) reads:

Prob{the jump is xi → xj and the transition is at age τ}
= Prob{the jump is xi → xj}×Prob{the transition is at age τ |the jump is xi → xj}.

(1.44)

If the two events of equation (1.39) are independent, we can obviously write

Prob{the jump is xi → xj and the transition is at age τ} =

Prob{the jump is xi → xj} × Prob{the transition is at age τ} (1.45)

and say that the semi-Markov process enjoys direction–time independence (DTI) [3, 7,

55, 67]. This implies that it is possible to eliminate the dependence on the time in the

jump-dependent factor of the PDF (1.40), i.e.,

ψxj ,xi(τ) = pxj ,xiψxi(τ), (1.46)

and eliminate the dependence on the next configuration xj in fxj ,xi(τ), i.e.,

ψxj ,xi(τ) = Pxj ,xifxi(τ) (1.47)
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Hence, in presence of DTI, pxj ,xi and ψxi(τ) coincide with Pxj ,xi and fxi(τ), respectively.

More interesting consequences of the DTI condition are discussed in section 1.4.2.

The important quantity

ψxi(τ) =
∑
xj

ψxj ,xi(τ) (1.48)

is referred to as the residence time distribution (RTD) of the configuration xi. Other

ubiquitous quantities are the survival probability6 and the cumulative distribution, de-

fined respectively as

φxi(t) =

∫ ∞
t

ψxi(τ)dτ (1.49)

and

φcxi(t) =

∫ t

0
ψxi(τ)dτ. (1.50)

Defining such probabilities is clearly redundant as they carry the same amount of infor-

mation as ψxi(τ) and are related by the following equations:

ψxi(τ) =
dφcxi(τ)

dτ
, (1.51)

ψxi(τ) = −dφxi(τ)

dτ
. (1.52)

Equation (1.49) is often encountered in actuarial mathematics, reliability engineering,

and survival analysis [8], where one is interested in the probability that a state survives

for a guarantee period.

The WTD ψxi,xj (τ) can also be expressed in terms of the age-specific rate or hazard

function gxi,xj (τ), which is the probability density that there is a transition xj → xi

during the “infinitesimal” interval [τ, τ+dt), conditioned on having no transitions during

the interval [0, τ):

ψxi,xj (τ) = gxi,xj (τ)φxj (τ), (1.53)

where τ is measured from the instant when the last jump occurred. The meaning of the

hazard function appears particularly clear if we consider the survival probability of the

state xj and set gxi,xi(τ) = 0. Let us sum (1.53) over xi ∈ S,

ψxj (τ) =
∑
xi

gxi,xj (τ)φxj (τ), (1.54)

6also known as survivor function.
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and refer to the sum
∑

xi
gxi,xj (τ) as the age-specific escape rate of xj . Because of

equation (1.52), we can write equation (1.54) in the form of a logarithmic derivative

∑
xi

gxi,xj (τ) = −d lnφxj (τ)

dτ
, (1.55)

and, integrating with initial condition φxi(0) = 1, we get

φxj (τ) = exp

(
−
∫ τ

0

∑
xi

gxi,xj (t) dt

)
, (1.56)

ψxj (τ) =
∑
xi

gxi,xj (τ) exp

(
−
∫ τ

0

∑
xi

gxi,xj (t) dt

)
, (1.57)

which allows us to cast equation (1.53) in the form of equation (1.40)

ψxi,xj (τ) =
gxi,xj (τ)∑
xi
gxi,xj (τ)

ψxj (τ), (1.58)

which will be shown to be more convenient.

1.3.2 The exponential survival function

The special choice (1.32) gives the following RTD, cumulative distribution, and survival

probability:

ψxj (τ) =

(∑
xi

gxi,xj

)
× e
−∑

xi
gxi,xj τ , (1.59)

φcxj (τ) = 1− e
−∑

xi
gxi,xj τ , (1.60)

φxj (τ) = e
−∑

xi
gxi,xj τ . (1.61)

According to equations (1.56) and (1.57), these relations imply constant hazards gxi,xj (t) =

gxi,xj , which have been simply referred to as rates in section 1.2. Equation (1.59) reminds

us that the interval between events are always exponential in homogeneous Markov pro-

cesses, while equation (1.61) makes evident another reason why memory-less continuous-

time processes are typically simpler than non-Markov processes, i.e., their survival prob-

abilities always factorise.
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1.3.3 Generalised Master equation

We now introduce a device known as generalised Master equation (GME), which has

been largely used in physics literature to deal with semi-Markov processes. The Master

equation (1.14) is a convenient description of a process that entails the memory-less

property; although it can describe complex trajectories in the configuration space S,

its dependence on time is simple, as prescribed by equations (1.11) and (1.12). The

generalised Master equation is similar to the standard Master equation, but can be

employed to describe the time evolution of the configuration probability vector |P (t)〉 in

systems with non-exponentially distributed inter-events times.

We set the general formalism along the lines of references [19, 37, 53]. For a semi-

Markov process, represented by equation (1.38), the probability of having a configuration

xi after a time t− t0 since the reference instant t0 can be explicitly written as the sum

Pxi(t) =
∑
x0

δxi,x0φ
′
x0(t− t0)Px0(t0) (1.62)

+

∫ t

t0

dt1
∑
x0,x1

δxi,x1φx1(t− t1)ψ′x1,x0(t1 − t0)Px0(t0)

+

∫ t

t0

dt1

∫ t

t1

dt2
∑

x0,x1,x2

δxi,x2φx2(t− t2)ψx2,x1(ti − t1)ψ′x1,x0(t1 − t0)Px0(t0)

+

∫ t

t0

dt1

∫ t

t1

dt2

∫ t

t2

dt3
∑

x0,...,x3

δxi,x3φx3(t− t3)ψx3,x2(t3 − t2)ψx2,x1(t2 − t1)ψ′x1,x0(t1 − t0)Px0(t0) + . . . ,

where jumps to the same configuration as the departure one are excluded, i.e., x1 6=
x0, x2 6= x1, . . . . We now derive a standard recursive relation from equation (1.62),

assuming the observation began at the initial time t0 ≥ 0. This use of such an initial

time makes the case we consider slightly more explicit than the analogues seen in most

of the literature (e.g., in references [19, 53]). By reversing the order of integration in the

integrals of equation (1.62) we have

Pxi(t) = φ′xi(t− t0)Pxi(t0) (1.63)

+

∫ t

t0

dt1 φxi(t− t1)
∑
x0

ψ′xi,x0(t1 − t0)Px0(t0)

+

∫ t

t0

dt2 φxi(t− t2)

∫ t2

t0

dt1
∑
x1

ψxi,x1(t2 − t1)
∑
x0

ψ′x1,x0(t1 − t0)Px0(t0)

+

∫ t

t0

dt3 φxi(t− t3)

∫ t3

t0

dt2
∑
x2

ψxi,x2(t3 − t2)

∫ t2

t0

dt1
∑
x1

ψx2,x1(t2 − t1)
∑
x0

ψ′x1,x0(t1 − t0)Px0(t0) + . . . .
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We desire to group some of the terms in the r.h.s. of equation (1.63) under the integral

operator
∫ t
t0

dτφxi(t − τ)·. We first define the probability density ηxi,n(tn+1 − t0) that

the system jumps onto the state x during the interval [tn+1, tn+1 + dt) (i.e., immediately

after a time tn+1 − t0 from the beginning of the observation) after n transitions. Using

such a definition, the equation (1.63) can be written as

Pxi(t) = φ′xi(t− t0)Px0(t0) +

∫ t

t0

dt1 φxi(t− t1)ηxi,0(t1 − t0)

+

∫ t

t0

dt2 φxi(t− t2)ηxi,1(t2 − t0) +

∫ t

t0

dt3 φxi(t− t3)ηxi,2(t3 − t0) + . . . , (1.64)

where it is clear that we are allowed to replace t1, t2, . . . with τ . After such a replacement,

the terms ηxi,n(τ − t0) can be grouped into the sum
∑∞

n=0 ηxi,n(τ − t0) =: ηxi(τ − t0),

which represents the probability density that the system jumps onto the state xi after a

time τ − t0 since the beginning of the observation interval, regardless of the number of

previous jumps. This leaves us with the convenient recursive equations:

Pxi(t) = φ′xi(t− t0)Px(t0) +

∫ t

t0

φxi(t− τ)ηxi(τ − t0) dτ, (1.65)

ηxi(t− t0) =
∑
xj

ψ′xi,xj (t− t0)Pxj (t0) +
∑
xj

∫ t

t0

ψxi,xj (t− τ)ηxj (τ − t0) dτ. (1.66)

It is convenient to make two changes of variable, by defining u = τ−t0 and T = t−t0,

which yield

Pxi(T + t0) = φ′xi(T )Px(t0) +

∫ T

0
φxi(T − u)ηxi(u) du, (1.67)

ηxi(T ) =
∑
xj

ψ′xi,xj (T )Pxj (t0) +
∑
xj

∫ T

0
ψxi,xj (T − u)ηxj (u) du. (1.68)

Equation (1.68) can be expressed even more compactly after a Laplace transform, i.e.,

ηxi(ν) =
∑
xj

ψ′xi,xj (ν)Pxj (t0) +
∑
xj

ψxi,xj (ν)ηxj (ν), (1.69)

where

f(ν) =

∫ ∞
0

e−νT f(T ) dT, (1.70)

and the convolution theorem∫ ∞
0

e−νT
[∫ T

0
f(T − u)g(u) du

]
dT =

∫ ∞
0

e−νT f(T ) dT ×
∫ ∞

0
e−νT g(T ) dT, (1.71)
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has been used. The Laplace transform of equation (1.67) needs slightly more care. Using

the notation

f̂(ν) =

∫ ∞
0

e−νT f(T + t0) dT, (1.72)

along with the convolution theorem for the r.h.s., we get

P̂xi(ν) = φ′xi(ν)Pxi(t0) + φxi(ν)ηxi(ν). (1.73)

From equation (1.71) it is straightforward to derive the formula for the Laplace trans-

form of an integral: ∫ ∞
0

e−νt
[∫ t

0
f(u) du

]
dt =

∫∞
0 e−νtf(t) dt

ν
. (1.74)

This in turns gives the following explicit forms for the Laplace transform of the survival

probabilities [11],

φxi(ν) =
1− ψxi(ν)

ν
, φ′xi(ν) =

1− ψ′xi(ν)

ν
. (1.75)

which yield, along with equation (1.73),

νP̂xi(ν)− Pxi(t0) = −
∑
xj

ψ′xj ,xi(ν)Pxi(t0) + ηxi(ν)−
∑
xj

ψxj ,xi(ν)ηxi(ν). (1.76)

Then, using (1.69) to substitute for the second term of the r.h.s., we get

νP̂xi(ν)− Pxi(t0) = −
∑
xj

ψ′xj ,xi(ν)Pxi(t0) +
∑
xj

ψ′xi,xj (ν)Pxj (t0)

+
∑
xj

ψxi,xj (ν)ηxj (ν)−
∑
xj

ψxj ,xi(ν)ηxi(ν). (1.77)

Plugging ηxi(ν) from equation (1.73) into the third and fourth terms on the r.h.s. of

equation (1.77), we get the equation

νP̂xi(ν)− Pxi(t0) = Ixi(ν) +
∑
xj

ψxi,xj (ν)

φxj (ν)
P̂xj (ν)−

∑
xj

ψxj ,xi(ν)

φxi(ν)
P̂xi(ν), (1.78)
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where Ixi(ν) contains the terms that explicitly depend on the WTDs at time t0, i.e.,

Ixi(ν) = −
∑
xj

ψ′xj ,xi(ν)Pxi(t0) +
∑
xj

ψ′xi,xj (ν)Pxj (t0)

−
∑
xj

ψxi,xj (ν)
φ′xj (ν)

φxj (ν)
Pxj (t0) +

∑
xj

ψxj ,xi(ν)
φ′xi(ν)

φxi(ν)
Pxi(t0). (1.79)

Integrating P̂xi(ν) by parts, we get that the l.h.s. of equation (1.78) is the Laplace

transform of the time derivative of Pxi(t), in fact:

νP̂xi(ν)− Pxi(t0) = ν

[
e−νTPxi(T + t0)

−ν

]∞
0

− ν
∫ ∞

0

1

−ν e−νT dPxi(T + t0)− Pxi(t0)

(1.80)

=

∫ ∞
0

e−νT
dPxi(T + t0)

dT
dT. (1.81)

We also define the memory kernel Kxi,xj (t) through an equation similar to equation

(1.53), but in the Laplace domain, i.e.,

ψxi,xj (ν) = Kxi,xj (ν)φxj (ν). (1.82)

Applying to both sides of equation (1.78) the inverse Laplace transform we readily get

the generalised Master equation,

d

dT
Pxi(T+t0) = Ixi(T )+

∑
xj

∫ T

0

[
Kxi,xj (T − τ)Pxj (τ + t0)−Kxj ,xi(T − τ)Pxi(τ + t0)

]
dτ,

(1.83)

which can be written as

d

dt
Pxi(t) = Ixi(t− t0) +

∑
xj

∫ t

t0

[
Kxi,xj (t− v)Pxj (v)−Kxj ,xi(t− v)Pxi(v)

]
dv, (1.84)

using T = t − t0 and defining v = τ + t0. The Markovian Master equation (1.14) is

recovered when Kxj ,xi(t) = gxj ,xiδ(t), which implies Kxj ,xi(ν) = gxj ,xi and, consequently,

Ixi(ν) = 0. Equation (1.84) incorporates the memory of events occurred before t0 into

the term Ixi(T ), while memory kernels couple time instants following t0. In the next

section, we will show that, in the limit as t→∞, the term Ixi(t− t0) becomes irrelevant

for the probability-vector component Pxi(t).
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1.4 Stationary states

This section deals with the long-time behaviour of a semi-Markov process, whose prob-

ability distribution is assumed to approach a stationary state.

1.4.1 The corresponding Markov process

As first step, we prove that, for many natural choices of WTDs,

lim
t→∞

Ixi(t) = 0. (1.85)

Following references [19, 60], let us first consider WTDs that have only finite moments,

so that the following Maclaurin series expansion converges:

ψxj ,xi(ν) =

∫ ∞
0

e−νtψxj ,xi(t) dt

=

∫ ∞
0

ψxj ,xi(t)dt− ν
∫ ∞

0
tψxj ,xi(t)dt+

ν2

2

∫ ∞
0

t2ψxj ,xi(t)dt+ . . .

= Pxj ,xi − νAxj ,xi +O(ν2), (1.86)

where the Pxj ,xi and Axj ,xi are, respectively, the zeroth and first moments of ψxj ,xi(t),

in this case. Alternatively, we consider α-stable distributions, defined by their Laplace

transform

ψxj ,xi(ν) = Pxj ,xi exp(−ναBxj ,xi/Pxj ,xi)
= Pxj ,xi − ναBxj ,xi +O(ν2α), (1.87)

where Pxj ,xi and Bxj ,xi are implicitly defined after expanding exp(−ναBxj ,xi/Pxj ,xi) and

0 < α < 1. This corresponds to WTDs that, in the time domain, decay as ∼ t−α−1 and

have infinite mean waiting times. In both cases (1.86) and (1.87), the limit as ν → 0

of ψxi,xj (ν) and ψ′xi,xj (ν) can be represented by the algebraic forms Pxi,xj − Bxi,xjν
α

and P′xi,xj −B′xi,xjν
α, respectively. Using the standard relation (1.75) and setting Bxj =∑

xi
Bxi,xj and B′xj =

∑
xi
B′xi,xj , we get

lim
ν→0

Ixi(ν) = lim
ν→0

∑
xj

[
−
(
P′xj ,xi − B′xj ,xiν

α
)
Pxi(t0) +

(
P′xi,xj − B′xi,xjν

α
)
Pxj (t0)

−
(
Pxi,xj − Bxi,xjν

α
) B′xj
Bxj

Pxj (t0) +
(
Pxj ,xi − Bxj ,xiν

α
) B′xi
Bxi

Pxi(t0)

]
,

(1.88)
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which is finite in ν and implies

lim
ν→0

νIxi(ν) = 0. (1.89)

We finally assume that the limit limt→∞ Ixi(t) exists and is finite; then, the final-value

theorem [20] ensures that this is equal to limν→0 νIxi(ν), and the result (1.89) in turns

implies equation (1.85).

This suggests that, to investigate the infinite-time solution of the generalised Master

equation, we can neglect the initial-condition terms Ixi(t). Let us also assume that, in

such an infinite-time limit, the probability vector reaches a stationary state

|P ∗〉 =
∑
xi

P ∗xi |exi〉. (1.90)

This can be used to get rid of the memory kernel. In fact equation (1.84) implies

d

dt
Pxi(t) = Ixi(t−t0)+

∑
xj

∫ t−t0

0

[
Kxi,xj (u)Pxj (t− u)−Kxj ,xi(u)Pxi(t− u)

]
du; (1.91)

which, in the limit as t→∞, yields

∑
xj

P ∗xj

∫ ∞
0

Kxi,xj (u) du− P ∗xi
∑
xj

∫ ∞
0

Kxj ,xi(u) du = 0. (1.92)

The integral
∫∞

0 Kxi,xj (t) dt is the Laplace transform of Kxi,xj (t), computed at ν = 0;

consequently, from equation (1.82),

Kxi,xj (0) =
ψxi,xj (0)

φxj (0)
. (1.93)

The functions ψxi,xj (0) and φxi,xj (0) have a neat physical meaning, as ψxi,xj (0) =∫∞
0 ψxi,xj (t) dt is the transition probability Pxi,xj seen in equation (1.42), while φxi(0) =∫∞
0 φxi(t) dt =: Axi is the first moment of ψxi(t), i.e. the mean waiting time. Hence, we

can write equation (1.92) as

∑
xj

P ∗xj
Pxi,xj
Axj

− P ∗xi
∑
xj

Pxj ,xi
Axi

= 0, (1.94)

which is the stationarity condition of a Markov process with rates Pxi,xj/Axj and no

memory kernel. Consequently, we can study the stationary state of a semi-Markov process

by means of an effective continuous-time process, usually referred to as the corresponding
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Markov Process, which has generator:
−∑i

Pi,1

A1

P1,2

A2

P1,3

A3

P1,4

A4
. . .

P2,1

A1
−∑i

Pi,2

A2

P2,3

A3

P2,4

A4
. . .

P3,1

A1

P3,2

A2
−∑i

Pi,3

A3

P3,4

A4
. . .

...
...

...
...

. . .

 . (1.95)

It is also convenient to define the stochastic matrix K(ν) with the off-diagonal entry

xi, xj equal to the Laplace transform of the memory kernel Kxi,xj (t)[
K(ν)

]
xi,xj

= Kxi,xj (ν),[
K(ν)

]
xi,xi

= −
∑
xj

Kxj ,xi(ν),
(1.96)

This allows us to write the stationarity condition (1.94) in the compact form

K(0)|P ∗〉 = 0, (1.97)

where K(0) is equivalent to the generator (1.95). To lighten the notation, we will sim-

ply use the symbol G for such a generator. In the Markovian case the matrix K(ν) is

equivalent to the generator of the stochastic process, in fact, Kxi,xj (t) = gxi,xjδ(t) and

its Laplace transform gxi,xj is a time-independent rate.

In this section, we have seen that the stationary state of a semi-Markov process can

be obtained as the stationary state of an appropriate effective Markov process, if we

exclude pathological cases (such as WTDs with infinite mean, which can rule out such a

stationary state). If we limit our attention only to this aspect, the efforts in studying the

formalism of semi-Markov processes may not appear justified. In contrast to this, we will

show in the next chapters that the fluctuations of certain quantities cannot be predicted

on the basis of a Markovian description. This would be one of the take-home messages of

this thesis. Before investigating in details such fluctuations, we consider another property

for which the choice non-exponential WTD is relevant, i.e., the reversibility of a stochastic

process.

1.4.2 Equilibrium and non-equilibrium

We now separate two important classes of stationary states, i.e., the equilibrium and

non-equilibrium stationary states (for which the acronym NESSs is also used). Let us

focus on the long-time limit of a semi-Markov process, where the probability of having a

29



Chapter 1. Stochastic processes

certain state is time invariant and is given by equation (1.97). Recall that, in this limit,

equations (1.92) and (1.94) are satisfied for each xi. In other words, this means that total

number of jumps into a state exactly balances the total number of jumps out of a state.

For each pair (xi, xj), we define a probability flow as

jxi,xj =P ∗xj

∫ ∞
0

Kxi,xj (t) dt− P ∗xi
∫ ∞

0
Kxj ,xi(t) dt (1.98)

=P ∗xj
Pxi,xj
Axj

− P ∗xi
Pxj ,xi
Axi

. (1.99)

When the flow is zero for each xi, xj ∈ S, we say that the stationary state satisfies the

detailed balance condition

P ∗xj
Pxi,xj
Axj

− P ∗xi
Pxj ,xi
Axi

= 0. (1.100)

This definition comprises both discrete and continuous-time Markov processes; in the dis-

crete time case we have that the waiting times Axi are constant in xi, while in continuous-

time memory-less processes Pxi,xj/Axj is just the constant transition rate gxi,xj . Equa-

tions (1.98) and (1.100) imply that a semi-Markov process satisfy detailed balance if and

only if its effective Markov process satisfies detailed balance [55, 67].

Clearly, the stationarity does not require detailed balance, the latter being only a

sufficient condition for the former. However, assuming this second condition is rather

convenient, as it allows us to write immediately a recursive solution for the stationary

state,

P ∗1 =
P1,0

A0

A1

P0,1
P ∗0 , P ∗2 =

P2,1

A1

A2

P1,2
P ∗1 , . . . , P ∗n =

Pn,n−1

An−1

An
Pn−1,n

P ∗n−1, (1.101)

in other words, P ∗n =
∏n
i=1 Pi,i−1Ai−1/(Pi−1,iAi)P

∗
0 . This can be used to define a free

energy difference Axi − Axj between a pair of states, which is an additive quantity and

determines their relative stationary probability as follows

P ∗xi
P ∗xj

=
Pxi,xjAxi
Pxj ,xiAxj

= exp[−(Axi −Axj )]. (1.102)

Another way to write down equation (1.100) is√
P ∗xj
P ∗xi

Pxi,xj
Axj

=

√
P ∗xi
P ∗xj

Pxj ,xi
Axi

=: [G∗s]xi,xj , (1.103)
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which means that it is possible to define a symmetric matrix

G∗s = P∗G∗ (P∗)−1 , (1.104)

where P∗ is diagonal with entries [P∗]xi,xi =
√
P ∗xi . This in turns implies another neces-

sary condition for the detailed balance, i.e., the eigenvalues of the associated generator

G∗ are real.

We now mention a condition even stronger than detailed balance. In order to do so in

general terms, we first need to introduce the following notion. The reverse of a stochastic

process X(t) is the stochastic process X(τ − t) for some given τ ∈ T , and a stochastic

process X(t) is reversible if

Prob{X(t0) = x0, X(t1) = x1, . . . , X(tn) = xn}
= Prob{X(τ − t0) = x0, X(τ − t1) = x1, . . . , X(τ − tn) = xn}. (1.105)

for every τ ∈ T and t0 ≤ t1 ≤ . . . ≤ tn. In words this means that the probability of

observing a sample path of X(t) is equal to the probability of observing a sample path of

the reverse process X(τ− t), indexed by t. If equation (1.105) is not satisfied, the process

is said to be irreversible. These definitions are equally valid in discrete and continuous

time. Roughly speaking, this condition is in general stronger than equation (1.100) as

it requires that not only the number of jumps, but also the durations of the visits

are balanced. While in Markov processes the detailed balance condition is necessary

and sufficient condition for the reversibility of its stationary states [48], in semi-Markov

processes the DTI is also needed, as proved by M. K. Chari [7] and evoked by following

argument. Using equation (1.43) we write the probability density of observing a history

w(t) as

%[w(t)] = P ∗x0
1

θx0
Px1,x0Px2,x1

∫ ∞
t1−t0

fx1,x0(t) dt fx2,x1(t2 − t1)×

. . .× Pxn−1,xn−2Pxn,xn−1fxn−2,xn−1(tn−2 − tn−1)fxn−1,xn(tn−1 − tn)φxn(t− tn), (1.106)

while the probability density to observe the reverse history is

%[wR(t)] = P ∗xn
1

θxn
Pxn−1,xnPxn−2,xn−1

∫ ∞
tn−tn−1

fxn−1,xn(t) dt fxn−2,xn−1(tn−1 − tn−2)×

. . .× Px2,x1Px1,x0fx1,x2(t2 − t1)fx0,x1(t1 − t0)φx0(t1 − t0). (1.107)

Now if we use the detailed balance P ∗xj = P ∗xiPxj ,xi/Axi recursively and assume the

DTI in the form of fxi(t) = fxj ,xi(t), then the r.h.s. of equation (1.106) is equal to the
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r.h.s. of equation (1.107), i.e., %[w(t)] = %[wR(t)]. Vice-versa, suppose that the process

is reversible. Then, %[w(t)] = %[wR(t)] for any finite history w(t). In particular choosing

n = 2 and equating (1.106) and (1.106), we get

P ∗x0
Px1,x0
θx0

∫ ∞
t1−t0

fx1,x0(t) dt φx1(t − t1) = P ∗x1
Px0,x1
θx1

∫ ∞
t−t1

fx0,x1(t) dt φx0(t1 − t0),

(1.108)

for all x0, x1 ∈ S and t0 ≤ t1 ≤ t. In the limit as t→ t0, i.e., (t1−t0)→ 0 and (t−t1)→ 0,

this equation gives the detailed balance P ∗x0Px1,x0/Ax0 = P ∗x1Px0,x1/Ax1 . Then we can

cancel these factors out of the equation (1.108). After, we are still allowed to take the

limit as t→ t1 to obtain ∫ ∞
t1−t0

fx1,x0(t) dt = φx0(t1 − t0), (1.109)

which implies that fx1,x0(t), is independent of x1, hence the DTI.

A convenient way to measure how probable a sample path w(t) is compared to its

time-reversal wR(t) is to define the entropy production

St[w(t)] = ln
%[w(t)]

%[wR(t)]
, (1.110)

which we recognise as a time-extensive observable due to the logarithm. More generi-

cally, we can characterise a non-equilibrium system by means of diverse time-extensive

functionals J [w(t)] (see, e.g., references [68, 69]), which can be used as measures of the

“distance” from equilibrium [54], at least in Markov processes. Most of the literature in

non-equilibrium statistical mechanics, deals with functionals that can be written as the

sum �

�

�

�
Type A observable

A[w(t)] =
n−1∑
i=0

θxi+1,xi (1.111)

of elementary contributions corresponding to configuration changes. These quantities

are referred to as type A functionals in the relevant literature, e.g., in [24, 45], and may

represent physical observables integrated over the observation time, e.g., the dynamical

activity in a glassy system [24], the moles of metabolites produced in a biochemical

pathway [9, 63], the customers served in a queuing network [61], the flow in interacting

particle systems (IPSs) [14], or certain quantities in stochastic thermodynamics [36, 59].

Notably, D. Andrieux and P. Gaspard [3] proved that for semi-Markov processes with
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DTI, the following fluctuation symmetry is satisfied

Prob{A[w(t)] = a}
Prob{A[w(t)] = −a} ∼ exp (Ea) , (1.112)

where E is a field conjugated to A.

Alternatively it is possible to consider “static” contributions that do not depend on

the arrival state xi, and define type B functionals

�

�

�

�
Type B observable

B[w(t)] =
n−1∑
i=0

θxi(ti+1 − ti) (1.113)

Examples of functionals of this type will be considered in more detail only in chapter 5.

For the same process, functionals of type A and type B are related [24, 45].

Hereafter, we will refer to both type A and type B observables as time-integrated

currents J [w(t)] and to their empirical average J [w(t)]/T simply as currents. However,

with the exception of chapter 5, we will mainly deal with type A observables.

1.5 Beyond semi-Markov processes

It is possible to define stochastic processes more general than the semi-Markov process,

where the WTDs

Prob{the jump is xi−1 → xi and the transition is at age τ} (1.114)

depend parametrically not only on the configuration xi−1, as in the semi-Markov pro-

cesses, but also on events occurred during any instant in the past history. We make such

a parametric dependence explicit by using ψxi,xi−1 [τ ;w(t)] to denote the probability

(1.114), where t is the time at which the last transition occurred and τ is the age.

Processes of this type appear naturally in compounded complex systems, where tem-

poral correlations are due to the joint effect of the mechanisms responsible for the single-

particle jumps. Another way to define a non-Markov process is to assign WTDs that

depend on the whole trajectory through the current J [w(t)]; as an example of models in

this class, we will study the IPS of R. J. Harris [35] in section 4.4.2 of chapter 4.

For all such cases, the probability density (1.115) of observing a sample path w(t) is
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replaced by

%[w(t)] = φxn [t− tn;w(tn)]ψxn,xn−1 [tn − tn−1;w(tn−1)] . . .

× ψx1,x0 [t1 − t0;w(t0)]Px0(t0), (1.115)

where the WTD ψxn,xn−1 [tn − tn−1;w(tn−1)] that a transition from xn−1 to xn occurs

during the infinitesimal interval [tn, tn + dt) now depends explicitly on the history until

tn−1. The non-Markov nature of equation (1.115) prevents us deriving a general instant-

wise Master equation in the form of (1.84). The implicit evolution law is then

Px(t) =

∞∑
n=0

∫ t

t0

dt1

∫ t

t1

dt2 . . .

∫ t

tn−1

dtn
∑

x0,x1,...,xn

δx,xn %[w(t)], (1.116)

which gives the probability that a configuration x ∈ S is observed at t > t0.

1.6 The large deviation approach

Non-equilibrium statistical physics is mostly concerned with non-zero currents, whose

comprehension still is one of the greatest challenges of contemporary physics [69]. The

typical values of such currents can be obtained by the knowledge of the stationary state

|P ∗〉. However, currents fluctuate in time, and to study such fluctuations we resort to the

large deviation theory. The analysis of rare fluctuations is interesting for both applied

and pure science: in applications, it is important to predict how likely it is to have rare

but distressing events, while fundamental research also unveiled symmetries such as the

one in equation (1.112), which are known as Fluctuation Theorems (as reviewed, e.g., in

references [36, 59]).

In this section, we present a short introduction to the large deviation theory for

currents. Following reference [65], we formulate the theory only for observables extensive7

in the variable t. We require the probability density P(j, t) that the observable J [w(t)]/T ,

i.e., the total current divided by the observation time T = t−t0, assumes a value j at time

t. Such a time-averaged current is doomed to converge to its expectation value, denoted

by 〈j〉, in the limit t → ∞ (for finite t0), as stated by the Central Limit Theorem. We

say that the current obeys a large deviation principle if the limit

ê(j) = lim
t→∞
− lnP(j, t)

t
(1.117)

7We mention that large deviation results exist also for sub-extensive or super-extensive observables [13,
17]
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exists, is finite and non-zero for some j different from 〈j〉. The limit (1.117) can be

interpreted as the exponential decay rate of P(j, t) with respect to t and is then referred

to as the rate function. It provides us with information about the limiting behaviour

of the current. Using the symbol ∼ to indicate the asymptotic equivalence, the large

deviation principle can hence be expressed as

P(j, t) ∼ e−tê(j). (1.118)

The direct evaluation of ê(j) is not straightforward for many systems of interest. In

this thesis, we compute the rate function following a standard strategy which consists

of some small intermediate steps. We first introduce the moment generating function

of J [w(t)],

Z(s, t) =

∫
e−sJ [w(t)] %[w(t)] dw(t), (1.119)

and the scaled cumulant generating function (SCGF),

e(s) = − lim
t→∞

1

t
lnZ(s, t), (1.120)

which is always concave in s and represents an intensive field conjugated to J . If equa-

tion (1.120) is differentiable, then the Gärtner–Ellis theorem [65] ensures that we can

compute the rate function (1.117) as the Legendre–Fenchel (LF) transform of e(s), that

is,

ê(j) = sup
s
{e(s)− s j}. (1.121)

Clearly, such a strategy has a limitation. In fact, the Legendre–Fenchel transform of

a concave function, such as equation (1.120), is always convex, while it is possible to

find random variables with a non-convex rate function [65]. Hence, care is needed when

non-differentiable SCGFs are found.

We also mention that, according to the Varadhan’s theorem (see again, for example,

reference [65]), if the large deviation principle (1.118) is satisfied, then the SCGF (1.120)

is given by the inverse transform

e(s) = inf
j
{ê(j) + s j}, (1.122)

which is the inverse relation of (1.121) when ê(j) is convex. Typically, the right hand sides

of equations (1.121) and (1.122) are both referred to as the Legendre–Fenchel transforms

of e(s) and ê(j), respectively, the former being used for concave functions, the latter for

convex functions.
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Now, we consider the special case where e(s) is strictly concave, i.e., it does not

contain any linear branch. Then equation (1.121) reduces to

ê(j) = e(s∗)− s∗ j, (1.123)

where s∗ is the unique solution in s of

∂e(s)/∂s = j, (1.124)

and the LF transform reduces to the Legendre transform of e(s). The strict concavity

implies that the function f(s) = ∂e(s)/∂s is monotonically decreasing, hence the inverse

function f−1 exists. Applying such a function to both sides of equation (1.124), we get

an implicit expression for s, in terms of j, namely f−1(j) = s. It is convenient to define

a new symbol s for such an inverse function to get

s(j) = s. (1.125)

It is worth stressing that, according to equation (1.124), the derivative of the original

function e(s) is the argument of the function ê(j) obtained after a Legendre transform.

We now show that the derivative of the Legendre transformed function is the argument

of the original function. Using equation (1.125), we have that

ê(j) = e[s(j)]− j s(j), (1.126)

hence
∂ê(j)

∂j
=
∂e(s)

∂s

∂s(j)

∂j
− s(j)− ∂s(j)

∂j
j, (1.127)

Here, by virtue of equation (1.124), the first and third term of the r.h.s. cancel to leave

∂ê(j)/∂j = −s(j), a relation analogous to equation (1.124). Therefore, when e(s) is

differentiable, its slope has a one-to-one correspondence with the slope of ê(j), a property

referred to as the duality of the Legendre transform. The graphical construction of ê(j)

from e(s) is illustrated in figure 1.2.

Conversely, when e(s) is not strictly concave, the LF transform maps all the points

in the branch with constant slope ∂e(s)/∂s to the same point in ê(j), as illustrated in

figure 1.3. As a consequence, ê(j) can be non-differentiable at such a point. It is worth

noting that if the green linear branch in the function of figure 1.3(left) is replaced with a

convex branch (with values less than or equal to those of the linear branch), then the LF

transform remains identical to that of figure 1.3(right). This suggests that applying an LT

transform to a non-strictly concave function does not guarantee that all the information

on the original function is preserved. Such loss of information is physically relevant in
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s

e(s)
j  s*

e(j*)  

j

e(j)  

j*

Figure 1.2: Graphical construction of the LF transform ê(j) of a strictly concave function
e(s). For a given value of j∗ there is only one value of sups{e(s) − sj∗} (left figure).
This gives a value of the convex function ê(j) (right figure). The original function e(s)
can be obtained applying the inverse transform (1.122). In this case the LF transform
is equivalent to the simpler Legendre transform, as in equations (1.123) and (1.125),
which only encodes for the generic extremum and does not make distinction between the
infimum and the supremum.

s

e(s)
j*s

e(j*)  

*
j

e(j)

j

Figure 1.3: Graphical construction of the LF transform ê(j) of a concave function e(s)
with a linear branch. All the points corresponding to the shaded area in the left figure
are mapped to the point at j∗ in the right figure. The values of ê(j) for j < j∗ (j > j∗)
depend on the values of e(s) at the right (left) side of the shaded area.
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e(s)
j1s
j2s

{}
sc

e(j1)  

e(j2)  

s

j2 j1

e(j)  

Figure 1.4: Construction of the LF transform ê(j) of a strictly concave function e(s) with
a non-differentiable point sc. The value e(sc) − jsc determines the values of ê(j) along
an interval j1 < j < j2 (red line in the right figure). As suggested by equation (1.124),
the boundary values j1 and j2 are given by the left and right derivative of e(s) at sc,
respectively.

the following scenario. Let us consider the LF transforms of non-differentiable functions.

The definition of the Legendre transform is, of course, inadequate for this case; on the

contrary, a LF transform can be easily computed even on non-differentiable points, see

the example on figure 1.4(left). Such a picture shows that the non-differentiable point

of e(s) contributes a continuous set of values in ê(j) (red branch in figure 1.4(right))

whose values varies linearly with j (which determines the slope of the orange and green

line in figure 1.4(left)). We stress that, in such a case, the Gärtner–Ellis theorem does

not apply and it is not guaranteed that ê(j) is the correct rate function: in presence of

non-differentiable SCGFs, the LF transform only provides the convex hull of the true

rate function, which can hide a non-convex branch. In this thesis, we will encounter some

non-differentiable SCGFs but the existence of non-convex rate function has been ruled

out by numerical tests. The mathematically inclined reader is referred to reference [58]

for a detailed and rigorous approach to convex analysis. Details about the mechanisms

that render or hide a non-convex rate function, in the context of Statistical Mechanics,

are in references [64, 66].

The SCGF of a type A current, in Markov processes, has a rather compact represen-

tation. We work on a joint configuration–current space, defined as the Cartesian product

S⊗J , where J is the set of all the values that the integrated current J [w(t)] can assume.

We also represent the random variable J [w(t)] as a diagonal operator J, whose diago-

nal elements are the set of possible values that the integrated current can assume. The

generic element of this space is the column vector |P ′(t)〉 =
∑

xi,J
Pxi,J(t)|exi,J〉 which

represents the joint probability mass distribution that the system has a certain configu-

ration and current; |exi,J〉 is the generic element of a natural basis for S ⊗ J . Hence, if

we begin the observation at the initial time t0 = 0, the moment generating function can
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be written as

Z(s, t) = 〈1|
(
1⊗ e−sJ

)
|P ′(t)〉, (1.128)

The vector |P ′(t)〉 can be obtained from an initial state |P ′(0)〉 with zero total current

through |P ′(t)〉 = eG
′t|P ′(0)〉, where eG

′t is the time evolution operator in the joint

configuration–current space and is tridiagonal with respect to the current sub-space. We

diagonalise eG
′t by means of a discrete Laplace transform, which in operator formalism

reads
(
1⊗ e−sJ

)
eG
′t
(
1⊗ esJ

)
= eG̃t ⊗ 1. This can be achieved by using the identity

operator in the form esJe−sJ, to obtain 〈1|
(
1⊗ e−sJ

)
eG
′t
(
1⊗ esJ

) (
1⊗ e−sJ

)
|P ′(0)〉.

Hence, we obtain an operator G̃ which is regrettably non-stochastic but encodes for the

statistics of the current without the need of the sub-space J , i.e.,

Z(s, t) = 〈1|
(

eG̃t ⊗ 1
) (
1⊗ e−sJ

)
|P ′(0)〉. (1.129)

Since it has been assumed that at the beginning of the observation the current is zero,

we can more compactly write

Z(s, t) = 〈1|eG̃t|P (0)〉, (1.130)

where |P (0)〉 denotes the initial probability vector in the configuration subspace.

More explicitly, the generic row equation of the Master equation obeyed by the joint

probability Pxi,J(t) is

d

dt
Pxi,J(t) =

∑
xj

[
gxi,xjPxj ,J−θxi,xj (t)− gxj ,xiPxi,J(t)

]
. (1.131)

Multiplying by e−sJ and summing over J both sides of equation (1.131), it is straightfor-

ward to show that the discrete Laplace transform

P̃xi(t) =
∑
J

e−sJPxi,J(t) (1.132)

evolves according to

d

dt
P̃xi(t) =

∑
xj

[
gxi,xje

−sθxi,xj P̃xj (t)− gxj ,xiP̃xi(t)
]
, (1.133)

which can be thought of a Master equation with non-stochastic generator G̃, obtained

from G by multiplying by e−sθxi,xj the entries that contribute a term θxi,xj to the total

current. The products e−sθxi,xj gxi,xj are referred to as biased rates. Hereafter, we will

refer to the tilded operator G̃ as the a biased or s-modified generator. It is worth noting
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that we can still apply the Perron–Frobenius theory of non-negative matrices8 to eG̃t

and expect that it has only one positive eigenvalue eλ1t on the spectral radius. We also

use the “tilded” notation to denote the generic column vector |P̃ (t)〉 = exp(G̃t)|P (0)〉 .

Let us denote by |P̃λ1〉 the right eigenvector of G̃ associated with the largest eigenvalue

λ1; then, the long-time limit of the generating function is accessible through

Z(s, t) ∼ 〈1|P̃λ1〉〈P̃λ1 |P (0)〉 eλ1t, t→∞, (1.134)

as long as the pre-factors 〈1|P̃λ1〉 and 〈P̃λ1 |P (0)〉 are finite and a point spectrum exists.

Under the same conditions, we can identify −λ1 with the SCGF (1.120). Conversely,

when one of the two pre-factors diverges, or when the leading eigenvalue is not known,

we rely on the study of the integral representation of the moment generating function.

We finally mention that large deviation functionals can also be defined for observables

extensive in a variable different than the time. For example, the equilibrium Statistical

Mechanics is formulated in the limit as the system size approaches infinity with the total

Energy being extensive in the size and thus taking the role of J . The analogues of s,

e(s) and ê(j) are the inverse temperature β, the Helmholtz Free Energy scaled by the

temperature Aβ and the Entropy S, respectively [1, 16, 17, 65, 70]. This also justifies the

use of “canonical” density and “partition function” when referring to e−sJ [w(t)] %[w(t)]

and Z(s, t), respectively.

1.7 Monte Carlo methods

1.7.1 Stochastic simulation algorithm

A stochastic simulation consists of the generation of sample trajectories of a stochastic

process. In section 1.2 we defined a trajectory as the ordered collection of configuration–

time pairs of equation (1.7). The general strategy used in the stochastic simulations is

to decompose the problem of finding pairs of the type (ti, xi), and hence find the answer

to two questions:

1) when is the next transition going to occur?

2) what configuration xi will the system adopt after such a transitions?

For continuous-time Markov processes, this problem has been solved by J. L. Doob [15];

years later, D. T. Gillespie [28] obtained the same result by making use of physical argu-

8when the configuration space is finite.
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ments. As the configuration xi is determined by the knowledge of the configuration xi−1

before the last jump and the reactions that yield xi, the question 2) can be replaced by:

2’) what type of transition xi−1 → xi will it be?

This makes explicit that, in a Markov process, the probability of having a certain con-

figuration in the future depends on the configuration before the last jump.

The steps of a statistically correct stochastic-simulation algorithm can be obtained

as follows. We divide and multiply equation (1.32) by
∑

xj
gxj ,xi . This gives representa-

tion (1.46), with

pxj ,xi =
gxj ,xi∑
xj
gxj ,xi

(1.135)

and

ψxj (τ) =

∑
xj

gxj ,xi

 exp

−∑
xj

gxj ,xiτ

 (1.136)

(notice that this case satisfies the DTI). The Gillespie–Doob algorithm for the generation

of a sample path then reads:

1) Initialise the system to a configuration x0 and a time t0. Set a counter to n = 1.

2) Draw a value τ according to the density (1.136) and update the time to tn =

tn−1 + τ .

3) Update the system configuration to xn, with probability given by (1.135).

4) Update n to n+ 1 and repeat from 2) until tn reaches the desired simulation time.

Widely used variants of the Doob-Gillespie scheme are the tau-leaping algorithm9, which

consists in combining many steps with exponentially-distributed waiting times into a

single step encoding for a Poisson-distributed number of events [29], the exact next

reaction method [27], wich uses only a single random number per simulation event, and

the random-sequential update [56], which conversely samples more events to reject some

of them10. More efficient, but still exact, versions of the stochastic-simulation algorithm

for Markov processes are reviewed, e.g., in reference [30].

1.7.2 Population dynamics approach to the large deviations

According to the large deviation principle (1.118), the probability to observe a value

of J [w(t)]/T different from the mean value decreases exponentially with time. A con-

sequence of this is that sample paths with current far from the mean are difficult to

9This is an approximate method.
10This is statistically correct, in agreement with the thinning property [34].
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sample. For this reason advanced procedures are necessary to compute numerically the

large deviation functionals.

In reference [25] a numerical procedure, which is referred to as the cloning or popula-

tion dynamics method, was proposed as a general scheme for the evaluation of large devi-

ation functionals of non-equilibrium Markov processes and demonstrated for a discrete-

time Markov process. Such a procedure consists of assigning to each trajectory of the

ensemble a population of identical clones consistent with a certain weight. As reviewed,

e.g., in references [32, 33], the idea is not new. It seems to be born in the context of quan-

tum physics and credited to E. Fermi [51], who suggested its use to evaluate the ground

energy of a Schrödinger operator, see also reference [2] and the review of D. Ceperley and

B. Alder [6]. Since then, it has also been extensively applied within equilibrium statistical

physics [40, 46, 62] and proposed for applications in machine learning and probabilistic

artificial intelligence [42]. This method gives direct access to the SCGF e(s) and allow us

to tune the parameter s as it would be possible in equilibrium thermodynamics, where we

can tune, e.g., the temperature to obtain different values of the Helmholtz Free Energy.

The cloning approach to sample large deviation events in continuous-time Markov

processes, which obey a Master equation for the form (1.14), has been demonstrated in

reference [49] and has been widely used in literature, e.g., [4, 5, 18, 23, 24, 26, 43–45, 57].

Here we deal with the mathematics behind such a method, while a generalisation to

non-Markovian processes and some situations that can lead to inefficiency or failure are

discussed in chapter 4. Looking at the equation (1.119), we recognise that the modified

generator G̃ defines a prescription for the evolution in time of a vector |P̃ (t)〉. The Master

equation for this non-stochastic Hamiltonian reads

d

dt
|P̃ (t)〉 = G̃|P̃ (t)〉. (1.137)

Let us define DG̃ and DG as diagonal matrices with entries

[
DG̃

]
xi,xi

= −
∑
xj

e−sθxj,xigxj ,xi =: g̃xi , (1.138)

[DG]xi,xi = −
∑
xj

gxj ,xi =: gxi (1.139)

respectively. By summing and subtracting DG̃ on equation (1.137), we get

d

dt
|P̃ (t)〉 = G̃′|P̃ (t)〉+

(
DG̃ −DG,

)
|P̃ (t)〉. (1.140)

where G̃′ is a stochastic generator obtained from G̃ after substituting its diagonal
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with DG̃. Equation (1.140), indeed, does not describe an ordinary stochastic evolu-

tion as |P̃ (t)〉 does not satisfy the normalisation condition for probability vectors, i.e.,

〈1|P̃ (t)〉 6= 〈P̃ (t)|P̃ (t)〉 6= 1, and does not conserve its norm as the system evolves over

time. V. Lecomte and J. Tailleur [49] argued that the vector |P̃ (t)〉 describes the stochas-

tic dynamics of a set of trajectories evolving according to G̃′ in time, while the weight

associated to each trajectory expands or contracts as prescribed by
(
DG̃ −DG

)
. A sim-

ulation algorithm follows straightforwardly:

1) Set up an ensemble of N clones and initialise each with a given time t0, a random

configuration x0, and a counter n = 0. Set a variable C to zero. For each clone,

draw a time τ of the next jump from the density
(∑

xi
g̃xi,x0

)
exp

(
−∑xi

g̃xi,x0τ
)
,

and then choose the clone with the smallest value of t = t0 + τ .

2) For the chosen clone, update n to n+1, and the configuration xn−1 to xn according

to the probability mass

g̃xn+1,xn

/(∑
xi

g̃xi,xn

)
. (1.141)

3) Generate a new waiting time τ for the updated clone according to(∑
xi

g̃xi,xn

)
· exp

(
−
∑
xi

g̃xi,xnτ

)
(1.142)

and increment the value of t to t+ τ .

4) Cloning step. Calculate a cloning factor

Y = exp

[
τ ·
∑
xi

(g̃xi,xn − gxi,xn)

]
. (1.143)

Discretise11 the growth/decay rate to y = bY +uc, where u is drawn from a uniform

distribution on [0, 1).

1) If y = 0, prune the current clone.

2) If y > 0, produce y copies of the current clones.

5) Increment C to C + ln[(N + Y − 1)/N ]. Choose the clone with the smallest t, and

repeat from 2) until t− t0 for the chosen clone reaches the desired simulation time

T .

11The numerical caveats deriving from the discretisation of such a cloning rate are discussed in refer-
ence [38].
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The SCGF is finally recovered as −C/T for large T . A major problem is that this pro-

cedure implies a fast growth or decay of the total population, thus not being sustainable

for many iterations. To tackle this issue the step 4) is supplemented with the following

instruction, which sets the number of clones back to N :

4’) 1) If y = 0, replace the pruned clone with another one, uniformly chosen among

the remaining N − 1.

2) If y > 0, prune a number y of elements, uniformly chosen among the existing

N + y.

This method has been reported to be inaccurate when the spectrum of the generator

G̃ is totally continuous [57] (this implies a vanished spectral gap and a slow convergence

to |P̃ (t)〉) and when the number of copies is close to the size of the ensemble [41].
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As a comprehensive theory of non-equilibrium phenomena does not exist, the study

of analytically tractable toy models is an effective way to build it up. We begin our

investigation by studying a model of interacting particles on lattice which we refer to as

the on-off zero-range process (on-off ZRP). Generically, the zero-range paradigm requires

that each lattice site can contain an arbitrarily large number of particles and that the

particles leave the site after a random waiting time that depends only on the departure

site configuration (thus encoding for on-site interactions). A modified ZRP, introduced

in Hirschberg et al. [28], incorporates memory by means of an additional discrete phase

variable for each lattice site, which has been referred to as a clock in the original litera-

ture. Specifically, in this chapter, we introduce and study the open-boundary version of

such a model. We derive the exact NESS solution of the one-site system and a mean-field

approximation for the general lattice. Both solutions correspond to that of a Markovian

ZRP with effective interaction. We also explore the case where such NESS does not

exists, a situation that is referred to as congestion or condensation.

This chapter is based on part of the results published in Cavallaro et al. [9] and is
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organised as follows. The standard ZRP is inserted into the wider context of interacting-

particle and queuing theory in section 2.1. The on-off ZRP with open-boundaries is

introduced in section 2.2. The exact results for the one-site system and the mean-field

approximation for the extended lattice are presented in sections 2.3 and 2.5 respectively,

while the quantum Hamiltonian formalism to handle the dynamics on the extended

lattice is discussed in section 2.4. The transition to the congested state is the topic of

section 2.6.

2.1 The zero-range process and queuing networks

Modelling is an essential part of physics. A widespread approach to model real-world

systems is to coarse-grain the physical space into a lattice, which is a discrete space

with some boundary conditions. A typical lattice topology choice is the integer lattice,

which is a subset Ω of the d-dimensional space Zd, Z denoting the set of integer numbers,

although it possible to define different lattice structures. Also, periodic or open boundary

conditions are typically specified. We assume that each site can be occupied by a certain

number of particles, which can jump to another site according to the lattice topology

and some dynamical rules. This defines an interacting-particle system (IPS) [34–36].

Formally, the state of the system is an element of the vector space NΩ and specifies the

occupation number of each site.

IPSs feed a lot of very active research in applied probability [37, 38], and a compre-

hensive review is infeasible here. It is worth mentioning though that one of the most

important models of IPSs is the asymmetric simple exclusion processes (ASEP). In such

a model each lattice site can contain up to one particle, which attempts to leave the site

after an exponentially distributed waiting time. Each static configuration is represented

by an element of {0, 1}Ω. Even in the simple one-dimensional lattice, the ASEP, with

open or periodic boundaries, has been used to model real-life situations, such as surface

growth and vehicular traffic; it also has interesting exact analytical results, see the details

in, e.g., the reviews [6, 12, 15, 26, 39]. Also, modified ASEPs on one-dimensional lattice

have been used to model the transport of kinesin and dynein along cytoskeleton micro-

tubules [32], ribosome dynamics during protein translation [45], and molecule transport

through microscopic channels [11].

The ZRP is another paradigmatic IPS, where each lattice site can contain an arbitrary

positive number of particles. We are concerned with a one-dimensional chain lattice, see

figure 2.1. The evolution proceeds in continuous time, i.e., transitions occur after a

waiting time which is an exponentially distributed random variable. Specifically, in the
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standard ZRP, a particle can hop to one of the neighbouring sites with rate proportional

to µn, which depends only on the occupation number n of the departure site. Obviously,

the departure rate from an empty site is given by µ0 = 0. The functional form of µn

encodes for the interaction between particles, which occurs only on the departure site,

hence the epithet “zero range”. The special case µn = an, where a > 0 is a constant,

corresponds to free particles since in this case each particle leaves the site independently

from the others. Other choices of µn correspond to attractive or repulsive inter-particle

interaction if the n-dependence is sublinear or superlinear, respectively.

Models with zero-range interactions have proven to display complex collective be-

haviour whilst allowing analytical treatment [18]. In particular, the ZRP is well suited

for theoretical analysis because the stationary probability distribution of a given config-

uration factorises and can be calculated exactly [46]. The stationary probability P ∗{nl}l of

finding the system in a state {nl}l := (n1, n2, . . . nL) with nl particles on site l, 0 ≤ l ≤ L,

is given by a simple factorised form

P ∗{nl}l =

L∏
l=1

P ∗nl;l
, (2.1)

where P ∗nl;l
is the probability of finding the site l with nl particles (this is also verified in

presence of Poisson arrivals from the boundaries). The one-site marginals are determined

by

P ∗n;l =
zl
n

Zl

n∏
i=1

µ−1
i , (2.2)

where zl is a site-dependent fugacity (which is a function of the hopping rates) and the

grand-canonical partition function Zl =
∑∞

n=0 zl
n
∏n
i=1 µ

−1
i ensures normalisation [33].

It is worth noting that, for certain choices of µn, it is not possible for the sum in Zl to

converge for all zl. The divergence of Zl corresponds to the accumulation of particles on

the site l and is referred to as congestion. Indeed, the infinite accumulation on one or more

sites in an open system can be thought of as a kind of condensation phenomenon [10,

33]. Hence, in the following, we will also use the “condensation” terminology even for

the single-site case. Condensation transitions far from equilibrium have been studied in

physics [17], as well as in economics [7, 8], biology [19], network science [5, 13], and

queueing theory [10]. Toy models, such as the ZRP, provide a theoretical foundation

for understanding condensation in these systems. Exact results from the ZRP have also

been used in models of vehicular traffic [31, 43], reptation in polymer physics [1], and

transport and coalescence in granular systems [48].

The ZRP generalises to some extent the Jackson network [10, 14], which has been

developed in Queuing Theory (a branch of the Operational Research community) [30, 47].
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...

γμn pμn

qμn pμn

βμnqμn

α δ

Figure 2.1: Zero-range process in one-dimensional lattice with open boundaries. A parti-
cle on a site with occupation number n leaves the site leftwards and rightwards with rate
proportional to µn. New particles enter the lattice through the rightmost and leftmost
sites.

Queuing networks are tools for the analysis of systems of customers that circulate among

a certain number of nodes, waiting for and then receiving service on each node. They

have also been proposed as tools for gene regulatory networks [2, 24] and epidemics [50].

Essentially, queuing networks can be safely thought of as IPSs, where the notion of

particle is replaced by the one of “packet” or “customer”. Such systems can also have

open boundaries, where customers arrive from or leave to the outside world (after the

service they asked for is completed); alternatively, closed networks do not receive new

customers and the existing customers cycle indefinitely in the system. Typically, the

stochastic dynamics at each node is characterised by the following quantities:

1. the arrival discipline A,

2. the service time policy B,

3. the number of servers C,

4. the node capacity N, i.e., the maximum occupation number.

According to the Kendall notation these are packed into an expression of the form

A/B/C/N which defines a single queue. Some possible values for A and B are M for

Markovian (i.e., exponentially distributed) inter-event times, Ph for phase-type dis-

tributed inter-event times, G for general policy, and D for deterministic or constant

policy. The case with M/M/1/∞ corresponds to a ZRP with departure rate µn constant

in n, while the case M/M/∞/∞ can be described by a ZRP with µn ∝ n. The ZRP is

more general as it allows an arbitrary functional form for µn.

In networks of queues, the arrival discipline A cannot be specified a priori; however,

a remarkable property of nodes of the type described above, when allowed to exchange

customers/particles, is that each one of them behaves as if it were subjected to Poisson ar-
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δ

βμn

α

γμn

Figure 2.2: Single-site zero-range process. Particles enter the system with constant rate
α+ δ while they leave with rate µn(β + γ), which depends on the occupation number n.

rivals, which in turns implies a factorised stationary solution of the form of equation (2.1)

(which also holds with open boundaries, if the arrivals are Poisson). The validity of this

statement is expressed by the Jackson theorem (see the reprint [30]), which applies to a

wide class of queuing systems, including the BCMP networks [4] and the Gelenbe net-

works [20, 21, 25] (these are related to spiked random neural networks [22, 23]). One of

the defining properties of such systems is that the node capacity N is infinite.

To illustrate the notions used in this and in the following chapter, we consider first

a single-site lattice in contact with two boundaries (namely left and right), as shown in

figure 2.2. Particles enter the site with constant rate, specifically the rate is α for particles

injected from the left boundary and is δ for particles injected from the right boundary.

As the configuration of the system is represented by the site occupation number, the

probability of having the site with n particles at time t is written as Pn(t). On-site

particles leave the site rightwards or leftwards with rate µnβ or µnγ, respectively. The

total extraction rate is µn(β + γ), which indeed depends only on the site configuration.

The Master equation can thus be written as a set of linear differential equations for

Pn(t),

d

dt
Pn(t) = (α+ δ)Pn−1(t)− (α+ δ + (β + γ)µn)Pn(t) + (β + γ)µn+1Pn+1(t), (2.3)

when n > 0, with boundary conditions

d

dt
P0(t) = −(α+ δ)P0(t) + (β + γ)µ1P1(t), (2.4)
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This system also represents an immigration–death process in continuous time. We com-

pute the stationary state P ∗n as solution of d
dtPn(t) = 0 for all n ≥ 0, i.e., by solving the

remaining difference equations

(α+ δ)P ∗n−1 − (α+ δ + (β + γ)µn)P ∗n + (β + γ)µn+1P
∗
n+1 = 0, (2.5)

for n > 0, with the initial condition

P ∗1 =
α+ δ

(β + γ)µ1
P ∗0 . (2.6)

The solution is

P ∗n = Z−1

(
α+ δ

β + γ

)n n∏
i=1

µn
−1, (2.7)

where the factor Z−1 = P ∗0 is obtained imposing the condition
∑

n P
∗
n = 1 and satisfies

Z =
∞∑
n=0

(
α+ δ

β + γ

)n n∏
i=1

µn
−1. (2.8)

This can be seen as a grand-canonical partition function with fugacity

z =
α+ δ

β + γ
, (2.9)

in analogy to the equilibrium Statistical Mechanics. In fact, for the one-site case, such an

analogy is very strict, as the solution does not need the distinction between left and right

boundaries (which is instead important for the next sections). The partition function Z

allows us to express the mean occupation number as the logarithmic derivative

〈n〉 =

∑∞
n=0 nz

n
∏n
i=1 µ

−1
i∑∞

n=0 z
n
∏n
i=1 µ

−1
i

= z
∂Z(z)

∂z

1

Z(z)
= z

∂

∂z
lnZ(z), (2.10)

and, if we differentiate twice lnZ(z)

∂2

∂z2 lnZ(z) =
∂2Z(z)

∂z2

1

Z(z)
−
(
∂Z(z)

∂z

1

Z(z)

)2

=
〈n2〉
z2
− 〈n〉

2

z2
, (2.11)

we get the variance

σ2 = z2 ∂
2

∂z2 lnZ(z). (2.12)

The partition function also governs the range of validity of equation (2.7). In fact tuning

the parameters α, β, γ and δ, as well as the interaction factor µn, it is possible for Z either

to diverge or converge to zero. In such situations, the stationary solution (2.7) is not valid

any more and we say that a phase transition occurs. A classical physical example has
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been provided in the seminal work of C. N. Yang and T. D. Lee [53], stating that the

zeros of the grand-canonical partition function in the asymptotic limit as the volume

approaches infinity correspond to phase transitions (see also reference [6]). The poles in

the asymptotic representations of the partition function also represent phase transitions,

as discussed in reference [49]. For the one-site ZRP, the partition function (2.8) diverges

when β + γ ≤ α + δ, which means that the average occupation number is doomed to

grow indefinitely and is infinite in the asymptotic limit as the time goes to infinity1. In

the language of Queueing Theory the divergence of Z is referred to as congestion, while

in physics literature, an analogue situation is better called condensation,

2.2 The on-off zero-range process

Several generalisations of the ZRP have been proposed, such as the “inclusion pro-

cess” [27] and variants (some of which can display a phase described as “exploding”

condensate [52]). We are interested in a modified zero-range process with non-Markovian

dynamics, which has been introduced in Hirschberg et al. [28]. Its crucial new ingredient

is that each site has an additional clock/phase variable τ and the particles cannot leave

the site when the clock is set to zero, which corresponds to the off phase. The clock

ticks and turns on with rate c and turns off with each particle arrival. This mechanism

favours the accumulation of particles on a site. According to the zero-range dynamics,

the particles interact only on site, but now have a different departure rate µn,τ . The

additional variable τ takes into account events in particle configuration space that hap-

pened in the past and therefore introduces temporal correlations. Being an integer, τ

defines distinct stages, as in the case 2) seen in section 1.3.1. This model has sparked

interest as it displays, under certain conditions, a condensate with slow drift [28, 29].

Systems with distinct on and off phases are also of interest as models for intra-cellular

ion-channels [40, 51] and for data traffic streams [41], as well as providing examples of

stochastic processes with non-convex rate functions [16].

To the best of our knowledge, the ZRP with on-off dynamics has been studied only

on ring topology, i.e., with periodic boundary conditions. In this and the following chap-

ter we investigate the open-boundary version of the model, thus extending the work

of Hirschberg et al. [28, 29]. We implement the same dynamics on an open chain with

arbitrary hopping rates and boundary parameters, see figure 2.3. Particles are added and

removed through the boundaries. On the leftmost lattice site (site 1), particles are in-

jected with rate α and they are removed with rate γµn,τ which is non-zero only when the

1Notice that this is still represented by an honest stochastic process, as explained in section 1.2.
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...

γμn,τ pμn,τ

qμn,τ pμn,τ

μn,τ

βμn,τqμn,τ

α δ

τ=1 τ=2 τ=1 τ=0 τ=3

Figure 2.3: Non-Markovian ZRP on a one-dimensional lattice with open boundaries.
Each site has a hidden variable τ , whose values are represented by the positions of a gear,
which controls the departure rate. When τ assumes value zero no departure is possible
and the corresponding state is referred to as off. This lock-down occurs in conjunction
with the arrival of a particle.

phase of site 1 is different from τ = 0. Similarly, on the rightmost site (site L) particles

are removed with rate βµn,τ , according to the phase of site L, and are injected with rate

δ. This situation corresponds to a bulk system in contact with two different reservoirs.

In the bulk, particles jump to the left (right) with rate qµn,τ (pµn,τ ), which is again

non-zero only when the phase of the departure site is not τ = 0. The dynamics is sensi-

tive to the specific rate values and we consider choices that induce a rightwards driving

along the chain. In particular, it is worth making the distinction between a process with

(γ, δ, q) = (0, 0, 0), which is referred to as totally asymmetric (TA), and a process where

these equalities are not satisfied, generally referred to as partially asymmetric (PA).

Specifically, we will consider explicitly two forms for the interaction factor µn,τ , i.e.,

the case where µn,τ is constant with respect to n > 0, which corresponds to an on-site

attractive interaction between particles, and the case where µn,τ is linear in n, which

corresponds to no direct interaction between particles (excluding residual correlations

due to the blockade mechanism).

The stationary state of the standard ZRP on an open chain has been extensively

studied in Levine et al. [33]. In this case the particles are distributed along the system

according to the product-form structure of equation (2.1) that implies no correlations

between sites. In contrast, the on-off ZRP can generate more complex patterns, as shown

in figure 2.4 for four sets of parameters. The clock-tick rate c plays a major role in these
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patterns, the lower its value is, the more important the correlations are. Increasing the

value of c, the system eventually becomes spatially uncorrelated. We now study in detail

how the introduction of time correlations affects the stationary state.

2.3 Exact results for the one-site system

One of the most striking effects of the phase τ = 0, which hereafter will be referred

to as off phase, is to create correlations between the occupation numbers on each sites.

Consequently there is no factorised steady state for the dynamics described in section 2.2.

However, for the single-site system an exact solution is straightforward. First of all, as

long as we are interested in the stationary state of the single site system, we do not

need to distinguish between left and right boundary terms. The state is defined by two

variables: the number of particles in the box n and a “clock” or “phase” variable τ , thus

(n, τ) ∈ S . We focus on TA dynamics and consider a box which receives particles with

rate α and ejects particles with rate βµn,τ , where µn,τ is a function of the box state. The

departure event is possible only when τ 6= 0. Also, the dynamics includes the advance

of the clock with rate c, and the reset to τ = 0 when a particle arrives. If one defines

P−1,τ (t) = Pn,−1(t) = 0, the following Master equation is valid for τ ≥ 0 and n ≥ 0:

d

dt
Pn,τ (t) = cPn,τ−1(t) +βµn+1,τPn+1,τ (t) + δτ,0

∑
τ ′≥0

αPn−1,τ ′(t)− (c+βµn,τ +α)Pn,τ (t),

(2.13)

where Pn,τ (t) denotes the probability of finding the system with n particles and phase

τ at time t and δτ,0 is a Kronecker delta. The first term on the right-hand side of (2.13)

corresponds to a clock tick, the second term to the departure of a particle, the third term

to the arrival of a particle and the fourth term to the respective escape events from the

state (n, τ). The transition graph for this process is illustrated in figure 2.5.

As in references [28, 29], we choose to simplify the dependence of the jump rate on τ

to µn,τ = µn when τ > 0. Hereafter we specialise to this case, except when we explicitly

refer to a general form for µn,τ . In this simplified case, it is more convenient to write the

Master equation (2.13) in terms of Pn,ON(t) =
∑

τ>0 Pn,τ (t) and Pn,OFF(t) = Pn,0(t),
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Figure 2.4: Monte Carlo time evolution of the occupation profile of the on-off ZRP
on a one-dimensional lattice. (a) Rates µn,τ = n if τ > 0, µn,τ = 0 otherwise, and
(α, β, γ, δ, p, q, c) = (0.1, 0.2, 0, 0, 1, 0, 0.05). Only correlations due to the blockade mech-
anism are present. The particles organise in travelling clusters. Their speed is mainly
governed by c. (b) Same parameters as the former case, except (β, p) = (104, 104). The
particles jump almost simultaneously to the next site as soon as the blockade is removed.
Each particle cluster tends to occupy a single site. The drift proceeds with a rate ' c.
(c) Same parameters as (a), except µn,τ = 1 if τ > 0 and n > 0, µn,τ = 0 otherwise, and
c = 0.15. As a result of the attractive inter-particle interaction, the clusters with more
particles travel slower than the less populated ones. This mechanism enhances conges-
tion. (d) Standard ZRP. Parameters are as in (a), except for the value of c, which can
be assumed to be infinite in this case. The density profile is rather uniform.
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Figure 2.5: Markov graph of the one-site on-off ZRP, in the extended configuration–phase
space.

i.e.,

d

dt
Pn,ON(t) = cPn,OFF(t) + βµn+1Pn+1,ON(t)− (βµn + α)Pn,ON(t), (2.14)

d

dt
P0,ON(t) = cP0,OFF(t) + βµ1P1,ON(t)− αP0,ON(t), (2.15)

d

dt
Pn,OFF(t) =αPn−1,ON(t) + αPn−1,OFF(t)− (c+ α)Pn,OFF(t), (2.16)

d

dt
P0,OFF(t) = − (c+ α)P0,OFF(t). (2.17)

By equating the left-hand sides of equations (2.14)–(2.17) to zero, we find that the

stationary distribution is given by

P ∗n =
zn

Zc

n∏
i=1

w−1
c,i , (2.18)

P ∗n,OFF =
βµn

α+ c+ βµn
P ∗n , (2.19)

P ∗n,ON =
(α+ c)

α+ c+ βµn
P ∗n , (2.20)

where z = α/β, wc,i = µi(α + c)/(α + c + βµi), Zc =
∑∞

n=0 z
n
∏n
i=1w

−1
c,i , and P ∗n =

59



Chapter 2. Temporally correlated zero-range process with open-boundaries: steady state
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Figure 2.6: Occupation probability distribution of the one-site system for constant (µn =
µ, n > 0) and linear (µn = n) microscopic departure rate. The arrival and departure rate
are α = 0.1 and β = 0.2 respectively.

P ∗n,ON + P ∗n,OFF by construction. We recognise the same stationary state (2.2) as the

standard ZRP, with an effective departure rate wc,n = µnPON|n, where PON|n = (α +

c)/(α+c+βµn) is the conditional probability of finding the site in the on state, given that

there are n particles. For c → ∞, the effective jump rate converges to the microscopic

rate, i.e., wc,n → µn. The stationary probability distribution of the occupation number

is checked against Monte Carlo simulations in figure 2.6 for both constant and linear

departure rates. Its tail is longer than the corresponding Markovian model (c→∞).

The equations (2.18)–(2.20) can be derived as follows. Summing equations (2.14)

and (2.16), and imposing the stationarity condition, it follows that

βµn+1P
∗
n+1,ON − αP ∗n = βµnP

∗
n,ON − αP ∗n−1, (2.21)

while the stationarity conditions on equations (2.15) and (2.17) imply the boundary

conditions

βµ1P
∗
1,ON − αP ∗0,ON =0, (2.22)

P0,OFF =0, (2.23)

which, together with (2.21), allow us to write the recursive relation

βµn+1P
∗
n+1,ON = αP ∗n,ON + αP ∗n,OFF. (2.24)
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Using the stationarity condition on equation (2.16)

(α+ c)P ∗n+1,OFF = αP ∗n,ON + αP ∗n,OFF, (2.25)

we eliminate P ∗n from equations (2.24) and (2.25) and get

(α+ c)P ∗n+1,OFF = βµn+1P
∗
n+1,ON. (2.26)

This, along with P ∗n = P ∗n,ON + P ∗n,OFF , immediately yields equations (2.19) and (2.20).

The ratios (βµn)/(α+c+µnβ) and (α+c)/(α+c+βµn) are the conditional probabilities

P ∗OFF|n and P ∗ON|n, respectively. Substituting in (2.24) or (2.25) we get the recursive

relation:

µn(α+ c)

α+ c+ βµn
P ∗n+1 =

α

β
P ∗n .

Finally, iterating and using the definitions of z and Zc we find the probability mass (2.18).

The normalisation condition
∑

n P
∗
n = 1 on the probability distribution (2.18) re-

quires limn→∞ α/(βwc,n) < 1. For µn = µ, the effective departure rate is referred to as

wc, and this stationarity condition is simply α/(βwc) < 1. This implies that values of c

smaller than the threshold

c1 :=
α2

βµ− α (2.27)

exclude any stationary state and produce a congested phase. The onset of congestion in

a larger system with constant departure rate is explored in section 2.5 using a mean-

field approach. For unbounded microscopic departure rates, i.e., limn→∞ µn = ∞, the

effective interaction is still bounded, since limn→∞wc,n = (α+ c)/β. However, as long as

c > 0, the normalisation condition is always ensured, as limn→∞ α/(βwc,n) = α/(α+ c).

Obviously, the linear departure rate case falls into this category.

2.4 The quantum Hamiltonian formalism

According to the section 1.2, the stochastic dynamics described by equations (2.3) and

(2.4) can be represented by a Master equation in the form

d

dt
|P (t)〉 = −H|P (t)〉 (2.28)
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with generator

−H =



−α− δ (β + γ)µ1 0 0 . . .

α+ δ −α− δ − (β + γ)µ1 −(β + γ)µ2 0

0 α+ δ −α− δ − (β + γ)µ2 −(β + γ)µ3

0 0 α+ δ −α− δ − (β + γ)µ3

...
. . .


(2.29)

The choice of the letter H and the sign convention used are part of the so-called quantum

Hamiltonian formalism, which is a convenient way to represent the dynamics of particle

systems. The epithet “quantum” has become standard, along with the warnings that

underline that the generator of a stochastic process is in general non-Hermitian, contrary

to the operators in Quantum Mechanics. Also, at the risk of causing some confusion, the

operator H is referred to as the Hamiltonian. For a classic account of such a formalism

see reference [44]. The generic element |en〉 of the natural basis, which is a column

vector with the n-th component equal to one and the remaining components equal to

zero, represents a single-site configuration with n particles. Let define the creation and

annihilation operators

a+ =


0 0 0 . . .

1 0 0

0 1 0
...

. . .

 and a− =


0 µ1 0 . . .

0 0 µ2

0 0 0
...

. . .

 , (2.30)

respectively, and the diagonal operator

d =


0 0 0 . . .

0 µ1 0

0 0 µ2

...
. . .

 . (2.31)

Now the Hamiltonian in equation (2.29) can be written as

H = −α(a+ − 1)− δ(a+ − 1)− β(a− − d)− γ(a− − d) (2.32)

where the diagonal operators 1 and d encode for the conservation of the probability.

Obviously, applying the ladder operator to the basis vectors yields:

a+|en〉 = |en+1〉 and a−|en〉 = µn−1|en−1〉. (2.33)
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These operators represent attempts rather than actual events; consistently the action of

a− on the empty site gives zero, i.e., there is no change in |P (t)〉. Let us now consider

the ZRP with open boundaries on the one-dimensional lattice of length L, and represent

the state as the tensor product

|P (t)〉 = |P (t)〉1 ⊗ |P (t)〉2 ⊗ . . .⊗ |P (t)〉L, (2.34)

where |P (t)〉l is the marginal probability distribution of the occupation of the l-th site,

l = 1, 2, . . . , L. We also define the ladder operators for each site, so that a+
l , a−l , 1l, and

dl are defined consistently with equations (2.30) and (2.31) but act non trivially on the

l-th site, leaving the others unchanged. The jump of a particle from site l to site m is

equivalent to the annihilation of a particle on site l and, simultaneously, the creation

of a particle on site m. The total action can be written as the product operator a+
ma
−
l ,

which only modifies the m-th and l-th sites if the l-th site is non-empty, while gives

zero otherwise. The boundaries are treated as in the single-site case. Consequently the

complete Hamiltonian can be written compactly according to

−H = α(a+
1 − 11) + γ(a−1 − d1)

+
L−1∑
l=2

[
p(a+

l a
−
l−1 − dl−1) + q(a+

l−1a
−
l − dl)

]
+ β(a−L − dL) + δ(a+

L − 1L) (2.35)

We also mention that the formal solution of equation (2.28) can be expressed as

|P (t)〉 = e−Ht|P (0)〉. (2.36)

We now present the quantum Hamiltonian formalism for the on-off ZRP on the single

site. We work in the joint occupation and phase vector space, defining a probability basis

vector |en,τ 〉 = |en〉 ⊗ |eτ 〉 representing a configuration with n particles and phase τ .

Hence, the generic probability vector can be written as |P (t)〉 =
∑

n,τ Pn,τ (t)|en,τ 〉 Our

convention is to use the basis kets (1, 0)T and (0, 1)T for the states |eOFF〉 and |eON〉,
respectively, while a configuration with n particles is represented by a basis ket with the

n-th component equal to 1 and the remaining components equal to zero. Consequently,

the Hamiltonian is written as

H = −c(a+
T1
− gT1)− α(a+

N1
fT1 − 1)− β(a−N1

dT1 − dN1dT1), (2.37)
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with

a+
T1

= 1⊗
(

0 0

1 0

)
, fT1 = 1⊗

(
1 1

0 0

)
,

gT1 = 1⊗
(

1 0

0 0

)
, dT1 = 1⊗

(
0 0

0 1

)
,

(2.38)

a+
N1

=


0 0 0 . . .

1 0 0

0 1 0
...

. . .

⊗ 1, (2.39)

a−N1
=



0 µ1 0 0 . . .

0 0 µ2 0

0 0 0 µ3

0 0 0 0
...

. . .


⊗ 1, (2.40)

dN1 =



0 0 0 0 . . .

0 µ1 0 0

0 0 µ2 0

0 0 0 µ3

...
. . .


⊗ 1. (2.41)

We used the convention that a ladder operator with subscript N1 or T1 acts non-trivially

only on the occupation or phase subspace respectively. The additional subscripts 1 under-

line that this Hamiltonian generates the dynamics for the single-site case. The resulting

operator H in the joint space has block tridiagonal structure:

H =



c+ α 0 0 0 0 0 . . .

−c α 0 −βµ1 0 0

−α −α c+ α 0 0 0

0 0 −c α+ βµ1 0 −βµ2 . . .
...

...
. . .


. (2.42)

This type of representation is typical, in general, of stochastic generators of processes

with two variables, such as n and τ in this case. The blocks correspond to changes in

the first variable, while the entries inside the blocks correspond to changes of the second

one. All the variables can change by at most 1. Such processes belong to the class of

quasi-birth–death processes and are simple cases of queues with Markovian arrival and
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Phase-type departure policy [42, 47]. We mention that the results in this section can be

adapted to the more general PA case with the replacement α → α + δ and β → β + γ.

Specifically, the quantum Hamiltonian for PA dynamics on a single site is

H = −c(a+
T1
− gT1)− α(a+

N1
fT1 − 1)− β(a−N1

dT1 − dN1dT1)

− γ(a−N1
dT1 − dN1dT1)− δ(a+

N1
fT1 − 1). (2.43)

On a many-site one-dimensional lattice of length L with open boundaries, the quantum

Hamiltonian reads

H = −
L∑
l=1

c(a+
Tl
−gTl)−

L−1∑
l=1

[
p(a+

Nl+1
fTl+1

a−Nl
dTl−dNl

dTl)+q(a
+
Nl
fTla

−
Nl+1

dTl+1
−dNl+1

dTl+1
)
]
+

− α(a+
N1
fT1 − 1)− β(a−NL

dTL − dNL
dTL)− γ(a−Nl

dTl − dN1dT1)− δ(a+
NL
fTL − 1),

(2.44)

where the ladder operators a+
Nl,Tl

, a−Nl,Tl
, dTl , gTl , and fTl have the same definitions as

in equations (2.38)–(2.41) after the replacement 1 → l. The additional index l, where

l = 1, 2, . . . , L, indicates that the operator acts on the configuration nl, τl of the site of

index l. In the next section we will focus on an approximate stationary solution of the

dynamics generated by this Hamiltonian.

2.5 Mean-field solution for the many-site system

In the case considered so far, particles arrive on the site from the boundaries according

to a Poisson process. The many-site system is rather more complicated than this. In fact,

each site receives particles according to a more general point process, which alternates

time intervals with no events (corresponding to the off phases of the neighbour sites)

and periods with arrivals. Moreover, the exact statistics of the phase switching is not a

priori known.

In this section, we propose an approximate solution for the stationary state of the

on-off ZRP on the one-dimensional lattice of length L with open boundaries. The ap-

proximation consists in decoupling the equations which describe the dynamics for each

site, replacing the point process that governs the arrival on each site by a Poisson process

with an effective characteristic rate. The decoupling of the equations allows us to use the

results obtained for the one-site system in section 2.3.

Let us first consider the general model described in section 2.2, where the departure
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rates µn,τ retain a non trivial dependence on both n and τ . We are interested to write

the exact Master equation for the probability Pnl,τl;l(t) of having a configuration (nl, τl)

of the bulk site l. However, we cannot isolate the behaviour of site l from the remaining

L−1 sites and it is more convenient to consider the joint probability P{nj ,τj}j (t) of having

a configuration

{nj , τj}j := ((n1, τ1)1, (n2, τ2)2, . . . , (nL, τL)L) , (2.45)

where the j-th lattice site has occupation number nj and phase τj . To make explicit the

state of the site l, we also reserve the use of

{nj , τj}j 6=l, (nl, τl)l (2.46)

for the same configuration as (2.45). Summing the joint probability P{nj ,τj}j (t) over the

occupation and clock states of all the sites except l, we obtain the marginal probability

of having the l-th site in configuration (nl, τl). With a slight abuse of notation this can

be written as

Pnl,τl;l(t) =

∏
i 6=l
·
∑
ni,τi

P{nj ,τj}j (t). (2.47)

In a similar fashion, we use Pnl+1,τl;l(t) for the probability of having the same site l with

nl + 1 particles and phase τl. We finally write:

d

dt
Pnl,τl;l(t) = cPnl,τl−1;l(t) + (p+ q)µnl+1,τlPnl+1,τl;l(t)

+ p

∏
i 6=l
·
∑
ni,τi

∑
τ

µnl−1,τP{nj ,τj}j 6=l,(nl−1,τ)l(t) δτl,0

+ q

∏
i 6=l
·
∑
ni,τi

∑
τ

µnl+1,τP{nj ,τj}j 6=l,(nl−1,τ)l(t) δτl,0

− (p+ q)µnl,τlPnl,τl;l− p

∏
i 6=l
·
∑
ni,τi

µnl,τlP{nj ,τj}j (t)− q

∏
i 6=l
·
∑
ni,τi

µnl,τlP{nj ,τj}j (t).

(2.48)

We now assume a product measure
∏L
i=1 P

∗
ni,τi for the stationary joint probability P ∗{nj ,τj}j

and impose this solution in the stationarity condition dPnl,τl;l(t)/dt = 0 for equa-
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tion (2.48). This allows us to cancel the factor
∏
i 6=l P

∗
ni,τi to obtain

cP ∗nl,τl−1;l + p
∑
τ

zl−1P
∗
nl−1,τ ;lδτl,0 + q

∑
τ

zl+1P
∗
nl−1,τ ;lδτl,0 + (p+ q)µnl+1,τlP

∗
nl+1,τl;l

= [pzl−1 + qzl+1 + (p+ q)µnl,τl + c]P ∗nl,τl;l
, (2.49)

for the generic bulk site 1 < l < L. We use the symbol zl, already adopted in sec-

tion 2.3 for the fugacity, to denote the ensemble average of the departure rate, since

zl =
∑

nl,τl
µnl,τlP

∗
nl,τl;l

. This equivalence, in fact, is easily verified in the one-site sys-

tem by means of equations (2.18)–(2.20) and remains consistent on chain topology. The

use of an average interaction term justifies the appellation mean-field. Similarly, for the

leftmost and rightmost sites we get, respectively,

cP ∗n1,τ1−1;1 + α
∑
τ

P ∗n1−1,τ ;1δτ1,0 + q
∑
τ

z2P
∗
n1−1,τ ;1δτ1,0 + (p+ γ)µn1+1,τ1P

∗
n1+1,τ1;1

= [α+ qz2 + (p+ γ)µn1,τ1 + c]P ∗n1,τ1;1 (2.50)

and

cP ∗nL,τL−1;L+p
∑
τ

zL−1P
∗
nL−1,τ ;LδτL,0 +δ

∑
τ

P ∗nL−1,τ ;LδτL,0 +(β+q)µnL+1,τLP
∗
nL+1,τL;L

= [pzL−1 + δ + (β + q)µnL,τL + c]P ∗nL,τL;L. (2.51)

In equation (2.49) we recognise the stationarity condition for the single site with arrival

and departure rate equal respectively to (pzi−1 + qzi+1) and (p + q)µni,τi . Similarly,

equation (2.50) is the stationarity condition for a single site with arrival and departure

rates equal respectively to (α+qz2) and (p+γ)µn1,τ1 , while equation (2.51) has arrival and

departure rates equal respectively to (pzL−1 +δ) and (β+q)µnL,τL . Analogous equations

hold when τ = 0 and n = 0. These conditions, in the simplified case µn,τ = µn when

τ > 0, allow us to write an approximate stationary distribution for each site l analogous

to (2.18) but with modified hopping rates

P ∗n;l =
zl
n

Zc,l

n∏
i=1

w−1
c,i;l (2.52)

67



Chapter 2. Temporally correlated zero-range process with open-boundaries: steady state

qz2

pμ1

α

γμ1

1

qz3

pμ2

pz1

qμ2

2

δ

βμL

pzL-1

qμL

…

δ

βμL

pzL-1

qμL

L

Figure 2.7: Representation of the on-off ZRP with open boundaries in mean-field approx-
imation. Each lattice site is thought of as receiving particles according to the fugacity
of its neighbours (which is constant in time), while on-site particles depart according to
the true on-off mechanism.

with Zc;l =
∑

n zl
n
∏n
i=1w

−1
c,i;l and

z1 =
α+ qz2

p+ γ
, wc,i;1 =

µi(c+ α+ qz2)

c+ α+ qz2 + (p+ γ)µi
,

zl =
pzl−1 + qzl+1

p+ q
, wc,i;l =

µi(c+ pzl−1 + qzl+1)

c+ pzl−1 + qzl+1 + (p+ q)µi
,

zL =
δ + pzL−1

β + q
, wc,i;L =

µi(c+ δ + pzL−1)

c+ δ + pzL−1 + (β + q)µi
,

(2.53)

where 1 < l < L. For constant departure rates, we can safely drop the label i from µi,

wc,i;1, wc,i;l, and wc,i;L. The scenario of equations (2.53) corresponds to a one-dimensional

lattice where each site l receives a uniform (in time) particle stream of rate qzl+1 (pzl−1)

from the right (left) neighbour and sends particles according to its internal dynam-

ics (with the condition that the total current along the chain is conserved), as illus-

trated in figure 2.7. In the quantum Hamiltonian formalism, the approximation results

in the separation of the two-site bulk terms of equation (2.44), i.e., p(a+
Nl+1

fTl+1
a−Nl

dTl) ∼
pzl(a

+
Nl+1

fTl+1
+ a−Nl

dTl), and q(a+
Nl
fTla

−
Nl+1

dTl+1
) ∼ qzl+1(a+

Nl
fTl + a−Nl+1

dTl+1
). The ap-

proximation results in the separation of the dynamics of each site, consequently, the

mean-field quantum Hamiltonian can be written as:

Hmf = Hleft +Hright +

L−1∑
l=2

Hl, (2.54)
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where Hleft, Hright, and Hl are obtained from the generic one-site Hamiltonian (2.43)

using the mean-field arrival rates.

The fugacities zl can be calculated self-consistently from their definition in equa-

tions (2.53). However, to find their values, it is more convenient to impose the conserva-

tion of the current along the chain, as has already been done for the standard ZRP on a

chain [33] in terms of the quantum Hamiltonian formalism. The first observation is that

the stationary state satisfies the following relations:

a+
l |P ∗〉l = z−1

l dl|P ∗〉l
a−l |P ∗〉l = zl|P ∗〉l,

(2.55)

where is |P ∗〉l the probability distribution of the occupation of the l-th site, i = 1, 2, . . . , L.

Substituting back into the Master equation, we obtain the stationarity condition

−H|P ∗〉 = (α+qz2)(z−1
1 d1−1)+(γ+p)(z1−d1)+(pz1+qz3)(z−1

2 d2−1)+(p+q)(z2−d2)

+ . . .+ (pzL−1 + δ)(z−1
L dL − 1) + (β + q)(zL − dL)|P ∗〉 = 0, (2.56)

which is satisfied for

α− γz1 = pzl − qzl+1 = βzL − δ = 〈j〉. (2.57)

l = 1, 2, . . . , L. It is proved in reference [33] that the solution of this recursive relation

yields the fugacity zl and the mean current 〈j〉:

zl =
αβ
(
p
q

)L−1
− γδ −

(
p
q

)l−1
[αβ − γδ − (α+ δ)(p− q)]

β
(
p
q

)L−1
(γ + p− q)− γ(β − p+ q)

, (2.58)

〈j〉 = (p− q)
αβ
(
p
q

)L−1
− γδ

γ(p− q − β) + β(p− q + γ)
(
p
q

)L−1
, (2.59)

which complete the mean field solution for the model.

While the fugacities (2.58) are identical to those of a standard ZRP on an open

chain [33], the effective departure rates wc,n;l are affected by the time correlations

(they retain a dependence on the parameter c) and, significantly, become site depen-

dent. This is evident at the level of stationary density and variance profile, respectively

〈nl〉 = zl∂(lnZc,l)/∂zl and σl
2 ≡ 〈nl2〉 − 〈nl〉2 = zl

2∂2(lnZc,l)/∂zl
2 in the mean-field ap-

proximation. The predicted density profile can be non-monotonic, which contrasts with

the stationary profile of the standard ZRP [33]. This feature is indeed present in the
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Figure 2.8: Density profile 〈nl〉, and
variance profile σl

2 (insets), l =
1, 2, . . . , L for the on-off dynamics on a
chain of length L = 20 with (a) constant
and (b) linear departure rates. The re-
sults obtained within the mean-field
approximation (line vertices) are com-
pared with the simulation results ob-
tained by means of the Doob–Gillespie
method of section 1.7 (markers). TA
and PA refer to rates (α, β, γ, δ, p, q) =
(0.2, 0.3, 0, 0, 1, 0) and (α, β, γ, δ, p, q) =
(0.1, 0.2, 0.1, 0.1, 0.55, 0.45) respectively.

Monte Carlo simulated density profiles for certain parameter combinations. In fact, for

the parameters considered, the agreement between mean-field theory and simulation is

excellent, except when c is very small, as shown in figure 2.8. For all the sets of parameters

considered, the agreement increases with c.

In figure 2.9 the mean-field predictions for the per-site occupation distributions are

also checked against Monte Carlo simulations. Both mean-field and simulation results

show an exponential decay of the tails which decreases as the site index l increases.

The agreement is again good, except for the cases with smaller values of c. In fact, in

contrast to the mean-field prediction (2.52), the empirical distributions are glaringly

non-Geometric when the parameter c is small enough.

The failure of the product solution (2.1) is also reflected in the behaviour of the

cross-correlation Cij = (〈ninj〉 − 〈ni〉〈nj〉)/(σiσj) between the occupations on site i and

j. This is shown in figure 2.10, where we report a negative cross-correlation between
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Figure 2.9: The mean-field probability distribution (line vertices) of the site occupa-
tion numbers in a chain of length L = 5 are checked against simulations (markers).
Symbols +,×, ◦,�,4 and solid, dotted, dashed, dot–dashed, dot–dot–dashed lines of
the corresponding color (grayscale) refer to sites l = 1, 2, 3, 4, 5 respectively. Parameter
combinations as in figure 2.8.

neighbouring-site occupations for small values of c.

2.6 Congestion threshold

In the cases explored above, the values of c have been chosen in order to guarantee

the existence of a well defined NESS with constant average occupation number. In the

one-site system seen in section 2.3 this choice was straightforward, as we can derive

exactly the congestion threshold. In an extended system with unbounded departure

rates, we expect that any strictly positive value of c guarantees the NESS because,

although a large number of particles can pile up during the off phase, they can be

released arbitrarily quickly during the on phase. On the contrary, the extended system

with bounded departure rates appears to be more interesting. In fact, for values of c

smaller than a certain value, the particles accumulate on one or more of the lattice sites.

We now compare the prediction of the mean-field theory for this congestion threshold

with the results of Monte Carlo simulations performed on a chain of length L = 20. In

order to evaluate numerically the onset of congestion, we make use of the parameter
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Figure 2.10: Simulation results for the cross-correlation C11,l of on-off ZRP on a chain
of length L = 20 with µn = n. (a) PA case. Adjacent sites have negatively-correlated
occupation numbers. Hopping-rate combinations as in figure 2.8. Inset, (b). TA case.
Spatial cross-correlations appear weaker than the PA case, but with longer range. As c
grows the correlation is gradually lost and a factorised solution is realistic.

(inspired by reference [3])

κ =
ntot(t+ ∆t)− ntot(t)

∆t

1

(α+ δ)
, (2.60)

where t � ∆t, ntot(t) is the average total number of particles in the system at time t.

The parameter κ measures the difference between the rate at which particles arrive and

the rate at which particles leave the system, scaled with respect to the total arrival rate.

The congestion occurs when κ is strictly positive2. For the one-site model (2.14)–(2.17)

with µn = µ, it is straightforward to show that the value of ακ is

ακ =

α− µβc/(c+ α) if c < c1,

0 elsewhere,
(2.61)

where c1 is given by equation (2.27). In fact, in the congested regime we can assume that

the site is never empty and the total growth rate is given by the difference α− µβP ∗ON ,

where P ∗ON =
∑∞

n=0 P
∗
n,ON is the stationary probability of having the site in the state

on. Summing over n the equations (2.14) and (2.16), and imposing the stationarity

conditions, we get P ∗ON = c/(c+ α).

Equation (2.61) allows us to approximate a local κl for the generic site l of a chain,

2Precisely at the threshold, we expect congestion/condensation but with sublinear growth in time.
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Figure 2.11: Congestion transition for the on-off ZRP with µ = 1 on a open chain of
length L = 20. The parameter κ obtained by Monte Carlo simulations is plotted against
c for a TA case and a PA case. Hopping-rate combinations as in figure 2.8. The mean-
field congestion thresholds are cTA

mf = 0.4 and cPA
mf ' 1.4 respectively. These values are

pinpointed by the mean-field approximated local κl (light lines) of the site l where the
congestion sets in first.

by replacing α and β with the mean-field arrival and departure rates, respectively. The

numerical Monte Carlo study of κl reveals the first site where the congestion sets in,

tuning c from large to smaller values. In a chain with TA jumps, this seems to occur on

site 1, for p ≤ β, or on the site L, otherwise. In the PA case, the congestion can set in

on the bulk site L − 1, as suggested by the non-monotonic density profile of figure 2.8.

Not surprisingly, the mean-field theory predicts this possibility.

We define the mean-field congestion threshold cmf as the smallest value of c such that

none of the sites l of the system with Hamiltonian (2.54) has κl > 0. In the TA case,

as long as p > β, cmf is equivalent to the threshold c1 of equation (2.27), derived for

the one-site system with boundary rates α and β. The numerical evaluation of κ for the

whole system, plotted against the mean-field estimate in figure 2.11, suggests that cmf

is an upper bound for the true congestion transition in this case. We argue that this

relation arises as the TA jumps set the system in a highly organised configuration, with

wave-like fronts which are precursors of the slinky motion observed in Hirschberg et al.

[28, 29] and enhance the particle transport. This fact can be deployed, to some extent,

to design real-life queuing systems. When p < β, cmf = α2/(pµ − α) marks exactly the

onset of the congested phase. Conversely, PA interactions seem to promote congestion,

as there are many jumps which block the site and contribute negatively to the particle

current. In this case the congestion transition occurs for a value of c larger than both c1
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and cmf (see figure 2.11).

2.7 Discussion

In this chapter, we commenced the investigation of the effects of temporal correlations

on stochastic systems. Specifically, we focused on a variant of the ZRP, namely the on-off

ZRP, that incorporates memory by means of hidden variables. In the on-off ZRP, the

hidden variables affect the on-site dynamics by blocking the particle jumps for a certain

amount of time which is tuned by the parameter c: the smaller its value is, the stronger

the memory effects of the hidden dynamics are. In the limit as c → ∞, the standard

ZRP is recovered.

In the single-site case, we found the exact NESS, which can be written in terms of

a standard ZRP process, with effective departure rate. Moving to the many-site case,

one of the major consequences of the on-off interaction is the lack of a simple factorised

form (as in equation (2.1)) for the stationary state, while it exists for the standard

ZRP. As an approximation, we derived a mean-field stationary-state solution where the

statistics of the particle jumps from site to site in a lattice are smoothed over time,

while preserving the lattice topology. Such an approximation restores the product-form

solution and makes excellent predictions when the value of c is large enough.

The mean-field approach gives also an analytical approximation for the value of c at

which the system enters a congested phase. This prediction is particularly accurate for

the case with totally symmetric interactions. On the contrary, in the partially asymmet-

ric system, the mean-field congestion threshold underestimates the result suggested by

simulations. The particle density and variance profiles within this approximations do not

fit the results from the simulation for values of c very close to cmf . However, for larger

values of c (but still of the same order of cmf), the mean-field predictions are in excellent

agreement with the simulations.

This section also introduced interesting analogies between IPSs and Queuing net-

works. Due to their common ground, our results could be exploited by the Queueing

Theory community and could lead to interesting applications, where on and off phases

can be used to improve packet traffic.

The main message of this chapter can be summarised as follows. For small values

of c the behaviour of NESS is heavily altered; however, the value of the mean current

〈j〉 across the chain only depends on the jump rates for a wide range of parameters,

regardless of the value of c (as long as the congestion does not set in). This motivates
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the study of rare fluctuations of the current, which is the topic of the next chapter.
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[33] E. Levine, D. Mukamel, and G. M. Schütz. Zero-range process with open boundaries.

J. Stat. Phys., 120(5-6):759–778, 2005.

[34] T. M. Liggett. Interacting Particle Systems, volume 276 of Grundlehren der math-

ematischen Wissenschaften. Springer, New York NY, New York, NY, 1985.

[35] T. M. Liggett. Stochastic models of interacting systems. The Annals of Probability,

(June 1996):1–29, 1997.

[36] T. M. Liggett. Stochastic Interacting Systems: Contact, Voter and Exclusion Pro-

cesses, volume 324 of Grundlehren der mathematischen Wissenschaften. Springer,

76



Chapter 2. Temporally correlated zero-range process with open-boundaries: steady state

Berlin Heidelberg Germany, 1999.

[37] T. M. Liggett. Stochastic models for large interacting systems and related correla-

tion inequalities. Proc. Nat. Ac. Sci., 107(38):16413–9, 2010.

[38] C. Maes. New trends in interacting particle systems. In Markov Proc. Rel. Fields

11, 2005.

[39] K. Mallick. The exclusion process: A paradigm for non-equilibrium behaviour. Phys-

ica A, 418:17–48, 2015.

[40] M. K. Mitra and S. Chatterjee. Boundary induced phase transition with stochastic

entrance and exit. J. Stat. Mech., 2014(10):P10019, 2014.

[41] R. J. Mondragón, D. K. Arrowsmith, and J. M. Pitts. Chaotic maps for traffic

modelling and queueing performance analysis. Perf. Eval., 43(4):223–240, 2001.

[42] M. F. Neuts. Matrix-geometric Solutions in Stochastic Models: An Algorithmic

Approach. Dover Publications, New York NY, 1981.

[43] A. Schadschneider, D. Chowdhury, and K. Nishinari. Stochastic Transport in Com-

plex Systems: From Molecules to Vehicles. Elsevier, Oxford UK, 2010.
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This chapter is devoted to the study of particle-current fluctuations for the model

introduced in chapter 2. Such fluctuations are quantified by means of the SCGF e(s)

as detailed in section 1.6. In section 3.1 we explore analytically and numerically the

current fluctuations on a one-site system, focusing on the difference between the small

fluctuation regime, obtained by analytic continuation of the NESS (subsection 3.1.1),

and the extreme fluctuation regimes (subsection 3.1.3), and explaining the mechanisms

that separate the phases (subsection 3.1.2).

Along the lines of the previous chapter, we focus on two simple functional forms for

the particle-particle interaction factor, viz., linear and constant with the site occupation

number n. This second case appears analytically more challenging and its SCGF is ob-

tained as the asymptotic limit of the integral representation of an approximated moment

generating function (developed throughout subsection 3.1.3). The analytical results are

tested against the numerical method of Lecomte and Tailleur [12] (as described in sec-

tion 1.7.2), which is also used to measure the bond-current fluctuations for the many-site

model in section 3.2. Akin to the one-site system behaviour, in the many-site system it is
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possible to separate a small-fluctuation regime, which is not influenced by the temporal

correlations, from the extreme-current regimes where memory plays an important role.

3.1 Exact results for the one-site system

Despite its simplicity, the single-site ZRP exhibits a rich fluctuating behaviour, even in

the absence of time correlations, as shown in references [5–7, 14]. The introduction of

the on-off dynamics creates a still more interesting scenario. In fact, the study of the

fluctuations reveals some aspects of the correlations which, in the stationary state, are

hidden within an effective interaction factor. Throughout this chapter we assume that

the observation starts at a time t0 = 0, hence the length of the observation time is t. We

denote by j the empirical output current J/t, i.e., the difference J between the number of

jumps of particles which leave the site rightwards (with rate β) and the number of particle

injections from the right boundary (which occur with rate δ) divided by the observation

time. The input current, i.e., the rightwards current between the left boundary and the

site, can be obtained by reflection in the PA case (while in the TA case this is given by

a simple Poisson process).

The strategy outlined in section 1.6 is to build an s-modified generator, where the

rates that contribute an increase or decrease in the current are multiplied by a factor

e−s or es, respectively. Our choice is to work with the Hamiltonian (2.43), where such

rates are grouped into the ladder operators βa−N1
and δa+

N1
. Consequently, the s-modified

Hamiltonian corresponding to the output current is

H̃ = −c(a+
T1
− gT1)− α(a+

N1
fT1 − 1)− β(e−sa−N1

dT1 − dN1dT1)

− γ(a−N1
dT1 − dN1dT1)− δ(esa+

N1
fT1 − 1). (3.1)

We concentrate now on the eigenproblem

(H̃ −A1)|P̃A〉 = 0, (3.2)

where |P̃A〉 is the generic right eigenvector and A is its eigenvalue. Specifically, we are first

interested in the leading eigenvalue A0, which is proven to be equal to the SCGF, at least

in the neighbourhood of s = 0. Notice that the quantum Hamiltonian formalism uses a

sign convention different than the one of section 1.6; in fact, its leading eigenvalue A0

corresponds to the leading eigenvalue λ1 of the generator G̃ (but has opposite sign) and

is the smallest eigenvalue of H̃ (at least in the neighbourhood of s = 0). The associated

right eigenvector is also called ground-state eigenvector.
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3.1.1 Small current fluctuations

The working hypothesis is that the eigenvector |P̃A0〉, associated to A0, has a form similar

to the stationary solution (2.18)–(2.20). To lighten the notation, we drop the subscript A0

and use |P̃ 〉 and 〈P̃ | for the right and left eigenvectors associated to A0, respectively. It is

convenient to write the ground-state eigenvector |P̃ 〉 in a form similar to the stationary

solution (2.18)–(2.20), i.e., with components

P̃n,ON = pON,n,sP̃n, (3.3)

P̃n,OFF = (1− pON,n,s)P̃n, (3.4)

P̃n+1 = ρn+1,sP̃n. (3.5)

Equation (3.2) is hard to solve in general. To gain insight into the appropriate structure

of ρn,s and pON,n,s, we study first the case with constant departure rates.

3.1.1.1 Constant departure rates

Let the departure rate be µn = µ when n > 0 (obviously, there are no departures when

n = 0, i.e., µ0 = 0). Motivated by the stationary-state result, we assume here that the

factors pON,n,s and ρn,s have no dependence on the occupation number and we drop the

subscript n with the exception of n = 0, i.e., pON,0,s is distinct from pON,s. By direct

substitution into equation (3.2) we get:

−(c+ α+ δ −A0)(1− pON,0,s) = 0, (3.6)

c(1− pON,0,s)− (α+ δ −A0)pON,0,s + (βe−s + γ)µpON,sρs = 0, (3.7)

(α+ δes)− (c+ α+ δ −A0)(1− pON,s)ρs = 0, (3.8)

c(1− pON,s)− [α+ δ + (β + γ)µ−A0]pON,s + (βe−s + γ)µpON,sρs = 0. (3.9)

Equation (3.6) trivially requires pON,s,0 = 1, while we expect that pON,s < 1. After a

long but straightforward algebraic manipulation, the system is solved as

pON,s =
c+ (βe−s + γ)(α+ δes)/(β + γ)

c+ (β + γ)µ+ (βe−s + γ)(α+ δes)/(β + γ)
(3.10)

ρs =
(α+ δes)

(β + γ)
(µpON,s)

−1, (3.11)

A0 =
αβ

β + γ
(1− e−s) +

γδ

β + γ
(1− es). (3.12)

Note that setting s = 0, the factor pON,s becomes the conditional probability P ∗ON|n in
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the steady state. Also, the parameter ρs and the eigenvalue A0 have a counterpart in

the stationary probability, in fact for s→ 0, ρs → zw−1
c , and A0 → 0. Consequently, we

argue that A0 is the lowest eigenvalue of H̃ and, according to section 1.6, the SCGF at

least in the neighbourhood of s = 0.

For later convenience, we define a modified fugacity

zs =
α+ δes

β + γ
(3.13)

and a modified effective interaction

wc,s = µpON,s, (3.14)

such that ρs = zsw
−1
c,s and wc,s → µ for c → ∞. It is worth noting that, while the bias

affects only the fugacity in the ordinary ZRP [5], it affects both the interaction term and

the fugacity in the on-off model.

3.1.1.2 General departure rates

The solution (3.10) and (3.11) suggests an ansatz for the case with arbitrary dependence

of the departure rates on n, which is now considered. This also covers the special case

with linear departure rates µn = n. Motivated by the results for constant µn = µ,

we assume that the components of the ground-state eigenvector |P̃ 〉 satisfy equations

(3.3)–(3.5) with

ρn,s = zsw
−1
c,n,s, (3.15)

wc,n,s = µnpON,n,s, (3.16)

for n ≥ 0. With this assumption, the second row equation of the eigenproblem (3.2) is

solved for A = A0 ≡ α + δ − (βe−s + γ)zs and the remaining equations yield a solution

for zs consistent with (3.13) and an n-dependent effective interaction

wc,n,s =
µn[c+ (βe−s + γ)(α+ δes)/(β + γ)]

(βe−s + γ)(α+ δes)/(β + γ) + c+ (β + γ)µn
. (3.17)

A comparison with the constant departure rate case shows that wc,n,s can be obtained

from wc,s, replacing µ with µn.

The eigenvalue we obtained is the same as the lowest eigenvalue A0 (3.12) of the

s-Hamiltonian for the standard ZRP [5]. In fact, the affinity between the two models
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appears closer if we work in the reduced state space obtained by collapsing the states

corresponding to τ = ON and τ = OFF, for each occupation number, and considering

the sum of their non-conserved probabilities P̃n = P̃n,ON + P̃n,OFF. We represent the

column vector of components P̃n with the starred symbol1 |P̃ ?〉. It is easy to show that

(see appendix B) |P̃ ?〉 is the right eigenvector with eigenvalue A0 of

H̃? = −α(a+ − 1)− δ(esa+ − 1)− γ(a?−s − d?s)− β(e−sa?−s − d?s), (3.18)

where

a?−s =



0 wc,1,s 0 0 . . .

0 0 wc,2,s 0

0 0 0 wc,3,s

0 0 0 0
...

. . .


, (3.19)

a+ =


0 0 0 . . .

1 0 0

0 1 0
...

. . .

 , (3.20)

and the operator d?s has entries δijwc,i,s. The operator H̃? is equivalent to the s-modified

Hamiltonian of a standard ZRP with departure rates wc,n,s. However, it is not a genuine

s-modified Hamiltonian for the on-off ZRP as it shares only the lowest eigenvalue A0 with

H̃ (the higher eigenvalues being different, in general) hence it only contains information

about the limiting behaviour and does not generate the dynamics.

As a partial conclusion, we underline that both the systems with bounded and un-

bounded rates display the fluctuating behaviour seen in the standard ZRP as long as

the ground state satisfies equations (3.15) and (3.16). This is certainly true for current

fluctuations close to the mean 〈j〉. However, the effective interaction wc,n,s has a depen-

dence on n and s different from the standard ZRP and this alters the range of validity of

this regime. In the following, we show that larger current fluctuations in the on-off ZRP

can be strongly affected by time correlations.

1Being defined in the occupation state space, |P̃ ?〉 is different from the vector |P̃ 〉 that is element of
the joint occupation–clock space.
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3.1.2 Dynamical phase transition

The scenario seen so far is an analytical continuation of the stationary state. Despite this,

certain values of the bias s correspond to non-analyticity in the SCGF, as demonstrated

in this subsection. From section 1.6 we recall that such a behaviour is often referred to

as a dynamical phase transition because of the analogy of the SCGF with the Helmholtz

Free Energy. A dynamical phase transition occurs as soon as one of the scalar products

〈1|P̃ 〉 or 〈P̃ |P (0)〉 diverges. It is worth noting that the choice of the initial distribution

|P (0)〉 influences the value of the second norm. In order to ensure a finite 〈P̃ |P (0)〉, we

will always consider an empty site as initial condition, unless explicitly stated. We must

also ensure that the norm 〈P̃ |P̃ 〉 is finite, i.e., that the eigenvector is normalizable and

the discrete eigenvalue A0 exists. We now derive analytically the conditions under which

the norms 〈1|P̃ 〉 and 〈P̃ |P̃ 〉 converge and it is possible to identify the SCGF with the

lowest eigenvalue A0 given by equation (3.12).

3.1.2.1 Linear departure rates

We focus first on the case with µn = n. For this particular choice of the interaction,

particles in the memory-less ZRP can never pile up and the current shows a smooth

SCGF. On the contrary, in the on-off model, the particle blockade alters the statistics

of small currents in the following way. During an off phase, particles accumulate on

the site thus provoking a short-lived congestion, as the boundaries continue to inject

particles. The presence of this mechanism suggests that the corresponding (short-lived)

state cannot have the same structure as the NESS2, hence the ansatz (3.3)–(3.5) is no

longer adequate. From a mathematical point of view, a transition occurs when 〈1|P̃ 〉
diverges. The condition 〈1|P̃ 〉 <∞ is satisfied for limn→∞ ρn,s < 1 where ρn,s is defined

in equation (3.15). Taking its limit as n→∞, we get

(β + γ) (α+ δes)

c(β + γ) + (α+ δes) (γ + βe−s)
< 1. (3.21)

For later convenience, we simplify this condition as

A0 < c+ δ(1− es), (3.22)

2When the state turns on, the particles are released with a rate proportional to n—which can be very
large—thus freeing the site from the congested particles and granting a steady state: the congestion is
only instantaneous.
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which is satisfied for s > s1, where

es1 =
2αβ

αβ − βδ − βc− cγ +
√

4αβ2δ + (αβ − βδ − βc− cγ)2
. (3.23)

In the PA case, s1 is real and finite. However, when δ = 0, the denominator in the

argument of the logarithm is negative for c larger than the threshold value

c0 =
αβ

β + γ
. (3.24)

In other words, for δ = 0 and c > c0, the critical value s1 is not well defined and the rare

currents are not distinguishable from those of a standard ZRP with effective departure

rates. This is particularly clear in the TA case, i.e. (γ, δ) = (0, 0), as the critical value is

simply �
�

�
�s1 = ln

α

α− c (3.25)

which is well defined only for c < c0 = α.

We now prove that, when µn = n, the norm 〈P̃ |P̃ 〉 is always finite. In appendix C, the

eigenvector 〈P̃ | is derived. Its components have a form similar to equations (3.3)–(3.5),

with the factors pON,s and ρs replaced by pleftON,s ≡ 1/2 and ρleft
s ≡ (βe−s + γ)/(β + γ)

respectively. The series 〈P̃ |P̃ 〉 is simplified by summing first the pairs corresponding

to the same occupation number and the condition for convergence can be written as

limn→∞ ρleft
s ρn,s < 1, which is always satisfied. Consequently, for linear departure rates,

the only mechanism responsible for dynamical phase transitions is the on-off clockwork,

which becomes dominant when 〈1|P̃ 〉 diverges.

It is also interesting to notice that, collapsing the components corresponding to

τ = ON and τ = OFF for each n, we find the left eigenvector of the standard-ZRP

Hamiltonian, i.e., 〈P̃ ?| =
(

1, ρleft
s , ρleft

s
2, . . .

)
, where ρleft

s = (βe−s + γ)/(β + γ). This is

also the left eigenvector of the reduced operator (3.18).

3.1.2.2 Constant departure rates

Let us consider now the case µn = 1, n > 0. The scalar product 〈1|P̃ 〉 is finite when the

n-independent parameter ρs is less than 1 and a dynamical phase transition occurs at

ρs = 1. In the PA case, the solution of this equation for s involves a cumbersome cubic

and therefore is not reported here. Conversely, in the TA case, after some algebra we can
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prove that the equality is verified at the critical value�
�

�
�s1 = ln

α(α− µβ)

(cµβ − αµβ − cα)
. (3.26)

In order to check whether the second norm 〈P̃ |P̃ 〉 is finite, we again need the left eigen-

vector 〈P̃ |. As the dependence on µn cancels in the left eigenproblem, 〈P̃ | is the same as

the linear departure rate case (see again the appendix C). The condition for convergence

is ρleft
s ρs < 1 and the value of s such that ρleft

s ρs = 1 is referred to as s2. For the TA case,

it has the closed form solution�
�

�
�s2 = − ln

(−c+
√
c2 + 4cβ)

2α
, (3.27)

while for the PA case, a closed form solution for ρleft
s ρs = 1 has not been found. We

underline that the values s = s1 and s = s2 mark the onsets of new phases.

It is important to notice that the scenario seen so far is entirely encoded into the

operator H̃? of equation (3.18). In fact, this operator not only has lowest eigenvalue

A0, as seen in section 3.1.1, but the normalisation of its ground-state eigenvector yields

sums 〈1|P̃ ?〉 and 〈P̃ ?|P̃ ?〉 that diverge at the same critical points as 〈1|P̃ 〉 and 〈P̃ |P̃ 〉,
respectively.

3.1.3 Large current fluctuations

In this subsection, we focus on the large fluctuation regimes s > s1 and s < s2. We

employ different approaches to study the large fluctuation regimes in the linear and

constant departure rate cases.

3.1.3.1 Linear departure rates

To get some insights into the regimes with large current fluctuations we consider first a

finite-dimensional version of the on-off ZRP on the single-site lattice. In fact, the SCGF

on a discrete finite configuration space is always given by the smallest eigenvalue A0 of

the s-modified Hamiltonian, as the prefactors in (1.134) are always finite. For the TA

case we truncate the Hamiltonian (3.1) by imposing a reflective boundary in the state
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with occupation number N. The resulting matrix in block form is

HN =



c+ α 0 0 0 0 0 . . .

−c α 0 −βµ1 0 0

−α −α c+ α 0 0 0

0 0 −c α+ βµ1 0 −βµ2 . . .
...

...
. . .

...

0 −βµN
c 0

. . . −c βµN


, (3.28)

which defines a Master equation where the n-th block row specifies the dynamics of the

configuration with occupation number n and within each block the first and the second

rows correspond to an off and an on phase, respectively.

In the present linear departure rate case µn = n and the matrix HN generates the

dynamics of a special queue of type M/Ph/N/N, i.e., with Markovian arrival, phase-type

departures, N servers and finite capacity N (see the Kendall notation in section 2.1).

According to the procedure of section 1.6, the finite-capacity s-modified Hamiltonian

H̃N is obtained by multiplying the upper-diagonal rates µn (n = 1, 2, 3, . . . ,N) of HN by

e−s.

The numerical evaluation of the spectrum of H̃N, see figure 3.1, shows that the two

lowest eigenvalues get closer around s1 with increasing values of N. This gives a clue

about the limiting behaviour for N→∞, where the eigenvalues would coalesce at s = s1

and two different dynamical phases emerge. The SCGF converges to a constant branch

of value c for s > s1. An heuristic reasoning allows us to understand the mechanism

that leads to this dynamical phase. In the limit s→∞, the truncated s-modified Hamil-

tonian is lower-diagonal and its eigenvalues are given by the escape rates. As long as

the condition c < c0 = α holds, the smallest eigenvalue is c; this is the escape rate

from the configuration with N particles and off state. We argue that, in the infinite ca-

pacity case, such a configuration corresponds to an instantaneous situation where the

occupation number grows indefinitely (“instantaneous” congested state) and clock is off.

We also argue that, in the asymptotic limit as the time approaches infinity this is the

dominant behaviour not only for s → ∞, but also for the other values s > s1. We ex-

pect that the corresponding eigenvector does not satisfy the same ansatz as the one of

equations (3.15)–(3.16); hence the dynamical phase transition is due to the crossover of

two distinct eigenvectors. This has been observed in spatially-extended non-equilibrium

models, such as the Glauber model with open boundaries of reference [13].
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Figure 3.1: Real part of the spectrum of the finite-capacity s-modified Hamiltonian for
parameters (α, β, γ, δ, c) = (0.2, 0.3, 0, 0, 0.5) and µn = n. The two lowest eigenvalues get
closer at s = s1 for increasing values of N and it seems that the merge in the infinite
capacity limit N→∞. For s < s1 the smaller eigenvalue converges to A0 = α(1− e−s),
while for s > s1 it converges to c.

Our prediction is checked against the output of the cloning algorithm of Lecomte and

Tailleur [12] (see section 1.7.2 of this thesis). The results are shown in figure 3.2(a). Our

implementation correctly reproduces the most relevant features of the SCGF, i.e., the

non-analyticity at s1 and the constant branch for s > s1, but loses accuracy for large

positive currents (s < 0) presumably due to the finite-ensemble effect.

In the PA process, the lowest eigenvalue does not appear to converge to a finite value

in the limit s→∞. From the condition (3.22) for the eigenvalue crossover, we suggest

e(s) =


αβ
γ+β (1− e−s) + γδ

γ+β (1− es), s ≤ s1

c+ δ(1− es). s > s1.
(3.29)

The right branch (s > s1) can be physically understood by separating the contributions

of the particles leaving the site rightwards, which contribute a term c as in the TA case,

and the particles injected from the right boundary, which independently follow a Poisson

process with rate δ and contribute a term δ(1−es). Since in this regime the particles pile

up, the corresponding SCGF branch does not depend on the left boundary. Numerical

simulations, shown in figure 3.2, confirm our argument. There is no analogue, in the

memory-less ZRP, of the c-dependent dynamical phase for s > s1, which arises as a

consequence of the temporal correlations.
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Figure 3.2: SCGF of the single-site on-off ZRP with µn = n for (a) TA hopping
rates, (α, β, γ, δ, c) = (0.2, 0.3, 0, 0, 0.1), and (b) PA hopping rates, (α, β, γ, δ, c) =
(0.1, 0.2, 0.1, 0.1, 0.1). Points are data from the cloning algorithm with number of clones
N = 104 and simulation time t = 104. The SCGF is systematically overestimated for
small values of s. This prescription is believed to be exact for N → ∞, t → ∞, and is
not reliable when the cloning factor is larger than N (shaded areas). We expect a better
approximation but a slow convergence for larger ensembles and longer simulation times.

For SCGFs with non differentiable points, as the one in equation (3.29), the Legendre–

Fenchel transform (1.121) of e(s) gives in general the convex hull of the true rate function

which can hide a non-convex shape. However, for this system, we argue on physical

grounds (see following) that equation (1.121) gives indeed the true rate function, which

is

ê(j) =



c+ δ + j − j ln(−jδ ), j ≤ j1,a
−s1j + c+ (.1− e−s1), j1,a < j < j1,b

αβ

β + γ
+

γδ

β + γ
−
√
j2 + 4

αβ

β + γ

γδ

β + γ
+

+j ln
j +

√
j2 + 4 αβ

β+γ
γδ
β+γ

2 αβ
β+γ

,

j ≥ j1,b.
(3.30)

The two critical currents

j1,a = −δ es1 , (3.31)

j1,b =
αβ

β + γ
e−s1 − γδ

β + γ
es1 (3.32)

are, respectively, the right and left derivatives of e(s) at s = s1. The value of j1,a is

non-positive, and is zero in the TA process, the value of j1,b is strictly positive. The
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c− j ln α
α−c

α− j + j ln( j
α

)

Figure 3.3: Rate function ê(j) for the on-off TA process with (α, β, γ, δ, c) =
(0.2, 0.3, 0, 0, 0.01) and µn = n (solid blue line). The points are simulation
data for the finite-time rate function − ln[Prob(J/t = j)]/t computed at t =
200, 300, 400, 500, 600, 700 (top to bottom). An ensemble size of N = 1010 has been
used. Notice that information about the tails of the rate function is quickly lost. The
rate function of the memory-less ZRP for s < s1 is plotted in light blue. Comparison
with the solid red line manifests the extent of memory effects on rare events, while the
statistics around 〈j〉 are identical.

phase j ≤ j1,a is obtained from the Legendre–Fenchel transform of e(s) in the interval

s > s1, while the phase j ≥ j1,b is derived from e(s), with s < s1. The transition

value s1 is mapped to the whole linear branch in j1,a < j < j1,b. This behaviour is

equivalent to an ordinary equilibrium first-order phase transition, where a linear branch

of a thermodynamic potential corresponds to the coexistence of two phases. In this non-

equilibrium system, the mixed phase consists in a regime where, for some finite fraction

of time, the current assumes value j1,a, while during the rest of the time it has value j1,b.

As a result, the rate function in this region is linear with j, as predicted by the Legendre–

Fenchel transform. This argument is supported by standard Monte Carlo simulations and

is particularly evident in the TA case, see figure 3.3. Such a figure, alongside figure 3.7,

underlines the main difficulty in simulating rare trajectories; in fact, according to the

large deviation principle, all the trajectories tend to display current close to the mean

and obtaining information about the extreme events is hard, although the ensemble used

is several orders of magnitude larger than the one used for the cloning simulations.

The different phases can be physically understood by observing the effect of the

particle blockade. In the case with TA hopping rates, when the site is off, the particles
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accumulate and the outgoing current is necessarily zero. The zero current is mapped

to the flat section of the SCGF. This is the dominant mechanism responsible for zero

current. At the end of an off period, we have a configuration with many particles on the

site. When the lock is released, particles can leave the site with a rate proportional to

the occupation number, the more the particles on site, the higher the departure rate.

Consequently, the particles are quickly released after an off period and the current jumps

to a positive value. In particular, the probability of having currents larger than j1,b is

dominated by the phases during which the site is in a state on. In the presence of

arrivals from the right boundary (δ 6= 0), the blocked configuration becomes important

for negative currents j < j1,a, and the rate function has an additional term corresponding

to an independent Poisson process with rate δ.

As an aside, the dynamical phase transition seen at s1 is not restricted to the partic-

ular on-off ZRP explored here. For example, an alternative on-off ZRP with unbounded

departure rates and on-off dynamics independent from the arrivals, displays the same

fluctuating scenario. Specifically, we assume that the phase switches between the on and

off states with rates respectively c and d and the total departure rate µn is proportional

to n. The modified Hamiltonian is:

H̃ ′ =



c+ α −d . . .

−c d+ α −βµ1e−s

−α c+ α −d
−α −c d+ α+ βµ1 −βµ2e−s

−α c+ α −d
−α −c α+ βµ2 + d

...
. . .


. (3.33)

The spectrum of the truncated version of H̃ ′ (with capacity N) reproduces the scenario

of figure 3.4, which is similar to the one of figure 3.1. In the limit as s → ∞, such a

truncated Hamiltonian is block lower diagonal with the smallest eigenvalue A0 = 1
2(c+

d+µN−µN
√

2(d−c)
µN

+ 1), which converges to c for N→∞. Also, spatially-extended spin

systems such as the contact process [12] and some kinetically constrained models [3, 4],

can possess active and inactive phases coexisting at s = 0. For a review on kinetically

constrained models see reference [15].

3.1.3.2 Constant departure rates

The study of the extreme fluctuation regimes when µn = 1, n > 0, requires a different

approach. In fact, in this case the spectrum of the operator H̃ has a continuous band
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Figure 3.4: Real part of the spectrum of the finite-capacity version of s-modified Hamilto-
nian 3.33 for parameters (α, β, γ, δ, c, d) = (0.2, 0.3, 0, 0, 0.5) and µn = n. The minumum
of its spectrum for N→∞ is identical to one plotted in figure 3.1.

that governs the fluctuations in certain regimes (this can be inferred again by looking at

the truncated operator). A way to obtain the SCGF is to evaluate the long-time limit

of the matrix element 〈1|e−H̃t|P (0)〉 by computing the full spectrum and the complete

set of eigenvectors of H̃ in the style of S. Karlin and J. L. McGregor [10] (see also a

related discussion in section 1.2). This task appears to be rather complicated for the s-

modified Hamiltonian (3.1), requiring spectral theory and integral representation of block

non-stochastic operators3. As an approximation, we can use the reduced operator (3.18)

and study the simpler expectation 〈1|e−H̃?t|P (0)〉. Recall that H̃? has the same lowest

eigenvalue A0 as H̃, at least in the regime s2 ≤ s ≤ s1 where the ansatz (3.15)–(3.16)

is valid. Outside this regime it is expected to yield only approximate information about

the current fluctuations.

The integral representation allows us to take into account the dependence of the fluc-

tuations on the initial condition. We follow the same procedure as in references [6, 14],

with the difference that the departure rate here is wn,c,s and depends on s. Actually, it

seems that the function wn,c,s only has a weak dependence on s for large positive or nega-

tive values of s (this can be checked numerically for many parameter combinations) but,

nevertheless, we report the explicit calculations for completeness. As initial condition,

3The integral representation of Markov chains described by a stochastic block tridiagonal generator
is derived, e.g., in reference [2] after some formidable mathematics.
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we choose a geometric distribution with parameter x, i.e.,

|P (0)〉 = (1− x)

∞∑
n=0

xn|en〉 (3.34)

where |en〉 denotes the configuration of the site with n particles and is an element of the

natural basis for H̃?. The steady state is obtained for x = zw−1
c , where

z =
α+ δ

β + γ
and (3.35)

wc =
µ(α+ δ + c)

α+ δ + c+ (β + γ)µ
(3.36)

are the PA counterparts of the fugacity and effective departure rate, respectively, found

in section 2.3, while the limit x→ 0 corresponds to the empty-site state.

The exact calculation of the full spectrum and of its eigenvectors, reported in ap-

pendix A, gives the following representation:

〈1|e−H̃?t|P (0)〉 =− 1− x
2πixφ

∮
C1

e−ε(ζ)t

(ζ − 1
xφ)(ζ − 1

φ)
dζ

− 1− x
2πix

∮
C2

(yζ − 1)e−ε(ζ)t

(ζ − 1
ζφ)(ζ − φ)(ζ − y)

dζ,

(3.37)

where ε(ζ) is obtained from the expression for the continuous band of the spectrum ε(k)

after the substitution ζ = eik and

φ =

√
(βe−s + γ)wc,s

(α+ δes)
, (3.38)

y =
1

(β + γ)wc,s

√
(α+ δes)(βe−s + γ)wc,s, (3.39)

ε(k) =α+ δ + (β + γ)wc,s − 2
√

(α+ δes)(βe−s + γ)wc,s cos(k). (3.40)

The integration contours C1 and C2 are anti-clockwise circles centred around the origin

with radius φ−1 < |ζ| < (φx)−1 and infinitesimal size respectively.

The integrand of equation (3.37) has a saddle point at ζ = 1. This suggests that we

can compute the long-time limit of 〈1|e−H̃?t|P (0)〉 by means of the method of steepest

descents. In other words, we deform the integration contours C1 and C2 such that they

pass through the saddle point. As the integrand also has poles on the real axis, care is

needed when the new contour engulfs one of such poles and their residue must also be
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Figure 3.5: Phase diagram, based on equation (3.37), for the current fluctuations in the
PA process with µn = 1 and (α, β, γ, δ, c) = (0.1, 0.2, 0.1, 0.1.0.5). The lines s1 and s4

correspond to first-order dynamical phase transitions while s2 and s3 mark second-order
transitions. The red line (s = s1) corresponds to the solution of φ = y. The green line
(s = s2) corresponds to y = 1. The blue line (s = s3) and the cyan line s = s4 are
found from the solution of 1 = (φx)−1 and y = (φx)−1 respectively. xc is the point where
s3 = s4.

taken into account4.

For fixed parameters s and x, the leading term in the long time limit of 〈1|e−H̃∗t|P0〉
is given by the slowest decaying exponential and the SCGF is determined by one of the

rates ε(φ), ε(y), ε(1), ε[(xφ)−1]. Tuning s or x, the positions of the poles with respect to

the saddle point contour are altered and, consequently, the leading term in the integral

expansion changes. This produces the phase diagram of figure 3.5 for the SCGF. The

critical line corresponding to the solution of φ = y is s = s1. The line s = s2 corresponds

to y = 1. These two phase transitions were also previously found in section 3.1.2 as

critical points in the joint occupation number and clock space. The curves s = s3 and

s = s4 are solutions of 1 = (φx)−1 and y = (φx)−1 respectively. The tri-critical point

s3 = s4 is at xc. It is worth noting that higher positive current fluctuations retain a

dependence on the initial condition x and that, unlike the memory-less ZRP, the critical

point s1 can fall in the positive current range. While in the general PA case the curves

that separate the dynamical phases do not seem to have closed form expressions, in the

TA case, closed form solutions have been obtained with the help of symbolic computation

software and reported in the following list (the colours refer to figure (3.5)):

(i) s = s1 (red line). The knowledge of |P̃ ?〉 is sufficient to verify when the pre-factor

4The importance of the poles of partition function has been discussed, e.g., in reference [16] in the
context of large deviation theory.

93



Chapter 3. Temporally correlated zero-range process with open-boundary: fluctuations

〈1|P̃ ?〉 is finite, i.e.,

α(c+ e−sα+ βµ)

(c+ e−sα)βµ
< 1, (3.41)

e−s >
−cα+ cµβ − αµβ

α2 − αµβ , (3.42)

s < s1 = ln

(
α(βµ− α)

cα− cβµ+ αβµ

)
. (3.43)

Notice that this condition makes sense when the denominator in the argument of the

logarithm in (3.43) is positive, i.e., c < αβµ/(βµ − α), while the stationarity condition

α < βwc ensures that the numerator is positive. This phase boundary can also be

obtained from solving φ = y.

(ii) s = s2 (green line). This critical point marks the left boundary of the region

where the condition ρleft
s ρs < 1 holds, i.e.,

α(c+ e−sα+ βµ)

(c+ e−sα)βµ
e−s < 1, (3.44)

e−s <

√
c2 + 4cµ− c

2α
, (3.45)

s > s2 = − ln

(√
c2 + 4cµ− c

2α

)
. (3.46)

It corresponds to a solution of y = 1.

(ii) s = s3 (blue line). This line corresponds to (φx)−1 = 1. The critical point s3

satisfies

e−s3 =

√
(cµx2 + α2)2 + 4α2µ2x2 − cµx2 + α2

2αµx2
. (3.47)

(iv) s = s4 (cyan line). This phase boundary is c-independent, specifically

e−s4 = x−1. (3.48)

It corresponds to the condition y = (φx)−1.

The resulting phase diagram is similar to the PA one shown in figure 3.5, but with the

transition lines identified by s1 always mapped to a positive value of the current.

The four phases (in the general PA case) are detailed in the following list:

Phase A: s > s1. In this case the leading term arises from the pole at ζ = φ. The
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product 〈1|P̃ 〉 diverges and the SCGF is different from the lowest eigenvalue A0, being

instead given by

e(s) = δ(1− es) + βwc,s(1− e−s). (3.49)

This phase corresponds to very small positive currents (if δ = 0) or large backward

currents (if δ > 0). Large negative currents are mainly governed by the rate δ of particle

arrival from the right, which contributes to the SCGF with the first term of (3.49).

The second term corresponds to particles that jump rightwards from the site with an

effective rate βwc,s. The current fluctuations in this phase are optimally realised by a site

with arbitrarily large occupation number that acts as a reservoir, so that the outgoing

current has no dependence on the left boundary hops. This behaviour is equivalent to the

instantaneous condensation seen in the linear departure rate case (subsection 3.1.3.1).

We argue that the presence of a left and a right term in equation (3.49) is generic for

this phase, although there is no a priori reason for the effective rate wc,s to have the

same form as in the small fluctuation regime. In the PA case, for large values of s, the

SCGF is dominated by the first term and is not sensitive to the functional form of wc,s.

Phase B: (s2 < s < s1) ∧ (x < xc)) ∨ ((s4 < s < s1) ∧ (x > xc)). This phase

arises when the pole at ζ = y, corresponding to the lowest eigenvalue A0 (3.12), becomes

dominant, hence

e(s) =
αβ

β + γ
(1− e−s) +

γδ

β + γ
(1− es). (3.50)

The probability of fluctuations in this regime is asymptotically identical to the standard

ZRP. In this range the site has finite occupation and the probability that a particle leaves

is conditioned to an arrival event, just as in [5, 9, 14].

Phase C: (x < xc) ∧ (s3 < s < s2). This phase arises from the saddle-point at ζ =

1. It corresponds to a large forward current sustained by a large inward current from

the left boundary. Here the spectrum of H̃? is completely continuous. The asymptotic

form (1.134) still holds, as the prefactors 〈1|P̃A0〉 and 〈P̃A0 |P (0)〉 are finite, but with an

oscillating (non-decaying in n) ground state |P̃A0〉. This also represents an instantaneous

condensate, but with particle number growing as the square root of time [14]. Here the

spectrum of H̃? is continuous and the SCGF is given by its minimum (3.40):

e(s) = ε(0) = α+ δ + (β + γ)wc,s − 2
√

(α+ δes)(βe−s + γ)wc,s. (3.51)

Phase D: [(s < s3) ∧ (x < xc)] ∨ [(s < s4) ∧ (x > xc)]. This phase arises when the
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Figure 3.6: SCGF of the on-off ZRP with (α, β, γ, δ, c) = (0.1, 0.2, 0.1, 0.1, 0.5) and
µn = 1. Points are data from the cloning simulations, N = 104, t = 104. Dotted line
is the SCGF of the Markovian-ZRP (c → ∞) with same boundary rates. Solid line is
the analytic approximation (3.49)–(3.51). The SCGF of the ZRP with s-independent
departure rate wc would overlap the solid line at this scale.

residue at ζ = (φx)−1 dominates the long-time behaviour:

e(s) = α+ δ + (β + γ)wc,s − (βe−s + γ)wc,sx− (α+ δes)/x. (3.52)

It corresponds to a large forward current of particles that is most likely to be realized

from an initial configuration with very high occupation number and also has an analogue

in the standard ZRP [14].

These results are compared to the cloning simulations in figure 3.6 for x→ 0. Similarly

to the independent-particle case, the cloning data for the left branch, corresponding to

large positive currents, is potentially affected by finite ensemble effects, as documented

in reference [8]. It turns out that for the chosen parameters our approximation (3.49)–

(3.51), plotted as a solid line, is very close to the naive approach (not shown) in which the

same representation (3.37) is used, but the effective departure rate has the s-independent

form wc (defined in section 2.3) for all the regimes. The analytical SCGF does not match

the simulation points in both phases A and C. We attribute this to the failure of the

assumption (3.15)–(3.16) for the ground state in phases A and C. In other words, large

fluctuations cannot be exactly described by an effective departure rate wc,s with a simple

functional dependence on s.

As a last step, in figure 3.7, the rate function ê(j), computed by means of a Legendre–
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Figure 3.7: Rate function for the on-off ZRP. Parameter combinations as in figure 3.6.
Points are data for− ln[Prob(J/t = j)]/t from standard Monte Carlo simulations at times
t = 100, 200, 300, 400, 500, 1000, 2000 (top to bottom) with an ensemble size N = 1010.
The solid line is the analytical result for t → ∞; in the central range it is the exact
asymptotic limit, while in the regimes A and C the line is an approximated solutions, as
discussed in subsection 3.1.1.1, 3.1.2.2, and 3.1.3.2.

Fenchel transform on the SCGF (3.49)–(3.51), is compared to the finite-time rate func-

tions obtained from standard Monte Carlo simulations with an ensemble size of 1010.

Although approximate, ê(j) appears to capture well the shape of the long time limit for

the simulation data points.

3.2 Numerical results for the many-site system

In chapter 2 we showed that the on-off ZRP on an extended lattice lacks a product-form

stationary solution. This, in turn, makes the analytical study of fluctuations, across the

generic bond, impractical. It would be possible to use the mean-field stationary solution

to derive an approximate SCGF using the same procedure as in the single-site model.

However, we do not expect the result to be accurate, especially for small values of c

and for current fluctuations far from the mean. To explore the larger system we make

use of the cloning method. This small section is concerned with the full statistics of the

empirical currents jl, which is the difference between the number of particle hops from site

l to site l+ 1 and the number of hops from site l+ 1 to site l, divided by the observation

time t. This definition is extended to the input current j0 and output current jL. In
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Figure 3.8: Simulation results for the SCGF in a five-site on-off ZRP with µn = 1 and
parameters (α, β, γ, δ, p, q, c) = (0.1, 0.2, 0.1, 0.1, 0.55, 0.45, 0.5). The solid line is the c-
independent lowest eigenvalue of the s-modified Hamiltonian for the five-site Markovian-
ZRP.

figure 3.8 the results of the cloning simulation for a one-dimensional lattice are plotted.

While the statistics of rare currents is bond-dependent, it is possible to appreciate that,

for each bond, the SCGF matches that of a Markovian ZRP in the neighbourhood of

s = 0, a feature shared with the one-site system. The SCGF of the Markovian ZRP for

the one-dimensional lattice has been obtained in Rákos and Harris [14] and is reported

here for convenience

e(s) = α′(1− e−s) + δ′(1− es), (3.53)

where

α′ =
(p− q)(p/q)Lqαβ

p(p− q − β)γ + (p/q)Lqβ(p− q + γ)
, (3.54)

δ′ =
p(p− q)γδ

p(p− q − β)γ + (p/q)Lqβ(p− q + γ)
. (3.55)

As a general consequence, the central regime satisfies a Gallavotti–Cohen fluctuation

symmetry [11] with E = ln[(p/q)L−1αβ/(γδ)] (see also section 1.4.2). Such a symmetry

has been discussed in references [5, 6, 14] for the functional form (3.53). In the on-off

ZRP, it seems to be ensured by the fact that the relative probabilities of particle jumps

towards the left or the right are independent of the time that the particle spends on a site;

this property is indeed the direction-time independence seen in section 4.3, which has

been proved (in reference [1]) to be a sufficient condition for the fluctuation symmetry to
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hold in finite state space. However, the fluctuation symmetry is not guaranteed to hold

on an arbitrary domain in systems with infinite state space [6]. In fact, as expected, we

see here a c-dependent breakdown for large fluctuations.

3.3 Discussion

In this chapter we have supplemented the stationary-state analysis for the on-off ZRP of

the previous chapter with an investigation of the particle current fluctuations in the same

model. The selected tool to deal with such fluctuations is the large deviation theory. We

mainly studied, both numerically and analytically, the one-node system. Fluctuations

around the mean are obtained by analytic continuation of the stationary state and are

indistinguishable from those of a memory-less ZRP. However, under certain conditions,

large current fluctuations are optimally realized by the instantaneous piling up of parti-

cles on the site and the statistics of such fluctuations change abruptly.

In the absence of direct inter-particle interaction we have found a memory-induced

dynamical first-order phase transition, i.e., the SCGF e(s) is non-analytic at a particular

value s1. In the totally asymmetric case, this occurs only if the parameter c is smaller than

the arrival rate α. The system with constant departure rates, i.e., attractive inter-particle

interaction, undergoes second-order as well as first-order dynamical phase transitions.

The state of the system during a small fluctuation event has the same form as the

stationary state, but with a more general modified effective interaction factor. Indeed, the

exact phase boundaries and the large deviation function of this regime are encoded in the

reduced operator H̃? of equation (3.18), which has the same structure as the s-modified

Hamiltonian of the standard ZRP, but with an s-dependent effective interaction factor.

We have used the same operator H̃? to find an approximate solution for the fluctuations

outside this phase. Numerical tests confirm the presence of the predicted c-dependent

dynamical phase transitions.

The separation between a small-fluctuation regime, with a memory independent

SCGF, and high-fluctuation regimes, where memory plays a more obvious role, is a

feature also found numerically in the spatially-extended system. It would be of interest

to explore the role of topology in more detail as well as to look for similar memory effects

in other driven interacting-particle systems and complex systems in general.

To conclude, these results highlight a situation where complex interactions are not

seen in the stationary state and do not affect, qualitatively, the typical long-time be-

haviour of a system. They emerge at the fluctuating level and alter the probability of
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observing rare phenomena. Such an observation leaves us with an interesting open ques-

tion: “it is possible to predict when theories of real-world complex systems fail to forecast

their rare behaviour, even though they are in perfect agreement with the typical one?”.

To attempt an answer to such a question, we need to be able to explore the large devia-

tions of non-Markovian non-equilibrium systems systematically. As analytical progress is

difficult (this chapter indeed revealed a number of subtleties) it would be important to

resort to and rely on numerical methods appropriate for non-Markovian systems. This

is the topic of the next chapter.
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As we have already seen, when the stochastic dynamics of a model system are Marko-

vian, i.e., memory-less, we can specify the rules for its evolution in time by means of

the constant rates gxi,xj of transitions from configuration xi to configuration xj . The full

set of rates encodes inter-event times with simple exponential waiting-time distributions

(WTDs), which indeed possess the memory-less property. However, to model real-world

systems, there is little double that such a naive description may not be appropriate.

In fact, non-exponential WTDs and non-Markovian dynamics seem to be the norm in

102



Chapter 4. A numerical approach to large deviations in non-Markovian processes

many contexts, e.g., in physics [4], finance [44], biology [33], teletraffic engineering [40],

and complex systems in general [20]. Furthermore, reckoning with non-Markovian dy-

namics is essential in non-equilibrium statistical mechanics. In fact, a strategy to study

non-equilibrium systems is to target trajectories in space–time rather than static configu-

rations [17, 32]; to this purpose, the details of the time evolution of the system, including

the presence of non-exponential WTDs, are essential.

The model of chapters 2 and 3 incorporates memory by means of a device, called phase

or clock, that stores information about past events (specifically particle arrivals). As seen

in the previous chapters, this device permits analytical and numerical progress using tools

developed for Markovian processes. However, there are processes whose waiting times

cannot be reconstructed by means of the inclusion of hidden phases, as their WTDs

simply cannot be expressed in terms of such phases (see the discussion on semi-Markov

processes in section 1.3). In an even more general case, the waiting times depend on

the whole history, as anticipated in section 1.5. Such genuine non-Markovian models are

widespread in physics literature [7, 8, 37, 38, 43], but analytical progress is difficult and

simulations are necessary to explore them systematically, especially at the fluctuating

level. However numerical schemes able to efficiently probe large deviation functionals

have been discussed only for memory-less systems [18, 22, 29, 34, 35].

Based on our results in Cavallaro and Harris [10], we present here a general numer-

ical method to generate non-Markovian trajectories corresponding to arbitrarily rare

currents, which is a generalisation of the cloning procedures of Giardinà et al. [18] and

Lecomte and Tailleur [29]. This chapter is organised as follows. In section 4.1 we briefly

recall the general formalism (making explicit the dependence on the history). In sec-

tion 4.2 we present the simulation scheme for non-Markovian processes and the numerical

method to evaluate their large deviation functionals. Section 4.3 deals with semi-Markov

processes, where the formalism has a particularly lucid interpretation in terms of the

generalised Master equation. In section 4.4 we test the method in some examples of in-

creasing complexity, where the large deviation functions can be computed exactly and

hence serve to test the exactness of our numerical method. We conclude the chapter in

section 4.5.

4.1 Thermodynamics of trajectories

Following the argument of section 1.6, we are interested in the partition function

Z(s, t) =

∫
e−sJ [w(t)]%[w(t)]dw(t), (1.119)
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where the probability density of observing a sample path starting at t0 and ending at

time t is given, in the most general case, by equation (1.115). In this chapter we consider

observables of type A, whose partition function can be written explicitly as

Z(s, t) =

∞∑
n=0

∫ t

t0

dt1

∫ t

t1

dt2 . . .

∫ t

tn−1

dtn
∑

x0,x1,...,xn

φxn [t− tn;w(tn)]ψ̃xn,xn−1 [tn − tn−1;w(tn−1)]× . . .× ψ̃x1,x0 [t1 − t0;w(t0)]Px0(t0), (4.1)

where

ψ̃xn,xn−1 [tn − tn−1;w(tn−1)] = e−sθxn,xn−1ψxn,xn−1 [tn − tn−1;w(tn−1)] (4.2)

is the “biased” WTD of a stochastic dynamics that does not conserve total probability.

The strategy is to simulate an ensemble of trajectories and measure the behaviour of in

the long time limit. The exponential rate of divergence of equation (4.1) in the limit as

T = t− t0 approaches infinity gives the SCGF

e(s) = − lim
T→∞

1

T
lnZ(s, t), (4.3)

which in turns can be used to compute the rate function

ê(j) = sup
s
{e(s)− s j}, (4.4)

as we have already seen in section 1.6.

4.2 The “cloning” approach to large deviations in non-

Markovian processes

4.2.1 Non-Markovian stochastic simulation

The recent interest in non-Markovian processes can be seen in a number of publications

dealing with efficient methods to simulate their dynamics, either exact [1, 9, 12] or

approximated [6, 13, 31]. Here we present a naive exact scheme to generate sample paths

of non-Markovian processes, which provides the backbone for the non-Markovian cloning

method. This outputs a series of waiting times and instantaneous configuration changes,

consistent with the Markov and semi-Markov cases detailed in chapter 1. Generically,

the WTD can be expressed in terms of a time-dependent rate or hazard gxn,xn−1 [tn −
tn−1;w(tn−1)], which is the probability density that there is a jump from xn−1 to xn in
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Figure 4.1: Representation of a portion of trajectory. The time elapsed from the last
jump is called age. The conditional probability of having a configuration xn at an instant
tn > tn−1 depends on the age, as well as on events which happened during the history
(e.g., the one marked by the red star).

[tn, tn + dt), conditioned on having no transitions during the interval [tn−1, tn),

ψxn,xn−1 [tn − tn−1;w(tn−1)] = gxn,xn−1 [tn − tn−1;w(tn−1)]× φxn−1 [tn − tn−1;w(tn−1)].

(4.5)

For brevity we define τ = tn − tn−1, which is the value of the age, i.e. the time

elapsed since the last jump, when the next jump takes place. This is illustrated in

figure 4.1. Roughly speaking, the hazard gxn,xn−1 [τ ;w(tn−1)] is the likelihood of hav-

ing an almost immediate transition from a state xn−1 known to be of age τ , to a

state xn, and, crucially, can also depend on the history w(tn−1). From equation (4.5),

summing over xn ∈ S, and defining gxn−1 [τ ;w(tn−1)] =
∑

xn
gxn,xn−1 [τ ;w(tn−1)] and

ψxn−1 [τ ;w(tn−1)] =
∑

xn
ψxn,xn−1 [τ ;w(tn−1)], we get

ψxn−1 [τ ;w(tn−1)] =− d

dτ
φxn−1 [τ ;w(tn−1)] (4.6)

=gxn−1 [τ ;w(tn−1)]× φxn−1 [τ ;w(tn−1)]. (4.7)

The age-dependent sum gxn−1 [τ ;w(tn−1)] is also referred to as the escape rate from xn−1,

and using equation (4.7), can be written as a logarithmic derivative

gxn−1 [τ ;w(tn−1)] = − d

dτ
lnφxn−1 [τ ;w(tn−1)]. (4.8)
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Integrating equation (4.8) with initial condition φxn−1 [0;w(tn−1)] = 1 gives:

φxn−1 [τ ;w(tn−1)] = exp

(
−
∫ τ

0
gxn−1 [t;w(tn−1)] dt

)
, (4.9)

ψxn−1 [τ ;w(tn−1)] = gxn−1 [t;w(tn−1)] exp

(
−
∫ τ

0
gxn−1 [t;w(tn−1)] dt

)
. (4.10)

Equation (4.5) can be cast in the form (1.40), which is convenient for simulations,

ψxn,xn−1 [τ ;w(tn−1)] = pxn,xn−1 [τ ;w(tn−1)]× ψxn−1 [τ ;w(tn−1)], (4.11)

where

pxn,xn−1 [τ ;w(tn−1)] =
gxn,xn−1 [τ ;w(tn−1)]∑
xn
gxn,xn−1 [τ ;w(tn−1)]

, (4.12)

is the probability that the system jumps into the state xn, given that it escapes the state

xn−1 at age τ . It is important to notice that the normalization conditions∑
xn

pxn,xn−1 [τ ;w(tn−1)] = 1, (4.13)∫ ∞
0

ψxn−1 [τ ;w(tn−1)] dτ = 1 (4.14)

are satisfied. Hence, we can sample a random waiting time τ , according to the density

ψxn−1 [τ ;w(tn−1)] and, after that, a random arrival configuration xn, according to the

probability mass pxn,xn−1 [τ ;w(tn−1)]. This suggests the standard Monte Carlo algorithm

for the generation of a trajectory w(t) (1.115):

1) Initialise the system to a configuration x0 and a time t0. Set a counter to n = 1.

2) Draw a value τ according to the density (4.10) and update the time to tn = tn−1+τ .

3) Update the system configuration to xn, with probability given by (4.12).

4) Update n to n + 1 and repeat from 2) until tn reaches the desired simulation

time T = t− t0.

4.2.2 The cloning step

We now need to take into account the effect of the factor e−sθxn,xn−1 on the dynamics,

which is to increment (if θxn,xn−1 < 0) or decrement (if θxn,xn−1 > 0) the “weight” of

a trajectory, within an ensemble. This can be implemented by means of the cloning

method, introduced in section 1.7.2. Here, we refine and extend this idea to the case of

non-Markovian processes. One of the devices used in the original literature on Markovian

cloning methods [18, 29] is to define the modified transition probabilities (1.141) and
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(1.142), which are indeed valid only under the Markovian assumption, and a modified

cloning factor (1.143), encoding the contraction or expansion of the trajectory weight.

In fact, it is implicit in the original work that the redefinition of such quantities is

unnecessary; in some cases it may also be inconvenient, see section 4.3.2. An arguably

more natural choice, especially for non-Markovian dynamics, is to focus on the WTDs.

Specifically, equations (4.1) and (4.2) suggest the following procedure:

1) Set up an ensemble of N clones and initialise each with a given time t0, a random

configuration x0, and a counter n = 0. Set a variable C to zero. For each clone,

draw a time τ until the next jump from the density ψx0 [τ ;w(t0)] and then choose

the clone with the smallest value of t = t0 + τ .

2) For the chosen clone, update n to n + 1 and then the configuration from xn−1 to

xn according to the probability mass pxn,xn−1 [τ ;w(t− τ)].

3) Generate a new waiting time τ for the updated clone according to ψxn [τ ;w(t)] and

increment its value of t to t+ τ .

4) Cloning step. Compute y = be−sθxn,xn−1 + uc, where u is drawn from a uniform

distribution on [0, 1).

1) If y = 0, prune the current clone. Then replace it with another one, uniformly

chosen among the remaining N − 1.

2) If y > 0, produce y copies of the current clone. Then, prune a number y of

elements, uniformly chosen among the existing N + y.

5) Increment C to C+ln[(N+e−sθxn,xn−1 −1)/N ]. Choose the clone with the smallest

t, and repeat from 2) until t− t0 for the chosen clone reaches the desired simulation

time T .

The SCGF is finally recovered as −C/T for large T . The net effect of step 4) is to

maintain a constant population of samples whose mean current does not decay to 〈j〉.

4.3 Semi-Markov systems

We now focus on the statistics of time-extensive variables for semi-Markov processes

based on references [2, 16, 30].
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4.3.1 s-modified generalised Master equation

Recall that, in systems described by a standard Master equation, one strategy is to

analyse a process that obeys a modified rate equation, obtained replacing the time-

independent rates1 gxi,xj , with the products e−sθxi,xj gxi,xj , which are referred to as “bi-

ased” rates (as seen in chapter 1). In semi-Markov systems it is possible to investigate the

statistics of J [w(t)] in a similar, but more general, way. Instead of the standard Master

equation, we deploy the GME (1.84). The probability P(xi,J)(t) of having a configuration

xi with total current J at time t, under the constraint that the current can only grow or

decrease by one unit at each jump, obeys the following GME:

d

dt
P(xi,J)(t) = I(xi,J)(t− t0) +

∑
xj 6=xi

∫ t

t0

K(xi,J)←(xj ,J)(t− τ)P(xj ,J)(τ) dτ

+
∑
xj

∫ t

t0

K(xi,J)←(xj ,J+1)(t−τ)P(xj ,J+1)(τ) dτ+
∑
xj

∫ t

t0

K(xi,J)←(xj ,J−1)(t−τ)P(xj ,J−1)(τ) dτ

−
∑
xj 6=xi

∫ t

t0

K(xj ,J)←(xi,J)(t− τ)P(xi,J)(τ) dτ −
∑
xj

∫ t

t0

K(xj ,J+1)←(xi,J)(t− τ)P(xi,J)(τ) dτ

−
∑
xj

∫ t

t0

K(xj ,J−1)←(xi,J)(t− τ)P(xi,J)(τ) dτ. (4.15)

The reader is reminded that I(xi,J)(t− t0) is an initial-condition dependent term, which

contains the primed WTDs corresponding to the first jump of a sample path. We now

make the assumption that the memory kernels are independent of the time-integrated

current (only depending on the current increment), i.e.,

K(xi,J)←(xj ,J−c)(t) = Kxi,xj ,c(t), (4.16)

where c = −1, 0, 1. The system is diagonalised with respect to the current subspace by

means of the discrete Laplace transform

P̃xi(t) =
∑
J

e−sJP(xi,J)(t) (4.17)

1In a slight shift in notation, we now use xj and xi as configuration labels.
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and is then equivalent to

d

dt
P̃xi(t) = Ĩxi(t− t0) +

∑
xj 6=xi

∫ t

t0

Kxi,xj ,0(t− τ)P̃xj (τ) dτ

+
∑
xj

∫ t

t0

esKxi,xj ,−1(t− τ)P̃xj (τ)dτ +
∑
xj

∫ t

t0

e−sKxi,xj ,+1(t− τ)P̃xj (τ) dτ

−
∑

c,xj 6=xi

∫ t

t0

Kxj ,xi,c(t− τ)P̃xi(τ) dτ −
∫ t

t0

Kxi,xi,−1(t− τ)P̃xi(τ)dτ

−
∫ t

t0

Kxi,xi,+1(t− τ)P̃xi(τ) dτ, (4.18)

which can be represented in a more compact form as

∂t|P̃ (t)〉 = L̂(t)|P̃ (t)〉, (4.19)

where L̂(t) is a linear s-dependent integral operator and |P̃ (t)〉 has components P̃xi(t).

The limit as T →∞ of ln〈1|P̃ (t)〉/T (where 〈1| is a row vector with all entries equal to

one) is the SCGF of J . Clearly, equation (4.19) does not conserve the product 〈1|P̃ (t)〉,
except for s = 0 when this corresponds to the condition

∑
xi
Pxi(t) = 1. The dynamics

described by equation (4.18) is equivalent to the dynamics described by the GME (4.15),

where the memory kernels corresponding to jumps that contribute a unit c in the total

current are “biased”, i.e., multiplied by a factor e−cs. From linearity, it follows that the

Laplace transformed kernels are

e−csKxi,xj ,c(ν) = e−csψxi,xj ,c(ν)
/
φxj (ν) , (4.20)

where f(ν) =
∫∞

0 e−νT f(T )dT . This confirms that the modified dynamics can be simu-

lated biasing directly the WTDs ψxi,xj ,c(t), i.e., multiplying them by e−cs.

In section 1.4.1, we studied the behaviour of Ixi(t) and saw that, under some gen-

eral conditions, it converges to zero in the limit as t → ∞. We now consider the s-

dependent case, and study the asymptotic behavior of Ĩxi(t) =
∑

J e−sJI(xi,J)(t). In the

joint configuration–current space, the term encoding for the initial WTDs is, in the
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Laplace space conjugated to time,

I(xi,J)(ν) =
∑
xj 6=xi

ψ′xi,xj ,0(ν)P(xj ,J)(t0) +
∑

xj ,c=±1

ψ′xi,xj ,c(ν)P(xj ,J−c)(t0)

−

 ∑
xj 6=xi

ψ′xj ,xi,0(ν) +
∑

xj ,c=±1

ψ′xj ,xi,c(ν)

P(xi,J)(t0)

+
∑
xj 6=xi

ψxj ,xi,0(ν)
φ′xi(ν)

φxi(ν)
P(xi,J)(t0) +

∑
xj ,c=±1

ψxj ,xi,c(ν)
φ′xi(ν)

φxi(ν)
P(xi,J−c)(t0)

−

 ∑
xj 6=xi

ψxi,xj ,0(ν)
φ′xj (ν)

φxj (ν)
+

∑
xj ,c=±1

ψxi,xj ,c(ν)
φ′xj (ν)

φxj (ν)

P(xj ,J)(t0), (4.21)

hence,

Ĩxi(ν) =

 ∑
xj 6=xi

ψ′xi,xj ,0(ν) +
∑

xj ,c=±1

e−csψ′xi,xj ,c(ν)

 P̃xj (t0)

−

 ∑
xj 6=xi

ψ′xj ,xi,0(ν) +
∑

xj ,c=±1

ψ′xj ,xi,c(ν)

 P̃xi(t0)

+

 ∑
xj 6=xi

ψxj ,xi,0(ν)
φ′xi(ν)

φxi(ν)
+

∑
xj ,c=±1

e−csψxj ,xi,c(ν)
φ′xi(ν)

φxi(ν)

 P̃xi(t0)

−

 ∑
xj 6=xi

ψxi,xj ,0(ν)
φ′xj (ν)

φxj (ν)
+
∑
xj ,c±1

ψxi,xj ,c(ν)
φ′xj (ν)

φxj (ν)

 P̃xj (t0). (4.22)

As at the beginning of the observation time the total current is zero, we can replace

P̃x0(t0) with Px0(t0). Using WTDs that satisfy either (1.86) or (1.87), which were intro-

duced in section 1.4, we again find that the limit as ν → 0 is finite, hence, according

to the final-value theorem2, Ĩxi(t) decays to zero in the long-time limit. However, the

initial-condition term may still substantially affect the large deviation functionals and

their numerical evaluation, as such a decay may be slow for certain choices of WTDs. In

general, Ĩxi(ν) does not vanish even when ψ′xi,xj ,c(ν) = ψxi,xj ,c(ν). In fact, in this case

we have

Ĩxi(ν) =
∑
xi

{
(e−s − 1)

[
ψxj ,xi,+1(ν)Pxi(t0) + ψxi,xj ,+1(ν)Pxj (t0)

]
+ (es − 1)

[
ψxj ,xi,−1(ν)Pxi(t0) + ψxi,xj ,−1(ν)Pxj (t0)

]}
, (4.23)

2This was also introduced in section 1.4.
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which is in general non-zero (except for s = 0, when Ixi(ν) = 0 is recovered). Conse-

quently, the algorithm of section 4.2.2 must be iterated for sufficiently long time in order

to neglect this finite-time contribution.

4.3.2 The Markovian case re-examined

The Markovian case is recovered for Kxi,xj ,c(t) = gxi,xj ,cδ(t). Using such a kernel, equa-

tions (4.18) and (4.19) can be written as

∂t|P̃ (t)〉 = G̃|P̃ (t)〉, (4.24)

where G̃ is the s-modified stochastic generator of the Markov process with time-independent

rates gxi,xj and components3

[
G̃
]
xi,xj

= gxi,xj ,0 + e−sgxi,xj ,+1 + esgxi,xj ,−1, (4.25)[
G̃
]
xi,xi

= e−sgxi,xi,+1 + esgxi,xi,−1 − gxi,xi,−1 − gxi,xi,+1 − gxi , (4.26)

where gxi =
∑

c,xj 6=xi gxj ,xi,c is the rate of escape from xi. This shows that biasing the

rates is consistent with biasing the WTDs (see also some related discussions in [17]).

However, from a numerical point of view, the latter choice remains convenient even for

the Markovian case, as it avoids us having to define the modified transition probabilities

of Lecomte and Tailleur [29]. To see this, we consider the biased Markovian WTD

ψ̃xi,xj ,c(τ) = e−csgxi,xj ,c exp
(
−gxjτ

)
, (4.27)

which is the product of an exponential probability density ψxj (τ) = gxj exp
(
−gxjτ

)
, a

time-independent probability mass pxi,xj ,c = gxi,xj ,c/gxj , and a simple cloning factor e−cs.

These specify the two steps of the standard Doob–Gillespie algorithm for Markov pro-

cesses (see section 1.7.1), followed by a cloning step of weight e−cs. Another legitimate

choice is to define the biased rates g̃xi,xj ,c = e−csgxi,xj ,c and g̃xj =
∑

xi,c
g̃xi,xj ,c to write

ψ̃xi,xj ,c(τ) = exp
[
τ
(
g̃xj − gxj

)]
g̃xi,xj ,c exp

(
−g̃xjτ

)
. (4.28)

With such an arrangement, we recognise the scheme of Lecomte and Tailleur [29], i.e., at

each temporal step, the configuration evolves according to a stochastic generator with

rates g̃xi,xj ,c, (this is equivalent to the steps 2) and 3) of the algorithm in section 1.7.2)

3Note that the equation (4.26), and also the earlier (4.18), takes into account events that do not alter
the configuration, but modify the current statistics. This slightly generalises the treatment of section 1.7.2,
where the change in current is always accompanied by a configuration change.
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and the ensemble is modified with the cloning factor exp
[
τ
(
g̃xj − gxj

)]
, as in the cloning

step 4) of section 1.7.2. As the cloning factor here is exponential in time, during long

intervals the relative number of new clones can be large. This can cause major finite-

ensemble errors, which are shown to be important, e.g., in reference [11, 26]. Conversely,

an implementation based on equation (4.27) seems to be one way to reduce (but not

completely eliminate) such a problem.

Noticeably, for exponentially distributed waiting times we have

ψxi,xj ,c(ν) =
βxi,xj ,c

βxj + ν
, (4.29)

ψ′xi,xj ,c(ν) =
β′xi,xj ,c
β′xj + ν

. (4.30)

Substituting into equation (4.23), it is straightforward to show that the finite-time effects

due to Ixi(t) are only minor. In fact, the resulting exact equation

Ĩxi(ν) =
∑
xj 6=xi

β̃xj ,xi,0 − β̃′xj ,xi,0
β̃′xi + ν

Pxi(t0) +
∑

xj ,c=±1

β̃xj ,xi,c − β̃′xj ,xi,c
β̃′xi + ν

Pxi(t0)

+
∑
xj 6=xi

β̃′xi,xj ,0 − β̃xi,xj ,0
β̃′xj + ν

Pxj (t0) +
∑

xj ,c=±1

β̃′xi,xj ,c − β̃xi,xj ,c
β̃′xj + ν

Pxj (t0), (4.31)

is sum of Laplace transforms of exponential functions and implies an exponential decay

of Ĩxi(t) to zero.

4.3.3 SCGF as pole of the partition function

We report here a neat procedure to find the long-time behaviour of current fluctuations

in semi-Markov processes proposed in Andrieux and Gaspard [2]. This will be used to

test the exactness of the non-Markovian cloning method. In this section, we derive such

a procedure with the minor extension to semi-Markov processes with special (primed)

initial WTDs. The starting point is the explicit form for the biased probability of the
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configuration x after a time t− t0 (since the reference instant t0),

P̃x(t) =
∑
x0

δx,x0φ
′
x0(t− t0)Px0(t0) +

∫ t

t0

dt1
∑
x0,x1

δx,x1φx1(t− t1)ψ̃′x1,x0(t1 − t0)Px0(t0)

+

∫ t

t0

dt1

∫ t

t1

dt2
∑

x0,x1,x2

δx,x2φx2(t− t2)ψ̃x2,x1(t2 − t1)ψ̃′x1,x0(t1 − t0)Px0(t0)

+

∫ t

t0

dt1

∫ t

t1

dt2

∫ t

t2

dt3
∑

x0,x1,x2,x3

δx,x3φx3(t− t3)ψ̃x3,x2(t3 − t2)ψ̃x2,x1(t2 − t1)ψ̃′x1,x0(t1 − t0)Px0(t0)

+ . . . , (4.32)

which gives the partition function Z(s, t) =
∑

x P̃x(t). Equation (4.32) can be Laplace

transformed recursively to yield

P̃ x(ν) =
∑
x0

δx,x0φ
′
x0(ν)Px0(t0) +

∑
x0,x1

δx,x1φx1(ν)
˜
ψ
′
x1,x0(ν)Px0(t0)

+
∑

x0,x1,x2

δx,x2φx2(ν)ψ̃x2,x1(ν)
˜
ψ
′
x1,x0(ν)Px0(t0)

+
∑

x0,x1,x2,x3

δx,x3φx3(ν)ψ̃x3,x2(ν)ψ̃x2,x1(ν)
˜
ψ
′
x1,x0(ν)Px0(t0)

+ . . . , (4.33)

which can be compactly written as

P x(ν) =
∑
x0

δx,x0φ
′
x0(ν)Px0(t0)

+
∑
x0

∞∑
n=1

∑
x1,...,xn

δx,xnφxn(ν)ψ̃xn,xn−1
(ν) . . . ψ̃x2,x1(ν)

˜
ψ
′
x1,x0(ν)Px0(t0). (4.34)

Introducing the matrices φ(ν), ψ̃(ν), φ
′
(ν),

˜
ψ
′
(ν), with entries

[
φ(ν)

]
xj ,xi

= δxj ,xiφxi(ν), (4.35)[
ψ(ν)

]
xj ,xi

= ψ̃xj ,xi(ν), (4.36)[
φ
′
(ν)
]
xj ,xi

= δxj ,xiφ
′
xi(ν), (4.37)[

ψ
′
(ν)
]
xj ,xi

=
˜
ψ
′
xj ,xi(ν), (4.38)
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respectively, equation (4.34) can be written as

P x(ν) =
∑
x0

[
φ′(ν)

]
x,x0

Px0(t0) +
∑
x0

[ ∞∑
n=1

φ(ν)ψ̃(ν)n−1 ˜
ψ′(ν)

]
x,x0

Px0(t0) (4.39)

=
∑
x0

[
φ′(ν) +

∞∑
n=1

φ(ν)ψ̃(ν)n−1 ˜
ψ′(ν)

]
x,x0

Px0(t0) (4.40)

=
∑
x0

[
φ′(ν) + φ(ν)

1

1− ψ̃(ν)

˜
ψ′(ν)

]
x,x0

Px0(t0). (4.41)

In order to obtain the dominant mode in the long-time limit, one can study the poles

of the matrix of equation (4.41) with entries
[
φ′(ν) + φ(ν)

˜
ψ′(ν)/(1− ψ̃(ν))

]
x,x0

. Such

poles occur where the determinant of 1−ψ(ν) is zero. The main limitation of this method

is that it only applies to semi-Markov processes on finite configuration spaces.

4.3.4 Discrete-time case

We now consider discrete-time processes. A discrete-time chain can be seen as a stochastic

process in continuous time where the next jump occurs after a constant waiting time of

one unit. Such a scenario can be represented by means of a semi-Markov process with

WTDs ψxn,xn−1 [τ ;w(t)] = pxn,xn−1 [w(t)]ψxn−1(τ), where pxn,xn+1 [w(t)] is an entry of a

transition matrix and ψxn−1(τ) = δ(τ − 1) is the Dirac delta measure translated by 1.

In fact, the procedure of section 4.2.2 can be implemented with reasonable accuracy by

setting, e.g.,

ψxn−1(τ) =
1

σ
√

2π
exp

[
−(τ − 1)2/(2σ2)

]
, (4.42)

with σ � 1. In particular, a discrete-time Markov chain can be seen as a special DTI

semi-Markov process, since the transition probabilities do not depend on w(t). However,

such a continuous-time implementation neglects the major computational advantage of

dealing with discrete time, namely, all the ensemble elements can be updated simultane-

ously. This feature can be used to prevent a single clone replacing a macroscopic fraction

of the ensemble, thus reducing finite size effects. Therefore, we suggest the following

parallel algorithm:

1) Set up an ensemble of N clones and initialise each to its own random configuration

x0. Also, initialise a unique counter to n = 1, the variable C to zero, and each

element of an array C of length N to 1.

2) For each clone, update the configuration from xn−1 to xn according to the mass
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pxn,xn−1 [1;w(n− 1)]. Store the individual values of e−sθxn,xn−1 in C.

3) Cloning step. Compute the arithmetic mean y of all the entries of C. Perform

a weighted random sampling with repetition (see, e.g., reference [15]) of N clones

from the ensemble, according to their weights C. This sample replaces the existing

ensemble.

4) Increment C to C + ln(y). Update n to n+ 1 and reiterate from 2, until n reaches

the desired simulation time.

The SCGF is recovered as −C/n for large n. As the sampling at step 3) is performed

simultaneously for all the clones, it is very unlikely for a single clone to replace all the

remaining ones, even in the presence of a strong bias. We argue that this further reduces

the finite ensemble effects.

In continuous time an equivalent strategy is to mimic the discrete-time steps, as

in, e.g., reference [5], so each trajectory evolves independently for a constant interval ∆t;

in this case, the product of the cloning factors encountered during the interval, as well

as the time elapsed since the last jump must be stored. This permits the application of

the cloning step to all clones simultaneously.

Finally, it is worth making the link to the procedure originally proposed by C. Gi-

ardinà, J. Kurchan, and L. Peliti [18]. In their seminal paper, the use of the cloning

method to probe large deviation functionals for Markov processes is proposed and the

general idea is implemented in discrete-time. Indeed, for the Markovian case, we can

arrange the biased WTD as

ψ̃xi,xj ,c(τ) =

∑
xk,c′ g̃xk,xj ,c′∑
xk,c′ gxk,xj ,c′

g̃xi,xj ,c∑
xk,c′ g̃xk,xj ,c′

δ(τ − 1). (4.43)

This suggests the following steps for each ensemble element: increase the time by one unit,

change the state according to the modified transition probability g̃xi,xj ,c/
∑

xk,c′ g̃xk,xj ,c′

and modify the ensemble population according to a cloning factor

∑
xk,c′

g̃xk,xj ,c′

/∑
xk,c′

βxk,xj ,c′ , (4.44)

which only depends on the departure configuration xj , as indeed explained in refer-

ence [18].
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4.4 Test on non-Markovian toy models

We now test the non-Markovian cloning procedure against three non-Markovian models,

whose exact large deviations are known from the literature or can be deduced from

Markovian models.

4.4.1 Semi-Markov models for ion-channel gating with and without

DTI

The current through an ion channel in a cellular membrane can be modelled with only

two states, corresponding to the gate being singly occupied (x1) or empty (x0); an ion

can enter or leave this channel via the left (L) or right (R) boundary and non-exponential

waiting times lead to a complex behaviour [3]. Specifically, we denote the WTD for a

particle that succeeds in entering (or leaving) through the boundary L by ψx1,x0,1(τ)

(or ψx0,x1,−1(τ)) with respective density ψx1,x0,0(τ) (or ψx0,x1,0(τ)) for the boundary

R. The rightwards current is measured by a counter that increases (decreases) by one

when a particle enters (leaves) the system through the boundary L. Its exact SCGF

is obtained numerically by D. Andrieux and P. Gaspard [2] as the leading pole of the

time-Laplace transform of Z(s, t) (procedure detailed in section 4.3.3), for the DTI-case

ψxi,xj ,c(τ) = pxi,xj ,cψxj (τ) with
∑

c=−1,0 px0,x1,c =
∑

c=0,1 px1,x0,c = 1, and the particular

choice ψxj (τ) = g(τ ; kj , λj), where

g(τ ; k, λ) =
λkτk−1

Γ(k)
exp(−λτ) (4.45)

is the PDF of a Gamma distribution with shape k and scale 1/λ and

Γ(k) =

∫ ∞
0

xk−1ex dx

is the Gamma function. The Markovian case is recovered for k = 1.

We intend to find the points where the determinant of 1 − ψ(ν) is zero, as detailed

in section 4.3.3 and reference [2]. The Laplace transforms of the Gamma WTDs are

ψxj (ν) =

(
λj

λj + ν

)kj
. for i = 1, 2 (4.46)

Notice that if the shape parameter kj is integer, then ψxj (ν) has kj real poles and an

Erlang distribution with kj stages is obtained. The total Laplace-transformed biased
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Figure 4.2: SCGF of current in ion channel. (a) DTI model with (k0, λ0, k1, λ1) =
(0.1, 0.01, 1, 1) and (px1,x0,1, px0,x1,0, px0,x1,−1, px1,x0,0) = (0.5, 0.6, 0.4, 0.5); the cloning
result is consistent with the solution given in [2]. (b) non-DTI model with Markov repre-
sentation and inverse scales (λL0 , λ

R
0 , λ

L
1 , λ

R
1 ) = (20, 10, 10, 20/3); The cloning reproduces

the leading eigenvalue of the Markovian s-modified generator. In both cases N = 103

and t = 103.

WTDs are;

ψ̃x0,x1(ν) = (px0,x1,0 + px0,x1,1e−s)ψx1(ν), (4.47)

ψ̃x1,x0(ν) = (px1,x0,0 + px1,x0,−1es)ψx0(ν); (4.48)

these are the off-diagonal elements of the matrix 1 − ψ(ν), whose determinant 1 −
ψ̃x1,x0(ν)ψ̃x0,x1(ν) is zero when

(
λ1 + ν

λ1

)k1 (λ0 + ν

λ0

)k0
= (px0,x1,0 + px0,x1,1e−s)(px0,x1,0 + px0,x1,1e−s). (4.49)

The leading zero of equation (4.49), computed using the Newton–Raphson method, is

plotted in figure 4.2(a) along with the cloning results. Notably, the cloning method of sec-

tion 4.2 can be implemented for any WTD, as only a bias of es for ions leaving the channel

leftwards and a bias e−s for ions entering from left are needed. The figure shows that the

cloning reproduces, within numerical accuracy, the solution in ν of equation (4.49).

In a quest for more general classes of models to illustrate the power of our approach,

we now relax the constraint of DTI and assume that each transition can be triggered

independently by two mechanisms, corresponding to the two boundaries. We still assume

that memory of the previous history is lost as soon as the system changes state, thus

preserving the semi-Markov nature. At the instant when the gate is emptied, a particle

attempts to enter the system from the left boundary after a waiting time TL0 with density

distribution ΨL0 (τ), while another particle attempts to arrive from the right boundary
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after a time TR0 distributed according to ΨR0 (τ). The waiting times TL1 and TR1 , as well as

the densities ΨL1 (τ) and ΨR1 (τ) are defined similarly. In order to have a right (left) jump

during the interval [τ, τ + dτ), we also require that the left (right) mechanism remains

silent until time τ . Consequently, the WTDs are

ψx1,x0,0(τ) = ΨR0 (τ)ΦL0 (τ), (4.50)

ψx1,x0,−1(τ) = ΨL0 (τ)ΦR0 (τ), (4.51)

ψx0,x1,0(τ) = ΨR1 (τ)ΦL1 (τ), (4.52)

ψx0,x1,1(τ) = ΨL1 (τ)ΦR1 (τ), (4.53)

where Φ
(ρ)
j (τ) =

∫∞
τ Ψ

(ρ)
j (t) dt are survival probabilities, with ρ denoting the mechanism

L or R. As a concrete choice, we again assign a Gamma probability distribution to the

waiting time of each event,

Ψ
(ρ)
j (τ) = g(τ ; k

(ρ)
j , λ

(ρ)
j ), (4.54)

so that the survival probabilities are

Φ
(ρ)
j (τ) = Γ(k

(ρ)
j , λ

(ρ)
j τ)/Γ(k

(ρ)
j ), (4.55)

where Γ(k, x) is the upper incomplete Gamma function. The time to the next jump,

given that the system just reached state xj (i.e., its age is zero) is min{TLj , TRj } and is

associated with the total survival probability,

φxj (τ) = ΦLj (τ)ΦRj (τ). (4.56)

Once the transition time is known, either the left or right trigger is chosen, according to

the age-dependent rates

β
(ρ)
j (τ) = g(τ ; k

(ρ)
j , λ

(ρ)
j )Γ(k

(ρ)
j )/γ(k

(ρ)
j , λ

(ρ)
j τ), (4.57)

where γ(k, x) is the lower incomplete Gamma function. The SCGF of the left current is

computed by biasing the WTDs ψx1,x0,1(τ) and ψx0,x1,−1(τ) with e∓s, respectively.

While the implementation of the method of section 4.2.2 remains straightforward for

this model, a general solution for the exact SCGF is missing. We thus specialise to the

case with integer shapes kR0 = kR1 = kL0 = kL1 = 2, where the Laplace transform of

ψxi,xj (τ) =
∑

c ψxi,xj ,c(τ) is a rational function of ν, viz.,

ψxj ,xi(ν) =
(λLi )2(ν + 3λRi + λLi )(

ν + λRi + λLi
)3 +

(λRi )2(ν + λRi + 3λLi )(
ν + λRi + λLi

)3 ; (4.58)
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its first term corresponds to the right boundary, while the second one corresponds to the

left boundary4. Notice that there is no dependence on the arrival state xj , the model

being defined on a two-state configuration space. Equation (4.58) can be conveniently

written as

ψxj ,xi(ν) = αi,2
(λRi + λLi )2

(ν + λRi + λLi )2
+ αi,3

(λRi + λLi )3

(ν + λRi + λLi )3
, (4.59)

with

αi,2 =
(λRi )2 + (λLi )2(
λRi + λLi

)2 , (4.60)

αi,3 =
2λRi λ

L
i(

λRi + λLi
)2 , (4.61)

which clearly defines a Coxian distribution of the type seen in equation (1.37) (notice

that αi,2+αi,3 = 1). To study the effect of boundaries we separately decompose in partial

fractions the left and right WTD contributions of equation (4.58), i.e.,

ψxj ,xi(ν) =

(
λLi
)2

2λR(
ν + λRi + λLi

)3 +

(
λLi
)2(

ν + λRi + λLi
)2 +

(
λRi
)2

2λL(
ν + λRi + λLi

)3 +

(
λRi
)2(

ν + λRi + λLi
)2 ,

(4.62)

which can be rearranged as

ψxj ,xi(ν) =αLi,2

(
λRi + λLi

)2(
ν + λRi + λLi

)2 + αLi,3

(
λRi + λLi

)3(
ν + λRi + λLi

)3
+ αRi,2

(
λRi + λLi

)2(
ν + λRi + λLi

)2 + αRi,3

(
λRi + λLi

)3(
ν + λRi + λLi

)3 , (4.63)

where

αLi,2 =

(
λLi
)2(

λRi + λLi
)2 , (4.64)

αLi,3 =
2
(
λLi
)2
λRi(

λRi + λLi
)3 , (4.65)

αRi,2 =

(
λRi
)2(

λRi + λLi
)2 , (4.66)

αRi,3 =
2
(
λRi
)2
λLi(

λRi + λLi
)3 . (4.67)

Notice that αLi,2+αLi,3+αRi,2+αRi,3 = 1. The first and second terms correspond to left jumps,

4This can be verified by Laplace-transforming the two terms in
∑

c ψxi,xj ,c(τ) separately.
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(a) (b)

Figure 4.3: Two graphical representations of the WTD (4.59). The waiting time is equal
to the adsorption time of a random walker from the leftmost site to any of the grey sites.

while the third and fourth terms correspond to right jumps. We also underline that the

choice (4.64)–(4.67) is only one of the possible decompositions of the WTD (4.58). It

follows, straightforwardly, that

ψxi,xj (ν) =
(
αRj,2 + αLj,2

)( λj
ν + λj

)2

+
(
αRj,3 + αLj,3

)( λj
ν + λj

)3

, (4.68)

where we used, for convenience, λj instead of λLj + λRj . A comparison with (1.37) shows

that it corresponds to the case with three stages (i.e., k = 3), p0 = p1 = 0, and p2 =

αRi,2 + αLi,2. Hence, the jump from xi to xj can be modelled as a process of three stages,

in each of which the system is trapped for an exponentially distributed time with rate

λi, as in explained in section 1.3. At time zero, with probability 1, the system enters the

first stage and waits there. Then, again with probability 1, it enters a second identical

stage. After leaving the second stage, the escape occurs immediately with probability p2,

or the system enters the third and last phase with probability 1− p2. Hence the WTD is

the time to absorption of the Markov process with the transition graph of figure 4.3(a),

given that we start at state 0.

Recalling the notion of trigger, it is possible to build an alternative but equivalent

absorbing Markov process with the same time to absorption. We think of each of the

two Gamma triggers (R or L) as a device with two exponential stages (with rate λRi
or λLi ). The escape occurs when either of the two triggers leaves the last stage. The

transition graph of the associated Markov process is shown in figure 4.3(b). Hence,

the two-state semi-Markov process with WTD (4.50) and (4.53) can be seen as a six-

state Markov process. With the phase-type representations of ψx1,x0(τ) and ψx0,x1(τ),

it is straightforward to build a Markov transition graph of the full model. In order to

study the non-equilibrium aspects, we need to distinguish the contributions of the two
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Figure 4.4: Graphical representations of the non-DTI ion-channel model with hidden
states. The bonds corresponding to biased rates are drawn in thick lines. The modified
generators associated with these two models have the same leading eigenvalue.

boundaries L and R. Hence, in order to obtain the s-modified generator and find the

SCGF of figure 4.2(b), we only bias the true/visible transitions of type L. The resulting

Markov representations are then encoded in the multi-graphs of figure 4.4.

The linearity of the Laplace transform permits the distinction of the left and right

contributions in (4.68), hence it remains easy to bias the rates that correspond to a

change in J and the SCGF can be exactly found as the leading eigenvalue of an s-

modified Markovian stochastic generator. Figure 4.2(b) shows convincing agreement of

our cloning method with this exact approach.

4.4.2 TASEP with history dependence

More general non-Markovian systems are those whose WTDs depend on events occurred

during the whole observation time. Systems in this class are the “elephant” random

walk [38] and its analogues [24, 36, 42], where the transition probabilities at time t

depend on the history through the time-averaged current j(t). We focus here on an IPS

with such current-dependent rates, namely the TASEP of Harris [23].

Non-Markovian interacting particle systems can be described by assigning a trigger

for attempts with WTD Ψi[τ ;w(t)] and a corresponding survival function Φi[τ ;w(t)] to

each elementary event i that controls the particle dynamics. The probability density that

the next transition is of type i and occurs in the time interval [t + τ, t + τ + dt), given
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that, for each j, a time τj has elapsed since the last event of type j, is given by5

ψi[τ ;w(t)|τ0, τ1, τ2, . . .] = Ψi[τ + τi;w(t)|τi]
∏

j 6=i,j=1,2,...

Φj [τ + τj ;w(t)|τj ], (4.69)

where Ψi[τ + τi;w(t)|τi] = Ψi[τ + τi;w(t)]/Φi[τi;w(t)] and Φi[τ + τi;w(t)|τi] = Φi[τ +

τi;w(t)]/Φi[τi;w(t)]. With exact expressions for these WTDs, we can implement the

algorithms of section 4.2.

As mentioned in section 2.1, the TASEP consists of a one-dimensional lattice of length

L, where each lattice site l, 1 ≤ l ≤ L, can be either empty (ηl = 0) or occupied by a

particle (ηl = 1). We assume that particles on a site l < L are driven rightwards. In

a non-Markovian variant of the model, they attempt a bulk jump to site l + 1 with

WTD Ψb[τ ;w(t)], the attempt being successful if ηl+1 = 0, as in [13, 21, 27]. With open

boundaries, a particle that reaches the rightmost site L leaves the system with WTD

ΨL[τ ;w(t)]. Also, as soon as η1 = 0, a further boundary mechanism turns on and particles

arrive on the leftmost site with WTD Ψ0[τ ;w(t)]. The special choice Ψ0[τ ;w(t)] = αe−ατ ,

Ψb[τ ;w(t)] = pe−pτ , and ΨL[τ ;w(t)] = βe−βτ corresponds to the standard Markovian

TASEP with constant left, bulk and right rates α, p, and β.

Let us provide more details about this model. From equation (4.69) we get

ψi[τ ;w(t)|τ0, τ1, τ2, . . .] =
Ψi[τ + τi;w(t)]

Φi[τi;w(t)]

∏
j 6=i,j=0,1,2,...

Φj [τ + τj ;w(t)]

Φj [τj ;w(t)]
. (4.70)

which also yield, multiplying and dividing the r.h.s. by Φi[τi + τ ;w(t)],

ψi[τ ;w(t)|τ0, τ1, τ2, . . .] =
Ψi[τ + τi;w(t)]

Φi[τi + τ ;w(t)]

∏
j=0,1,2,...

Φj [τ + τj ;w(t)]

Φj [τj ;w(t)]
. (4.71)

In equation (4.71) we recognise the total survival probability

∏
j=0,1,2,...

Φj [τ + τj ;w(t)]

Φj [τj ;w(t)]
(4.72)

and the age-specific hazard
Ψi[τ + τi;w(t)]

Φi[τ + τi;w(t)]
. (4.73)

5In a slight abuse of notation, we continue to use the full history w(t) as a parameter but explicitly
show the conditioning on the τis.
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By dividing and multiplying the r.h.s. of equation (4.71) by the sum

∑
i

Ψi[τ + τi;w(t)]

Φi[τ + τi;w(t)]
, (4.74)

we obtain the convenient form (4.11), i.e., the product of an inter-event time distribution{∑
i

Ψi[τ + τi;w(t)]

Φi[τ + τi;w(t)]

}
×

∏
j=0,1,2,...

Φj [τ + τj ;w(t)]

Φj [τj ;w(t)]
(4.75)

and the conditional probability of having a specific event

Ψi[τ + τi;w(t)]

Φi[τ + τi;w(t)]

/∑
i

Ψi[τ + τi;w(t)]

Φi[τ + τi;w(t)]
. (4.76)

Notice that all the quantities here are history-dependent, while, if we remove the general

dependence on w(t) whilst maintaining the dependence on the elapsed times τ0, τ1, τ2, . . .,

we obtain the case of a process with semi-Markov triggers [21]. We now assume that

only the left boundary has a non-exponential WTD6, while the particle triggers have

exponential WTDs with rate 1 for free particles in the bulk, and rate β for the particle

on the rightmost site. Exponential triggers allow us to write

Ψb[τ + τi;w(t)]

Φb[τ + τi;w(t)]
= 1 (4.77)

for each free particle in the bulk, while we have

ΨL[τ + τL;w(t)]

ΦL[τ + τL;w(t)]
= β (4.78)

for the particle on the rightmost site. Consequently the inter-event time density distri-

bution, conditioned on a time τ0 having elapsed since the last arrival event, is

ψ[τ ;w(t)|τ0] =

(
Ψ0[τ + τ0;w(t)]

Φ0[τ0;w(t)]
(1− η0) + n + βηL

)
× exp

{
ln

[
Φ0[τ + τ0;w(t)]

Φ0[τ0;w(t)]

]
(1− η0)− (n + βηL)τ

}
, (4.79)

6As we wish to model arrivals with current-dependent rate.

123



Chapter 4. A numerical approach to large deviations in non-Markovian processes

while the probability mass distribution, conditioned on an age τ and elapsed time τ0 is

p0[τ ;w(t)|τ0] =
Ψ0[τ + τ0;w(t)]

Φ0[τ0;w(t)]
(1− η0)

×
(

Ψ0[τ + τ0;w(t)]

Φ0[τ0;w(t)]
(1− η0) + n + βηL

)−1

, (4.80)

pb[τ ;w(t)|τ0] =

(
Ψ0[τ + τ0;w(t)]

Φ0[τ0;w(t)]
(1− η0) + n + βηL

)−1

, (4.81)

pL[τ ;w(t)|τ0] =βηL

(
Ψ0[τ + τ0;w(t)]

Φ0[τ0;w(t)]
(1− η0) + n + βηL

)−1

, (4.82)

where the η0 and ηL encode the exclusion rules at the boundaries, i = 1, 2, . . . , n, and n

is the number of free particles in the bulk, which depends on the lattice configuration

before the jump. The survival probability is

φ[τ ;w(t)|τ0] = exp

{
ln

[
Φ0[τ + τ0;w(t)]

Φ0[τ0;w(t)]

]
(1− η0)− (n + βηL)τ

}
, (4.83)

which is the product of the Markovian exponential decays for the bulk and right-

boundary particles and a memory-dependent prefactor for the left-boundary arrivals.

We now define the stochastic dynamics of the boundary trigger. Let us impose that

the arrival rate α depends linearly on the inwards current j(t), i.e.,

α(j) = α0 + aj, (4.84)

which defines a time-dependent rate β0(t) := α[j(t)]. A similar functional dependence

(but on the instantaneous output current) has been used to model ribosome recycling

in protein translation [19, 39]. Generically, such rates describe a simple form of positive

feedback (for a > 0), whose effect on the stationary state of the TASEP is to shrink the

low-density phase [23, 39]. The current fluctuations are also altered; the rate function

ê(j) in this phase has already been computed, for our model, by means of the so-called

temporal additivity principle [23, 25], hence this model provides a testing ground for the

cloning method of section 4.2. The particle arrival mechanism starts when the leftmost

site is emptied, when we set an age of τ = 0. Denoting by q the current immediately after

the last arrival, which occurred at t− τ0, the value j(t+ τ) at age τ can be expressed as

q(t− τ0)/(t+ τ), hence the trigger hazard is

β0(t+ τ) = α0 + aq(t− τ0)/(t+ τ), (4.85)

where τ is the trigger age. Initial values of τ0 and q are chosen to be 1 and 0, respectively.

This allows us to derive the trigger survival probability and the resident time distribution
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which are, respectively,

Φ0[τ ;w(t)] = exp

(
−
∫ τ

0
β0(t+ u)du

)
(4.86)

=

(
t

t+ τ

)aq(t−τ0)

e−α0τ , (4.87)

and Ψ0[τ ;w(t)] = β0(t + τ)Φ0[τ ;w(t)]. Using these in equations (4.79)–(4.82) allows us

to generate the trajectories. The survival probability (4.83) for whole process obtained

pooling the single-trigger processes has the simple form

Φ0[τ ;w(t)] =

(
t

t+ τ

)aq(t−τ0)(1−η0)

exp {−τ [α0(1− η0)− n− βηL]} , (4.88)

which has been used to generate random inter-event times using the “inverse sampling”

method (see, e.g., reference [41]) as follows. With the definitions Q := aq(t− τ0)(1− η0)

and R := α0(1− η0)− n− βηL , we are concerned with the solution in τ of(
t

t+ τ

)Q
e−τR = 1− u, (4.89)

where u is a drawn from a uniform distribution on [0, 1). Equation (4.89) can be rewritten

as

(t+ τ)R/Q e(t+τ)R/Q = (1− u)
− 1

Q tR/Q etR/Q =: C, (4.90)

which can be solved numerically with respect to z := (t + τ)R/Q to get the time to

the next jump τ . Interestingly we recognise that z = W0(C) is the principal branch of

the Lambert function [14]. A numerical problem here is that equation (4.90) contains

the exponential of t, which for large time causes computational overflow. This has been

avoided by taking the logarithm of both sides of equation (4.90) and solving ln z+z = lnC

with respect to z.

We evaluated the SCGF of the left-boundary current simply by applying a bias e−s to

the conditional WTD of the arrival events and implementing the algorithm of section 4.2

for this model. The results are plotted in figure 4.5(a). It is worth noting the existence

of a linear branch with slope j∗ for large negative values of s. In agreement with the

discussion of section 1.6, this branch is mapped to a unique point of the rate function

ê(j) in figure 4.5(b). It would be interesting to probe larger negative values of s but,

far from the central regime s = 0, the algorithm shows some convergence problems and

systematic errors. These indeed are a feature typical of the cloning approaches and are

presumably due to the finiteness of the clones population [26]. A simple way proposed
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Figure 4.5: (a) Cloning evaluation of the SCGF for the non-Markovian TASEP, with
(α0, a, β, L) = (0.2, 0.1, 1, 103), using T = 103. Ensemble size is N = 5 ·103 (N = 104) for
s > −2 (s < −2). The markers correspond to the direct evaluation of e(s). Numerical er-
rors are of the order of the symbol size, except for large negative s, where finite-ensemble
errors still seem to play a role. The red line is obtained as

∫ s
0 (de(σ)/dσ) dσ, according to

the thermodynamic integration of [29]. (b) Comparison between the Legendre–Fenchel
transform of the red line in (a) and the rate function of [23]. The dotted line is a numer-
ical artefact due to the finite range of s in (a); the Legendre–Fenchel transform maps
the whole linear branch of e(s) to the value at j∗ and larger values of j are, in fact, not
probed. In both (a) and (b), the dashed lines are the large deviation functionals of the
corresponding memory-less TASEP with “effective” arrival rate.
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by Lecomte and Tailleur [29] to smooth out the numerical error consists of the following

trick. From the definition of the SCGF one gets, by differentiation,

d

ds
e(s) =

1

Z(s, t)

∫
J [w(t)]

T
e−sJ [w(t)]%[w(t)]dw(t), (4.91)

which is the expectation value of the time-averaged current J [w(t)]/T among the popu-

lation of clones; we can use, of course,

e(s) =

∫ s

0

(
de(σ)

dσ

)
dσ, (4.92)

thus computing the SCGF from its derivative. Such a procedure is referred to as the

thermodynamic integration and has been used to make a better estimate of e(s), see the

red solid line in figure 4.5(a). A further observation we wish to make here is that the

integral in equation (4.92) averages the systematic finite-ensemble error of e(s) from 0

to s; as the error in the neighbourhood of s = 0 is negligible, the accuracy of the SCGF

at s is enhanced.

If e(s) remains linear with the same slope for s < −4, its LF transform will be defined

only for j ≤ j∗. This appears to be related to the dynamical phase transition seen in

the Markovian TASEP, where large current fluctuations require correlations on the scale

of the system size, and the rate function diverges with L [28]. Indeed the space–time

diagrams of the density profile from the cloning simulations, plotted in figure 4.6, seem

to suggest that the correlation length increases as s becomes more negative.

In figure 4.5(b), the numerical LF transform of e(s) is validated by the exact numerical

minimization calculation of Harris [23], which assumes the temporal additivity princi-

ple [25].

Figure 4.5 also shows the large deviation functionals of a standard (Markovian)

TASEP obtained by replacing the history dependent arrival rate with a constant “effec-

tive” rate α(j), where j is the stationary current and is heuristically obtained as follows.

We use the fact that, for the standard TASEP with open boundaries in the low-density

phase, the mean current in the long-time limit is given by the arrival rate at the left

boundary [28]. Similarly, for the history-dependent TASEP with rate (4.84), intuitively,

the current in the long-time limit can be obtained as the solution j of the fixed-point

equation j = α(j) [23]. The SCGF for the standard TASEP with open boundaries is

known analytically [28]; the limit as L→∞, which represents a valid approximation for

L = 1000, is

e(s) = [1− α(j)]α(j)
1− e−s

1− α(j) + α(j)e−s
, (4.93)
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Figure 4.6: Space–time diagrams of the biased history-dependent TASEP of 100 sites.
For all cases, the ensemble size is N = 100 and the parameters values are (α0, a, β) =
(0.2, 0.1, 1). It is possible to appreciate that the density profile is rather uniform in (a)
for s = 0, while it displays patterns in (b), (c), and (d) for s < 0, suggesting an increase
of the correlation length with large negative values of s.
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for s > − ln
(

1−α(j)

α(j)

)
=: sc, and is plotted in figure 4.5(a) as a dashed line. Its LF

transform yields the rate function ê(j) in the semi-interval j < 1/4, also plotted as

dashed line in figure 4.5(b). For values of j larger than the critical current 1/4, ê(j) is

instead proportional to L [28] and can be assumed infinite for a macroscopic chain lattice.

We notice that the fluctuations around the mean current for the two models are similar,

while it is possible to appreciate that the large deviation functionals differ far from the

central regimes. Interestingly, according to the cloning method, the critical current for

the history-dependent TASEP j∗ is larger than the critical value 1/4 for the standard

“effective” TASEP and it would be interesting to further explore this memory effect.

4.5 Discussion

We have demonstrated that the cloning algorithm for the evaluation of large deviations

can be applied consistently for both Markovian and non-Markovian dynamics. In fact,

the cloning/pruning of trajectories at each temporal step can be performed according to

a very simple factor multiplying the WTDs, as in equation (4.2). Our analysis encom-

passes classes of systems with different memory dependence and exploits the similarities

between their different formalisms. The efficacy of this approach is confirmed by numer-

ical results for some of the rare non-Markovian models whose large deviation functions

can be obtained exactly.

For general non-Markovian cases, the implementation of our procedure is not much

harder than the exact simulation of the original trajectories. In Markov processes, the

procedure is equivalent to those of Giardinà et al. [18], Lecomte and Tailleur [29], where

biased dynamics involving alternative rates or transition probabilities have been defined.

We expect that, to minimize finite-ensemble effects, an optimal choice of modified WTDs

and cloning factors exists for both non-Markovian and Markovian systems, along the lines

of the feedback control of Nemoto et al. [35]. Further developments can thus be antici-

pated. We also mention that the discrete-time case of Giardinà et al. [18] is interesting

as the jumps and the cloning steps occur simultaneously for each ensemble element. This

feature can be used to prevent a single clone replacing a macroscopic fraction of the

ensemble, thus reducing finite size effects.

Large deviation functionals are often hard to obtain analytically, and such a difficulty

is exacerbated in non-Markovian systems, which better describe real-world situations.

We think that the results of this work open up a promising avenue for numerical studies.

To explore real-world applications of the cloning method, in the next chapter we
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consider some aspects of teletraffic engineering, where time-extensive observables and

their large deviations are of special interest.
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Natural systems made of many coupled components, ranging from ideal gases to

living organisms and their communities, have long been of interest to scientists. By con-

trast, recently, some of the most studied complex systems are man-made, for instance

telecommunication networks and financial markets. The ways used to approach these

technological systems is similar to those used in natural sciences. Indeed, at a sensible

level of detail, the system’s properties appear as random variables, and the scientist ef-

fort is directed towards the quantification of such randomness, as well as of its effects.

Specifically, in telecommunication engineering, we are interested in relating the elemen-

tary (“microscopic”) description of the telecommunication networks in terms of packets

and servers, to a perceivable (“macroscopic”) quantity, such as the service available to

the final user.

Here, indeed, we aim at demonstrating that it is possible to apply the machinery

developed in the previous chapters to a real-world problem in telecommunication engi-

neering, that is, “how can we decide whether a server can accept or refuse some work,
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without dissatisfying existing customers?”. We only deal with simple examples, while

there is potentially much more which could be done in terms of actual applications.

This small chapter is organised as follows. In section 5.1 the concept of workload is

introduced. In section 5.2 we state three theorems that allow us to bound probabilities. By

means of these, we introduce and motivate the notion of effective bandwidth in section 5.3,

which is closely related to that of the SCGF. Finally, in section 5.4, we consider toy

models of packet traffic and some analogies with the formalism developed in the previous

chapter, showing how to use the cloning method of chapter 4 to compute their effective

bandwidths. We conclude the chapter in section 5.5.

5.1 Introduction

In a queuing network, we have a collection of servers that exchange packets or customers.

In chapter 2 we drew a parallel between the ZRP and a queueing network, but in order

to study more general non-Markovian queuing systems, we find convenient to set up

a slightly different notation than the previous chapters, based on references [14, 15,

18]. When a collection of packets leaves a server to reach another one, we say that a

communication channel has been established. In such a channel, we refer to the random

amount of work brought by customers arriving during the interval [t0, t) as X(t0, t). This

is the integral over [t0, t) of a renewal process x(t), viz., a series of random events which

describe particles (or customers) feeding a server. Similarly we consider the amount

of work Y (t0, t) that the server can do during the same amount of time, which is the

integral over [t0, t) of another renewal process y(t). It is of central importance here that

we assume that such quantities are time-extensive. They can thus play the role of the

current J [w(t)], as defined in the previous chapters of this thesis, and their rare statistics

can be studied using the cloning method of chapter 4.

We now define the random variable W (t0, t) = X(t0, t)−Y (t0, t), which is referred to

as the workload process. As shown in figure 5.1, W (t0, t) has an increment at the instants

(t1, t2, . . . , tn), with t0 ≤ t1 ≤ . . . ≤ tn < t, where an arrival or service event occurs. It is

important to notice the service cannot be stored. After each increment, it is possible that

there still is a certain amount of work waiting to be done; this is referred to as the queue

length and is denoted by Q(t). The dynamics of the server are as follows. The work to

be done at time tn is the sum of the length of the queue at the previous event instant

tn−1 and the workload increment W (t0, tn)−W (t0, tn−1) done during the same interval;

however, when W (t0, tn)−W (t0, tn−1)+Q(tn−1) < 0, the work surplus is wasted, yielding

a zero queue length (instead of a negative one). This can all be expressed compactly in
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Figure 5.1: Workload process. (a) The light red line is the total amount of work (e.g.,
customers to be served) requested during the interval [t0, t), while the blue line is the
service that can be provided during the same amount of time. (b) The red spikes are
the arrival events, while the blue spikes are the attempted service events. (c) Workload
process W (t0, t) = X(t0, t) − Y (t0, t). (d) Time evolution of the occupation of a queue
subjected to the arrivals and services of (a) and (b). The initial occupation number is 4.
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the recursive relation

Q(tn) = max{0,W (t0, tn)−W (t0, tn−1) +Q(tn−1)}. (5.1)

In a discrete time setting, the events can be thought of being equally spaced and equa-

tion (5.1) is referred to as Lindley’s formula. The definition of Q(t) given the workload

process when both time and packet sizes are continuous is much more subtle and can be

found, e.g., in reference [11]. A simplification consists of assuming constant deterministic

service (i.e., a queue of type G/D/1, according to the Kendall notation). In the next

sections, we will deal with such a type of queue, unless explicitly specified.

5.2 Bounds and limit theorems

A very loose bound theorem on a generic random variable X that takes only nonnegative

values with density function f(u) can be derived from the knowledge of its expectation

value, i.e., ∫ ∞
0

uf(u) du ≥ x
∫ ∞
x

f(u) du, (5.2)

for x ≥ 0. This can be rewritten more conveniently as

Prob{X ≥ x} ≤ 〈X〉
x
. (5.3)

A more general version of the bound (5.2) valid for nonnegative and nondecreasing

functions h of X is called Markov inequality and reads,∫ ∞
−∞

h(u)f(u) du ≥ h(x)

∫ ∞
x

f(u) du. (5.4)

The Markov inequality is not immediately useful for many real-world situations (as

the bound can be very loose) but allows us to derive more interesting bounds as follows.

We assume that the variance σ2
X = 〈(X−〈X〉)2〉 of X is finite, and define a new random

variable

Y = (X − 〈X〉)2. (5.5)

Then, from relation (5.3), we get Prob{Y ≥ x2} ≤ 〈Y 〉
x2

, which can also be written as

Prob{|X − 〈X〉| ≥ x} ≤ σ2
X

x2
, (5.6)

and is referred to as the Chebychev inequality for X. Notice that this is more general
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that equation (5.3) as it holds for random variables that can take negative values.

We now consider a function h(x) = esx, for s > 0 in equation (5.4) and obtain

Prob{X ≥ x} ≤ e−sx〈esX〉. (5.7)

This inequality is referred to as the Chernoff bound. Further details can be found, e.g., in

the book of W. J. Stewart [26]. In the next section we see that it provides an useful link

between the theory developed in chapters 1 and 4 and the assessment of the performance

of a communication channel.

5.3 Effective bandwidth

We refer to the effective bandwidth e(s, t) of a process X(t0, t) of duration T that starts

at t0, ends at t = T + t0, and describes a time-extensive observable, as the functional

e(s, t) =
ln〈esX(t0,t)〉
s(t− t0)

. (5.8)

This notion provides a way to evaluate the performance of a communication channel

subjected to an arbitrary arrival process, as explained, e.g., in references [14, 15] and

outlined below. When the service is continuously and deterministically provided with

a constant rate r, the service capacity in the time interval t − t0 is r(t − t0), and the

total workload process for this amount of time is W (t0, t) = X(t0, t) − r(t − t0). In

telecommunications, the quantity r is typically a data transfer rate and it is referred to

as the bandwidth. We also assume that a number n of sources contributes to X(t0, t),

i.e.,

X(t0, t) =
n∑
i=0

Xi(t0, t) (5.9)

According to the Chernoff bound (5.7), the probability that the service request overflows

the capacity satisfies

ln Prob{X(t0, t) > r(t− t0)} ≤ ln〈es(X(t0,t)−r(t−t0))〉 (5.10)

= ln〈es(X(t0,t))〉 − s r(t− t0). (5.11)

for all s > 0. In this context, we say that a certain quality of service—for which the

acronym QoS is commonly used—for a given γ, is guaranteed if the following condition
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Figure 5.2: QoS control. X(t0, t) and Xn+1(t0, t) are Poisson processes of duration (t−t0)
with rates 0.09 and 0.05, respectively. The QoS is calibrated on γ = −0.01 and the deter-
ministic service rate is r = 0.23. As there are values of s such that the moment generating
function of X(t0, t) +Xn+1(t0, t) is smaller than sr(t− t0)− γ, the condition (5.12) for
X(t0, t) +Xn+1(t0, t) is satisfied and the new arrival Xn+1 can be accepted.

is satisfied:

Prob{X(t0, t) > r (t− t0)} ≤ e−γ . (5.12)

The same inequality is also referred to as service requirement or admission criteria. We

prefer to work with another condition instead,

inf
s>0
{ln〈es(X(t0,t))〉 − s r (t− t0)} ≤ −γ, (5.13)

which is sufficient for equation (5.12) to hold. This means that if ln〈es(X(t0,t))〉−sr(t−t0)

is less than −γ for some s > 0, then the QoS is guaranteed. We are now in the position

to decide whether the server can accept another service request Xn+1(t0, t) (which is

independent of X(t0, t)), without violating the condition (5.12). The criterion is that the

new request Xn+1(t0, t) is accepted if there is at least a value s such that

ln〈es(X(t0,t))〉+ ln〈es(Xn+1(t0,t))〉 − sr(t− t0) ≤ −γ. (5.14)

A simple example where a new Poisson arrival process Xn+1(t0, t) can be accepted is

shown in figure 5.2. Dividing by s(t− t0), we get

ln〈es(X(t0,t))〉
s(t− t0)

+
ln〈es(Xn+1(t0,t))〉

s(t− t0)
≤ r − γ

s(t− t0)
. (5.15)
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This explicitly shows how the effective bandwidths compare with the true bandwidth r.

In conclusion, we can evaluate whether a new connection allows us to maintain a promised

QoS by computing the effective bandwidths of the sources X(t, t0) and Xn+1(t, t0).

Clearly, the effective bandwidth can be calculated for the outwards traffic departing

from a server, as well as for the available work Y (t0, t). In the next sections we will com-

pute the effective bandwidths of selected processes and we will use the cloning method

detailed in chapter 4.

5.4 Examples

5.4.1 A periodic source

As a first example, we consider a simple source that produces a given (fixed) real positive

number b of packets at random times (n + Un)d, where the Un, n = 0, 1, 2, . . ., are

uniformly distributed on the interval [0, 1), and 0 < d < 1. This model can be thought

of a source where b particles are produced at each cycle (the period of each cycle being

subjected to noise) and has been used to describe the workload produced by a constant

rate information source [23]. The analytic expression for its effective bandwidths appears

in reference [14] and is plotted in figure 5.3; it reads:

e(s, t) =
b

t

⌊
t

d

⌋
+

1

st
ln

[
1 +

(
t

d
−
⌊
t

d

⌋)
(esb − 1)

]
. (5.16)

We derive equation (5.16) as follows. The arrival process X(t0, t) can be written as

X(t0, t) = b

(⌊
t

d

⌋
+B(p)

)
, (5.17)

where B(p) is a Bernoulli random variable with p = t
d −

⌊
t
d

⌋
, i.e., B(p) is zero with

probability p and one with probability q = 1 − p. The moment generating function of

X(t) is simply obtained as the product of the generating functions of a constant and a

Bernoulli random variable, viz.,

〈esX(t0,t)〉 = exp

(
sb

⌊
t

d

⌋)
(q + pesb), (5.18)

which, after taking the logarithm and dividing by st, leads to equation (5.16). The same

functional can be evaluated directly realising an ensemble of N trajectories according to

X(t0, t), but cloning/pruning some of the trajectories by a factor (N + es−1)/N at each

arrival, as detailed in chapter 4, section 4.2.2. The result obtained with this method is
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Figure 5.3: Effective bandwidth of the periodic source (5.17) with parameters b = d = 1.
The source produces a single packet at each step.

compared to the analytical curve in figure 5.4. Not surprisingly, the two approaches are

consistent.

5.4.2 Fluid workload

Generically, a fluid queue is a stochastic model used to describe the flow out of a source

(or server) subjected to random periods of filling and emptying. It was first introduced

by P. A. P. Moran to describe the level of a dam, based on a discrete-time stochastic

process [20]. Since then, many continuous-time variants have been used in wildfire mod-

elling [25], in ruin theory [2], and, above all, in high-speed data-networks simulations,

see, e.g., reference [1].

A source or workload is called a Markov fluid if its time derivative is function of a

continuous-time Markov process. We consider a server that can be in many states, and

during the stay on each state it releases a fluid with a certain deterministic rate. In

such a model, deterministic and stochastic dynamics coexists, and the traffic generated

is represented as a piece-wise continuous flow, which contrasts with the particle/packet

models. The flow intensity varies according to the state of an underlying continuous-time

Markov process. Each state i of this Markov process corresponds to a different flow bi.
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Figure 5.4: Section of the effective bandwidth (5.16) with parameters b = d = 1 and s =
1. The solid line corresponds to the analytical prediction (5.16). The points correspond
to the numerical results using the cloning algorithm of chapter 4.

This generates a workload process which we now call B(t0, t), to point out the analogy

with the type B observables found in chapters 1 and 4. As an example, combining a

number n of identical on-off sources, the configuration state of the underlying Markov

chain has dimension |S| = n, each one corresponding to the number of active source. The

flow is at its peak when all the sources are active. The set of all the possible values of

total flow are organised into the matrix B = diag(b1, b2, . . . , b|S|). Rather than formally

developing the whole theory of fluid queues, focus on the analogies with the formalism

seen so far. The total workload process can be written as continuous functional of the

trajectory (t0, x0, t1, x1, t2, x2 . . . tn, xn, t):

B(t0, t) = B[w(t)] =
n−1∑
i=0

(ti+1 − ti)bxi + (t− tn)bxn . (5.19)

Similarly to the type B observables, each term of this only depends on the time-increment

(ti+1 − ti) and the configuration xi, excluding the last term. In analogy with what we

seen in the previous chapters, where we worked on a joint configuration-current space,

we now define a joint configuration-flow space and refer to the probability of having a

configuration xi, at time t, with a value B for the flow as Pxi(B, t). This probability

satisfies the Master equation

d

dt
Pxi(B, t) =

∑
xj

[G]xi,xjPxj (B, t) + bxi
d

dB
Pxi(B, t), (5.20)

where G is the stochastic generator of the underlying Markov process. Now, this sys-
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tem can be diagonalised with respect to the subspace of Bs, by means of a Laplace

transformation that yields the biased Master equation

d

dt
P̃xi(t) =

∑
xj

[G]xi,xj P̃xj (t) + sbxiP̃xi(t), (5.21)

which, along the lines of the algorithm of [17], as described in section 1.7.2, corresponds

to the dynamics of a system that changes configuration according to G, whose weight

evolves exponentially with rate sbxi during the stay in state xi. Also, after a visit to xi

of duration τ , the observable B(t0, t) increased by bxiτ .

We now present a derivation of the effective bandwidth of a Markov fluid that fol-

lows closely the one of reference [16]. We follow a standard argument based on the

Master equation (1.14), while reference [16] is based on the backward equation (1.16),

which is more popular in the Queuing Theory community. The aim is to find e(s, t) =

ln〈esB(t0,t)〉/(s(t− t0)) = ln〈1|esB(t0,t)|P̃ (t0)〉/(s(t− t0)). We focus first on

|P̃ (t)〉 = esB(t−dt,t)|P̃ (t− dt)〉. (5.22)

Component-wise, this is equivalent to

P̃xi(t) =
∑
xj

[
eGdt

]
xi,xj

[
esBdt

]
xj ,xj

P̃xj (t− dt). (5.23)

Since [exp(Gdt)]xi,xj = [1]xi,xj + [G]xi,xj dt + o(dt) and [exp(sBdt)]xi,xi = 1 + sbxidt +

o(dt), we get

P̃xi(t)− P̃xi(t− dt)

dt
= P̃xi(t−dt)([G]xi,xi+sbxi)+

∑
xj 6=xi

P̃xi(t−dt)[G]xj ,xi+O(dt) (5.24)

In the limit as dt→ 0, we directly get equation (5.21). In matrix form this equation is

d

dt
|P̃ (t)〉 = (G + sB)|P̃ (t)〉 (5.25)

and has formal solution

|P̃ (t)〉 = exp [(G + sB)(t− t0)] |P̃ (t0), (5.26)

from which the following form for the effective bandwidth is obtained

e(s, t) =
1

st
ln〈1| exp [(G + sB)(t− t0)] |P̃ (t0)〉. (5.27)
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As a simple example, we focus now on a simple source modulated by a telegraph

process i.e., a two-state (0 and 1) continuous-time Markov process with generator

G =

(
−α β

α −β

)
. (5.28)

When the configuration is 0, workload is produced deterministically at a rate b0 = h,

while no workload is produced during a stay in state 1,

bi =

h if i = 0

0 if i = 1
, (5.29)

as the example of reference [14]. The biased Master equation explicitly reads

d

dt

(
P̃0(t)

P̃1(t)

)
=

(
−α+ hs β

α −β

)(
P̃0(t)

P̃1(t)

)
. (5.30)

Such a model would describe a source that is either in a idle state, i.e., not transmitting

any packet, or in a active state and transmitting at its peak rate. Assuming that the

observation starts at the stationary distribution

|P ∗〉 =

(
β

β+α
α

β+α

)
, (5.31)

we can compute the effective bandwidth

e(s, t) =
1

st
ln〈1| exp

[(
−α+ hs β

α −β

)
t

]
|P ∗〉. (5.32)

We mention that a related model is the so called Markov-modulated Poisson process

(MMPP) [10], which is a Poisson process with random intensity, defined by an underlying

Markov process. This can be still represented by the Master equation (5.25), but has

a different interpretation, as each state xi produces a Poisson process with intensity

bxi . Both fluid sources and MMPP are characterised by the generator G and the rate

diagonal matrix B. Furthermore, one can think of replacing the Poisson process in a

MMPP with a generalised birth-death process, thus obtaining a similar but more general

process, which has been used to model populations in randomly switching environments

(see, e.g., Hufton et al. [13] and references therein). Within such class of models, the

lowest-order approximation of the modulated birth-death process leads to the piecewise-

deterministic Markov processes (PDMPs) [6, 7], which have been recently shown to be

appropriate also for the natural sciences (where the underlying Markov process represents
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the extrinsic noise) [13, 19, 21, 22, 28, 29]. Such PDMPs are more general than the

Markov fluid (as defined earlier in this section), as the transition rates of its underlying

Markov process can depend on the state of the population and the deterministic part

can be non-linear (while the fluid workload is linear). It is finally worth mentioning that

a non-equilibrium statistical mechanics of PDMPs is presented in references [5, 9].

5.4.3 Statistics of packet loss

We present here another simple example of s-modified generators G̃ with biased rates in

the diagonal entries [G̃]xi,xi . Let us consider a one-dimensional random walk on a linear

chain of length N. When the walker is in position N, a new arrival (with rate λ) causes

the total-current counter to tick, but leaving the occupation number unchanged. Such a

system has a lucid interpretation in queuing theory and is referred to as an M/M/1/N

queue in the Kendall notation. Customers arrive according to a Poisson process at rate

λ and are processed by a single server at rate µ. Contrarily to an M/M/1 queue, here

there is space in the server only for N customers. When the server is fully occupied,

there is no interruption of the arrival process; however the new customers do not alter

the queue, simply disappearing instead. In communication systems, such customers are

said to be “lost”. Formally, the occupation number of the queue follows a birth-death

process, where the new arrivals can be neglected when n ≥ N, i.e., λn = 0 for n ≥ N,

λ0 = 0, and λn = λ elsewhere. Hence, the stationary state is

P ∗n =
1− λ/µ

1− (λ/µ)N+1
(λ/µ)n, n ≤ N, (5.33)

if λ 6= µ, or P ∗n = 1/(N + 1), if λ = µ. This can be obtained easiliy and is in agreement

with the detailed-balance solution (1.101).

We are interested in the statistics of particle loss, i.e., we want to count the number

of customers that arrive when the occupation number of the queue is N. For this case,

we do not consider the effective bandwidth, but rather compute the standard SCGF.

The mean packet loss is simply given by the arrival rate λ times the probability P ∗N that

the queue is full. Such arrivals correspond to jumps that leave that state as it is, but
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Figure 5.5: SCGF of packet loss in an M/M/N/1 queue with (λ, µ,N) = (0.19, 0.20, 10).
The solid line is the lowest eigenvalue of the matrix (5.34). Esemble size and simulation
time are N = 5 · 103 and t = 5 · 103, respectively.

contribute a factor e−s in the modified dynamics. The s-modified generator G̃ is

G̃ =



−λ µ 0 . . .

λ −λ− µ µ

0 λ −λ− µ
...

. . .

−λ− µ µ

λ −λ− µ+ λe−s


. (5.34)

This can be derived from a Master equation in the extended configuration–current space

(a configuration here is given by the occupation number, while the number of packets

lost represents a total current) as done, for semi-Markov processes, in section 4.3. The

negative terms of {G̃}N+1,N+1 correspond to the “escape” rates from the state with

occupation N. The positive entry λe−s encodes for the jumps that does not modify the

state though increasing the count of the lost particles.

Figure 5.5 shows that the SCGF computed by means of the cloning method of the

chapter 4 has an excellent agreement with the smallest eigenvalue of G̃.
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5.5 Discussion

While physicists have been regarding the large deviation theory as the way to formulate

Statistical Mechanics, teletraffic engineers and operational researchers have been using

large deviation results to estimate the likelihood that a demand in service overflows the

available resources. A central role in teletraffic engineering is played by the effective

bandwidth e(s, t), a function that provides a criterion to decide whether a given quality

of service (QoS) can be maintained. This chapter reports some observations regarding

the analogies between the effective bandwidth and the SCGF e(s). It also suggests that

the cloning methods of section 4 is a general scheme for the evaluation of e(s, t).

This is akin to the other problems discussed in the previous chapter; in fact, realistic

queuing models must incorporate memory as they convey the patterns of human dynam-

ics, which are non-Markovian [3, 12]. Despite the fact that the specialised literature is

rich in exact solutions (mainly for Markov processes, see, e.g., [4, 14, 18, 24, 27] and the

references therein), a systematic and general way to compute the effective bandwidth

can be of interest.

It is important to remark that the effective bandwidth is a finite-time quantity and

for short times the use of the cloning method is not justified (we recall that this method

has been conceived to cope with the exponential expansion/contraction of the weight

associated to each trajectory). Hence, it would be interesting to estimate the conditions

under which the standard Monte Carlo calculations outperform the cloning method. We

also mention that the long-time limit of the effective bandwidth is equally interesting,

as demonstrated in Elwalid and Mitra [8] for Markov processes. This leaves ground for

further development.
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6 | Conclusions and outlook

This thesis is concerned with the effects of memory in non-equilibrium systems. We con-

sidered models governed by stochastic dynamical rules, which can be encoded into a

set of inter-event waiting-time distributions with transition events not satisfying the de-

tailed balance. Such waiting-time distributions can describe well physical systems that

are driven out of equilibrium (by, e.g., self-propulsion or the environment) or techno-

logical systems that follow man-made directives. More specifically, we analysed large

deviations for these models. The results obtained are discussed in the last sections of

each chapter. In this final chapter we summarise the results, add a few comments from

a general point of view, and re-pose some questions left open throughout the thesis.

The first chapter is an original overview of the established mathematics of stochastic

processes, where we introduced the dichotomies of memory-less/non-Markovian processes

and equilibrium/non-equilibrium states, and the fuzzier distinction between typical and

rare trajectories in large deviation theory. In the absence of a unified framework that

comprehends all the non-equilibrium systems, out first step in chapter 2 was to study a

specific driven model of particles on lattice, where we established new results, through

both analysis and computer simulations. We studied the open-boundary on-off zero-

range process (on-off ZRP), a model that incorporates memory by means of an addi-

tional “phase” variable (such phase is also referred to as a “clock”). This model is the

open-boundary version of a non-Markovian ZRP introduced in Hirschberg et al. [10],

where the temporal correlations derive from the following mechanisms: the particles are

blocked on a lattice site (“phase off”) when a new particle arrives (this facilitates con-

gestion, i.e., the accumulation of particles on the site), the block being removed (“phase

on”) after an exponentially distributed waiting time with parameter c. The simple, but

important, message of chapter 2 is that, at first sight, the effects of time correlations are

hidden. In fact, the stationary-state solution of the one-site system (equation (2.18)) can

be written as in the Markovian case (see equation (2.7)), with an effective on-site inter-

action wc,n. This means that it is not possible to distinguish the on-off dynamics from

a standard memory-less ZRP based only on the site-occupation distribution, hence we
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cannot predict phase-dependent interactions when we are totally unaware of them. How-

ever, the presence of the on and off phases alters the statistics of the outwards particle

hops. This becomes important in the spatially-extended system where each site receives

particles, from its neighbours, according to a non-Markovian process. As a consequence,

a product form solution is in general not expected and we have relied on a mean-field

approach for the analytical treatment. This approximation consists of replacing the true

arrival process on each site with a Poisson (i.e., memory-less) process, while keeping ex-

act information about the on-site particle departure as well as the lattice topology. This

procedure can be applied in principle to decouple non-Markovian ZRPs on an arbitrary

lattice, provided that it is possible to solve the consistency equation for the fugacities (as

done in section 2.5 for the one-dimensional chain). We found that, in the chain topology

studied here, the mean-field approach is accurate for large values of c and gives an an-

alytical approximate estimate cmf for the congestion threshold. However, it fails when c

is small, as the temporal correlations are more important in this case.

The memory effects at the fluctuating level appear more interesting even in the single-

site case, as seen in chapter 3. The theory of large deviation allows us to quantify the

change in the fluctuating behaviour due to the addition of temporal correlations. Fluctu-

ations close to the mean current are obtained by analytic continuation of the stationary

state and are indistinguishable from the fluctuations in the memory-less ZRP. However,

under certain conditions, large current fluctuations are optimally realized by the in-

stantaneous piling up of particles (a situation that is mathematically equivalent to the

congestion transition) on site and the statistics of such fluctuations change abruptly. This

behaviour is referred to as a dynamical phase transition. We treated separately the case

where the particles are independent (if we exclude residual interaction due to the on-off

dynamics) and the case where the particles have a weak attractive interaction (encoded

in constant departure rates).

• In the absence of direct inter-particle interactions we have found analytically a

memory-induced dynamical first-order phase transition, corresponding to a non-

analyticity of the scaled cumulant generating function (SCGF) e(s) at particular

value s1, which depends on c. When s ≤ s1 the fluctuations can be described

using an s-dependent effective interaction factor wc,n,s. A very interesting point to

mention here is that this occurs only if the parameter c is smaller than a threshold

value c0; otherwise, current fluctuations are unaffected (in the infinite-time limit)

by the on-off dynamics1.

• The system with constant departure rates, i.e., attractive inter-particle interaction,

1This is valid only when a real c0 exists, see equations (3.23) and (3.24).
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undergoes second-order (at s = s2) as well as first-order (at s = s1) dynamical

phase transitions. The state of the system during small fluctuation events has the

same form as the stationary state, but with an s-dependent effective interaction

factor wc,s, only when s2 ≤ s ≤ s1. We proved that the exact phase boundaries and

the large deviation function of this regime are encoded in the “reduced” operator

H̃? (defined in equation (3.18)), which has the same structure as the s-modified

Hamiltonian of the standard ZRP, but with the s-dependent interactions wc,s.

• Numerical tests confirm the presence of the predicted c-dependent dynamical phase

transitions in both cases within numerical accuracy. The separation between a

small-fluctuation regime, with a memory independent SCGF, and high-fluctuation

regimes, where memory plays a more obvious role, is a feature also found numeri-

cally in the spatially-extended ZRP.

In summary, for the model explored in chapters 2 and 3, time correlations can be

absorbed in an effective memory-less description for the steady state, but can emerge at

the fluctuating level and alter the probability of observing rare phenomena. This may be

connected to the behaviour of stochastic systems with interacting fast and slow degrees

of freedom, as studied, e.g., in reference [2] or to the effect of bulk hidden nodes in

biochemical networks [17]. It would be of interest to explore more details of the on-off

ZRP and look for similar memory effects in other complex systems. Further aspects

regarding the on-off ZRP that could be addressed in future research are:

• For the constant departure rate case, we have used the integral representation of the

reduced operator H̃? in order to find an approximate solution for the fluctuations

corresponding to s < s2 and s > s1. It would be interesting to solve the eigenprob-

lem (3.2) for the exact s-modified Hamiltonian H̃ of equation (3.1), which provides

exact information about the strongly fluctuating regimes. This would probably be

relevant for Queueing Theory: in fact, stochastic models with on-off dynamics are

widely used in performance evaluation of queueing systems [15, 18].

• A further research direction is to look for a threshold value of c that separates a

regime where the factorized solution is permitted from a regime where it is not; this

is suggested by the presence of the threshold c0 for the dynamical phase transition

in the independent-particle case; in fact, in the absence of such dynamical-phase

transitions, the current fluctuations are identical to the memory-less ZRP (with

independent particles) which has a factorised steady state. At the present stage we

do not have any proof that such a factorised solution exists for the on-off ZRP.

• It would also be interesting to explore the limit case c→ 0+ for the TA model with
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independendent particles. In this situation, in fact, the critical point s1 approaches

0 and the mean current would have a first-order jump. This is reminiscent of the

“glassy” behaviour described, e.g., in Garrahan et al. [5, 6].

The chapters 2 and 3 left interesting open questions about the predictive power of

effective theories for real-world systems, where rare events can be of crucial importance.

Hence a natural step forward is to find a way to probe systematically large deviations

in more realistic models. We remark here that the analysis of non-Markovian models

with hidden variables, such as the on-off ZRP, benefited of a Markovian representation

in the joint configuration–phase space; this permitted us to derive both analytical and

numerical results using some established tools for Markov processes. However, it is not

hard to conceive non-Markovian models that are more appropriate to model real-world

systems and cannot be represented in terms of hidden variables. In order to explore

these models, we devised a general cloning algorithm and demonstrated it in chapter 4.

This is another important result of this thesis, as it allows further numerical studies of

large deviations in non-Markovian stochastic system, regardless of the mechanism that

encodes for the memory. We mention that finite-ensemble errors for the cloning method

in Markovian setting have been addressed in very recent literature [8, 9, 14] and a method

with “feedback control” has been shown to mitigate such errors in Nemoto et al. [13];

similar results may be found in non-Markovian setting. In chapter 4 we tested the method

on three selected non-Markovian models (namely, two simple semi-Markov models of ion

channel and the history-dependent totally asymmetric exclusion process (TASEP) of

Harris [7]) and showed that it seamlessly reproduces, within numerical accuracy, exact

large deviation results obtainable by other means. It is worth mentioning that the cloning

simulations for the history-dependent TASEP suggested the presence of a dynamical

phase transition at a critical current value of j . Interestingly such a critical value is

larger than the one obtained on the basis of an effective Markovian theory, while the

typical behaviour of this model is only slightly modified by the presence of temporal

correlations. This again seems to support the generic claim that the memory strongly

affects the rare behaviour even when the typical behaviour is not noticeably altered.

In chapter 4 (and similarly in chapter 1), we reserved more attention to semi-Markov

processes rather than to generic non-Markovian processes, as their long-time behaviour

can be better understood in term of the generalised Master equation. Our opinion is

that there still is ground for further development. We stress here that some important

results (obtained in references [3, 16, 19]), show that, in order to have reversibility in a

semi-Markov process, we need that both the number of transitions and the durations of

the intervals between events in a trajectory and its reverse are “balanced” (see section

1.4.2). This suggests that in order to explore fluctuation symmetries in non-Markovian
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systems, it is appropriate to consider functionals whose contributions take into account,

simultaneously, configuration changes and inter-event times and hence define generic

currents �
�

�
�J [w(t)] =

n−1∑
i=0

θxi+1,xi(ti+1 − ti), (6.1)

which generalise both the functionals of type A and B (defined in equations (1.111) and

(1.113), respectively) more commonly found in scientific literature [6, 11]. To the best

of our knowledge, non-equilibrium semi-Markov systems have been mainly studied by

means of type A observables [1, 4, 12], while further progress could involve the statistics

of the inter-event times.

Finally, in the second-to-last chapter, we reported some observations concerning

analogies between large deviations in physics and teletraffic engineering, which com-

plement the well-known analogies between queuing networks and interacting-particle

systems (discussed at the beginning of chapter 1). Chapter 5 is intended to present a

preliminary analysis on the applicability of the cloning method to the problem of per-

formance evaluation in teletraffic engineering. This could feed further numerical studies.

In conclusion, a general understanding of non-equilibrium systems with memory re-

mains a challenge. We wish to continue the work along the lines drawn in this thesis and

contribute more to both the relevant applied and theoretical research.
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A | Spectrum and integral representation

In this appendix, we detail the procedure to diagonalise the infinite-dimensional tridiag-

onal matrix

H =


−b0 c 0 0 . . .

a −b c 0

0 a −b c
...

. . .

 . (A.1)

This has been used in chapter 3 to derive the integral representation (3.37) for the special

tridiagonal operator H̃? of equation (3.18). Such a representation is related to the one

of Karlin and McGregor [2] for the transition probabilities (1.25) (see also refence [1])

First, we transform H into the symmetric form

H′ := ΨHΨ−1 =


−b0

√
ac 0 0 . . .

√
ac −b √

ac 0

0
√
ac −b √

ac
...

. . .

 , (A.2)

where

Ψ :=


√
c/a 0 0 0 . . .

0
√
c/a

2
0 0

0 0
√
c/a

3
0

...
. . .

 , (A.3)

and consider the following eigenproblem for H′

H′|ψ′〉 = λ|ψ′〉, (A.4)

where the eigenvector |ψ′〉 has components ψ′n, n = 0, 1, 2, . . ..

155



Appendix A. Spectrum and integral representation

A.1 Spectrum of H

Equation (A.2) corresponds to the generator of an unbounded bidimensional random

walk at equilibrium. For n > 0, the generic row equation of A.4

√
acψn−1 − (b+ λ)ψn +

√
acψn+1 = 0 (A.5)

implies, after a bilateral Z-transform ψ̃(z) =
∑+∞

n=−∞ z
nψn,

λ = −b+
√
ac(z + z−1). (A.6)

To guarantee the convergence of ψ̃(z) we choose the parametrization z(k) = eik, where

k ∈ (0, π], and write �� ��λ(k) = −b+ 2
√
ac cos(k). (A.7)

The associated eigenvector has components
√

2
π sin(nk + ϕ). Imposing this on the first

row equation, we get

[−b0 − λ(k)]
(
eiϕ − e−iϕ

)
+
√
ac
(

eiϕeik − e−iϕe−ik
)

= 0 (A.8)

which gives the following expressions

ei2ϕ =
−b0 − λ(k) + e−ik

√
ac

−b0 − λ(k) + eik
√
ac

=
−b0 + b−√aceik
−b0 + b−√ace−ik =

yeik − 1

ye−ik − 1
, (A.9)

where

y =
√
ac/(b− b0). (A.10)

This defines a continuous spectrum with associated non-normalisable eigenvector�
�

�
�|ψ′(k)〉 =

∞∑
n=0

√
2

π
sin(nk + ϕ)|en〉. (A.11)

We now look for a normalisable solution with geometric ansatz |ψ′〉 = (1, y, y2, y3, . . .)/C.

The first row equation of the eigenproblem (A.4) reads

− (b0 + λ) +
√
ac y = 0, (A.12)

that is

y =
(b0 + λ)√

ac
, (A.13)
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Appendix A. Spectrum and integral representation

while √
ac− (b+ λ) y +

√
ac y2 = 0 (A.14)

implies

y =
(b+ λ)±

√
(b+ λ)2 − 4ac

2
√
ac

. (A.15)

Combining (A.13) and (A.15), we get an expression for the eigenvalue corresponding

to |ψ′〉 �
�

�
�λ =

ac

b− b0
− b0, (A.16)

which yields the explicit expression y = y. Now, the normalisation condition 〈ψ′|ψ′〉 = 1,

where 〈ψ′| is the left eigenvalue of H′ and has the same components as |ψ′〉 (H′ being

real symmetric) demands that y < 1 and C2 = (1− y2), hence�
�

�
�|ψ′〉 =

√
1− y2

∞∑
n=0

yn|en〉. (A.17)

Notice that λ 6= λ(k).

To ensure that equations (A.11) and (A.17) form a complete basis, we need to prove

that 
∫ π

0 |ψ′(k)〉〈ψ′(k)|dk = 1 if y ≥ 1,∫ π
0 |ψ′(k)〉〈ψ′(k)|dk + |ψ′〉〈ψ′| = 1 otherwise.

(A.18)

To this end, we evaluate the integral∫ π

0
〈n|ψ′(k)〉〈ψ′(k)|m〉 dk =

2

π

∫ π

0
sin(km+ ϕ) sin(kn+ ϕ) dk

=
2

π

∫ π

0

1

4

(
−e−ik(m+n)e−2iϕ − eik(m+n)e2iϕ + eik(m−n) + e−ik(m−n)

)
dk. (A.19)

From this we isolate the term that does not depend on ϕ, which yields

2

π

∫ π

0

1

2
cos(k(m− n)) dk =

sin(π(m− n))

π(m− n)
= δn,m. (A.20)

Inserting equation (A.9) in the remaining term, we get

− 1

4π

∫ 2π

0

y2e−ik(n+2) + y2eik(n+2) − 2ye−ik(n+1) − 2yeik(n+1) + e−ikn + eikn

(y − e−ik)(y − eik)
dk, (A.21)

where we also changed the integration boundaries using the fact that the integrand is

symmetric with respect to k = 0. We now make the coordinate change z = eik, define
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Appendix A. Spectrum and integral representation

Figure A.1: Modulus of the integrand in equation (A.22) for l = 6 and y = 1.1. The
poles are on the real axis, at z = y, z = 1/y, and z = 0. The integration countour |z| = 1
can engulf one or more of the poles in the real axis.

l = m+ n and get

− 1

4πi

∮
|z|=1

y2z2l+4 − 2yz2l+3 + z2l+2 + y2 − 2yz + z2

zl+2(y − z)(y − z−1)
z dz, (A.22)

where |z| = 1 is the unit circle centred at z = 0. Its integrand is denoted by f(z) and

has singularities at z = y, z = 1/y, and z = 0, as shown in figure A.1 and can be solved

using the residue theorem. The pole at z = 0 is always inside the integration contour

and contributes a term

2πi
1

(l + 2− 1)!
lim
z→0

dl+2−1

dzl+2−1
zlf(z) = 2πi (1− y2)yl. (A.23)

When y > 1 the pole at z = 1/y contributes a second term that added to the previous

one yields zero:

2πi lim
z→1/y

(z − 1/y)f(z) = −2πi (1− y2)yl. (A.24)

When y < 1, the pole contributions at z = y is

2πi lim
z→y

(z − y)f(z) = 2πi (1− y2)yl, (A.25)

hence the expression (A.22) is equal to −(1 − y2)ym+n. This indeed cancels with the

component 〈en|ψ′〉〈ψ′|em〉 = (1 − y2)yn+m in equation (A.18). For y = 1 the two cases

are equivalent. In all the cases, the only remaining contribution is equation (A.20).
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Finally, the left and right eigenvectors of H can be obtained as ([3])

|ψ(k)〉 = Ψ−1|ψ′(k)〉, 〈ψ(k)| = 〈ψ′(k)|Ψ, (A.26)

|ψ〉 = Ψ−1|ψ′〉, 〈ψ| = 〈ψ′|Ψ. (A.27)

A.2 Spectrum of H̃?

If we replace in matrix (A.1) the entries a, b, b0, and c with α+ δes, α+ δ+ (β+ γ)wc,s,

α + δ, and (βe−s + γ)wc,s respectively, we obtain the special operator H̃? seen in sec-

tion 3.1.1.1 (equation (3.18)). With such replacements, the continuous spectrum equa-

tion (A.7) becomes equation (3.40) (with opposite sign, as we used there the quantum

Hamiltonian formalism), while the leading eigenvalue (A.16) becomes −A0 (defined in

equation (3.12)). Equation (A.15) yields equation (3.39). Also, it is convenient to use a

shorten notation, defining

φ :=
√
c/a, (A.28)

which gives back equation (3.38).

A.3 Integral representation of the generating function

We now use the spectral properties found in the previous sections on the generating

function 〈1|e−H̃?t|P̃ (0)〉. Let us impose a initial condition of Boltzmann-type for the

|P̃ (0)〉, namely the geometric distribution with parameter x of equation (3.34). Then,

the generating function of the total current at time t is

〈1|e−H̃?t|P̃ (0)〉 = (1− x)

∞∑
n,m=0

xn〈em|e−H̃
∗
t|en〉, (A.29)

where 〈em| (|en〉) is a row (column) vector with a ‘1’ in the m (n) position and ‘0’

elsewhere. The vectors of equations (A.26) and (A.27) form a complete set, i.e.,∫ π

0
|ψ(k)〉〈ψ(k)|dk + |ψ〉〈ψ| = 1. (A.30)
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Inserting this representation of the identity in equation (A.29), the r.h.s. become

(1− x)

∞∑
n,m=0

xn
∫ π

0
〈em|ψ(k)〉〈ψ(k)|en〉e−ε(k)t dk

+ Θ(1− y)(1− x)

∞∑
m,n=0

xnφn−m(1− y2)yn+me−A0t, (A.31)

where Θ denotes the Heaviside step function. Using the fact the eigenvectors have period

2π and are odd in k, the expression (A.31) can be rewritten as

1

2π
φn−m

∫ 2π

0

(
eik(n−m) − eik(n+m)ei2ϕ

)
e−ε(k)t dk

+ Θ(1− y)(1− x)
∞∑

m,n=0

xnφn−m(1− y2)yn+me−A0t. (A.32)

Using equation (3.38), it becomes

1

2π
φn−m

∮
|ζ|=1

(
ζn−m − ζn+m 1− ζy

ζ − y

)
e−ε(ζ)t dζ

+ Θ(1− y)(1− x)

∞∑
m,n=0

xnφn−m(1− y2)yn+me−A0t, (A.33)

where ζ = eik and ε(ζ) = ε[k(ζ)]. Deforming the integration contour to C1 for the first

term in the integrand and to C2 for the second term, we obtain the representation (3.37).

The last term in expression (A.33) cancels out with a pole contribution in ζ = y for y < 1.
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B | s-modified effective Hamilitonian

In this appendix we report the explicit eigenproblem for the s-modified “collapsed”

probabilities. Similarly to what we have seen for the stationary state, it is possible to

define an s-modified Hamiltonian for the components P̃n(t) = P̃n,ON(t) + P̃n,OFF(t) of

the vectors in the reduced state space. These satisfy

d

dt
P̃0(t) =µ1(γ + βe−s)P̃1,ON(t)− (α+ δ)P̃0,OFF(t), (B.1)

d

dt
P̃n(t) =µn+1(γ + βe−s)P̃n+1,ON(t) + (α+ δes)P̃n−1(t)

− (α+ δ)P̃n,OFF(t)− µn(γ + β)P̃n,ON(t), (B.2)

where n = 1, 2, . . .. Using |P̃ ?〉 for the right eigenvector with components P̃ ?0 , P̃
?
1 , P̃

?
2 , . . .,

the eigenproblem associated to the dynamics (B.1) and (B.2) can written as

µ1(γ + βe−s)P̃ ?1,ON − (α+ δ)P̃ ?0,OFF = AP̃ ?0 , (B.3)

µn+1(γ + βe−s)P̃ ?n+1,ON + (α+ δes)P̃ ?

− (α+ δ)P̃ ?n,OFF − µn(γ + β)P̃ ?n,ON = AP̃ ?n ,
(B.4)

with n = 1, 2, . . .. Let us assume that we are only aware of the structure of the stationary

state, without realising the presence of two separated stages (viz., on and off). Then,

we would be satisfied with using equations (3.3)-(3.5) with ansatz (3.15)-(3.16) on (B.4)

and (B.3), to get

µ1(γ + βe−s)pON,1,sP̃
?
1 − (α+ δ)(1− pON,0,s)P̃

?
0 = AP̃ ?0 , (B.5)

µn+1(γ + βe−s)pON,n,sP̃
?
n+1 + (α+ δes)P̃ ?n−1

− (α+ δ)(1− pON,n,s)P̃
?
n − µn(γ + β)pON,n,sP̃

?
n = AP̃ ?n .

(B.6)

In the quantum Hamiltonian formalism this, in fact, is the eigenproblem H̃?|P̃ ?〉 = A|P̃ ?〉
with s-modified Hamiltonian

H̃? = α(a+ − 1) + δ(esa+ − 1) + γ(a?−s − d?s) + β(e−sa∗−s − d∗s), (B.7)
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Appendix B. s-modified effective Hamilitonian

where

ã?− =



0 w1,c,s 0 0 . . .

0 0 w2,c,s 0

0 0 0 w3,c,s

0 0 0 0
...

. . .


, (B.8)

a+ =


0 0 0 . . .

1 0 0

0 1 0
...

. . .

 , (B.9)

d?sij = δijwi,c,s and wi,c,s = µipON,i,s. Notice the wi,c,s is s-dependent. Since the eigenvec-

tor satisfies

a+|P̃ ?〉 = z−1
s d?|P̃ ?〉, (B.10)

a?−|P̃ ?〉 = zs|P̃ ?〉, (B.11)

then the eigenproblem can be rewritten as

α(z−1
s d?s − 1) + δ(esz−1

s d?s − 1) + γ(zs − d?s) + β(e−szs − d∗s)|P̃ ?〉 = A|P̃ ?〉, (B.12)

where the operator at the l.h.s. is diagonal and implies the form (3.12) for the eigenvalue,

i.e., A = A0, and the expression (3.13) for zs.

As explained in the main text, the s-modified operator (B.7) is not a genuine Hamil-

tonian for the on-off ZRP dynamics. It can be seen as a biased generator that shares

the small-fluctuation regime (including the leading eigenvalue A0 and the critical points

s1 and s2, which can be found as the values of s such that 〈P̃ ?|P̃ ?〉 and 〈1|P̃ ?〉 diverge,

respectively) with the original process. However, it does not predict the correct statistics

of rare currents (corresponding to s > s1 and s < s2). In other words, the current of the

process generated by H̃? is, in the long time limit, identical to the original on-off ZRP

for s2 ≤ s ≤ s1, while rare currents are optimally realised with different probabilities

and without the involvement of the on-off mechanism.
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C | Left eigenvector of the s-Hamiltonian

In this appendix we derive the left eigenvector 〈P̃ | of the s-Hamiltonian of equation (3.1)

when µn = µ, n > 0. Assuming that its components satisfy

P̃ left
n,ON = pleft

ON,sP̃
left
n , (C.1)

P̃ left
n,OFF = (1− pleft

ON,s)P̃
left
n , (C.2)

P̃ left
n+1 = ρleft

s P̃ left
n , (C.3)

we get, for 〈P̃ |H̃ = A〈P̃ |, the explicit column equations

−(1− pleft
ON,s,0)(α−A+ c+ δ) + cpleft

ON,s,0 + ρleft
s (1− pleft

ON,s) (α+ δes) = 0, (C.4)

ρleft
s (1− pleft

ON,s) (α+ δes)− pleft
ON,s,0(α−A+ δ) = 0, (C.5)

−(1− pleft
ON,s)(α−A+ c+ δ) + c

(
1− pleft

ON,s,0

)
+ ρleft

s (1− pleft
ON,s) (α+ δes) = 0, (C.6)

µpleft
ON,s,0

(
γ + βe−s

)
− ρleft

s pleft
ON,s(α−A+ µ(β + γ) + δ) +

(
ρleft
s

)2
(1− pleft

ON,s) (α+ δes) = 0, (C.7)

µpleft
ON,s

(
γ + βe−s

)
− ρleft

s pleft
ON,s(α−A+ µ(β + γ) + δ) +

(
ρleft
s

)2
(1− pleft

ON,s) (α+ δes) = 0, (C.8)

where the factor pleft
ON,s,0 is assumed to be different from pleft

ON,s, in analogy with the right

eigenproblem. Equations (C.4) and (C.5) give

− (1− pleft
ON,s,0)(α−A+ c+ δ) + pleft

ON,s,0(α−A+ δ) + cpleft
ON,s,0 = 0, (C.9)

which is verified for

pleft
ON,s,0 = 1/2, (C.10)

while equations (C.7) and (C.8) imply

pleft
ON,s,0 = pleft

ON,s. (C.11)

After the substitution, the remaining equations are solved for A = A0 and

ρleft
s = (γ + βe−s)/(β + γ). (C.12)
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With those constants, it is easy to verify that the ansatz (C.1)-(C.3) is consistent even

in the general departure rate case. In fact, after substitution, all the terms containing

µn cancel out.

Similarly to the column-vector space case of appendix B, we show that it is possible

to work in a reduced space also with row-vectors and recover an eigenproblem

〈P̃ ?|H̃?
left = A0〈P̃ ?|, (C.13)

where 〈P̃ ?| has components P̃ left
0 , P̃ left

1 , P̃ left
2 , . . . given by equation C.3 and H̃?

left is defined

below. In fact, summing pairwise the column equations of the complete left eigenproblem

for H̃, we get

−1

2
(α+ δ −A)P̃ left

0 + (α+ δes)P̃ left
1 = 0, (C.14)

1

2
µnP̃

left
n−1 − (α+ δ +

1

2
µn(β + γ)−A)P̃ left

n + (α+ δes)P̃ left
n+1 = 0, (C.15)

n = 1, 2, 3, . . ., which can be arranged as equation C.13 with A = A0 and

H̃?
left = −α(a+ − 1)− β(e−sa?−left − d?left)− γ(a?−left − d?left)− δ(esa+ − 1), (C.16)

where d?−leftij
= 1

2µiδij and

α?−left =



0 1
2µ1 0 0 . . .

0 0 1
2µ2 0

0 0 0 1
2µ3

0 0 0 0
...

. . .


. (C.17)

In this worth noting that H̃?
left 6= H̃? but, as the terms containing µn cancel out with

the solution (C.12) and (C.10), we also have 〈P̃ ?|H̃? = A0〈P̃ ?|.
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List of Abbreviations

ASEP Asymmetric exclusion process

CRTW Continuous-time random walk

DTI Direction–time independence

GME Generalised Master equation

LF transform Legendre–Fenchel transform

l.h.s. Left hand side

NESS Non-equilibrium stationary state

QoS Quality of Service

r.h.s. Right hand side

SCGF Scaled cumulant generating function

WTD Waiting-time distribution

ZRP Zero-range process
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