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Abstract

Randomisation schemes are rules that assign patients to treatments in a clini-
cal trial. Many of these schemes have the common aim of maintaining balance in
the numbers of patients across treatment groups. The properties of imbalance that
have been investigated in the literature are based on two treatment groups. In this
paper, their properties for K > 2 treatments are studied for two randomisation
schemes: centre-stratified permuted-block and complete randomisation. For both
randomisation schemes, analytical approaches are investigated assuming that the
patient recruitment process follows a Poisson-gamma model. When the number
of centres involved in a trial is large, the imbalance for both schemes is approxi-
mated by a multivariate normal distribution. The accuracy of the approximations is
assessed by simulation. A test for treatment differences is also considered for nor-
mal responses and numerical values for its power are presented for centre-stratified
permuted-block randomisation. To speed up the calculations, a combined analyti-
cal/approximate approach is used.

Keywords multi-centre clinical trial, multivariate normal distribution, Poisson-gamma
model, power, covariance, simulation

1 Introduction
Randomisation schemes used in clinical trials are considered as essential and of great
importance to maintain a balance in the numbers of patients across treatment groups
and to gain some randomness in assigning a treatment to a patient to avoid any selection
or accidental bias. Properties of various randomisation schemes have been studied by,
for example, Rosenberger and Lachin [1] and Senn [2]. Typically, the purpose of trial
design and selecting the treatment allocation method is to construct the most efficient
estimator of the treatment effect, that is, the one with minimum variance. Under the
assumption that the variances of the responses are the same for each treatment group,
this can be achieved by equal allocation. In general, the optimal allocation is defined
by some linear relation between the numbers of patients on the treatment arms (Brittain
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and Schlesselman [3]). However, due to the stochastic nature of both patient enrolment
and the randomisation process, imbalance in assignments can still occur, even in well-
defined randomisation schemes. Since a larger imbalance can reduce the power of a
study, the statistical analysis of properties of imbalance is of paramount importance for
clinical trial design.

A survey of using various methods of randomisation in clinical trials is provided
by McPherson et al. [4]. It is stressed that the analysis of imbalance in the numbers
of patients across treatment groups becomes more important in clinical trials where
fewer patients are recruited and involved in the study, as an imbalance in the numbers
of patients in the treatment groups may decrease the probability of correctly detecting
a genuine treatment effect. For multi-centre trials, Kundt and Glass [5] emphasise the
importance of stratified randomisation in order to reduce the possibility of imbalance
across treatment groups.

In the particular case of equal allocation ratios, under complete randomisation for
two-treatment trials ignoring centres, each patient is equally likely to be assigned to
either of the treatments. Although in this case for n patients the total imbalance is
O(
√
n), it is known that imbalance caused by complete randomisation is unlikely to

have a strong impact in a large trial with more than 200 patients (Lachin [6]).
Another randomisation scheme that is mainly used in clinical trials by pharma-

ceutical companies is randomly permuted-block randomisation. There are two basic
schemes: unstratified and centre-stratified permuted-block randomisation. Given an
assigned proportion of patients for each treatment within a block, a sequence of treat-
ment assignments is generated by randomly listing all of the possibilities for different
permuted blocks. Patients are then assigned to the treatment according to this sequence
in order upon their arrival. In this paper, unequal allocations are allowed within a
block. However, in order to achieve a balance in the numbers of patients across treat-
ment groups, the treatment allocation ratio within a block is usually assumed to be one.
Under this assumption, imbalance will not occur in any of the complete blocks, but it
may occur in the incomplete block. In other words, under the permuted-block design,
the total imbalance in the numbers of patients across treatments is determined by im-
balances in the incomplete blocks. A comparison of the pros and cons of unstratified
and some variations of centre-stratified randomisation using simulation is considered
in Morrissey et al. [7].

The treatment imbalance properties of different randomisation schemes have been
investigated by Hallstrom and Davis [8] and Kundt and Glass [5] for stratified block
randomisation, Lachin [6, 9] for complete randomisation and urn randomisation, and
Anisimov [10, 11, 12] for centre-stratified permuted-block randomisation. All of the
above authors have considered the imbalance in the number of patients for two treat-
ments. This paper extends these results to more than two treatment groups. In the
previous papers, the expectation and the variance of the imbalance are calculated, and
it is proved that the distribution of the overall imbalance is approximately normal. The
main focus of this paper is to investigate the imbalance properties of two randomisa-
tion schemes: centre-stratified permuted-block and complete randomisation. The over-
all imbalance is represented as a vector of imbalances on different treatments rather
than a scalar in the two-treatment case, and asymptotically it has a multivariate normal
distribution.

In Section 2, we consider centre-stratified permuted-block and complete randomi-
sation for cases when there are more than two treatments. The imbalance for both ran-
domisation schemes will then be defined for a particular treatment in a particular centre
and across all centres. In Section 3, we consider the case where the numbers of patients
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recruited in different centres are random variables. This is based on the Poisson-gamma
patient recruitment model developed by Anisimov and Fedorov [13]. The expectations,
variances and covariances of the imbalance within a centre and across all centres are
evaluated. In Section 4, the variances and covariances of the imbalance for the two
randomisation schemes are compared. A simulation study is considered for a particu-
lar scenario in Section 5. The values for the expectations and the covariance matrices
are given, together with the empirical distributions of the imbalance, which confirm
the theoretical results produced in Section 3. In Section 6, a test will be described for
all pairs of treatment differences with a control group and hence how the power can
be obtained. Numerical results for the power and the sample size are also provided by
simulation for different scenarios. By fixing a particular level of power to be achieved
for the balanced case, the sample size can be found using simulation. A similar, but
more complicated, approach is used in the imbalanced case. Finally, there is a dis-
cussion in Section 7. Derivations of the properties of the imbalance are given in an
appendix.

2 Randomisation schemes for more than two treatments
Consider a multi-centre clinical study, where in total n patients have to be recruited by
N clinical centres. Patients have to be assigned to one of K ≥ 3 treatments. Assume
that ni patients will be recruited in centre i. Then

∑N
i=1 ni = n.

There are two types of permuted-block randomisation schemes that are commonly
used in clinical trials: unstratified and centre-stratified permuted-block randomisation.
Unstratified permuted-block randomisation means that patients are randomised to treat-
ment according to independent randomly permuted blocks of a fixed size without re-
gard to centres. Centre-stratified randomisation means that each of the centres has a
separate permuted-block randomisation scheme. Patients for the study are randomised
to treatments according to the independent randomly permuted blocks of a fixed size
within each centre.

It is obvious that unstratified permuted-block randomisation will minimise the im-
balance in the number of patients on different treatments for the whole study and in-
crease the imbalance in each centre compared to centre-stratified permuted-block ran-
domisation.

Assume that there are in total K ≥ 3 treatments with the allocation in the block
(k1, k2, ..., kK), where kj is the number of patients within a block that are allocated
to treatment j for j = 1, ...,K. Let B =

∑K
j=1 kj be the block size. As a simple

example, suppose that K = 3 and that our block is (2, 2, 2). Then we have B = 6.
Consider centre-stratified permuted-block randomisation. The total number of pa-

tients ni recruited in centre i may not be a multiple of the block size B. This may lead
to incomplete blocks in some of the centres. In the incomplete block, the numbers of
patients on different treatments may not be proportional to the allocations within the
block (k1, k2, ..., kK), and this will cause imbalance in this block. Many incomplete
blocks may lead to larger imbalance across all centres. Therefore, we can study the
imbalance properties of a randomisation scheme by studying the properties of incom-
plete blocks. For some centre i, denote by r the size of the incomplete block, where
r = 1, ..., B − 1. In the above example, we could have r = 3.

Let ξj(r) be the number of patients on treatment j in an incomplete block of size
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r. Then the variable ξj(r) has a multivariate hypergeometric distribution, that is,

P[ξ1(r) = s1, . . . , ξK(r) = sK ] =

∏K
j=1

(
kj

sj

)(
B
r

)
for sj = 0, 1, . . . ,min(kj , r) and j = 1, . . . ,K with

E[ξj(r)] =
kjr

B
, Var[ξj(r)] =

kjr(B − kj)(B − r)
B2(B − 1)

(2.1)

and

Cov[ξj(r), ξm(r)] = −kjkmr(B − r)
B2(B − 1)

.

If r = 0, we set ξj(r) = 0.
Let nij be the total number of patients in centre i on treatment j. Denote by bzc

the integer part of z and mod(z,B) = z − bz/BcB. Then

nij =
⌊ni
B

⌋
kj + ξj [mod(ni, B)] . (2.2)

The centre-stratified permuted-block design is studied and referred to as permuted-
block randomisation in this paper.

Consider now complete randomisation. Suppose that each patient is assigned to
treatment j with probability pj without regard to clinical centres. Then the total number
of patients in centre i on treatment j, nij , has a binomial distribution with parameters
ni and pj . Typically, pj is chosen as the proportion of patients that are allocated to
treatment j in a complete block of size B, and so pj = kj/B. Note that blocks are
only introduced here for comparison purposes as the same allocation ratios apply for
the different randomisation schemes, and the size of a block is not used in subsequent
calculations. Therefore, for complete randomisation, we use for convenience pj =
kj/B. For equal treatment proportions within each complete block, we have k1 =
k2 = ... = kK with block size B = Kk1 and pj = 1/K. Thus, in the above example,
we see that kj = 2 and pj = 1/3.

Define for centre i the imbalance on treatment j as

∆ij = nij −
ni
B
kj (2.3)

for j = 1, ...,K and i = 1, ..., N. Now define the overall imbalance on a particular
treatment j for all centres by

∆j =
N∑
i=1

∆ij . (2.4)

In what follows, ∆ij and ∆j with and without a superscript ∗ will refer to the imbal-
ances under complete randomisation and the permuted-block design, respectively.

3 Imbalance properties of randomisation schemes

3.1 Patient Recruitment Model
Consider a Poisson-gamma model for the patient recruitment process developed by
Anisimov and Fedorov [13]. This model accounts for the stochasticity in patient ar-
rival and also the variation in recruitment rates between different centres. The model
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has been validated for many large clinical trials. It provides the opportunity to model
analytically patient recruitment at the centre level, and therefore it can be used as a
convenient framework for our purposes.

Assume that the patient recruitment process in centre i follows a Poisson process
with rate λi. The rates {λi} are viewed as independent gamma distributed random
variables with known shape and rate parameters (α, β), respectively. Assume for sim-
plicity that all centres start to recruit patients at the same time. Then, for given rates,
the total number of patients ni recruited in centre i has a mixed binomial distribution
with parameters n and pi, where n is the total number of patients recruited in all centres
and pi is the probability of recruiting a patient in centre i given by pi = λi/

∑N
k=1 λk.

Since {λi} are gamma distributed random variables, pi has a beta distribution with
parameters (α, α(N − 1)). Therefore, ni has a beta-binomial distribution with

P[ni = l] = P(n,N, α, l) =
(
n

l

)
B(α+ l, α(N − 1) + n− l)

B(α, α(N − 1))
, (3.1)

where B(a, b) =
∫ 1

0
xa−1(1− x)b−1dx denotes the beta function, and

E[ni] =
n

N
, Var[ni] =

n(N − 1)(αN + n)
N2(αN + 1)

.

3.2 Permuted-Block Design
Under the permuted-block design with random {ni}, consider the properties of the
imbalance defined in (2.3).

Denote by Ri = mod(ni, B) the variable which represents the size of the in-
complete block in a particular centre i. As ni = bni/BcB + Ri, then using (2.2),
∆ij = ξj(Ri) − Rikj/B. Thus, by conditioning on Ri and using (2.1), we obtain
E[∆ij ] = 0 and

Var[∆ij ] =
kj(B − kj)
B(B − 1)

E[Ri]−
kj(B − kj)
B2(B − 1)

E[R2
i ], (3.2)

where expressions for E[Ri] and E[R2
i ] are given in the appendix.

We now consider the covariance of the imbalances on two different treatments j
and m in a trial. Let i and l be two different centres. Then, due to the indepen-
dence of the numbers of patients on a particular treatment j in different centres, the
imbalances on a particular treatment j in different centres are also independent, so that
Cov[∆ij ,∆lm] = 0. By again conditioning on Ri, the covariance for two different
treatments j and m at the same centre i is

Cov[∆ij ,∆im] = − kjkm
B(B − 1)

E[Ri] +
kjkm

B2(B − 1)
E[R2

i ]. (3.3)

For calculating characteristics of Ri, we can use (3.1) and (A.1). However, these
relations simplify if we consider the case where n/N > 2B, which can be achieved
in large clinical trials. In this case, the random variable Ri has an approximate dis-
crete uniform distribution on the integers between 0 and B− 1 with probabilities 1/B.
Therefore, assuming that n/N > 2B we can use the approximations

E[Ri] =
B − 1

2
, Var[Ri] =

B2 − 1
12

.
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After simple algebra, (3.2) and (3.3) become

Var[∆ij ] =
kj(B − kj)(B + 1)

6B2
(3.4)

and

Cov[∆ij ,∆im] = −kjkm(B + 1)
6B2

. (3.5)

The imbalance ∆j on treatment j for all centres is defined in (2.4) and E[∆j ] = 0.
Given {ni}, the variables {∆ij} for a particular treatment j in different centres are
independent. Thus,

Var[∆j ] =
N∑
i=1

Var[∆ij ].

Using (3.2), we obtain

Var[∆j ] =
N∑
i=1

[
kj(B − kj)
B(B − 1)

E[Ri]−
kj(B − kj)
B2(B − 1)

E[R2
i ]
]
. (3.6)

Similarly, the covariance of ∆j and ∆m is

Cov[∆j ,∆m] =
N∑
i=1

Cov[∆ij ,∆im].

Using (3.3), we obtain

Cov[∆j ,∆m] =
N∑
i=1

{
− kjkm
B(B − 1)

E[Ri] +
kjkm

B2(B − 1)
E[R2

i ]
}
. (3.7)

For n/N > 2B, the random variable Ri has an approximate discrete uniform dis-
tribution. Using (3.4), the variance of ∆j is

Var[∆j ] =
Nkj(B − kj)(B + 1)

6B2
. (3.8)

Finally, using (3.5), the covariance of ∆j and ∆m is

Cov[∆j ,∆m] = −Nkjkm(B + 1)
6B2

. (3.9)

3.3 Complete Randomisation
Under complete randomisation, the imbalance on treatment j in centre i is defined in
(2.3).

Denote by Bin(n, p) a binomial random variable with parameters (n, p). Then
we know that nij | ni ∼ Bin(ni, kj/B). Thus, by conditioning on ni, we obtain
E[∆∗

ij ] = 0 and

Var[∆∗
ij ] =

nkj(B − kj)
NB2

. (3.10)
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Since ∆∗
ij and ∆∗

lm are independent variables for different centres i and l, their
covariance is zero. By again conditioning on ni, the covariance of ∆∗

ij and ∆∗
im for a

particular centre i is

Cov[∆∗
ij ,∆

∗
im] = −nkjkm

NB2
. (3.11)

The imbalance over all centres on treatment j defined in (2.4) has expectation
E[∆∗

j ] = 0. Given {ni}, the variables {∆∗
ij} for a particular treatment j are inde-

pendent for different centres, so that

Var[∆∗
j ] =

N∑
i=1

Var[∆∗
ij ] =

nkj(B − kj)
B2

. (3.12)

Using (3.11), we get that the covariance of ∆∗
j and ∆∗

m is

Cov[∆∗
j ,∆

∗
m] =

N∑
i=1

Cov[∆∗
ij ,∆

∗
im] = −nkjkm

B2
. (3.13)

Remark 1 For equal treatment allocation, we have k1 = k2 = ... = kK and
B = Kk1, so that

Var[∆∗
ij ] =

n(K − 1)
NK2

and
Cov[∆∗

ij ,∆
∗
im] = − n

NK2
.

It follows that

Var[∆∗
j ] =

n(K − 1)
K2

and
Cov[∆∗

j ,∆
∗
m] = − n

K2
.

3.4 Overall Imbalance
When the number of centres N involved in a clinical trial is large, the imbalance de-
fined in (2.4) is approximated by a normal distribution with mean zero, and variance
(3.6) and (3.12), respectively, for the permuted-block design and complete randomi-
sation. Let the overall imbalances for the permuted-block design and complete ran-
domisation be ∆ and ∆∗, respectively. Then each of these is a vector of imbalances
on different treatments for all centres. In other words, ∆ = (∆1,∆2, . . . ,∆K)ᵀ and
∆∗ = (∆∗

1,∆
∗
2, . . . ,∆

∗
K)ᵀ.

As each of the ∆j and ∆∗
j are asymptotically normally distributed, both ∆ and

∆∗ are asymptotically multivariate normal. Under the permuted-block design, the
asymptotic multivariate normal distribution of ∆ has zero mean vector and covariance
matrix

Σ =


σ2

1 σ12 . . . σ1K

σ21 σ2
2 . . . σ2K

...
...

...
...

σK1 σK2 . . . σ2
K

 , (3.14)
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where σ2
j = Var[∆j ] in (3.8) and σjm = Cov[∆j ,∆m] in (3.9).

Similarly, for complete randomisation, the overall imbalance ∆∗ has zero mean
vector and covariance matrix

Σ∗ =


σ∗21 σ∗12 . . . σ∗1K
σ∗21 σ∗22 . . . σ∗2K

...
...

...
...

σ∗K1 σ∗K2 . . . σ∗2K

 ,

where σ∗2j = Var[∆∗
j ] in (3.12) and σ∗jm = Cov[∆∗

j ,∆
∗
m] in (3.13).

Remark 2 For K = 2, the overall imbalance for permuted-block randomisation
was defined by Anisimov [10] as the difference between the numbers of patients on
treatments 1 and 2. We denote this overall imbalance by ∆̃ = n.1 − n.2, where n.1 =∑N
i=1 ni1 and n.2 =

∑N
i=1 ni2, which can be written in terms of our notation as

∆̃ = ∆1 −∆2 +
( n
B
k1 −

n

B
k2

)
.

When there is an equal proportion of patients for the two treatments within a complete
block, we have ∆̃ = ∆1 − ∆2. Now, the overall imbalance in our notation is ∆ =
(∆1,∆2)ᵀ with expectation E[∆] = (0, 0)ᵀ and covariance matrix Σ with entries σ2

j

in (3.8) and σjm in (3.9).
Let u = (1,−1)ᵀ. Then the expectation of ∆̃ = uᵀ∆ is zero and its variance can

be written as

Var[∆̃] = uᵀΣu

= (1,−1)

(
Nk1(B−k1)(B+1)

6B2 −Nk1k2(B+1)
6B2

−Nk1k2(B+1)
6B2

Nk2(B−k2)(B+1)
6B2

)(
1
−1

)
=

2Nk1k2(B + 1)
3B2

.

For equal proportions within a complete block, we have Var[∆̃] = N(B + 1)/6.
For large N , ∆1 and ∆2 are approximately normal. Therefore, the imbalance ∆̃ as

a linear combination of ∆1 and ∆2 is also approximately normal. The result calculated
here in terms of our notation for the expectation and variance of ∆̃ matches with those
of the overall imbalance calculated by Anisimov [10, 11].

4 Comparison of randomisation schemes
One of the main aims of a randomisation scheme is to balance the numbers of patients
across treatment groups. This ensures that an adequate level of power can be achieved.
The higher the power, the more likely a test will detect a genuine treatment difference.
The variance of the imbalance is always considered to be a good indicator of which ran-
domisation schemes provide better balance. The greater the variance of the imbalance
of a randomisation scheme, the less efficient is the design for balancing the numbers of
patients across groups.

By using the calculated variance of the imbalance in (3.2) and (3.10), comparisons
can be made between the two randomisation schemes on their effectiveness in balanc-
ing the numbers of patients across treatment groups. Assume that ni = sB + r and
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s ≥ 0. Then the ratio of the variances of the imbalances for the two randomisation
schemes is

Var[∆ij | ni]
Var[∆∗

ij | ni]
=

r(B − r)
(sB + r)(B − 1)

.

If s = 0 and r = 0, there will be no patients in the trial and we cannot calculate the
ratio. When s = 0, there is only one incomplete block, so that the ratio becomes

B − r
B − 1

=

{
1, r = 1,
< 1, r > 1.

When r = 1, there will be only one patient in centre i and the variance of the imbalance
is the same for complete randomisation and the permuted-block design. When r > 1,
there is only one incomplete block in centre i. The variance of that imbalance under
complete randomisation is greater than that of the permuted-block design for a non-
empty incomplete block, which means the permuted-block design is more efficient
than complete randomisation.

Now consider the case s ≥ 1. When r = 0, centre i contains only complete blocks
and the ratio becomes zero for the permuted-block design. Now suppose r ≥ 1, which
implies that B − r ≤ B − 1, and, for s ≥ 1 and B ≥ 1, implies that sB + r ≥ r.
Therefore, r(B− r) ≤ (sB+ r)(B− 1). If in centre i, there are more than two blocks
which include at least one complete block and one incomplete block, the variance of
the imbalance for complete randomisation is greater than that of the permuted-block
design.

To conclude, the variance of the imbalance in a particular centre i on a particular
treatment j is greater under complete randomisation than the permuted-block design
in all cases. In other words, the permuted-block design is more efficient than complete
randomisation, except when there is only one patient in each centre.

We will now study the overall imbalance on treatments under these two randomi-
sation schemes. We can look at the covariance matrices for the randomisation schemes
to see which randomisation scheme performs better.

The imbalances on a particular treatment j are independent for different centres.
The variance of the imbalance on a particular treatment j for all centres is just the
sum of all the imbalances on treatment j for each centre i for i = 1, ..., N . There-
fore, the variance of the imbalance on treatment j for all centres under permuted-block
randomisation will be less than that under complete randomisation. Similarly, con-
sider the covariances for two different treatments j and m in centre i under these two
randomisation schemes. Using (3.3) and (3.11), the ratio of the two covariances is

Cov[∆ij ,∆im | ni]
Cov[∆∗

ij ,∆
∗
im | ni]

=
r(B − r)

(sB + r)(B − 1)
,

where ni = sB + r.
The covariance ratio of the imbalance is exactly what we obtained for the variance

ratio. Therefore, we can draw the same conclusions here as earlier. The covariance of
the imbalance in a particular centre i on two different treatments j and m is greater
under complete randomisation than under permuted-block randomisation in all cases.
Therefore, all the entries in the covariance matrix Σ∗ for complete randomisation have
values greater than those in the covariance matrix Σ under permuted-block randomisa-
tion. For the overall imbalance across treatments, the covariance under permuted-block
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randomisation is less than that under complete randomisation, which implies that, un-
der permuted-block randomisation, a more balanced trial can be achieved across treat-
ments for all centres than complete randomisation.

As proved above,
Var[∆ij | ni] = Var[∆∗

ij | ni]
if ni = 1 and

Var[∆ij | ni] < Var[∆∗
ij | ni]

if ni > 1. Now, when ni is random, if n > 1, then P[ni > 1] > 0. Thus, it can be
shown that

Var[∆ij ] < Var[∆∗
ij ].

Therefore, if we have more than one patient in a trial, Var[∆ij ] < Var[∆∗
ij ] and

permuted-block randomisation always has lower variability in the imbalance than com-
plete randomisation. Similarly, Cov[∆ij ,∆im] < Cov[∆∗

ij ,∆
∗
im].

For the overall imbalance, we look at the covariance matrix under the two ran-
domisation schemes. The conclusion is the same as when ni is fixed. Permuted-block
randomisation is better than complete randomisation, and thus permuted-block ran-
domisation provides less imbalance in the number of patients on a particular treatment
for all centres than complete randomisation in the sense that the entries in the co-
variance matrix for permuted-block randomisation are all less than those for complete
randomisation. Therefore, using permuted-block randomisation should lead to better
quality estimators of treatment effect than using complete randomisation.

5 Simulation results
Results of simulation support the theoretical conclusions of Section 3. Consider centre-
stratified randomisation and assume that the patient recruitment process is modelled by
the Poisson-gamma model (Anisimov and Fedorov [13]). Then, as shown in Section
3.1, under the assumption that all centres are initiated at the same time, the total number
of patients recruited in each centre has a beta-binomial distribution. Within each centre,
patients are allocated to a treatment according to some randomly permuted blocks.
Assume that an equal proportion of patients is to be allocated to each treatment within
each complete block. Some randomly permuted blocks of size B are generated in
the simulation and the patients are allocated to treatments according to the sequence
formed by these blocks. As the imbalance on treatments can be caused only by the
incomplete block in each centre, the treatment allocation to patients in these incomplete
blocks is simulated from a multivariate hypergeometric distribution. The imbalance on
treatments can be calculated by subtracting the simulated number of patients allocated
to each of the treatments from the expected number of patients on each treatment. The
imbalance on treatments is calculated within each centre and for all centres. Finally,
the vector for the overall imbalance on treatments is calculated.

The above procedure is repeated s times. The sample mean and the sample covari-
ance matrix of the overall imbalance are obtained after s runs. For K treatments, let
∆̂p be the vector for the overall imbalance obtained in the pth simulation run. The
sample mean vector and covariance matrix are calculated as

¯̂∆ =
1
s

s∑
p=1

∆̂p, Σ̂ =
1

s− 1

s∑
p=1

(∆̂p −
¯̂∆)(∆̂p −

¯̂∆)ᵀ.
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These values are compared with the theoretical mean vector and covariance matrix
using scenarios based on realistic assumptions. Consider the scenario where n = 640,
N = 80, K = 4 and B = 8, with α = 1.2 and β = 2 for the patient recruitment
process. The theoretical mean vector and covariance matrix of the overall imbalance
can be calculated by using results in Section 3. Clearly, the theoretical expectation
of the overall imbalance is the vector of zeros. The theoretical covariance matrix has
diagonal entries in (3.6) and off-diagonal entries in (3.7). If the size of the incomplete
block Ri in centre i has an approximate discrete uniform distribution, the theoretical
covariance matrix has entries (3.8) and (3.9).

The number of runs is taken as s = 100, 000. The sample mean vector of the
overall imbalance is

¯̂∆ =
(

0.001, −0.005, −0.008, 0.012
)ᵀ
,

which is very close to the theoretical mean vector. The theoretical covariance matrix
of the overall imbalance is

Σ =


21.548 −7.183 −7.183 −7.183
−7.183 21.548 −7.183 −7.183
−7.183 −7.183 21.548 −7.183
−7.183 −7.183 −7.183 21.548

 . (5.1)

When Ri, the size of the incomplete block in centre i, has an approximate discrete
uniform distribution, we have

Σ =


22.5 −7.5 −7.5 −7.5
−7.5 22.5 −7.5 −7.5
−7.5 −7.5 22.5 −7.5
−7.5 −7.5 −7.5 22.5

 . (5.2)

The sample covariance matrix of the overall imbalance is

Σ̂ =


21.458 −7.149 −7.188 −7.121
−7.149 21.657 −7.238 −7.270
−7.188 −7.238 21.569 −7.143
−7.121 −7.270 −7.143 21.533

 ,

which has values very close to the theoretical values in (5.1), and also rather close to
those in (5.2).

For the above scenario, the results from simulation are consistent with the numer-
ical values for the theoretical mean vector and covariance matrix in (5.1). When the
size of the incomplete block Ri in centre i has an approximate discrete uniform dis-
tribution, the relative error of approximation of the covariance matrix compared to the
theoretical covariance matrix is about 4%. Note that the relative error is larger when we
have fewer patients on average per centre. For example, simulations were also carried
out for the scenarios where n = 232 and N = 100, and n = 496 and N = 80. In the
former scenario, the relative error of approximation of the covariance matrix by using
a discrete uniform distribution was about 30%, whereas, in the latter, it was about 6%.

The theoretical covariance matrix in (5.1) is calculated under the assumption that
the patient recruitment process follows a Poisson-gamma model (Anisimov [12]). On
the other hand, (5.2) is calculated under the assumption that Ri has an approximate
discrete uniform distribution. This approximation becomes more accurate as the ratio
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n/N increases. In practical problems, it is recommended by Anisimov [12] that the
uniform distribution for Ri be used when n/N > 2B. However, in the above scenario,
we have n/N = 8 and 2B = 16, but the discrete uniform approximation is still
quite good. This means that it should be sufficiently accurate to apply the approximate
expressions using a uniform distribution in large phase III trials, where n/N is typically
more than the block size, as these expressions are simple for calculation purposes and
do not require any specific information about patient recruitment. The approximation is
less reliable in phase II trials or smaller phase III trials for rare diseases, where patient
recruitment may be slow. Nevertheless, given information about the parameters of the
recruitment process, we can use the expressions derived in Section 3.2 and calculate
the theoretical expressions for comparing different scenarios at the design stage of the
trial.

The imbalance ∆j on a particular treatment j defined in (2.4) for j = 1, ...,K for
all centres is approximated by a normal distribution with mean zero and variance (3.6),
or (3.8) if the size of the incomplete block has an approximate discrete uniform distri-
bution. The results of the simulations support this. Consider the scenario with K = 4
treatments and block size B = 8. The values of ∆j for j = 1, ..., 4 are calculated
for 100, 000 simulations. Figure 1 shows the histogram of the values of ∆j for each
treatment j = 1, ..., 4.

Figure 1. Histograms for simulated values of ∆j for j = 1, . . . , 4.
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The curves for the empirical density functions of ∆j/
√

Var[∆j ] for j = 1, ..., 4
are shown in Figure 2. It is visible that these curves practically coincide with the stan-
dard normal density function.
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Figure 2. Empirical density functions of ∆j/
√

Var[∆j ] for j = 1, . . . , 4.
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The yellow line represents the standard normal density function. The red, blue,
pink and green lines represent the empirical density functions of ∆j/

√
Var[∆j ] for

j = 1, 2, 3, 4, respectively.

6 Power and sample size

6.1 Description of Test
Here, we study the impact of imbalance across treatments on the power for centre-
stratified randomisation. We also consider the imbalanced case and investigate how an
increase in the sample size can compensate for the loss in power. This will be shown
by numerical results from simulation.

Let n be the total number of patients to be randomised to K > 2 treatments at N
clinical centres. The centre-stratified randomisation has blocks of size B. Let n∗j be
the number of patients randomised to treatment j for j = 1, ...,K and let X̄j be the
sample mean of the patient responses on treatment j. Assume that the observations are
independent and normally distributed random variables with unknown means mj for
j = 1, ...,K and known variance σ2. Suppose that patients in the first group receive
the standard treatment and let this group be the control group. We will be carrying out
K−1 tests assuming that there is no centre effect in the treatment responses. According
to the ICH E9 guideline [14], there is no need to include a centre effect in the analysis
model. For example, in large mortality trials with not so many patients per centre,
there may be no reason to expect the centres to have any influence on the primary or
secondary outcomes.

Consider testing the null hypothesis H0 : m1 = m2 = ... = mK = m for
some non-negative constant m against H1 : at least one mj −m1 = hj > 0 for some
j = 2, ...,K. Consider the test statistics

Sj =
X̄j − X̄1

σ
√

1/n∗j + 1/n∗1

for j = 2, ...,K. Under H0, these are dependent standard normal random variables.
Given γ as the significance level of one test, denote by Φ the standard normal distribu-
tion function and let zγ satisfy 1− Φ(zγ) = γ. We reject H0 if, for at least one j with

13



j = 2, ...,K, Sj > zγ . Denote by γ∗ the significance level of the overall test, that is,

P
{
∪Kj=2 (Sj > zγ) |H0

}
= γ∗. (6.1)

Consider now the hypothesis H1. Denote for j = 2, ...,K,

ηj =
X̄j − X̄1 − hj
σ
√

1/n∗j + 1/n∗1
.

UnderH1, the variables {ζj =
√
n∗j (X̄j−mj)/σ, j = 1, ...,K} are mutually indepen-

dent standard normal random variables. So, for any j = 2, ...,K, ηj can be represented
as a linear combination of two independent normal random variables,

ηj = ζjcj1 − ζ1cj2, (6.2)

where
cj1 =

√
n∗1/
√
n∗1 + n∗j , cj2 =

√
n∗j/
√
n∗1 + n∗j . (6.3)

Thus, under H1,

Sj = ηj +
hj

σ
√

1/n∗j + 1/n∗1
.

Let β∗ be the probability of a type II error. For a given level of significance γ, the
power can be expressed as

P

∪Kj=2

ηj +
hj

σ
√

1/n∗j + 1/n∗1
> zγ

∣∣∣ H1

 = 1− β∗, (6.4)

where the variables ηj are given in (6.2). Correspondingly, relation (6.1) can be rewrit-
ten in the form

P
{
∪Kj=2

(
ηj > z∗γ∗

)
|H0

}
= γ∗, (6.5)

where, for any particular γ∗, we can find by simulation the value z∗γ∗ satisfying (6.5)
and then compute the power in (6.4) for this z∗γ∗ .

6.2 Impact of Imbalance on Power and Sample Size
For the balanced case, since n∗1 = n∗2 = ... = n∗K , by (6.3), cj1 = cj2 = 1/

√
2. Thus,

relation (6.5) has the form

P
{
∪Kj=2

(
ζj − ζ1 > z∗γ∗

√
2
)
|H0

}
= γ∗,

which can be rewritten as

P
{
∩Kj=2

(
ζj − ζ1 ≤ z∗γ∗

√
2
)
|H0

}
= 1− γ∗. (6.6)

Now, since the ζj are independent, (6.6) can be expressed as

E[ΦK−1(z∗γ∗
√

2 + ζ1)|H0] = 1− γ∗. (6.7)

So it is necessary to find z∗γ∗ as a solution of (6.7), which can be achieved by simulating
only a sequence of values for ζ1. Using this approach for γ∗ = 0.05 and any K, the
values z∗0.05(K) can be calculated. In Table 1, these values are given for K = 3, ..., 8
and are based on 100,000 simulations.
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Table 1. Critical values when the overall significance level is 5%.

K 3 4 5 6 7 8
z∗0.05 1.919 2.063 2.160 2.236 2.294 2.350

Now we study the power of the test using simulation for four different scenarios
when γ∗ = 0.05, σ = 1 and β∗ = 0.05. Some theoretical derivations simplify and
accelerate the calculations. Using (6.2) and (6.3), relation (6.4) can be rewritten as

P

∩Kj=2

ζjcj1 ≤ ζ1cj2 − hj√
1/n∗j + 1/n∗1

+ z∗0.05(K)

∣∣∣H1

 = β∗. (6.8)

First consider the balanced case where we have the same number of patients on
each of the treatments. Then, since n∗1 = n∗2 = ... = n∗K = n/K, by (6.3), cj1 =
cj2 = 1/

√
2. Thus, (6.8) has the form

P
{
∩Kj=2

(
ζj ≤ ζ1 − hj

√
n

K
+
√

2z∗0.05(K)
) ∣∣∣H1

}
= β∗, (6.9)

and, since the ζj are independent, (6.9) can be expressed as

E

[
K∏
j=2

Φ
(
ζ1 − hj

√
n

K
+
√

2z∗0.05(K)
)∣∣∣H1

]
= β∗.

So, for any particular values hj , the sample size n in the balanced case can be evaluated
by simulating only the variable ζ1 and finding the minimum n such that the left-hand
side of (6.9) is less than or equal to β∗.

Consider now the imbalanced case. Here, the values n∗j for j = 1, ...,K are in
general unequal random variables defined by the patient recruitment. Therefore, using
(6.3), we can write relation (6.8) in the form

P

{
∩Kj=2

(
ζj ≤

√
n∗j
n∗1

(
ζ1 − hj

√
n∗1 + z∗0.05(K)

√
n∗j + n∗1
n∗j

))∣∣∣H1

}
= β∗, (6.10)

or, since the ζj are independent, for any given scenario of recruitment n∗1, ..., n
∗
K , (6.10)

can be expressed as

E

[
K∏
j=2

Φ

(√
n∗j
n∗1

(
ζ1 − hj

√
n∗1 + z∗0.05(K)

√
n∗j + n∗1
n∗j

)∣∣∣H1

)]
= β∗,

where expectation is with respect to ζ1 and different values of n∗1, ..., n
∗
K .

Thus, to simulate the power and to calculate the sample size n, for a given n,
we need to simulate in each run the value of a normal random variable ζ1 and one
recruitment scenario to obtain the values n∗1, ..., n

∗
K . After running simulations, we

need to find the sample mean of the values

K∏
j=2

Φ

(√
n∗j
n∗1

(
ζ1 − hj

√
n∗1 + z∗0.05(K)

√
n∗j + n∗1
n∗j

))
(6.11)
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and check if this is less than or equal to β∗. By repeating the simulations for different
values of n, we can find the minimum sample size for a given β∗ when the sample
mean of the values in (6.11) becomes less than or equal to β∗ and then compare it
with the corresponding value for the balanced case. Table 2 shows the power obtained
by the above approach for the balanced and imbalanced cases for 100,000 simulations
with N = 50.

Table 2. Simulated powers for four scenarios using the direct approach.

Number of treatments K = 4 K = 5 K = 6 K = 8
Size of block B = 8 B = 10 B = 12 B = 8
Balanced case

n 220 240 252 264
Power 0.951 0.953 0.953 0.953

Imbalanced case
n 220 240 252 264

Power 0.950 0.951 0.951 0.952
n 221 241 253 265

Power 0.951 0.952 0.952 0.952
n 222 242 254 266

Power 0.952 0.952 0.952 0.953
n 223 243 255 267

Power 0.952 0.953 0.952 0.954
n 224 244 256 268

Power 0.953 0.954 0.954 0.955

For each scenario, the power obtained in the imbalanced case is less than that in the
balanced case for the same value of n. As we can see from Table 2, we need at most
four more patients in the imbalanced case to obtain the same level of power as in the
balanced one. These results are in agreement with those of Anisimov [11, 12], where
the case of two treatments was considered.

Since simulating a large number of different recruitment scenarios and calculating
the values n∗1, ..., n

∗
K may take a reasonable amount of time in practice, we propose

a combined analytical/approximate approach using the asymptotic approximations de-
rived in Section 3. This approach is computationally about twice as fast as the direct
one.

Using relations (2.3) and (2.4), we obtain that, in the case of equal treatment alloca-
tions, n∗j ≈ ∆j + n/K and the vector ∆ = (∆1,∆2, . . . ,∆K)ᵀ is well approximated
by a multivariate normal vector which can be written in the form

∆ = Σ1/2ξ,

where the matrix Σ is defined in (3.14) by relations (3.8) and (3.9), and ξ is a multi-
variate normal vector with independent components such that

E[ξ] = 0, E[ξξᵀ] = I.

This means that we can approximate the vector n∗ = (n∗1, ..., n
∗
K)ᵀ as

n∗ ≈ n

K
1 + Σ1/2ξ. (6.12)
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Using this approach, instead of simulating the patient recruitment and calculating the
values {n∗j}, we can simulate in each run the independent normal random variables
(ξ1, ..., ξK) and one normal variable ζ1, and then calculate the vector (n∗1, ..., n

∗
K) using

(6.12) and hence the values (6.11).
Table 3 shows the results of the power calculations obtained by using the above

approximation. As we can see, for K = 4, 5, 6, the results of direct simulation of the
recruitment as it was carried out in the calculations in Table 2 are practically the same,
up to three decimal places and simulation error. However, for K = 8, the results differ
slightly in the second decimal place. This is because the normal approximation uses
a covariance matrix of the form (3.14), where relations (3.8) and (3.9) are based on a
discrete uniform approximation for the size of the incomplete block. Recall that, from
Section 5, this approximation works well if n/N > B. However, for B = 8, the ratio
n/N ≈ 5, which is less than 8. Therefore, we can conclude that, for n/N > B, we can
substantially simplify and accelerate the computations by using the normal approxima-
tion for the vector (n∗1, ..., n

∗
K) given by (6.12).

Table 3. Simulated powers for four scenarios using a normal approximation.

Number of treatments K = 4 K = 5 K = 6 K = 8
Size of block B = 8 B = 10 B = 12 B = 8

n 220 240 252 264
Power 0.950 0.953 0.952 0.963
n 221 241 253 265

Power 0.951 0.953 0.952 0.964
n 222 242 254 266

Power 0.952 0.955 0.953 0.965
n 223 243 255 267

Power 0.953 0.954 0.954 0.965
n 224 244 256 268

Power 0.953 0.955 0.954 0.966

7 Discussion

7.1 Conclusions
In this paper, imbalances are defined for complete randomisation and the permuted-
block design for clinical trials with more than two treatments, and their properties are
investigated. Most of the previous papers deal with imbalance properties of different
randomisation schemes for two treatment groups only. The imbalance for more than
two treatments is no longer the difference in the numbers of patients on two treatments,
but is defined as a vector whose components are the differences between the number of
patients in each treatment group and the expected number of patients in this group.

The imbalance is defined within centres and globally. The calculations of the ex-
pectations, variances and covariances of the imbalances in a centre or for all centres
are provided for the two randomisation schemes. It is assumed that the patient recruit-
ment process follows the Poisson-gamma model (Anisimov and Fedorov [13]). The
variances for the two randomisation schemes are compared. For trials with several
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treatments, in general, centre-stratified permuted-block randomisation performs bet-
ter than complete randomisation in balancing the numbers of patients across treatment
groups. In other words, complete randomisation provides more uncertainty in the num-
bers of patients in different treatment groups. A test is also considered for comparing
each treatment to a control group. The numerical values for the power of the test in
the balanced and imbalanced cases indicate that any imbalance has little effect on the
power.

We have concentrated on the imbalance in the form considered here, since it is
more reflected in the existing literature. However, the methods developed in the paper
allow us to investigate the distribution of the numbers of patients on different treatment
arms, and thus to potentially analyse other measures of imbalance. This would help
statisticians to decide whether the probability of undesirable imbalance is notable in
practice. Note that, in Anisimov [12], the impact of random patient dropout was also
investigated on the sample size for both randomisation schemes for K = 2 when using
the test that compares means. Potentially, the techniques can be used to analyse the
impact of dropout for several treatment arms as well. Such extensions will be addressed
in a separate paper.

7.2 Implications of Results
With the increasing pace of drug development, it is not unusual for several treatments
to be ready simultaneously for testing in a randomised phase III setting; see, for exam-
ple, Royston et al. [15] and Wason and Jaki [16]. This reduces costs and time to recruit
patients in a trial, and expedites earlier availability of an effective treatment to the gen-
eral public. The imbalance properties for the several treatments case are of particular
importance as they affect the power of the test for treatment differences. The larger the
imbalance is in a trial, the less power it may have to detect a genuine treatment differ-
ence. In this paper, the focus is on rather large trials where the randomisation may play
a significant role.

The results provide the analytical methodology for investigating the properties of
imbalance in the case of multiple treatments and for comparing various scenarios.
Since asymptotically the overall imbalance for permuted-block randomisation depends
only on the number of strata and the number of treatments, and not the sample size,
the imbalance should not have a significant impact on the power and sample size of the
study. Several examples support this conclusion and show that the loss in power due to
the imbalance can be compensated for by adding only a few patients.

From another standpoint, using stratified randomisation in general may improve
different operational characteristics. In particular, it may substantially reduce drug
supply overages. Therefore, in the cases when the choice of randomisation is not dic-
tated by the type of data, these results support wider use of stratified randomisation in
clinical trials.

Appendix: Derivations of Properties of Imbalance
First consider the permuted-block design. Then

E[∆ij ] = E[E[∆ij | Ri]] = 0,
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and using (2.1) we obtain

Var[∆ij ] = E[E[∆2
ij | Ri]]

= E

[
E[ξ2j (Ri) | Ri]−R2

i

(kj
B

)2
]

= E
[
Var[ξj(Ri) | Ri]

]
= E

[
kjRi(B − kj)(B −Ri)

B2(B − 1)

]
,

which yields (3.2).
As for all i, j, E[∆ij ] = 0, then the covariance for two different treatments j and

m at the same centre i is calculated as

Cov[∆ij ,∆im] = E[∆ij∆im].

Now, we have

E[∆ij∆im] = E
[
E
[(
ξj(Ri)−Ri

kj
B

)(
ξm(Ri)−Ri

km
B

)
| Ri

]]
= E[Cov[ξj(Ri), ξm(Ri) | Ri]] = E

[
− kjkmRi(B −Ri)

B2(B − 1)

]
.

Thus, we obtain (3.3).
In Anisimov [10, 12], the probability P[mod(ni, B) = r] = P[Ri = r] is calcu-

lated as

qr(n,N, α,B) =
n/B−1∑
s=0

P(n,N, α, r + sB) (A.1)

for r = 0, 1, ..., B − 1, where P(n,N, α, r+ sB) is defined in (3.1). So E[Ri] can be
written as

E[Ri] =
B−1∑
r=0

rP[Ri = r]

=
B−1∑
r=0

n/B−1∑
s=0

r

(
n

r + sB

)
B(α+ r + sB, α(N − 1) + n− r − sB)

B(α, α(N − 1))
.

Similarly,

E[R2
i ] =

B−1∑
r=0

n/B−1∑
s=0

r2
(

n

r + sB

)
B(α+ r + sB, α(N − 1) + n− r − sB)

B(α, α(N − 1))
.

Now consider complete randomisation. Then, since nij | ni ∼ Bin(ni, kj/B), we
have E[nij | ni] = nikj/B and E[∆∗

ij ] = 0. Further,

Var[∆∗
ij | ni] = Var[nij | ni] = ni

kj
B

(
1− kj

B

)
.

As E[ni] = n/N , we obtain (3.10).
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The covariance of ∆∗
ij and ∆∗

im for a particular centre i is

Cov[∆∗
ij ,∆

∗
im] = E[E[∆∗

ij∆
∗
im | ni]]

= E
[
E
[(
nij −

ni
B
kj

)(
nim −

ni
B
km

)
| ni
]]

= E [Cov[nij , nim | ni]] .

The conditional covariance of nij and nim can be obtained from the multinomial dis-
tribution and is calculated as −nikjkm/B2. So the covariance of ∆∗

ij and ∆∗
im is

given by (3.11).
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