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ABSTRACT. The only known examples of finite generalised hexagons and octagons arise from the finite
almost simple groups of Lie type G2, 3D4, and 2F4. These groups act transitively on flags, primitively
on points, and primitively on lines. The best converse result prior to the writing of this paper was that
of Schneider and Van Maldeghem (2008): if a group G acts flag-transitively, point-primitively, and line-
primitively on a finite generalised hexagon or octagon, then G is an almost simple group of Lie type. We
establish a stronger result by removing any symmetry hypothesis on lines: a group acting primitively on
the points of a finite generalised hexagon or octagon is almost simple of Lie type.

1. Introduction

Generalised polygons were introduced by Tits [26] in an attempt to find geometric models for simple
groups of Lie type. In particular, the group PSL(3, q) is admitted by the Desarguesian projective plane
PG(2, q); the groups PSp(4, q), PSU(4, q), PSU(5, q) act on certain generalised quadrangles; and G2(q),
3D4(q), 2F4(q) arise as automorphism groups of two generalised hexagons and a generalised octagon,
respectively (up to point–line duality). These generalised polygons are called the classical generalised
polygons [27, Chapter 2], and they are the examples that have the greatest degree of symmetry: their
automorphism groups act primitively and distance-transitively on both points and lines, and transitively
on flags. Although there exist many non-classical projective planes and generalised quadrangles, the
existence of non-classical generalised hexagons and octagons remains an open question. In 1985, Cohen
and Tits [7] proved the uniqueness of the generalised hexagons of orders (2, 2) and (2, 8) (up to duality
in the former case). In 2009, De Medts and Van Maldeghem [9] proved the uniqueness of a generalised
hexagon of order (3, 3) subject to a certain additional assumption, namely the existence of a sub-hexagon
of order (1, 3). In 2015, De Bruyn [8] established the uniqueness of a generalised octagon of order (2, 4)
containing a sub-octagon of order (2, 1), and Cohen et al. [6] proved the uniqueness of a generalised
octagon of order (2, 4) under a certain local symmetry assumption. Buekenhout and Van Maldeghem [5]
showed that distance-transitivity on points implies primitivity on points for a generalised hexagon or
octagon, and that there exist no point-distance-transitive generalised hexagons or octagons apart from
the classical ones. However, it is not yet known whether a non-classical generalised hexagon or octagon
could have an automorphism group acting primitively on points or lines. We make progress towards
resolving this question by showing that if a generalised hexagon or octagon admits an automorphism
group G that acts primitively on points, then G must be an almost simple group of Lie type, regardless
of its action on lines.

A generalised d-gon is a point–line geometry whose bipartite incidence graph has diameter d and
girth 2d. An automorphism (or collineation) of a generalised d-gon is a permutation of the point set,
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FIGURE 1. The two generalised hexagons of order (2, 2). Each is the point–line dual of the other. There
are (2 + 1)(24 + 22 + 1) = 63 points and lines, and each point (respectively line) is incident with exactly
2 + 1 = 3 lines (respectively points). The Dickson group G2(2) acts primitively and distance-transitively
on both points and lines. These pictures were inspired by a paper of Schroth [23].

together with a permutation of the line set, such that incidence is preserved. To exclude trivial cases, we
require that the geometry is thick, namely that each line contains at least three points and each point lies
on at least three lines. In this case, there are constants s > 2 and t > 2 such that each line contains exactly
s+1 points and each point lies on exactly t+1 lines, and (s, t) is called the order of the generalised d-gon
[27, Corollary 1.5.3]. For illustration, the two generalised 6-gons of order (2, 2) are shown in Figure 1.
The celebrated theorem of Feit and Higman [12] shows that a thick generalised d-gon can only exist when
d ∈ {2, 3, 4, 6, 8}, and as generalised 2-gons are simply geometries whose incidence graphs are complete
bipartite, they can also be regarded as trivial. This leaves four distinct types of thick generalised polygon.
A generalised 3-gon is precisely a projective plane, and it has long been conjectured [10, p. 208] that the
mild condition of transitivity on the set of points characterises the classical projective plane PG(2, q).
Currently the best result is to due to Gill [15], who proved that all minimal normal subgroups of a group
G acting transitively on a non-classical projective plane are elementary abelian. Gill [14] also proved
that the Sylow 2-subgroups of G are cyclic or generalised quaternion, and, in particular, that the only
possible insoluble composition factor isA5. Kantor [18] showed that a group acting primitively on a non-
classical projective plane contains a cyclic normal subgroup of prime order acting regularly on points.
This leads to severe number-theoretic restrictions on the possible size of the projective plane, and Thas
and Zagier [25] have shown that these restrictions are not satisfied for any non-classical projective plane
with fewer than 4× 1022 points.

Both Kantor’s results, and the characterisation by Buekenhout and Van Maldeghem, rely heavily
on fundamental results regarding the structure of primitive permutation groups. While Buekenhout and
Van Maldeghem show that primitivity is a consequence of distance-transitivity, it is not necessarily the
case that a flag-transitive group of automorphisms of a generalised polygon with d > 4 is primitive on
points and lines: the generalised quadrangles (4-gons) arising from transitive hyperovals in PG(2, 4) and
PG(2, 16) admit flag-transitive, point-primitive, but line-imprimitive automorphism groups. Bamberg
et al. [1] proved that if G is a group of automorphisms of a finite thick generalised quadrangle acting
primitively on both points and lines, then G is almost simple. Moreover, if G is also flag-transitive then
G is almost simple of Lie type. Schneider and Van Maldeghem [22] had previously proved the following
result for generalised hexagons (6-gons) and octagons (8-gons).
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THEOREM 1.1 (Schneider and Van Maldeghem [22, Theorem 2.1]). Let S be a finite thick gener-
alised hexagon or octagon. If G 6 Aut(S) acts flag-transitively, point-primitively, and line-primitively,
then G is an almost simple group of Lie type.

In this paper, we strengthen the result of Schneider and Van Maldeghem by showing that point-
primitivity alone is sufficient for the same conclusion. That is, we prove the following theorem.

THEOREM 1.2. Let S be a finite thick generalised hexagon or octagon. If G 6 Aut(S) acts point-
primitively, then G is an almost simple group of Lie type.

Theorem 1.2 is proved by analysing the possible O’Nan–Scott types for G considered as a primitive
permutation group on the point set of S . We first prove that G must be an almost simple group, that is, G
must have a unique minimal normal subgroup T , and T must be a nonabelian simple group. It has been
shown by Buekenhout and Van Maldeghem [4] that T cannot be a sporadic simple group, and we prove
that T is also not an alternating group. We note that our arguments do not use the Classification of Finite
Simple Groups (CFSG), though the CFSG is used to conclude that T must be a simple group of Lie type.
To work around the absence of a symmetry condition on lines, we required some new ideas, especially
in the almost simple case with T an alternating group. In particular, we use Jordan’s Theorem [16, 19]
about primitive groups with cycle type 31 or 32, and Neumann’s Separation Lemma [3]; two powerful
yet elementary results in permutation group theory.

Combining Theorem 1.2 with the previously mentioned results for projective planes and generalised
quadrangles yields the following unified result for point- and line-primitive generalised polygons. The
proof is summarised in Section 3.4, but we note here that the result of Bamberg et al. [1] for generalised
quadrangles can be recast as below without the assumption of flag-transitivity. Recall also that the socle
of a group G, denoted by soc(G), is the subgroup of G generated by the minimal normal subgroups.

COROLLARY 1.3. Let S be a finite thick generalised d-gon, d > 3, of order (s, t). If G 6 Aut(S)
acts point-primitively and line-primitively, then one of the following holds:

(i) G is almost simple of Lie type,
(ii) d = 3 and G is soluble,

(iii) d = 4, G is almost simple with soc(G) ∼= An, n > 5, and gcd(s, t) = 1.

2. Background

We first recall some basic facts about generalised polygons, referring the reader to the book by
Van Maldeghem [27] for proofs. Let S be a generalised d-gon, with point set P , and line set L. The
requirement that the incidence graph of S have diameter d and girth 2d is equivalent to the condition that

(i) there are no ordinary k-gons in S for 2 6 k < d, and
(ii) any two elements of P ∪ L are contained in some ordinary d-gon.

In particular, if d > 4 then there are no triangles (3-gons) and no quadrangles in the geometry. If S is
thick with order (s, t) (as defined in Section 1), then we have the following properties.

(PH) If S is a generalised hexagon, then st is a square, and |P| = (s+ 1)(s2t2 + st+ 1).
(PO) If S is a generalised octagon, then 2st is a square, and |P| = (s+ 1)(s3t3 + s2t2 + st+ 1).
Given points x and y of a generalised hexagon or octagon, we write x ∼ y if x 6= y and x, y lie

on a common line, and in this case we denote this (unique) line by 〈x, y〉. For several of the arguments
in the proof of Theorem 1.2, we begin by constructing (or otherwise deducing the existence of) an
automorphism g such that x ∼ xg for some point x. The idea is then to obtain a contradiction by having
g fix the line 〈x, xg〉 while showing that, on the other hand, the stabilisers of x and 〈x, xg〉 are equal.
The following lemma is extremely useful for these sorts of arguments.

LEMMA 2.1. Let S be a finite thick generalised hexagon or octagon of order (s, t), and let P denote
the set of points of S .

(i) If gcd(s, t) 6= 1 and g ∈ Aut(S) is fixed-point free, then there exists x ∈ P such that x ∼ xg.
(ii) Let x ∈ P and g1, g2 ∈ Aut(S) such that x ∼ xg1, x ∼ xg2, and xg1g2 = xg2g1. If xg1g2 6= x,

then x, xg1, xg2 all lie on a common line.
(iii) If H 6 Aut(S) is transitive on P , then the centraliser of H in Aut(S) is intransitive on P .
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Type Description
AS (almost simple) M ∼= T 6 G 6 Aut(T ).
TW (twisted wreath) M ∼= T k, k > 2, acts regularly on Ω.
SD (simple diagonal) M ∼= T k, k > 2, Mω (ω ∈ Ω) is a full diagonal subgroup of M , |Ω| = |T |k−1,

and G acts primitively on the set of k simple direct factors of M .
CD (compound diagonal) Ω = Γ` andG 6 H wr S`,H 6 Sym(Γ) primitive of type SD, soc(H) ∼= T k/`,

k > 2 and k/` > 2; G acts transitively on the simple direct factors of M ∼= T k.
PA (product action) Ω = Γk and G 6 H wr Sk, H 6 Sym(Γ) primitive of type AS, soc(H) ∼= T ;

G acts transitively on the simple direct factors of M ∼= T k, k > 2.

TABLE 1. Five of the possible O’Nan–Scott types of primitive groups G 6 Sym(Ω). Here M
is the unique minimal normal subgroup of G, and T denotes a nonabelian finite simple group.

(iv) Let x, y1, y2 ∈ P such that x ∼ y1 and x ∼ y2, and let g ∈ Aut(S) such that xg 6= x. If g fixes y1
and y2, then x, y1, y2, xg all lie on a common line.

PROOF. Part (i) is proved in [24, Corollary 5.2 and Lemma 6.2], and parts (ii) and (iii) are proved in
[22, Lemmas 3.2(iii) and (iv)]. It remains to prove (iv). First suppose, towards a contradiction, that y1 6∼
y2. Since x ∼ y1 and x ∼ y2 and g is an automorphism, we have xg ∼ y1g = y1 and xg ∼ y2g = y2.
If xg lies on the line 〈x, y1〉, then x, xg, y2 form a triangle, which is impossible. Similarly, xg cannot lie
on the line 〈x, y2〉. However, this implies that x, y1, xg, y2 form a quadrangle, which is also impossible.
Hence y1 ∼ y2, and so x, y1, y2 all lie on the common line λ = 〈y1, y2〉 because S contains no triangles.
Since g fixes y1 and y2, it fixes λ setwise; that is, λg = 〈y1g, y2g〉 = 〈y1, y2〉 = λ. Hence xg also lies
on λ. �

3. The proof

We now work under the following hypothesis.

HYPOTHESIS 3.1. Let S be a finite generalised hexagon or octagon, with point set P , and order
(s, t), where both s and t are at least 2. Suppose that G 6 Aut(S) acts primitively on P , and let M be
a minimal normal subgroup of G.

Recall that the structure of a primitive permutation group is described by the O’Nan–Scott Theorem.
We follow the version of the O’Nan–Scott Theorem given by Praeger [21, Section 5], which splits the
primitive permutation groups into eight types. It was shown by Schneider and Van Maldeghem [22,
Lemma 4.2(i)] that if Hypothesis 3.1 holds then G cannot have O’Nan–Scott type HA (affine), HS
(holomorph simple), or HC (holomorph compound). Indeed, if G has one of these three types then the
centraliser of M in G is transitive on P , which is impossible by Lemma 2.1(iii). The remaining five
O’Nan–Scott types are described in Table 1, and we note that in these cases G has a unique minimal
normal subgroup M , and M has the form

M ∼= T k, where T is a nonabelian finite simple group and k > 1.

Here we also recall that (in general) a permutation group G on a set Ω is said to be semiregular if, for
every x ∈ Ω, the stabiliser Gx := {g ∈ G | xg = x} of x is the trivial subgroup. The group is said to be
regular if it is semiregular and transitive, and in this case the cardinalities of G and Ω are equal.

We show in Section 3.1 that G cannot have O’Nan–Scott type PA or CD under Hypothesis 3.1, and
in Section 3.2 we show that G cannot have type SD or TW. This leaves the possibility that G is an
almost simple group (type AS). An existing result of Buekenhout and Van Maldeghem [4] shows that an
almost simple group with socle a sporadic simple group cannot act primitively (or even transitively) on
the points of a finite thick generalised hexagon or octagon. Thus, to complete the proof of Theorem 1.2,
it remains to show that the socle of G cannot be an alternating group. This is done in Section 3.3.

3.1. Types PA and CD. Suppose that G has O’Nan–Scott type PA or CD under Hypothesis 3.1.
Then P can be identified with a Cartesian product Γ` in such a way that G embeds in the wreath product
H wrS`, where H is a primitive subgroup of Sym(Γ) and G induces a transitive subgroup of S`. Write
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N = soc(H) and note that N ` = soc(G) = M . Let α be an arbitrary element of Γ, and consider
the point x ∈ Γ` represented by the `-tuple (α, . . . , α). Our argument is in three steps, marked (i)–(iii)
below. In step (i) we show that there exists an element y collinear with x such that y is represented by
the `-tuple (β, α, . . . , α) for some β ∈ Γ\{α}. In step (ii) we show that Gλ = Gx, where λ is the line
incident with both x and y. Finally, in step (iii) we construct an automorphism g that fixes λ but not x,
thereby obtaining a contradiction and hence proving that G in fact cannot have type PA or CD.

(i) There exists a point y such that y ∼ x and y = (β, α, . . . , α) for some β ∈ Γ\{α}. This is
established by Schneider and Van Maldgehem [22, proof of Lemma 4.2(ii)] without using flag-
transitivity, but we include a proof to make it clear that flag-transitivity is not needed. Let y =
(β1, β2, . . . , β`) be a point collinear with x, and suppose that y has i entries different from α. If
i = 1 then, without loss of generality, y differs from x in the first component and we are done.
Now assume that i > 2. Then, without loss of generality, β1 6= α 6= β2 and, if i < `, βi+1 = · · · =
β` = α. Since G has type PA or CD, the primitive group H has type AS or SD (respectively), so
N = soc(H) is not regular and it follows from [2, Corollary 2.2(a)] that the only point of Γ fixed
by Nα is α. In particular, Nα 6= Nβ1 , and hence there exists g ∈ Nα such that β′1 := β1g 6= β1.
Set ḡ = (g 1 . . . 1) and y′ = yḡ = (β′1, β2, . . . , β`). Then ḡ ∈ M 6 G, and ḡ fixes x so x ∼ y′.
Similarly, we can choose h ∈ Nβ2 such that α′ := αh 6= α, and we set h̄ = (1 h 1 . . . 1) ∈ M .
Then x 6= xh̄ = (α, α′, α, . . . , α). That is, xh̄ differs from x in only one component. To complete
the proof of (i), it suffices to check that x ∼ xh̄. Since h̄ fixes both y and y′ but not x, Lemma 2.1(iv)
implies that x, xh̄, y, y′ all lie on a common line. In particular, x ∼ xh̄.

(ii) Gλ = Gx, where λ := 〈x, y〉 with y given by (i). The following argument is also adapted from [22,
proof of Lemma 4.2(ii)]. We show that Gx 6 Gλ, which implies that Gλ = Gx because Gx is a
maximal subgroup of the primitive group G and because Gλ 6= G (since G acts transitively on the
set of all points of S, it cannot stabilise a single line). Let g ∈ Gx and write g = (g1, . . . , g`)σ ∈ G,
where g1, . . . , g` ∈ H and σ ∈ S`, so that αgi = α for all i ∈ {1, . . . , `}. If g fixes y then
it fixes λ setwise as required, so assume that yg 6= y. We show that yg lies on λ, which also
implies that g fixes λ because then λg = 〈x, y〉g = 〈xg, yg〉 = 〈x, yg〉 = λ. First suppose that
1σ 6= 1. Then all components of yg are equal to α, except the component in position 1σ, which
is equal to βg1. Choose h, h′ ∈ N such that αh = β and αh′ = βg1, and set h̄ = (h 1 . . . 1)
and h̄′ = (1 . . . 1 h′ 1 . . . 1), where h′ appears in position 1σ of h̄′. Then x ∼ xh̄ = y,
x ∼ xh̄′ = yg, and xh̄h̄′ = xh̄′h̄ 6= x, so Lemma 2.1(ii) implies that x, y, yg all lie on a common
line. That is, yg lies on λ. Now suppose that 1σ = 1. In this case, yg = (βg1, α, . . . , α). Take any
g′ = (g′1, . . . , g

′
`)σ
′ ∈ Gx such that 1σ′ 6= 1. We have just shown that g′ fixes λ, so in particular yg′

lies on λ. Without loss of generality, we may assume that 1σ′ = 2, so that yg′ = (α, βg′1, α, . . . , α).
Now let h̄′′ = (h′ 1 . . . 1), where αh′ = βg1 as above, and let h̄′′′ = (1 h′′ 1 . . . 1), where
αh′′ = βg′1. Then xh̄′′ = yg, xh̄′′′ = yg′, and xh̄′′h̄′′′ = xh̄′′′h̄′′ 6= x, so Lemma 2.1(ii) implies
that yg, yg′, x all lie on a common line, and hence yg lies on λ as required.

(iii) A contradiction: there exists g ∈ Gλ such that g 6∈ Gx. Choose g ∈ Gy such that g = (g1, . . . , g`)σ
with 1σ = 2. Such an element exists because the stabiliser of any point in G is transitive on the
simple direct factors of M . Let i satisfy iσ = 1, and note that i 6= 1. Then (β, α, . . . , α) = y =
yg = (β, α, . . . , α)g = (αgi, βg1, . . .), where the components from the third position onwards are
of the form αgj with j 6∈ {1, i}. That is, αgi = β, βg1 = α, and αgj = α for all j 6∈ {1, i}. Next,
observe that xg 6= x, xg 6= y, and xg ∼ y. Indeed, xg = (αgi, αg1, α, . . . , α) = (β, αg1, α, . . . , α)
is not equal to x or y because βg1 = α and hence αg1 6= α, and x ∼ y implies xg ∼ yg = y.
Choose h′, h′′ ∈ N = soc(H) such that βh′ = α and αh′′ = αg1, and write h̄′ = (h′ 1 . . . 1)
and h̄′′ = (1 h′′ 1 . . . 1). Then yh̄′ = x, yh̄′′ = xg, h̄′ and h̄′′ commute, and yh̄′h̄′′ 6= y, so
Lemma 2.1(ii) implies that xg lies on λ. It follows that λg = 〈x, y〉g = 〈xg, yg〉 = 〈xg, y〉 = λ,
namely that g ∈ Gλ. However, Gλ = Gx from (ii), so we have a contradiction because g 6∈ Gx.

To summarise, we have proved the following result.

LEMMA 3.2. If Hypothesis 3.1 holds then the O’Nan–Scott type of G is not PA or CD.
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3.2. Types SD and TW. We begin with two lemmas, from which it is then deduced that G cannot
have O’Nan–Scott type SD or TW under Hypothesis 3.1. For the second lemma, recall again that a
permutation group is said to be semiregular if every point stabiliser is trivial.

LEMMA 3.3. Let s and t be positive integers such that gcd(s, t) = 1.

(i) If st is a square then (1 + s)(1 + st+ s2t2) is not divisible by 4.
(ii) If 2st is a square then (1 + s)(1 + st)(1 + s2t2) is not divisible by 4.

PROOF. (i) If 4 divides (1 + s)(1 + st+ s2t2) then s ≡ 3 (mod 4) because (1 + st+ s2t2) is odd.
However, st is a square and gcd(s, t) = 1, so s must be a square and hence s 6≡ 3 (mod 4).

(ii) If 4 divides (1 + s)(1 + st)(1 + s2t2) then s ≡ 3 (mod 4) because (1 + st)(1 + s2t2) is odd,
since st is even if 2st is a square. In particular, s is odd. However, if s odd is then s must be a square
because 2st is a square and gcd(s, t) = 1, so s 6≡ 3 (mod 4). �

LEMMA 3.4. Suppose that Hypothesis 3.1 holds and that M ∼= T1 × · · · × Tk for some pairwise
isomorphic nonabelian finite simple groups T1, . . . , Tk, with k > 2. Then, if gcd(s, t) 6= 1, there exist
distinct i, j ∈ {1 . . . , k} such that Ti × Tj is not semiregular on P .

PROOF. Suppose that gcd(s, t) 6= 1 but that Ti × Tj is semiregular for all distinct i, j. Then, in
particular, T1 is semiregular. Choose an involution h ∈ T1, namely an element of order 2. Such an
element exists because the nonabelian finite simple group T1 has even order, by the Feit–Thompson
Theorem [13]. Since h does not fix any point, Lemma 2.1(i) says that there exists x ∈ P such that
x ∼ xh, and so h fixes the line λ = 〈x, xh〉 setwise. We now show that Gλ = Gx, which is a
contradiction because h does not fix x. We first claim that λ is fixed (setwise) by every element of Gx
that does not normalise T1. Let g ∈ Gx be such an element. Since x = xg and x ∼ xh, we have
x = xg ∼ xhg = xgg−1hg = xhg. Since g does not normalise T1, there exists i 6= 1 such that T g1 = Ti.
Thus hg commutes with h, and moreover, hhg lies in the semiregular group T1 × Ti and hence does not
fix x. Lemma 2.1(ii) therefore implies that x, xh, xhg all lie on a common line. Therefore, xhg lies on
λ, and hence λg = 〈x, xh〉g = 〈xg, xhg〉 = 〈x, xhg〉 = λ. That is, g ∈ Gλ as claimed. Now take
a ∈ NGx(T1) and b ∈ Gx\NGx(T1). By the claim, both ab and b belong to Gλ, since ab 6∈ NGx(T1),
and hence a = (ab)b−1 ∈ Gλ. Thus Gx 6 Gλ, and since Gx is a maximal subgroup of G and Gλ 6= G
(as noted in Section 3.1), it follows that Gx = Gλ as required. �

LEMMA 3.5. If Hypothesis 3.1 holds then the O’Nan–Scott type of G is not SD or TW.

PROOF. Write M = T k, where T is a nonabelian finite simple group (as in Table 1). If G has type
TW thenM acts regularly on P , and ifG has type SD thenM = R×T , whereR := T k−1 acts regularly
on P . In either case, the cardinality of P is divisible by 4, because the order of every nonabelian finite
simple group is divisible by 4 (this is a well-known consequence of the Feit–Thompson Theorem, as
explained in [22, pp. 1443–1444]). It therefore follows from Lemma 3.3 and properties (PH) and (PO) in
Section 2 that gcd(s, t) > 1, and Lemma 3.4 then contradicts the regularity of M in the TW case, and of
R in the SD case provided that k > 3. It remains to consider the case where G has type SD with k = 2.
Here, T1 and T2 are both transitive minimal normal subgroups of M , and they centralise each other. This
contradicts Lemma 2.1(iii), and hence this case also cannot occur. �

REMARK 3.6. We note that a more general version of Lemma 2.1(i) is given by Parkinson et al. [20,
Theorem 10.2]. It says that, without the assumption gcd(s, t) > 1, every fixed-point free automorphism
will either map some point x to a point collinear with x, or it will map some point x to a point at distance
4 from x in the incidence graph of S. This implies the conclusion of Lemma 3.4 without having to
assume that gcd(s, t) > 1: if the point xh in the proof is instead at distance 4 from x, then there is a
point y with x ∼ y ∼ xh, but the fixed-point free involution h swaps x and xh without fixing y, so
a similar argument to that in the proof of Lemma 2.1(iv) implies that x ∼ xh, a contradiction. On the
other hand, we actually know that gcd(s, t) > 1 in the situation considered above (via Lemma 3.3), so
in a sense it is more natural to argue as we have done. (It is an open question whether the order (s, t) of
a finite thick generalised hexagon or octagon always satisfies gcd(s, t) > 1.)



POINT-PRIMITIVE GENERALISED HEXAGONS AND OCTAGONS 7

3.3. Type AS with socle an alternating group. By Lemmas 3.2 and 3.5, if Hypothesis 3.1 holds
then G must be an almost simple group. We now treat the case where M = T is an alternating group.
That is, we prove the following result.

LEMMA 3.7. If Hypothesis 3.1 holds with G an almost simple group, then the socle of G is not an
alternating group.

For the proof, suppose towards a contradiction that Hypothesis 3.1 holds with G almost simple and
soc(G) ∼= An for some n > 5. Buekenhout and Van Maldeghem [4] have shown that such a group G
cannot act transitively on the points of a generalised hexagon or octagon if n < 14, so we may assume
that n > 14. In particular, we have G = An or Sn because n 6= 6. Our analysis splits into three cases,
depending on whether the stabiliser Gx of a point x ∈ P is an intransitive, transitive but imprimitive, or
primitive subgroup of Sn in the natural action on {1, . . . , n}.

3.3.1. Intransitive point stabiliser. Let x ∈ P and suppose thatGx acts intransitively on {1, . . . , n}.
Then Gx stabilises a partition of {1, . . . , n} into two blocks, one of size k, say, and one of size `, where
k+ ` = n. If k = ` then Gx < G∩ (Sk wr S2) < G, soGx is not a maximal subgroup, contradicting the
primitivity of G on P . We may therefore assume, without loss of generality, that k < `. We then have
(Ak × A`).2 6 Gx 6 Sk × S`, and the points of S can be labelled by k-element subsets of {1, . . . , n}.
We note also that Gx must have at least four orbits on P , as it preserves distance in the incidence graph
of S and there are points in P at distances 0, 2, 4, and 6 (and 8 in the case of a generalised octagon) from
x. If k < 3 then the number of orbits of Gx is less than four, and hence we may assume that k > 3.

The following facts are proved by Bamberg et al. [1, Lemmas 5.5 and 5.6] in the case of a generalised
quadrangle (with the same assumptions as above). We note that the proofs given there are also valid for
generalised hexagons and octagons, but we include proofs to make this clear.

(F1) For every i ∈ {1, . . . , k}, if x, y ∈ P are collinear and |x ∩ y| = i, then any x′, y′ ∈ P with
|x′ ∩ y′| = i are also collinear.

(F2) For every i ∈ {1, . . . , k}, if x, y ∈ P are collinear and |x ∩ y| = i, then there exists y′ ∈ P
such that |x ∩ y′| = i and y′ 6∼ y.

PROOF OF (F1) AND (F2). For (F1), it suffices to observe thatG = An or Sn preserves collinearity
and is transitive on pairs of k-subsets of {1, . . . , n} with intersection size i. For (F2), suppose towards
a contradiction that every point y′ with |x ∩ y′| = i is collinear with y. By (F1), every such point y′ is
also collinear with x, and hence lies on the line λ := 〈x, y〉 (because S contains no triangles). Let J
denote the generalised Johnson graph with vertices the k-subsets of {1, . . . , n} and two vertices adjacent
if and only if their labels intersect in i elements. If n 6= k/2 then G acts primitively on the point set of
J , and a partition into connected components is G-invariant, so J is a connected graph. We prove by
induction on the distance δ(x, x1) between x and x1 ∈ J that all vertices of J lie on the line λ. The
inductive hypothesis is true for distance 0 because x lies on λ, and for distance 1 by our assumption
that every point y′ with |x ∩ y′| = i is collinear with y. Assume that it is true for distance d, and
suppose that δ(x, x1) = d + 1. Then x1 has a neighbour x2 ∈ J with δ(x, x2) = d, and thus, by the
inductive hypothesis, x2 lies on λ. Also, x2 has a neighbour x3 ∈ J such that δ(x, x3) = d − 1, and
hence x3 lies on λ. If x1 did not lie on λ then x2 would have two neighbours, x1 and x3, such that
|x2∩x1| = |x2∩x3| = i but x1 and x3 are not on the same line, so by vertex-transitivity the same would
have to be true for x, a contradiction. Hence all vertices of J lie on λ. However, this is a contradiction
because the points of S do not all lie on a single line. �

Now let x denote the point with label {1, . . . , k}, and let k1 < k be maximal such that there exists
a point y ∼ x with |x ∩ y| = k1. We claim that k1 = 0. We first show that k1 < k − 1 by adapting
an argument from [1, Section 5]. Suppose, towards a contradiction, that k1 = k − 1. Then, without
loss of generality, y has label {1, . . . , k − 1, k + 1}. By (F2), there exists y′ ∈ P such that |x ∩ y′| =
k − 1 and y′ 6∼ y, and by (F1) we have y′ ∼ x and |y ∩ y′| 6= k − 1. In particular, without loss
of generality we can write y′ = {2, . . . , k, k + 2}. However, the automorphism (1 k + 1)(k k + 2)
fixes both y and y′ but does not fix x, so Lemma 2.1(iv) implies that y ∼ y′, a contradiction. Hence
k1 < k − 1. In particular, if k = 2 then k1 = 0, so we can now assume that k > 3 and complete the
proof of the claim that k1 = 0 by adapting an argument from [22, Section 5]. Without loss of generality,
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y = {1, . . . , k1, k+ 1, . . . , 2k− k1}. Let z = {1, . . . , k1, k+ 2, . . . , 2k− k1 + 1}. Then y 6∼ z because
|y ∩ z| = k − 1 > k1. On the other hand, |x ∩ z| = k1, and hence x ∼ z by (F1). If k1 > 0 then
the automorphism (1 k + 2)(k − 1 k) fixes y and z but not x, so Lemma 2.1(iv) implies that y ∼ z,
a contradiction. Therefore, k1 = 0 as claimed. However, now if 2k + 1 < n then the automorphism
g = (1 2k + 2)(2 3) fixes y = {k + 1, . . . , 2k} and z = {k + 2, . . . , 2k + 1} but not x, a contradiction
according to Lemma 2.1(iv). Therefore, n = 2k + 1. However, now by maximality of k1 = 0 and
transitivity of Ak, there are precisely k + 1 points collinear with x, and Gx acts 2-transitively on this set
of k + 1 points. This implies that there is either only one line incident with x, or k + 1 such lines, each
incident with only two points. Either situation contradicts the thickness of S.

3.3.2. Transitive but imprimitive point stabiliser. In this case, Gx is the stabiliser of a partition of
{1, . . . , n} into ` blocks of size k, where n = k`. First suppose that ` = 2, and letH denote the stabiliser
of the point n in the natural action of G on {1, . . . , n}. Since Gx is transitive on {1, . . . , n}, we have
G = HGx, and this in turn implies thatH is transitive onP . Moreover,Hx = H∩Gx = (Sk×Sk−1)∩G,
which is a maximal subgroup ofH . Therefore,H is primitive on P . However, by Section 3.3.1, S cannot
admit a point-primitive action of H with stabiliser intransitive on {1, . . . , n− 1}. Therefore, ` > 3.

Now, given points x, y ∈ P , we use the notation |x ∩ y| to mean the number of partition classes
common to x and y. We consider, in particular, points for which |x ∩ y| = ` − 2, and for this case we
define the following additional notation.

DEFINITION 3.8. Let x, y ∈ P such that |x∩y| = `−2. Then there are exactly two partition classes
B1, B2 of x that do not belong to y, and exactly two partition classes B′1, B

′
2 of y that do not belong to

x. By appropriate labelling, we may assume that |B1 ∩ B′1| = |B2 ∩ B′2| > dk/2e, and we then write
|x− y|`−2 := |B1 ∩B′1| = |B2 ∩B′2|.

We first claim that there exist collinear points x, y ∈ P such that |x∩y| = `−2 and |x−y|`−2 = k−1.
The proof of this claim is via steps (i)–(iii) below, with steps (i) and (ii) adapted from Schneider and Van
Maldeghem [22, p. 1447] but repeated here to make it clear that flag-transitivity is not required.

(i) There exist collinear points x, y ∈ P with |x ∩ y| > 1. To prove this, first choose a point x ∈ P
and suppose, without loss of generality, that x is labelled by

x = {B1, . . . , B`}, where Bi = {(i− 1)k + 1, (i− 1)k + 2, . . . , ik} for i = 1, . . . , `− 1.

Choose y ∈ P such that x ∼ y. If |x ∩ y| > 1 then we are done, so suppose that |x ∩ y| = 0.
First consider the case k = 2. Then ` > 7 because n = k` > 14. Observe that the automorphism
g = (1 2)(3 4) fixes x and fixes at least ` − supp(g) = ` − 4 > 3 partition classes of y (here
supp(g) is the support of g, namely the subset of {1, . . . , n} of elements moved by g). In particular,
|y ∩ yg| > 3, and we show that y ∼ yg. Let {i1, i2}, {i3, i4} be two (partition) classes common to
y and yg. Since `− supp(g) > 3, we may assume that {i1, i2, i3, i4} is not a union of two classes
of x. Then the automorphism g′ = (i1 i2)(i3 i4) fixes both y and yg, but does not fix x (because
i1, i2 lie in the same class of y and hence in different classes of x, and these two classes of x are not
fixed setwise by g′), so Lemma 2.1(iv) implies that y ∼ yg as required. Now suppose that k > 3.
The automorphism h = (1 2 3) fixes x and fixes at least ` − 3 classes of y. Hence, if ` > 4, then
|y ∩ yh| > 1. If ` = 3 then k > 5 since n > 14, so, in particular, there is a class of y that shares
at least two elements with some class of x. Without loss of generality, we may assume that 1, 2 lie
together in a class of y, and hence that h fixes at least one class of y. Thus we have |y ∩ yh| > 1
for all ` > 3, and we check that y ∼ yh. Let {i1, . . . , ik} be a class common to y and yh, and
suppose without loss of generality that i1, i2, i3 do not all lie together in a class of x. Then the
automorphism (i1 i2 i3) fixes y and yh but does not fix x, so Lemma 2.1(iv) implies that y ∼ yh.

(ii) There exist collinear points x, y ∈ P with |x ∩ y| = `− 2. This follows immediately from part (i)
if ` = 3, so suppose that ` > 4. Let x, y ∈ P be collinear points with |x ∩ y| > 1, and label
x as in part (i). If |x ∩ y| = ` − 2 then we are done, so suppose the contrary. Suppose, without
loss of generality, that y contains the class B1 = {1, . . . , k}. Choose a class Bi of x that does
not belong to y, and choose j1, j2 ∈ Bi such that j1, j2 do not lie in the same class of y. Then
the automorphism (1 2)(j1 j2) fixes x and maps y to a point z such that |y ∩ z| = ` − 2, and we
check that y ∼ z. Since ` > 4, y and z contain a common class B′ that is not a class of x (because
otherwise |x∩ y| = `− 2, contrary to our assumption). Hence, taking j3, j4 ∈ B′ lying in different
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classes of x, the automorphism (1 2)(j3 j4) fixes y and z but does not fix x, so Lemma 2.1(iv)
implies that y ∼ z.

(iii) With notation as in Definition 3.8, there exist collinear points x, y ∈ P with |x ∩ y| = ` − 2 and
|x−y|`−2 = k−1. This follows immediately from part (ii) if k ∈ {2, 3}, so suppose that k > 4. Let
x, y ∈ P be collinear points with |x ∩ y| = `− 2, and again label x as in part (i). Assume without
loss of generality that y also contains the classes B3, . . . , B`. Let B′1, B

′
2 denote the remaining two

classes of y, and label these classes such that k1 := |B1 ∩ B′1| = |B2 ∩ B′2| > dk/2e. That is,
k1 = |x − y|`−2. Consider first the case k > 5. If k1 = k − 1 then we are done, so suppose
the contrary. Then dk/2e 6 k1 6 k − 2, and since k > 5 we have k1 > 3. Without loss of
generality, B′1 = {1, . . . , k1, k+ 1, . . . , 2k− k1} and B′2 = {k1 + 1, . . . , k, 2k− k1 + 1, . . . , 2k}.
Now consider the automorphism g = (1 2)(k1 k). Then g fixes x, and the point yg contains
the classes B3, . . . , B` and its other two classes are B′′1 = {1, . . . , k1 − 1, k, . . . , 2k − k1} and
B′′2 = {k1, . . . , k − 1, 2k − k1 + 1, . . . , 2k}. In particular, |y ∩ yg| = ` − 2 and |y − yg|`−2 =
|B′′1 ∩B′1| = |B′′2 ∩B′2| = k − 1. We now show that y ∼ yg. Since x ∼ y, we have x = xg ∼ yg.
Consider the automorphism h = (1 2)(k1 − 1 k + 2). Since the points 1, 2, k1 − 1, k + 2 all lie
in B′1 ∩ B′′1 , h fixes both y and yg (note that this holds even if k1 = 3). However, h does not fix
x, so Lemma 2.1(iv) implies that y ∼ yg. Finally, if k = 4 then 2 = dk/2e 6 k1 6 k − 2 = 2,
so k1 = 2 and without loss of generality we have B′1 = {1, 2, 5, 6} and B′2 = {3, 4, 7, 8}. Then
|yg′ − y|`−2 = 3, where g′ := (2 4)(5 6), and h′ := (1 5)(3 7) fixes y and yg′ but not x, so
Lemma 2.1(iv) implies that y ∼ yg′.

Let us now fix collinear points x and y such that |x∩y| = `−2 and |x−y|`−2 = k−1, and establish
some further notation. Specifically, we assume that x, y ∈ P are collinear points labelled by

x = {B1, B2, B3, . . . , B`},
y = {{1, . . . , k − 1, k + 1}, {k, k + 2, . . . , 2k}, B3, . . . , B`},

where Bi = {(i − 1)k + 1, (i − 1)k + 2, . . . , ik} for i = 1, . . . , ` − 1 as before. We let λ denote the
line incident with both x and y. Further, we define an automorphism h and a subset ∆ of {1, . . . , n} as
follows:

h :=

{
(1 2)(k k + 1) if k > 3

(1 3 2) if k = 2
, ∆ :=

{
{1, 2, k, k + 1} if k > 3

{1, 2, 3} if k = 2.

First observe that y = xh. In particular, x ∼ xh. If k > 3 then h has order 2, and hence h fixes λ. If
k = 2 then h has order 3 and we have xh ∼ xh2 and hence xh2 ∼ xh3 = x, so again h fixes λ because
S contains no triangles. In either case, we have h ∈ Gλ\Gx. To complete the proof that Gx cannot be
transitive but imprimitive in its natural action on {1, . . . , n}, we now obtain a contradiction by showing
that Gx = Gλ. The cases (i) k = 2 and (ii) k > 3 are treated separately.

(i) Suppose that k = 2, and recall that in this case ` > 7, because n > 14. In particular, we do not
need to consider the case ` = 3, for which the following argument does not work. We first claim
that if g ∈ Gx is an element satisfying ∆g ∩∆ = ∅ and yg 6= yh, then g ∈ Gλ. To prove this, first
note that h = (1 3 2) commutes with hg for such g, because ∆g∩∆ = ∅. Note also that hgh does
not fix x: since g ∈ Gx, we have xhgh = xhgh = ygh, so hgh fixes x if and only if yg equals
xh2, which equals yh, but yg 6= yh. Therefore, and since x = xg ∼ xhg = xgg−1hg = xhg,
Lemma 2.1(ii) implies that x, xh, xhg all lie on a common line. That is, x = xg and xhg = xhg
both lie on λ, so g fixes λ. The claim is proved. Now consider the elements g1, g2, g3 ∈ Gx given
by

g1 := (1 5)(2 6)(3 4)(7 8),

g2 := (1 7)(2 8)(3 4)(5 6),

g3 := (1 5)(2 6)(3 7)(4 8).

Then ∆gi ∩∆ = ∅ and ygi 6= yh for i = 1, 2 and 3. (To check that ygi 6= yh, observe that each
ygi contains the partition class B1 = {1, 2} but that yh does not contain B1.) Hence each gi lies in
Gλ by the claim. Now consider the setwise stabiliser (Gx)B1 of B1 in Gx. Then, in particular, g1
does not lie in (Gx)B1 , because g1 mapsB1 toB3. Since (Gx)B1 is a maximal subgroup ofGx, this
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implies that Gx = 〈(Gx)B1 , g1〉. We show that (Gx)B1 is contained in Gλ, which implies that Gx
is contained in Gλ, and hence, by maximality of Gx in G, that Gx = Gλ. Let a ∈ (Gx)B1 . Since
all of the ygi contain B1, it follows that all of the y(gia) contain B1, and hence that none of these
elements is equal to yh. We now show that for i equal to one of 1, 2, or 3, we have ∆(gia)∩∆ = ∅.
By the claim, this implies that gia ∈ Gλ, and it follows that a = g−1i (gia) ∈ Gλ as required. Since
a fixes B1 = {1, 2}, we just need to choose i such that a does not map any of the elements of
∆gi to the element 3. If 3 6∈ {4a, 5a, 6a} then ∆(g1a) = {1, 2, 3}(g1a) = {4a, 5a, 6a} and hence
∆(g1a) ∩ ∆ = ∅. If 3 ∈ {5a, 6a} then ∆(g2a) = {4a, 7a, 8a} and hence ∆(g2a) ∩ ∆ = ∅.
Finally, if 3 = 4a then ∆(g3a) = {5a, 6a, 7a} and hence ∆(g3a) ∩∆ = ∅.

(ii) Now suppose that k > 3. We first claim that if g ∈ Gx is an element satisfying ∆g ∩∆ = ∅, then
g ∈ Gλ. To prove this, begin by observing that h = (1 2)(k k + 1) commutes with hg for such
g, and that x = xg ∼ xhg = xgg−1hg = xhg. If hhg = hgh does not fix x, then Lemma 2.1(ii)
implies that x, xh, xhg all lie on a common line. That is, both x = xg and xhg = xhg lie on λ, and
so g fixes λ. If hhg = hgh does fix x then we have x = xhgh = (xg−1)hgh = (xh)gh = ygh,
and hence y = xh = ygh2 = yg (because h2 = 1), so in this case g fixes both x and y, and hence
also fixes λ. The claim is proved. Now consider the elements g1, g2 ∈ Gx given by

g1 :=

{
(1 2k + 1)(2 2k + 2) · · · (k 3k)(k + 1 k + 2) if k is odd
(1 2k + 1)(2 2k + 2) · · · (k 3k)(k + 1 k + 2)(k + 3 k + 4) if k is even,

g2 :=

{
(1 2k + 1)(2 2k + 2) · · · (k 3k)(k + 1 k + 3) if k is odd
(1 2k + 1)(2 2k + 2) · · · (k 3k)(k + 1 k + 3)(k + 2 k + 4) if k is even.

Then ∆g1 ∩ ∆ = ∆g2 ∩ ∆ = ∅, and hence g1, g2 ∈ Gλ by the claim. Consider the setwise
stabiliser (Gx)B3 of B3 in Gx. Since g1 6∈ (Gx)B3 , and since (Gx)B3 is a maximal subgroup of
Gx, we have 〈(Gx)B3 , g1〉 = Gx. We now show that (Gx)B3 6 Gλ, which implies that Gx 6 Gλ,
and hence, by maximality of Gx in G, that Gx = Gλ. Let a ∈ (Gx)B3 . We show that for one
of i = 1 or i = 2 we have ∆(gia) ∩ ∆ = ∅. By the claim, this implies that gia ∈ Gλ, and
hence that a = g−1i (gia) ∈ Gλ, as required. We have ∆g1 = {2k + 1, 2k + 2, 3k, k + 2} and
∆g2 = {2k + 1, 2k + 2, 3k, k + 3}. Since a fixes B3 setwise, we have ∆(g1a) ∩∆ = ∅ unless
(k + 2)a = k + 1, and in this case we have instead ∆(g2a) ∩∆ = ∅.

3.3.3. Primitive point stabiliser. Now suppose that the stabiliser Gx of a point x ∈ P is a primitive
subgroup of Sn in its action on {1, . . . , n}. We need the following lemma about the index of a primitive
permutation group. The result is likely to be well known, but we have been unable to find a reference for
it, so we include a proof.

LEMMA 3.9. Let G = An or Sn, where n > 9. If H is a primitive maximal subgroup of G that does
not contain An, then |G : H| is divisible by 4.

PROOF. Let Q and P be Sylow 2-subgroups of H and Sn, respectively, such that Q 6 P . Write
Q+ = Q∩An and P+ = P ∩An. Then P+ is a Sylow 2-subgroup of An, and |P : P+| = 2. IfG = Sn
then H is not contained in An, by maximality of H , so |Q : Q+| = 2 and hence |G : H|2 = |P : Q| =
|P+ : Q+|, where |G : H|2 is the largest power of 2 dividing |G : H|. If G = An then P = P+ and
Q = Q+, and again |G : H|2 = |P : Q| = |P+ : Q+|. We now show that the 2-power |P+ : Q+| is at
least 4. If |P+ : Q+| = 1 then Q+ = P+, so in particular Q+ is a Sylow 2-subgroup of An and hence
contains a double transposition (a product of two disjoint transpositions). However, this means that the
primitive group H contains a double transposition, and since n > 9, a theorem of Jordan [17] (see also
[11, Example 3.3.1]) then implies thatH containsAn, a contradiction. Now suppose that |P+ : Q+| = 2.
Let K = 〈(1 2), (3 4), (5 6)〉. By conjugating P and H simultaneously (and conjugating Q along with
H), we may assume that K 6 P . Let K0 = K ∩ An. Then |K| = 8, |K0| = 4, K0 6 P+, and K0

contains three double transpositions. If K0 6 Q+ then Q+ contains a double transposition, and we are
done. Otherwise, P+ = Q+K0, and so 2 = |P+ : Q+| = |Q+K0 : Q+| = |K0 : Q+ ∩ K0|. Thus
Q+∩K0 is nontrivial, so Q+ contains a double transposition, and hence so does H , a contradiction. �

We have |P| = |G : Gx| with Gx a primitive maximal subgroup of G, and Gx does not contain An
because this would imply that |P| = 1 or 2. Therefore, and since we are assuming that n > 14 > 9,
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Lemma 3.9 implies that |P| is divisible by 4, and Lemma 3.3 together with properties (PH) and (PO) in
Section 2 therefore implies that gcd(s, t) > 1. We note also that, since Gx is a maximal subgroup of An
or Sn and n > 14, Gx is not cyclic of prime order and, in particular, the stabiliser (Gx)j of an element
j ∈ {1, . . . , n} is nontrivial. Moreover, we note that by a theorem of Jordan [16, 19], the primitive group
Gx contains no elements with cycle type 31 or 32 if n > 10 (and hence, in particular, for n > 14).

Now consider the 3-cycle h = (1 2 3) ∈ G. Then, as noted above, h is fixed-point free in its
action on P , so Lemma 2.1(i) implies that there exists x ∈ P such that x ∼ xh. This implies that
xh ∼ xh2, and hence that xh2 ∼ xh3 = x. Since S contains no triangles, it follows that h fixes the line
λ = 〈x, xh〉. Write ∆ = {1, 2, 3}. We first claim that if g ∈ Gx satisfies ∆g ∩∆ = ∅, then g ∈ Gλ. To
prove this, first note that h and hg commute. Since x ∼ xh, we have x = xg ∼ xhg = xgg−1hg = xhg;
that is, x ∼ xhg. Moreover, hhg is a permutation of type 32 and is therefore fixed-point free on P ,
as noted above. In particular, hhg does not fix x, so Lemma 2.1(ii) implies that x, xh, xhg lie on a
common line. That is, x = xg and xhg = xhg both lie on λ = 〈x, xh〉, and hence g fixes λ as
claimed. Let us assume at this point that n > 15. We show that (Gx)1 6 Gλ. Let a ∈ (Gx)1 and write
Γ = ∆ ∪ {2a−1, 3a−1}. Suppose that b ∈ Gx satisfies ∆b ∩ Γ = ∅. Then, in particular, ∆b ∩∆ = ∅,
and moreover, ∆(ba) ∩∆ = (∆b ∩∆a−1)a ⊆ (∆b ∩ Γ)a = ∅. Therefore, by the above argument, b
and ba both lie in Gλ, and hence a = b−1(ba) ∈ Gλ. By Neumann’s Separation Lemma [3, Theorem 2],
such an element b ∈ Gx exists if n > |∆||Γ| = 15, and so (Gx)1 6 Gλ as claimed. By an analogous
argument, (Gx)2 6 Gλ, so Gx = 〈(Gx)1, (Gx)2〉 6 Gλ (because (Gx)1 is nontrivial and is a maximal
subgroup of Gx) and hence Gx = Gλ (because Gx is a maximal subgroup of G). However, h fixes λ but
not x, so this is a contradiction.

It remains to consider the cases n = 14 and n = 15. We require a primitive maximal subgroup
H of G = An or Sn such that H does not contain An, and such that |G : H| is equal to the number
of points of a (finite thick) generalised hexagon or octagon. For n = 14, we have two candidates:
PSL(2, 13) and PGL(2, 13). The first is maximal in A14, and the second is maximal in S14. We have
|A14 : PSL(2, 13)| = |S14 : PGL(2, 13)| = 39 916 800, and one checks computationally that this
cannot be the number of points of a generalised hexagon or octagon (using properties (PH) and (PO)
in Section 2). For n = 15, we have four candidates: A7, A6, S6, and PSL(4, 2). All are contained in
A15, and only PSL(4, 2) is maximal in A15 (it contains the other three). We have |A15 : PSL(4, 2)| =
32 432 400, which also cannot be the number of points of a generalised hexagon or octagon.

3.4. Proof of Theorem 1.2 and Corollary 1.3. Let us summarise the proof of Theorem 1.2 and
deduce Corollary 1.3. Theorem 1.2 asserts that if Hypothesis 3.1 holds, then G must be an almost simple
group of Lie type. Schneider and Van Maldgehem [22, Lemma 4.2(i)] already proved thatG cannot have
O’Nan–Scott type HA, HS, or HC under Hypothesis 3.1, and Lemmas 3.2 and 3.5 further imply that
G cannot have type PA, CD, SD, or TW. Therefore, G must be an almost simple group. By a result of
Buekenhout and Van Maldeghem [4], the socle of G cannot be a sporadic group, and by Lemma 3.7, it
cannot be an alternating group. Therefore, the only remaining possibility is that soc(G) is a simple group
of Lie type, namely that G is an almost simple group of Lie type.

Now, the conclusion of Theorem 1.2 holds in particular if G also acts primitively on lines, so case (i)
of Corollary 1.3 is the only possibility for d ∈ {6, 8}. If d = 3 then, by the work of Gill [15], the
only other possibility is case (ii). Finally, suppose that d = 4. Bamberg et al. [1, Theorems 1.1 and
1.2 (a)] proved that if G acts primitively on both the points and the lines of S, then G must be an almost
simple group whose socle is not a sporadic simple group; so either soc(G) is of Lie type, as in (i), or
soc(G) ∼= An. They then considered [1, Sections 5.1 and 5.2] the case where soc(G) ∼= An and showed,
using only the assumption of point-primitivity, that the stabiliserGx of a point x of S must be a primitive
subgroup of Sn in the natural action on {1, . . . , n}. By duality, the same is true for lines under the
assumption of line-primitivity. In particular, the automorphism h = (1 2 3) cannot fix any point or line
of S, because this would force the stabiliser to contain An and hence imply that S has either at most
two points or at most two lines. However, if gcd(s, t) > 1 then this contradicts [1, Lemma 3.4], which
says that an automorphism of order 2 or 3 must fix either a point or a line. Therefore, the only remaining
possibility is that gcd(s, t) = 1, as in (iii).
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