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Abstract

Methanethiol (methyl mercaptan) is an important contributor to oral malodour and periodon-

tal tissue destruction. Porphyromonas gingivalis, Prevotella intermedia and Fusobacterium

nucleatum are key oral microbial species that produce methanethiol via methionine gamma

lyase (mgl) activity. The aim of this study was to compare an mgl knockout strain of P. gingi-

valis with its wild type using a 10-species biofilm co-culture model with oral keratinocytes

and its effect on biofilm composition and inflammatory cytokine production. A P. gingivalis

mgl knockout strain was constructed using insertion mutagenesis from wild type W50 with

gas chromatographic head space analysis confirming lack of methanethiol production. 10-

species biofilms consisting of Streptococcus mitis, Streptococcus oralis, Streptococcus

intermedius, Fusobacterium nucleatum ssp polymorphum, Fusobacterium nucleatum ssp

vincentii, Veillonella dispar, Actinomyces naeslundii, Prevotella intermedia and Aggregati-

bacter actinomycetemcomitans with either the wild type or mutant P. gingivalis were grown

on Thermanox cover slips and used to stimulate oral keratinocytes (OKF6-TERT2), under

anaerobic conditions for 4 and 24 hours. Biofilms were analysed by quantitative PCR with

SYBR Green for changes in microbial ecology. Keratinocyte culture supernatants were ana-

lysed using a multiplex bead immunoassay for cytokines. Significant population differences

were observed between mutant and wild type biofilms; V. dispar proportions increased

(p<0.001), whilst A. naeslundii (p<0.01) and Streptococcus spp. (p<0.05) decreased in

mutant biofilms. Keratinocytes produced less IL-8, IL-6 and IL-1αwhen stimulated with the

mutant biofilms compared to wild type. Lack of mgl in P. gingivalis has been shown to affect

microbial ecology in vitro, giving rise to a markedly different biofilm composition, with a more

pro-inflammatory cytokine response from the keratinocytes observed. A possible role for

methanethiol in biofilm formation and cytokine response with subsequent effects on oral

malodor and periodontitis is suggested.
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Introduction

Sulfur metabolism is an indispensable part of the biological processes in the biosphere [1, 2].

Among the enzymes involved in sulfur metabolic pathways, a group of carbon-sulfur lyases

namely, methionine γ lyases (EC. 4.4.1.11) are thought to be unique to a few genera within the

tree of life but not found in humans [3]. This group of pyridoxal 5’-phosphate dependent

enzymes are thought to catalyze a number of reactions including α, γ-elimination of L-methio-

nine and α, β-elimination of L-cysteine, yielding α-keto acids, ammonia and thiols [4]. In bac-

teria, methionine γ lyase is thought to be involved in anaerobic energy metabolism and the

ability of this enzyme to generate volatile sulfur compounds (VSCs) as byproducts has been

applied in forming flavors in the fermented food industries [5].

The anaerobic gram-negative bacterium Porphyromonas gingivalis has been well studied in

relation to plaque-induced inflammatory diseases of the mouth, and is one of the few oral

organisms known to possess methionine γ lyase (mgl) [6]. Classically part of a trio of microbial

species (‘red complex’) including Tanerella forsythia and Treponema denticola that were

strongly linked to the etiopathogenesis of periodontitis, P. gingivalis has now been proposed as

a ‘keystone’ pathogen in the new paradigm of periodontitis[7]. This model recognizes that

some bacterial species though in low abundance are able to drive the ecology of the biofilm

community in response to environmental cues or adaptations by influencing the diversity and

evenness of such communities. Studies have elaborated the mechanisms by which P. gingivalis
could bring about changes in the community structure by manipulating host response. These

include interfering with neutrophil recruitment by deactivating IL-8 production, down regula-

tion of E-selectin production by gingival epithelia, impeding the complement cascade by

effecting C5aR/TLR2 crosstalk and gingipain induced degradation of important complement

proteins such as C3 and C5[8–11]. Whilst these mechanisms could elicit a sustained, if ineffec-

tive immune response from the host, the adaptation of P. gingivalis to the subgingival habitat is

thought to be realized in the episodic nature of these mechanisms.

P. gingivalis is known to produce VSCs in serum and also from free sulfur containing amino

acids such as cysteine and methionine; however it is reported to be more efficient at producing

VSCs from serum substrate than cysteine and methionine [12, 13]. These VSCs such as hydro-

gen sulfide, methanethiol and dimethyl disulfide are thought to be useful in lowering the redox

potential of the subgingival microenvironment and aid in the invasiveness of the organism and

indeed the biofilm, by increasing the permeability of the mucosal cell membrane [14]. Given

that one of the described mechanisms of IL-8 deactivation by serB serine phosphatase requires

cell invasion for it to occur [10], one would expect VSC production to be an important adaptive

mechanism for P. gingivalis and indeed for other potential keystone pathogens.

Of the genetic complement that can produce VSCs in P. gingivalis, a previous study had

characterized the methionine Ɣ lyase (mgl) that produces methanethiol by catabolic degrada-

tion of methionine, and this enzyme has been reported to confer resistance to the antimicro-

bial agent 3-chloro-DL-alanine by exhibiting deaminating activity towards the antimicrobial

agent as with methionine, in both P. gingivalis and F. nucleatum [6, 15]. A virulence study in a

murine model demonstrated that P. gingivalis W83 wild type was markedly more invasive than

the mgl-deficient mutant, consistent with the hypothesis that VSC production could aid inva-

siveness [6]. However, it is well known that planktonic forms of bacteria often exhibit a differ-

ent phenotype to biofilms and these studies did not involve biofilms and it is possible biofilm

dwelling P. gingivalis downregulates VSC producing genes to exhibit a less invasive phenotype.

The present study aimed to replicate the knockout of the mgl in the strain W50 (as opposed to

W83). Then, the mutant and wild type P. gingivalis were grown in a 10-species oral biofilm

model and used to stimulate transformed oral keratinocytes in vitro. Biofilm composition was
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determined to study the effect of the mgl gene knockout in influencing the ecology of the bio-

film, and if the possible altered ecology in any way affects the cytokine response of the oral

keratinocytes.

Materials and Methods

Bacterial strains and culture conditions

Porphyromonas gingivalis W50 was maintained on Fastidious Anaerobe agar (+5% v/v defi-

brinated horse blood; FAA) in an anaerobic atmosphere (80% N2, 10% H2 and 10% CO2) at

37˚C. Liquid culture of P. gingivalis was carried out in Brain Heart Infusion (3.7% w/v; BHI)

broth supplemented with 0.0005% w/v Hemin.

Agar used in culture of organisms for constructing 10-species biofilms were FAA and

Columbia Blood agar (+5% v/v defibrinated horse blood; CBA). Broths used were Schaedler’s

Anaerobic broth (SCH), BHI and Tryptic Soy broth (+0.8% w/v glucose and 0.6% w/v yeast

extract; TSB). In maintaining and building up the 10-species biofilms, the medium Artificial

Saliva (AS) was exclusively used [16].

Bacterial strains were: Porphyromonas gingivalis W50 (FAA; SCH), Streptococcus mitis
NCTC 12261 (CBA; TSB), Streptococcus intermedius DSM 20573 (CBA; TSB), Streptococcus ora-
lis NCTC 11427 (CBA; TSB), Aggregatibacter actinomycetemcomitans ATCC 43718 (CBA; TSB),

Veillonella dispar NCTC 11831 (FAA; BHI), Actinomyces naeslundii DSM 17233 (FAA; BHI),

Fusobacterium nucleatum ssp polymorphum ATCC 10953 (FAA; SCH), Fusobacterium nuclea-
tum ssp vincentii DSM 19507 (FAA; SCH), Prevotella intermedia DSM 20706 (FAA; BHI).

Streptococcus spp. and A. actinomycetemcomitans were maintained and cultured in an aero-

bic atmosphere containing 5% CO2, whilst all other strains were maintained in an anaerobic

atmosphere (80% N2, 10% H2 and 10% CO2) at 37˚C.

Generation of mgl-deficient P. gingivalis

The open reading frame (ORF) coding for methionine gamma lyase (mgl) in P. gingivalis W50

was identified as per the previous study [6]. The ORF was identified and amplified by using

the oligonucleotide primers listed in Table 1 (irrelevant sequence in italics and restriction

enzyme recognition sequence in bold).

The amplicons were purified (Qiagen) after their sizes were confirmed by agarose gel elec-

trophoresis and digested with the respective Sstl and XbaI enzymes (NEB). The digested ampli-

cons were then purified and ligated to a pre-digested ermF-ermAM cassette from the plasmid

pVA2198 [17]. The ligation mixture was then purified and the product reamplified (ReddyMix

Extensor PCR MasterMix 1), with the resulting ~3kb fragment used to electroporate exponen-

tial growth phase P. gingivalis W50 cells (Bio-Rad Gene Pulser) to promote mutagenesis by

allele exchange. Following overnight recovery under anaerobic conditions, the cell suspension

aliquots were plated on to Blood Agar (containing 5μg/mL clindamycin-HCl) and incubation

was allowed to continue, anaerobically. The resultant colonies were screened by PCR and

products visualized via agarose gel electrophoresis to confirm incorporation of the ermF-
ermAM cassette. The mutant strain in this paper will be referred to as PG343.

Enzyme assays. Spectrophotometric assays of the arginine and lysine gingipain activity of

the wild type and mutant strains were carried out as described elsewhere [18]. Briefly, P. gingi-
valis W50 and PG343 were grown in BHI-Hemin broth up to an OD600 of 0.8 before obtaining

the culture supernatant after centrifugation at ~7000 g for 2 mins. A 10μl sample of culture or

culture supernatant were used to catalyze breakdown of substrates for arginine and lysine pro-

teases, benzoyl-Arg-p-nitroanilide (Sigma) and N-α-acetyllysine-p-nitroanilide (Bachem),

respectively in cuvettes with a 1cm light path at 30˚C. Absorbance was monitored at 405nm.
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Gas chromatographic headspace analysis

P. gingivalis suspensions (OD600 = 0.1) were prepared by pelleting 48 hour anaerobic broth cul-

tures at 3000 g for 5 mins and washing the cells in Phosphate Buffered Saline (Sigma; pH 7.2

±0.2) twice, before resuspending in PBS. 0.3mL of the cell suspension was added to 0.5mL of

0.5% w/v L-methionine solution in a 10mL headspace vial, sealed and incubated at 37˚C for 1

hour with shaking (140 rpm) before adding 1ml of absolute ethanol (Sigma) to arrest bacterial

metabolism of substrate.

The Gas Chromatograph (Agilent G6890N, Agilent Technologies, Edinburgh, UK) was cal-

ibrated by CH3SH and H2S gas standards generated from permeation tubes by a gas standards

generator (Kin-tek 491M).

The headspace of each vial was sampled manually using a gas tight syringe (NORM-JECT1,

Henke-Sass Wolf) after incubating at 80˚C for 2 minutes. 250μl of the headspace sample was

introduced on to a Chromosil 330 packed column (8’ x 1/8” OD Teflon1 (FEP) tubing with

central 6’ packed) through a sulfinert-treated sample loop connected to a sampling valve with

helium carrier gas flowing through the column at a constant flow rate of 45ml/min, via an inlet

at 120˚C. The packed column was maintained throughout the runs isothermally at 60˚C. The

Flame Photometric Detector was maintained at 175˚C with H2 and air flow at 50 ml/min and

75 ml/min respectively, with N2 makeup gas at flow rate of 15ml/min.

Preparation of ten-species biofilms

Ten-species biofilms were built up on Thermanox coverslips as detailed elsewhere [16, 19] in

the following order: an initial 3-species biofilm consisting of S. mitis, S. intermedius and S. ora-
lis were inoculated with standardized AS suspensions of V. dispar (BHI), A. naeslundii (BHI),

F. nucleatum ssp polymorphum (SCH) and F. nucleatum ssp vincentii (SCH) anaerobically

Table 1. Primer pairs complementary to the bacterial 16S gene used in quantifying bacterial biofilm populations in this study and the primer pairs

used for mutagenesis.

Bacteria Primer sequences Reference

Streptococcus spp. 5’-GATACATAGCCGACCTGAG-3’ [20]

5’-CCATTGCCGAAGATTCC-3’

A. naeslundii 5’-GGCTGCGATACCGTGAGG-3’ [20]

5’-TCTGCGATTACTAGCGACTCC-3’

Veillonella spp. 5’-CCGTGATGGGATGGAAACTGC-3’ [21]

5’-CCTTCGCCACTGGTGTTCTTC-3’

A. actinomycetemcomitans 5’-GAACCTTACCTACTCTTGACATCCGAA-3’ [22]

5’-TGCAGCACCTGTCTCAAAGC-3’

P. gingivalis 5’-GGAAGAGAAGACCGTAGCACAAGGA-3’ [23]

5’-GAGTAGGCGAAACGTCCATCAGGTC-3’

Prevotella sp 5’-CGGTCTGTTAAGCCTGTTGTG-3’ [24]

5’-CACCATGAATTCCGCATACG-3’

Fusobacterium spp 5’-AAGCGCGTCTAGGTGGTTATGT-3’ [25]

5’-TGTAGTTCCGCTTACCTCTCCAG-3’

Universal 5’-GTGSTGCAYGGYTGTCGTCA-3’ [26]

5’-ACGTCRTCCMCACCTTCCTC-3’

PG0343F1 5’-CATAGACGATCCTCGGTCG-3’

PG0343R1 5’-atatatgagctcATATTGGGGTTGGCCGGAG-3’ (SstI)

PG0343F2 5’-atatattctagaTCACGGGGGCCAATATGAG-3’ (XbaI)

PG0343R2 5’-TGTCCTCCACGTTCTCCAG -3’

doi:10.1371/journal.pone.0169157.t001
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overnight at 37˚C to obtain an intermediate 7-species biofilm. This biofilm was further inocu-

lated with AS suspensions of P. gingivalis (SCH), P. intermedia (BHI) and A. actinomycetemco-
mitans (TSB) and the resulting 10-species biofilm allowed to mature for 4 days with renewal of

the AS medium every 24 hrs. After this maturation phase the biofilms were stored at -80˚C till

use.

Stimulation of keratinocyte cell line. The immortalized oral keratinocyte cell line

OKF6-TERT2 was grown as a monolayer in 24-well cell culture plates and challenged with the

10-species biofilms grown with the wild type or mutant P. gingivalis for 4h and 24h as

described previously [16]. Six stimulations were performed on three occasions using indepen-

dent batches of biofilms, with the supernatant samples pooled to obtain triplicate samples per

batch.

qPCR analysis of biofilms. Triplicate biofilms grown thrice independently, were used for

biofilm composition study. Biofilms on the Thermanox coverslips were revived in AS over-

night and the biofilms washed with PBS (pH 7.2±0.2) thrice before disrupting the biofilms by

sonication for 10 minutes in PBS. DNA extraction from the recovered sonicate was performed

as described previously [16] using the MasterPure GramPositive DNA purification kit (Epi-

centre Biotechnologies, Madison, USA).

qPCR was performed by using a SYBR Green I fluorophore (Roche) in the LightCycler 480

(Roche). Assays were performed in 20μL total volume per well in 96 well plates. Recommended

thermal cycling conditions were used: initial denaturation at 95˚C for 5 mins followed by 40

cycles of 10s at 95˚C, 5s at 55˚C, 30s at 72˚C and 1s at 76˚C. Standard curves were obtained by

running decimal dilutions of bacterial DNA extracted from pure cultures with known CFU

mL-1. Genomic DNA extracted from P. gingivalis cultures were used to generate standard

curves for the universal primer. The data calculated as CFU from the qPCR analysis for general

bacterial load and the specific bacteria were then converted into proportions for statistical

analysis. Primer pairs used in detection of the species used in the biofilm model are listed in

supporting information Table 1.

Multiplex immunoassay for cytokine analysis. Cell culture supernatants were collected

at the end of biofilm stimulation and cytokines measured in 100μL of each sample by a multi-

plexed bead immunoassay (FlowCytomix, eBioscience) whereby the samples were prepared

according to the kit manufacturer’s instructions. Standard curves were setup with the reagents

supplied by the manufacturer with the samples and standards analysed with a flow cytometer

(BD FACSCanto II). The raw data was then processed using the kit manufacturer’s software

(FlowCytomix Pro v3.0) to determine the concentration of twenty cytokines: E-selectin,

G-CSF, ICAM-1, TGF-β, IFN-α, IFN-γ, IL-1α, IL-1β, IL-4, IL-6, IL-8, IL-10, IL-12p70, IL-13,

IL-17a, CXCL10, MCP-1, MIP-1α, MIP-1β and TNF-α.

mRNA analysis by qPCR array. After collection of the cell culture supernatant, the

monolayer of cells were lysed and RNA extracted using the RNeasy kit (Qiagen), using the

provided spin columns, and performing on-column DNase digestion. Equimolar quantities

of RNA (280 ng) from all samples were converted to cDNA with the RT2 First-Strand kit

(Qiagen) and then rt-PCR was conducted in a custom 384-well array format in the LightCy-

cler 480 (Roche) with RT2 SYBR Green qPCR MasterMix (Qiagen). Cytokines measured

were TNF-α, IL-1α, IL-6, IL-8, IL-18, IL-13, MIF, CCL20 and CXCL10. Reference genes

used to normalize measured Ct values were Actin-β, Glyceraldehyde-3-phosphate dehydro-

genase (GAPDH) and hypoxanthine phosphoribosyltransferase 1 (HPRT1). Relative gene

expression was calculated and expressed as ΔCt relative to the most stable reference gene,

while genomic DNA contamination, RT-PCR efficiency and positive PCR controls run for

each sample in the array.

Effect of P. gingivalis Methionine Gamma Lyase on Biofilm Composition and Inflammatory Response
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Statistical analyses

All statistical analyses were performed using the software GraphPad Prism 6.0 (GraphPad Soft-

ware Inc, La Jolle, USA) for Microsoft1 Windows. Non-parametric statistical tests such as

Kruskal-Wallis and Mann Whitney U tests were used in analyzing for differences between

experimental groups.

Results and Discussion

Methanethiol formation by Porphyromonas gingivalis strain W83 was studied previously and

disabling the enzyme responsible for methanethiol production, namely methionine Ɣ lyase

(mgl), was found to reduce the pathogenicity of the bacterium in a murine model [6]. The pres-

ent study investigated the possibility that mgl of P. gingivalis may have roles to play in influenc-

ing the biofilm composition and hence, cytokine response of the oral epithelium. As such, we

first mutated mgl in the P. gingivalis strain W50 to replicate the previous work in a novel strain,

and then used it in a 10-species biofilm co-culture model (‘Glasgow Model’).

VSC production and gingipain activities of PG343

Gas chromatographic headspace analysis of the mutant and wild type strains in planktonic sus-

pensions revealed that PG343 produced little or no methanethiol compared to the W50 given

equal amounts of L-methionine, suggesting knockout. However, it is possible that P. gingivalis
W50 has other as yet discovered gene(s) still capable of producing methanethiol, as the previ-

ous study on strain W83 observed complete absence of methanethiol in the headspace of bacte-

rial cells incubated with L-methionine after mutagenesis but not in the culture supernatants

[9]. Interestingly, we observed that the amount of H2S generated in the headspace by PG343

from L-cysteine was approximately 40% of the concentrations in the headspace of W50. It is

possible that the P. gingivalis mgl is also able to catalyze α, β-elimination of L-cysteine and this

function is also reduced in PG343.

Colorimetric assays showed similar activities for both arg-gingipain (Rgp) and lys-gingipain

(Kgp) in PG343 and W50 broth cultures and supernatants. As reported in the literature, the

culture supernatants of W50 and PG343 showed marked reduction in measured enzyme activ-

ity for both the gingipains, but this was particularly evident for Kgp [27], and this possibly sug-

gests that virulence dependent on the gingipains has been preserved in this strain. No

differences could be observed in the colony morphology between W50 and PG343, with both

strains acquiring black pigmentation after similar anaerobic incubation times on BA.

Effect of P. gingivalis mgl on multi-species biofilm composition

Growth of biofilms with PG343 and W50 resulted in markedly different biofilm composi-

tions (Fig 1). Streptococcus spp (p = 0.02) and A. naeslundii (p = 0.004) proportions

decreased significantly in the mutant biofilms compared to wild type, whereas V. dispar pro-

portions increased significantly (p = 0.0008). No statistical differences in the proportions of

other species were detected. However, when the amounts of DNA extracted from each sam-

ple is taken into account (an indication of biomass) without normalizing to the universal

primer set, F. nucleatum, V. dispar and P. gingivalis were found to be significantly increased

in the PG343 biofilm compared to W50 (Fig 2). Although not statistically significant, ele-

vated colony forming unit equivalents (CFEs) of P. intermedia were also observed in the

PG343 biofilms compared to W50. Measurement of the total CFEs in the biofilms by using

P. gingivalis cultures as standards indicated that the PG343 biofilms had, on average an

order of magnitude more CFEs than the W50 biofilms. The proportions of the individual
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species in the PG343 biofilms were congruent, resulting in a more even community, whereas

the proportions of Streptococcus spp and A. naeslundii were significantly higher relative to

the other species in the W50 biofilms.

It is well known that P. gingivalis is one of the most efficient degrader of free L-methionine

and in the form of serum peptides [12]. It is possible that methionine degradation by P. gingi-
valis prevents other species, in particular, F. nucleatum from proliferating by using it as an

energy source [28, 29]. It may well be that in the PG343 biofilms, more availability of L-methi-

onine encourages growth of F. nucleatum, which can further support the proliferation of all

the other species as F. nucleatum is better known as a bridging-species in the oral biofilm [30,

31]. This could explain the increased overall CFEs, and in particular P. gingivalis, P. intermedia,

A. actinomycetemcomitans and V. dispar as measured in the PG343 biofilms. This hypothesis

would suggest that mgl of P. gingivalis could have a role to play in the overall ecology and com-

munity structure of the oral biofilm, as a keystone species [7]. Indeed, if the increased propor-

tions of Streptococcus spp and A. naeslundii in the W50 biofilms may be thought of as

beneficial, owing to their prior associations to healthy plaque [32–34], the presence of P.

Fig 1. The proportions of the different species in the PG343 and W50 biofilms. n = 9 for both PG343 and W50 biofilms.

Proportions are relative to total CFEs as measured by universal primers in each biofilm. Boxes extend from 25th to 75th

percentile, mid line denotes median. Whiskers and outliers plotted by the Tukey method. Asterisk before species name indicates

statistical significance.

doi:10.1371/journal.pone.0169157.g001
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gingivalis in low levels with an active mgl in the oral biofilm may help regulate the community

structure towards a more health associated ecology.

The species that displayed the most substantial change in proportions and CFEs (increase

of ~103 CFE) in the PG343 biofilms was V. dispar. This species lacks mgl and it is possible that

V. dispar benefits the most from the F. nucleatum vs P. gingivalis dichotomy in the ability to

degrade methionine within the present in vitro model. The proportions of P. gingivalis mea-

sured in both the PG343 and W50 biofilms did not show a difference (Fig 1), in contrast, an

increase in the P. gingivalis CFEs was measured with the PG343 biofilms (Fig 2), further sup-

porting the explanation that this is possibly an effect of the increased numbers of F. nucleatum
able to support more biomass [35].

Effect of the biofilms on cytokines released by oral keratinocytes

Analysis of the cell culture supernatants by flow cytometry revealed that the supernatants in

the mutant biofilm stimulations contained significantly lower IL-8 in both the 4h (p = 0.03)

Fig 2. The composition of the W50 and PG343 biofilms. CFU ml-1 normalized to the amounts of DNA extracted from each

biofilm (n = 9 for both PG343 and W50 biofilms). p<0.01 for F. nucleatum, V. dispar and P. gingivalis. Boxes extend from 25th to

75th percentile, mid line being median. Whiskers and outliers plotted by the Tukey method. Asterisk before species name

indicates statistical significance.

doi:10.1371/journal.pone.0169157.g002
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and 24h (p = 0.005) conditions, whilst the same was observed for IL-6 in just the 4h stimula-

tions (p = 0.0002; Fig 3). Statistical differences with a similar pattern were found between the

mutant and wild type biofilm stimulations in: IL-1α at 4h (p = 0.05); ICAM-1 at 4h (p = 0.02)

and 24h (p = 0.004); Latency Associated Peptide (TGF-β) at 24h (p = 0.03). No significant dif-

ferences were observed with the concentrations of interferon-ɣ (IFN-γ), IL-13 or E-selectin
between the PG343 andW50 biofilm stimulations (S1 Fig). Except IL-8 and IL-6, amounts of
other cytokines tended to increase at 24h vs 4h.

Array analysis of the RNA extracts from cells after stimulation showed that at 4h, relative to

the unstimulated controls, the cells stimulated with the PG343 biofilms expressed a higher fold

change of mRNA corresponding to the pro-inflammatory cytokines TNF-α, IL-1α, IL-6 and

the chemokines IL-8 and CCL20 compared to the wild type, whereas the IL-18 and IL-13

Fig 3. Cytokines that showed significant differences between the PG343 and W50 biofilm stimulations at 4h and 24h.

PG343 = Δ; W50 = WT; C = Controls. Median is denoted by the red line.

doi:10.1371/journal.pone.0169157.g003
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mRNA levels did not show a marked change compared to controls and wild type (Fig 4). With

respect to the unstimulated controls, the 24h stimulations yielded the highest relative fold

changes in mRNA expression versus the 4h stimulations and there were differences in the

cytokine expression profiles between the mutant and wild type stimulations at 24h (Fig 5). At

24h, cells stimulated by the mutant biofilm expressed a greater fold change of mRNAs for IL-

18, IL-13 and CCL20 compared to the wild type biofilm, whereas IL-1α and CXCL10 were

expressed to a greater level in the former. mRNA corresponding to other pro-inflammatory

cytokines such as IL-8, IL-6 and TNF-α was found to be expressed at a similar level in both the

mutant and wild type stimulations at 24h.

Interleukin-8, Interleukin-6 and tumor necrosis factor-α. Significantly higher amounts

of the pro-inflammatory cytokines, IL-8 and IL-6 were measured in the supernatants of the

W50 biofilm stimulations compared to the PG343 biofilms. The striking aspect of these data

was that the supernatants of the PG343 biofilm stimulations contained reduced levels of IL-8

and IL-6 compared to their respective non-stimulated controls (Fig 3). However, the mRNA

expression of these cytokines indicated a higher-fold upregulation of IL-8 and IL-6 transcripts

in the cells stimulated with PG343 biofilms both at 4h and 24h (Figs 4 and 5). The ability of P.

gingivalis to degrade IL-8, IL-6 and IL-1β has been documented in the literature and this may

explain the decreased levels of these cytokines in the cell supernatants of the PG343 biofilm

stimulations compared to W50, and the inverse relationship to their respective mRNA expres-

sion [36].

Differences were observed between the 4h and 24h time points amongst these cytokines.

For example, detectable IL-8 levels were present at the 24h time point showing differences

Fig 4. The relative mRNA expression of the stimulated cells and unstimulated controls at the 4h time point. Whiskers

and outliers determined by the Tukey method. C = Control; Δ = PG343 biofilms; WT = W50 biofilms. Asterisk after cytokine name

in the x-axis denotes statistical significance at p<0.05 between Δ and WT.

doi:10.1371/journal.pone.0169157.g004
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between the PG343 and W50 biofilms whereas, no IL-6 was detected at the 24h stimulations of

both the biofilms (Fig 3). It is likely that the biofilms’ rate of IL-6 degradation is higher than

IL-8 and this may relate to the fitness of the biofilm. While IL-8 is a chemokine that is primar-

ily concerned with attracting neutrophils to an insulted site, IL-6 is thought to be a major regu-

lator of the pro-inflammatory response towards an infectious agent, particularly in linking the

innate and adaptive immune responses [37, 38]. By degrading IL-6, the oral biofilm may pre-

vent IL-6 mediated signaling to recruit the Th2 and Th17 responses to more effectively address

the microbial challenge.

Although little or no TNF-α was detected in the cell culture supernatants of both PG343

and W50 biofilms, mRNA expression for this potent cytokine suggested a more acute response

by the cells toward the PG343 biofilms at 4h with both biofilm types showing equal stimulation

of this cytokine transcription at 24h. P. gingivalis cysteine proteases are reported to degrade

TNF-α rapidly (<10 mins), and the chosen time points for supernatant harvest (at 4h and

24h) is likely to be too late to observe the effect of the mRNA transcription as intact TNF-α in

the cell culture supernatants [39].

Interleukin-1α and Interleukin-1β. The mRNA expression pattern and measured levels

of IL-1α and IL-1β in supernatants suggests that biofilms may not degrade IL-1α unlike the

pattern observed for IL-1β, where little or none were detected across all conditions at the 4h

time point. At 24h however, elevated concentrations were observed when both biofilms were

compared to unstimulated controls, but a reduced level was observed with regards to the

PG343 biofilm compared to W50 suggesting the possibility of a higher degradation rate of IL-

1β by the PG343 biofilm (Fig 3).

Studies have reported that P. gingivalis can antagonize production of IL-1α and IL1β when

used to co-stimulate monocytes with other species in planktonic phase, while a non-

Fig 5. The relative mRNA expression of the stimulated cells and unstimulated controls at the 24h time point. Whiskers

and outliers determined by the Tukey method. C = Control; Δ = PG343 biofilms; WT = W50 biofilms.

doi:10.1371/journal.pone.0169157.g005
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degradative hypothesis is advanced with stimulation of P. gingivalis on its own with its LPS

being identified as the main component of IL-1 stimulation [8, 40, 41]. Synergistic co-stimula-

tion of oral keratinocytes is reported in the literature when the cells were stimulated with

3-species biofilms consisting of S. gordonii, P. gingivalis and F. nucleatum while secreted IL-1α
levels are reported to be directly related to the amount of F. nucleatum cells present in the bio-

films [42, 43]. The observed levels of IL-1α and IL-1β in the present study may be a result of

stimulation by F. nucleatum and P. gingivalis and the mRNA data suggests that the PG343 con-

taining biofilms may be exerting a greater pro-inflammatory effect compared to the W50 con-

taining biofilms.

Interleukin-18, Interferon-Ɣ and ICAM-1. Transcription of IL-18 and IL-13 mRNA

were downregulated by the PG343 biofilms at 4h compared to non-stimulated controls and

W50 biofilms, but upregulated at 24h compared to control and W50 biofilms. IL-18 is thought

to be a regulatory protein that promotes IFN-Ɣ production [44], and while it is notable that

IFN-Ɣ levels in most of the samples measured were below detection limits at both 4h and 24h

(S1 Fig), the regulatory IL-18 transcription suggests that more IFN-Ɣ production could be

stimulated by the cells in response to the PG343 biofilms than the W50 biofilms. Indeed, IFN-

Ɣ is known to promote production of ICAM1 and the concentration of ICAM1 detected in

both the biofilm stimulation and controls were comparable, suggesting a possible block in

IFN-Ɣ production by the biofilms, possibly by post-translational modulation as IFN-Ɣ sup-

pression is reported of T. denticola and P. gingivalis [45–47].

Interleukin-13 and Latency Associated Peptide. A greater prevalence of Latency Associ-

ated Peptide (and by extension TGF-β) was observed in cells stimulated by the W50 biofilms

compared to the PG343 and controls at both 4h and 24h, with the PG343 biofilm stimulations

having similar levels as in controls (Fig 3). TGF-β and IL6 are believed to act in concert to dif-

ferentiate naïve T-cells into an IL17 secreting Th17 lineage, and this data is consistent with the

amount of IL6 detected in PG343 vs W50 biofilm stimulations, as increased presence of IL6 is

thought to also induce TGF-beta production [48, 49]. IL-13 mRNA was found to be up regu-

lated in the cells stimulated by the PG343 biofilms compared to W50 biofilms at 24h. P. gingi-
valis LPS is reported to stimulate a strong IL13 response in a mouse model [46] and though

the cells used in the present study are not immune cells, stimulation of IL-13 mRNA transcrip-

tion is still observed at both 4h and 24h with a greater effect shown by the PG343 biofilms.

However, in terms of the actual cytokines detected, the opposite was observed between the

PG343 and W50 biofilms at 4h (S1 Fig). It is possible that the biofilm degrades IL13, although

no studies of this exist to the authors’ knowledge.

Macrophage migration inhibitory factor and CCL20. The expression of macrophage

migration inhibitory factor (MIF) and CCL20 in the biofilm stimulations were elevated com-

pared to controls but similar to each other. MIF was not measured by the immunoassay and it

is also reported to be cleaved by Kgp; the mRNA expression in this study reveals a marginally

higher stimulation at 4h by the PG343 biofilms compared to the W50 biofilms [50]. A similar

pattern for CCL20 was also observed except the transcription of this chemokine was consider-

ably elevated in relation to the unstimulated controls at both 4h and 24h. The CCL20 observa-

tions are consistent with data reported in the literature with regards to human primary

gingival fibroblasts and P. gingivalis in planktonic phase [51].

Conclusions

Taken together, these data suggest that the PG343 biofilms lacking in P. gingivalis methionine

gamma lyase may have a more immunogenic phenotype as the cytokine levels and mRNA

expression reveal a more acute pro-inflammatory effect compared to the biofilms containing
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the wild type W50 strain. However, the response elicited by the W50 biofilms could be more

insidious, by way of the slower accumulation of the cytokines and a much more controlled

inflammatory response at the 4h time point. The presence of elevated levels of intact cytokines

such as IL-8, IL-6 and IL-1β in the biofilm-cell milieu may help activate inflammatory path-

ways that could promote microbial fitness in the oral cavity, possibly modelling the low grade

inflammation that exists in the normal healthy gingiva. A role for the P. gingivalis enzyme

methionine gamma lyase in influencing the inflammatory response of the oral mucosa by

modelling the oral biofilm community composition as proposed by the keystone pathogen

hypothesis is suggested.

Supporting Information

S1 Fig. Concentrations of E-selectin, IL-13, interferon-gamma and interferon-alpha

detected in cell supernatants of the PG343 and W50 biofilm stimulations (n = 9 each).
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28. Bakken V, Högh BT, Jensen HB. Utilization of amino acids and peptides by Fusobacterium nucleatum.

Scand J Dent Res. 1989 Feb; 97(1):43–53. PMID: 2565597

29. Gharbia SE, Shah HN, Welch SG. The influence of peptides on the uptake of amino acids in Fusobac-

terium; Predicted interactions with Porphyromonas gingivalis. Curr Microbiol. 1989; 19:231–5.

30. Bradshaw DJ, Marsh PD, Watson GK, Allison C. Role of Fusobacterium nucleatum and coaggregation

in anaerobe survival in planktonic and biofilm oral microbial communities during aeration. Infect Immun.

1998; 66(10):4729–32. PMID: 9746571

31. Merritt J, Niu G, Okinaga T, Qi F. Autoaggregation response of Fusobacterium nucleatum. Appl Environ

Microbiol. 2009 Dec; 75(24):7725–33. doi: 10.1128/AEM.00916-09 PMID: 19837836

32. Kistler JO, Booth V, Bradshaw DJ, Wade WG. Bacterial Community Development in Experimental Gin-

givitis. PLoS One. 2013; 8(8).

33. Abusleme L, Dupuy AK, Dutzan N, Silva N, Burleson JA, Strausbaugh LD, et al. The subgingival micro-

biome in health and periodontitis and its relationship with community biomass and inflammation. ISME

J. 2013; 7:1016–25. doi: 10.1038/ismej.2012.174 PMID: 23303375

34. Ge X, Rodriguez R, Trinh M, Gunsolley J, Xu P. Oral Microbiome of Deep and Shallow Dental Pockets

In Chronic Periodontitis. PLoS One. 2013; 8(6):2–11.

35. Hendrickson EL, Wang T, Dickinson BC, Whitmore SE, Wright CJ, Lamont RJ, et al. Proteomics of

Fusobacterium nucleatum within a model developing oral microbial community. BMC Microbiol. 2014;

3(5):729–51.

36. Fletcher J, Reddi K, Poole S, Nair S, Henderson B, Wilson M. Cytokine degradation by biofilms of Por-

phyromonas gingivalis. Curr Microbiol. 1998; 36(1998):216–9.

37. Neurath MF, Finotto S. IL-6 signaling in autoimmunity, chronic inflammation and inflammation-associ-

ated cancer. Cytokine Growth Factor Rev. 2011; 22(2):83–9. doi: 10.1016/j.cytogfr.2011.02.003 PMID:

21377916

38. Tanaka T, Narazaki M, Kishimoto T. IL-6 in inflammation, immunity, and disease. Cold Spring Harb Per-

spect Biol. 2014; 6:1–16.

39. Calkins CC, Platt K, Potempa J, Travis J. Inactivation of tumor necrosis factor-α by proteinases (gingi-

pains) from the periodontal pathogen, Porphyromonas gingivali: implications of immune evasion. J Biol

Chem. 1998; 273(12):6611–4. PMID: 9506956

40. Bostanci N, Allaker RP, Belibasakis GN, Rangarajan M, Curtis MA, Hughes FJ, et al. Porphyromonas

gingivalis antagonises Campylobacter rectus induced cytokine production by human monocytes. Cyto-

kine. 2007; 39(2):147–56. doi: 10.1016/j.cyto.2007.07.002 PMID: 17709256

41. Hamedi M, Belibasakis GN, Cruchley AT, Rangarajan M, Curtis MA, Bostanci N. Porphyromonas gingi-

valis culture supernatants differentially regulate Interleukin-1β and Interleukin-18 in human monocytic

cells. Cytokine. 2009; 45(2):99–104. doi: 10.1016/j.cyto.2008.11.005 PMID: 19091595

42. Peyyala R, Kirakodu SS, Novak KF, Ebersole JL. Oral microbial biofilm stimulation of epithelial cell

responses. Cytokine. 2012; 58(1):65–72. doi: 10.1016/j.cyto.2011.12.016 PMID: 22266273

43. Peyyala R, Kirakodu SS, Novak KF, Ebersole JL. Oral epithelial cell responses to multispecies microbial

biofilms. J Dent Res. 2013; 92(3):235–40. doi: 10.1177/0022034512472508 PMID: 23300185

44. Dinarello CA, Novick D, Kim S, Kaplanski G. Interleukin-18 and IL-18 binding protein. Front Immunol.

2013; 4(OCT):1–10.

45. Lee SF, Andrian E, Rowland E, Marquez IC. Immune response and alveolar bone resorption in a

mouse model of Treponema denticola infection. Infect Immun. 2009; 77(2):694–8. doi: 10.1128/IAI.

01004-08 PMID: 19015247

46. Pulendran B, Kumar P, Cutler CW, Mohamadzadeh M, Van Dyke T, Banchereau J. Lipopolysaccha-

rides from distinct pathogens induce different classes of immune responses in vivo. J Immunol. 2001;

167(9):5067–76. PMID: 11673516

Effect of P. gingivalis Methionine Gamma Lyase on Biofilm Composition and Inflammatory Response

PLOS ONE | DOI:10.1371/journal.pone.0169157 December 29, 2016 15 / 16

http://dx.doi.org/10.1111/jre.12073
http://dx.doi.org/10.1111/jre.12073
http://www.ncbi.nlm.nih.gov/pubmed/23581569
http://www.ncbi.nlm.nih.gov/pubmed/14557000
http://www.ncbi.nlm.nih.gov/pubmed/2565597
http://www.ncbi.nlm.nih.gov/pubmed/9746571
http://dx.doi.org/10.1128/AEM.00916-09
http://www.ncbi.nlm.nih.gov/pubmed/19837836
http://dx.doi.org/10.1038/ismej.2012.174
http://www.ncbi.nlm.nih.gov/pubmed/23303375
http://dx.doi.org/10.1016/j.cytogfr.2011.02.003
http://www.ncbi.nlm.nih.gov/pubmed/21377916
http://www.ncbi.nlm.nih.gov/pubmed/9506956
http://dx.doi.org/10.1016/j.cyto.2007.07.002
http://www.ncbi.nlm.nih.gov/pubmed/17709256
http://dx.doi.org/10.1016/j.cyto.2008.11.005
http://www.ncbi.nlm.nih.gov/pubmed/19091595
http://dx.doi.org/10.1016/j.cyto.2011.12.016
http://www.ncbi.nlm.nih.gov/pubmed/22266273
http://dx.doi.org/10.1177/0022034512472508
http://www.ncbi.nlm.nih.gov/pubmed/23300185
http://dx.doi.org/10.1128/IAI.01004-08
http://dx.doi.org/10.1128/IAI.01004-08
http://www.ncbi.nlm.nih.gov/pubmed/19015247
http://www.ncbi.nlm.nih.gov/pubmed/11673516


47. Tada H, Sugawara S, Nemoto E, Imamura T, Potempa J, Travis J, et al. Proteolysis of ICAM-1 on

human oral epithelial cells by gingipains. J Dent Res. 2003; 82(10):796–801. PMID: 14514759

48. Bettelli E, Carrier Y, Gao W, Korn T, Strom TB, Oukka M, et al. Reciprocal developmental pathways for

the generation of pathogenic effector TH17 and regulatory T cells. Nature. 2006; 441(7090):235–8. doi:

10.1038/nature04753 PMID: 16648838

49. Mangan PR, Harrington LE, O’Quinn DB, Helms WS, Bullard DC, Elson CO, et al. Transforming growth

factor-β induces development of the TH17 lineage. Nature. 2006; 441(7090):231–4. doi: 10.1038/

nature04754 PMID: 16648837

50. Klarström Engström K, Khalaf H, Kälvegren H, Bengtsson T. The role of Porphyromonas gingivalis gin-

gipains in platelet activation and innate immune modulation. Mol Oral Microbiol. 2015; 30(1):62–73.

doi: 10.1111/omi.12067 PMID: 25043711

51. Dommisch H, Reinartz M, Backhaus T, Deschner J, Chung W, Jepsen S. Antimicrobial responses of

primary gingival cells to Porphyromonas gingivalis. J Clin Periodontol. 2012; 39:913–22. doi: 10.1111/j.

1600-051X.2012.01933.x PMID: 22860513

Effect of P. gingivalis Methionine Gamma Lyase on Biofilm Composition and Inflammatory Response

PLOS ONE | DOI:10.1371/journal.pone.0169157 December 29, 2016 16 / 16

http://www.ncbi.nlm.nih.gov/pubmed/14514759
http://dx.doi.org/10.1038/nature04753
http://www.ncbi.nlm.nih.gov/pubmed/16648838
http://dx.doi.org/10.1038/nature04754
http://dx.doi.org/10.1038/nature04754
http://www.ncbi.nlm.nih.gov/pubmed/16648837
http://dx.doi.org/10.1111/omi.12067
http://www.ncbi.nlm.nih.gov/pubmed/25043711
http://dx.doi.org/10.1111/j.1600-051X.2012.01933.x
http://dx.doi.org/10.1111/j.1600-051X.2012.01933.x
http://www.ncbi.nlm.nih.gov/pubmed/22860513

