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Abstract

Suppose λ and µ are integer partitions with λ Ě µ. Kenyon and Wilson have intro-
duced the notion of a cover-inclusive Dyck tiling of the skew Young diagram λzµ, which has
applications in the study of double-dimer models. We examine these tilings in more detail,
giving various equivalent conditions and then proving a recurrence which we use to show
that the entries of the transition matrix between two bases for a certain permutation mod-
ule for the symmetric group are given by counting cover-inclusive Dyck tilings. We go on
to consider the inverse of this matrix, showing that its entries are determined by what we
call cover-expansive Dyck tilings. The fact that these two matrices are mutual inverses allows
us to recover the main result of Kenyon and Wilson.

We then discuss the connections with recent results of Kim et al, who give a simple
expression for the sum, over all µ, of the number of cover-inclusive Dyck tilings of λzµ. Our
results provide a new proof of this result. Finally, we show how to use our results to obtain
simpler expressions for the homogeneous Garnir relations for the universal Specht modules
introduced by Kleshchev, Mathas and Ram for the cyclotomic quiver Hecke algebras.

1 Introduction

The motivation for this paper is the study of the modular representation theory of the
symmetric group, and more generally the representation theory of the cyclotomic Hecke alge-
bra of type A. This area has recently been revolutionised by the discovery by Brundan and
Kleshchev of new presentations for these algebras, which show in particular that the algebras
are non-trivially Z-graded. The contribution in the present paper concerns the definition of
the Specht modules, which play a central role in the representation theory of cyclotomic Hecke
algebras. These modules have been studied within the graded setting by Brundan, Kleshchev
and Wang, and developed further by Kleshchev, Mathas and Ram, who have given a presenta-
tion for each Specht module with a single generator and a set of homogeneous relations. These
relations include homogeneous analogues of the classical Garnir relations for the symmetric
group, which allow the Specht module to be expressed as a quotient of a ‘row permutation
module’. Although the homogeneous Garnir relations are in some sense simpler than their
classical counterparts, their statement in [KMR] is awkward in that the ‘Garnir elements’ in-
volved are given as linear combinations of expressions in the standard generators ψ1, . . . , ψn´1
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2 Matthew Fayers

for the row permutation module which are not always reduced. Our main result concerning
Specht modules is an expression for each Garnir relation as a linear combination of reduced
expressions; this simplifies calculations with Specht modules, both theoretically and computa-
tionally.

But this result is a by-product of the main work in this paper, which is to consider tilings
of skew Young diagrams by Dyck tiles. These tilings were introduced by Kenyon and Wilson,
who defined in particular the notion of a cover-inclusive Dyck tiling. They used these tilings to
give a formula for the inverse of a certain matrix M arising in the study of double-dimer mod-
els. We re-interpret the entries of M in terms of what we call cover-expansive Dyck tilings, and
then, by proving recurrence relations for the numbers of cover-inclusive and cover-expansive
Dyck tilings, we show that (sign-modified versions of) M and M´1 are in fact transition matri-
ces for two natural bases for a certain permutation representation of the symmetric group. The
fact that the two transition matrices are obviously mutually inverse provides a new proof of
Kenyon and Wilson’s result. Along the way we give a result showing several different equiv-
alent conditions to the cover-inclusive condition.

In order to derive our result on Garnir relations, we then express the sum of the elements
of one of our two bases in terms of the other; this involves defining a certain function F on
partitions, and proving a similar recurrence to the recurrence for cover-inclusive Dyck tilings.
Combining this with our results on transition coefficients means that Fpλq equals the sum over
all partitions µ Ď λ of the number of cover-inclusive Dyck tilings of λzµ. In fact, this had
already been shown by Kim, and then by Kim, Mészáros, Panova and Wilson, verifying a
conjecture of Kenyon and Wilson. As well as providing a new proof of this result, our results
working directly with the function F allow us to derive our application to Garnir relations
without using Dyck tilings.

We now describe the structure of this paper. Section 2 is devoted to definitions. In Section 3
we study cover-inclusive Dyck tilings, giving equivalent conditions for cover-inclusiveness
and then proving several bijective results which allow us to deduce recurrences for the number
iλµ of cover-inclusive Dyck tilings of λzµ. In Section 4 we prove similar, though considerably
simpler, recurrences for cover-expansive Dyck tilings. In Section 5 we recall the Young permu-
tation module M p f ,gq for the symmetric group; we define our two bases for this module, and
use Dyck tilings to describe the transition coefficients. We then introduce the function F and
use it to express the sum of the elements of the first basis in terms of the second, before sum-
marising the relationship between our work and that of Kenyon, Kim, Mészáros, Panova and
Wilson. Finally in Section 6 we give the motivating application of this work, introducing the
Specht modules in the modern setting, and using our earlier results to give a new expression
for the homogeneous Garnir relations.

Since the first version of this paper was written, we have become aware of the paper [SZ]
by Shigechi and Zinn-Justin, where cover-inclusive and cover-expansive Dyck tilings are used
in the calculation of parabolic Kazhdan–Lusztig polynomials. (They do not use the same ter-
minology – in their paper, Dyck tiles are called “Dyck strips”, and the cover-inclusive and
cover-expansive conditions are “rules I and II”. In addition – following the more widespread
convention for Dyck paths – their convention for diagrams is the top-to-bottom reflection of
ours.) It is likely that some of our results can be deduced from the results in [SZ].

Acknowledgements. The author is greatly indebted to David Speyer and Philippe Nadeau for
comments on the online forum MathOverflow which inspired the author to introduce Dyck
tilings into this paper.
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2 Definitions

2.1 Partitions and Young diagrams

As usual, a partition is a weakly decreasing sequence λ “ pλ1, λ2, . . . q of non-negative
integers with finite sum. We write this sum as |λ|, and say that λ is a partition of |λ|. When
writing partitions, we may group equal parts together with a superscript, and omit trailing
zeroes, and we write the partition p0, 0, . . . q as ∅.

The Young diagram of a partition λ is the set
 

pa, bq P N2 ˇ
ˇ b 6 λa

(

.

We may abuse notation by identifying λ with its Young diagram; for example, we may write
λ Ě µ to mean that λi > µi for all i. If λ Ě µ, then the skew Young diagram λzµ is simply the set
difference between the Young diagrams for λ and µ.

We draw (skew) Young diagrams as arrays of boxes in the plane, and except in the fi-
nal section of this paper we use the Russian convention, where a increases from south-east to
north-west, and b increases from south-west to north-east. For example, the Young diagram of
p72, 4, 3, 22qzp2, 12q is as follows.

The conjugate partition to λ is the partition λ1 obtained by reflecting the Young diagram for λ
left to right; thus λ1i “ |t j > 1 | λj > iu| for all i.

We define a node to be an element of N2, and a node of λ to be an element of the Young
diagram of λ. The height of the node pa, bq is a` b. The jth column of N2 is the set of all nodes
pa, bq for which b´ a “ j.

We use compass directions to label the neighbours of a node; for example, if n is a node,
then we write SWpnq “ n´ p0, 1q and refer to this as the SW neighbour of n; we also write
Npnq “ n`p1, 1q, and similarly for the other compass directions.

A node n of λ is removable if it can be removed from λ to leave the Young diagram of a
partition (i.e. if neither NWpnq nor NEpnq is a node of λ), while a node n not in λ is an addable node
of λ if it can be added to λ to leave the Young diagram of a partition.

2.2 Tiles and tilings

We define a tile to be a finite non-empty set t of nodes that can be ordered n1, . . . , nr such
that ni`1 P tNEpniq, SEpniqu for each i “ 1, . . . , r´ 1. We say that t starts at its leftmost node,
which we denote stptq, and ends at its rightmost, which we denote enptq. The height htptq of t is
defined to be max thtpnq | n P tu, and we say that t is a Dyck tile if this maximum is achieved
at the start and end nodes of t, i.e. htptq “ htpstptqq “ htpenptqq. t is big if it contains more than
one node, and is a singleton otherwise. The depth of a node n P t is

dppnq :“ htptq´htpnq.
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Now suppose λ and µ are partitions with λ Ě µ. A Dyck tiling of λzµ is a partition of λzµ
into Dyck tiles. Given a Dyck tiling T of λzµ and a node n P λzµ, we write tilepnq for the tile
containing n. We say that n is attached to NEpnq if n and NEpnq lie in the same tile in T, and
similarly for SEpnq, NWpnq and SWpnq. If t is a tile in T, the NE neighbour of t is the tile starting at
NEpenptqq, if there is one, while the SW neighbour of t is the tile ending at SWpstptqq, if there is
one. SE and NW neighbours of tiles are defined similarly.

Now we recast the main definition from [KW]. Say that a Dyck tiling T of λzµ is left-
cover-inclusive if whenever a and Npaq are nodes of λzµ, stptilepNpaqqq lies weakly to the left
of stptilepaqq. Similarly, T is right-cover-inclusive if whenever a and Npaq are nodes of λzµ,
enptilepNpaqqq lies weakly to the right of enptilepaqq. Say that T is cover-inclusive if it is both
left- and right-cover-inclusive.

We let I pλ, µq denote the set of cover-inclusive Dyck tilings of λzµ if λ Ě µ, and set
I pλ, µq “ H otherwise. Let iλµ “ |I pλ, µq|.

Next we make a definition which is in some sense dual to the notion of cover-inclusiveness
and which appears heavily disguised in [KW]. Say that a Dyck tiling is left-cover-expansive if
whenever a and SEpaq are nodes of λzµ, stptilepSEpaqqq lies weakly to the left of stptilepaqq, and
right-cover-expansive if whenever a and SWpaq are nodes of λzµ, enptilepSWpaqqq lies weakly to the
right of enptilepaqq. A Dyck tiling is cover-expansive if it is both left- and right-cover-expansive.

We write eλµ for the number of cover-expansive Dyck tilings of λzµ, setting eλµ “ 0 if
λ + µ. We shall see later that eλµ 6 1 for all λ, µ.

Example. We illustrate four Dyck tilings of p62, 4, 3, 12qzp4, 12q. Only the first one is cover-
inclusive, and only the second is cover-expansive.

We end this section with some notation which we shall use repeatedly later. Suppose j P Z
is fixed, and λ is a partition with an addable node l in column j. We define Xλ to be the set of
all integers x such that λ has a removable node n in column j` x, with htpnq “ htplq ´ 1, and
htppq ă htplq for all nodes p P λ in all columns between j and j` x. We set X`λ to be the set of
positive elements of Xλ. Note that x P X`λ precisely when there is a Dyck tile t Ă λ, starting
in column j` 1 and ending in column j` x, which can be removed from λ to leave a smaller
partition; we denote this smaller partition λrxs. We define λrxs for x P X´λ “ XλzX`λ similarly.

Example. Take λ “ p6, 42, 3, 22q. Then λ has an addable node in column 0, and for this node we
have Xλ “ t´1, 1, 5u. The partitions λrxs are as follows.

λ λr´1s “ p6, 42, 23q λr1s “ p6, 4, 32, 22q λr5s “ p34, 22q
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3 Cover-inclusive Dyck tilings

In this section we examine cover-inclusive Dyck tilings in more detail. We give some equiv-
alent conditions to the cover-inclusive condition, and then we prove a recurrence for the num-
ber iλµ of cover-inclusive Dyck tilings.

3.1 Equivalent conditions

Theorem 3.1. Suppose λ and µ are partitions with λ Ě µ, and T is a Dyck tiling of λzµ. The following
are equivalent.

1. T is cover-inclusive.

2. If a and Npaq are nodes of λzµ, then dppNpaqq > dppaq.

3. If a and Npaq are nodes of λzµ, then tilepaq` p1, 1q Ď tilepNpaqq.

4. If a and Npaq are nodes of λzµ and NWpaq is attached to a, then NWpNpaqq is a node of λzµ and is
attached to Npaq.

5. If a and Npaq are nodes of λzµ and Npaq is the end node of its tile, then a is the end node of its tile.

6. T is right-cover-inclusive.

7. If a and Npaq are nodes of λzµ and NEpaq is attached to a, then NEpNpaqq is a node of λzµ and is
attached to Npaq.

8. If a and Npaq are nodes of λzµ and Npaq is the start node of its tile, then a is the start node of its
tile.

9. T is left-cover-inclusive.

Proof.
(1ñ2) Take a P λzµ such that Npaq P λzµ, and let c “ stptilepaqq. Since T is cover-inclusive,

there is a node b in tilepNpaqq in the same column as c, and

dppNpaqq > htpbq´htpNpaqq > htpcq` 2´phtpaq` 2q “ dppaq.

(2ñ3) Suppose (3) is false, and take a P λzµ such that Npaq P λzµ and tilepaq ` p1, 1q *
tilepNpaqq. There is a node b P tilepaq such that b` p1, 1q R tilepNpaqq, and we may as-
sume that b is attached to a; in fact, by symmetry, we may assume b is either NEpaq or
SEpaq. If b “ NEpaq, then Npaq is attached to neither its NE nor its SE neighbour, so is the
end node of its tile, and in particular dppNpaqq “ 0. On the other hand dppaq ą dppbq > 0,
contradicting (2). If instead b “ SEpaq, then NEpaq is attached to neither its NW nor its SW
neighbour, so is the start node of its tile, and has depth 0; but dppbq ą dppaq > 0, and
again (2) is contradicted.

(3ñ4) This is trivial.
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(4ñ5) Suppose (5) is false, and take a P λzµ as far to the left as possible such that Npaq P λzµ
and is the end node of its tile, while a is not the end node of its tile.

Since a is not the end node of its tile, it is attached to either SEpaq or NEpaq. If a is attached
to SEpaq, then SEpaq is attached to its NW neighbour, but NpSEpaqq “ NEpaq is not attached
to its NW neighbour, contradicting (4).

So assume that a is attached to NEpaq. This implies in particular that a has positive depth.

Claim 1. If c P tilepaq and Npcq P tilepNpaqq, then c is not the start node of tilepaq.

Proof. Since tilepNpaqq is a Dyck tile and Npaq is its end node, we have htpNpcqq 6
htpNpaqq. Hence htpcq 6 htpaq, so dppcq > dppaq ą 0.

Claim 2. For every node b P tilepNpaqqwe have Spbq P tilepaq.

Proof. If the claim is false, let b be the rightmost counterexample. Obviously b ‰
Npaq, and in particular b is not the end node of its tile, so b is attached to either NEpbq
or SEpbq. In the first case, the choice of b means that we have SEpbq P tilepaq; neither
b nor Spbq is in tilepaq, so SEpbq is the start node of tilepaq, contradicting Claim 1.
So we can assume b is attached to SEpbq. The choice of b means that SpSEpbqq P tilepaq
and is not attached to Spbq. By Claim 1 SpSEpbqq is not the start node of tilepaq, so is
attached to SpSpbqq. But now Spbq is not attached to either its NE or SE neighbour, so
is the end node of its tile. SpSpbqq is not the end node of its tile, and this contradicts
the choice of a.

Now let b “ stptilepNpaqqq. Then by Claim 2, c :“ Spbq P tilepaq, and by Claim 1 c is
not the start node of tilepaq. So c is attached to either NWpcq or SWpcq. The first possibility
contradicts (4), since b is not attached to NWpbq, so assume that c is attached to SWpcq. But
then NWpcq is attached to neither b nor c, so is the end node of its tile, while SWpcq is not
the end node of its tile, and this contradicts the choice of a.

(5ñ6) Suppose T is not right-cover-inclusive, and take a P λzµ such that Npaq P λzµ and tilepaq
ends strictly to the right of tilepNpaqq. Let b “ enptilepNpaqqq; then there is a node in tilepaq
in the same column as b, which we can write as b´ ph, hq for some h ą 0. If we let
i P t1, . . . , hu be minimal such that b´pi, iq is not the end node of its tile, then Npb´pi, iqq
is the end node of its tile, contradicting (5).

(6ñ7) Suppose a, Npaq P λzµ and a is attached to NEpaq. Then enptilepaqq lies to the right of a,
so by (6) enptilepNpaqqq does too. So Npaq is attached to either NEpNpaqq or SEpNpaqq. But
SEpNpaqq “ NEpaq is attached to a, so Npaq is attached to NEpNpaqq.

(7ñ8) This is symmetrical to the argument that 4ñ5.

(8ñ9) This is symmetrical to the argument that 5ñ6.

(9ñ1) Since 6ñ7ñ8ñ9, right-cover-inclusive implies left-cover-inclusive. Symmetrically, left-
cover-inclusive implies right-cover-inclusive, and hence cover-inclusive.

We shall use these equivalent definitions of cover-inclusiveness, often without comment,
in what follows. We also observe the following property of cover-inclusive Dyck tilings, which
we shall use without comment.
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Lemma 3.2. Suppose T is a cover-inclusive Dyck tiling of λzµ. If n P λzµ is the highest node in its
column in λzµ, then every node in tilepnq is the highest node in its column in λzµ.

Proof. Suppose not, and take m P tilepnq which is not the highest node in its column. Without
loss of generality we may assume m lies in the column immediately to the right of n, i.e. m is
either NEpnq or SEpnq. But if m “ NEpnq, then the assumption Npmq P λzµ means that Npnq P
λzµ (otherwise λzµ would not be a skew Young diagram), a contradiction. So assume m “

SEpnq. But now m is attached to NWpmq and Npmq P λzµ, so by Theorem 3.1(4) Npnq P λzµ,
contradiction.

3.2 Recurrences

Now we consider recurrences. We start with a simple result.

Proposition 3.3. Suppose λ and µ are partitions and j P Z, and that µ has an addable node m in
column j, but λ does not have an addable node in column j. Let µ` “ µYtmu. Then iλµ “ iλµ` .

Proof. The fact that λ does not have an addable node in column j implies that λ Ě µ if and
only if λ Ě µ`, so we may as well assume that both of these conditions hold. Given a cover-
inclusive Dyck tiling of λzµ`, we can obtain a tiling of λzµ simply by adding the singleton tile
tmu, and it is clear that this tiling is a cover-inclusive Dyck tiling.

In the other direction, suppose T is a cover-inclusive Dyck tiling of λzµ; then we claim that
m forms a singleton tile. If we let n denote the highest node in column j of λzµ, then (since
λ does not have an addable node in column j) NEpnq and NWpnq are not both nodes of λzµ;
suppose without loss that NEpnq R λzµ. Then in particular n is not attached to NEpnq in T, and
so (using Theorem 3.1(7)) m is not attached to NEpmq. m cannot be attached to SEpmq or SWpmq
(since these are not nodes of λzµ), and a node in a Dyck tile cannot be attached only to its NW
neighbour. So m is not attached to any of its neighbours, i.e. tmu is a singleton tile as claimed.
We can remove this tile, and we clearly obtain a cover-inclusive Dyck tiling of λzµ`. So we
have a bijection between I pλ, µq and I pλ, µ`q.

Now we prove a more complicated result, for which it will help us to fix some notation.

Notation in force for the remainder of Section 3:
j is a fixed integer, and λ, µ are partitions such that λ has an addable node l in column j,

while µ has an addable node m in column j. We define λ` “ λYtlu and µ` “ µYtmu.
If T P I pλ, µ`q; then ÝÑT denotes the size of the highest tile starting in column j` 1, andÐÝT

denotes the size of the highest tile ending in column j´ 1.

Note that if T P I pλ, µ`q, then there must be at least one tile starting in column j` 1,
since there are more nodes in column j` 1 of λzµ` than in column j; so ÝÑT is well-defined, and
similarlyÐÝT is well-defined.

To prove our main recurrence result for the numbers iλµ, we give three results in which we
construct bijections between sets of cover-inclusive Dyck tilings. The first of these is as follows;
recall the definition of Xλ from Section 2.2.

Proposition 3.4.
ˇ

ˇ

ˇ

!

T P I pλ, µ`q
ˇ

ˇ

ˇ

ÝÑT R Xλ

)
ˇ

ˇ

ˇ
“

ˇ

ˇ

ˇ

ˇ

"

T P I pλ`, µ`q

ˇ

ˇ

ˇ

ˇ

there is a big tile in T
starting in column j

*ˇ

ˇ

ˇ

ˇ

.
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Proof. Note first that if λ` + µ` then λ + µ`, so both sides equal zero. Conversely, if λ + µ`,
then either λ` + µ` or there are no nodes in column j of λ`zµ`, so again both sides are zero.
So we may assume that λ Ě µ`. We’ll construct a bijection

φ1 :
!

T P I pλ, µ`q
ˇ

ˇ

ˇ

ÝÑT R Xλ

)

ÝÑ

"

T P I pλ`, µ`q

ˇ

ˇ

ˇ

ˇ

there is a big tile in T
starting in column j

*

.

We begin by giving an example so that the reader can see how the bijection works; in this
example, the tiling on the left lies in

!

T P I pλ, µ`q
ˇ

ˇ

ˇ

ÝÑT R Xλ

)

, and the tiling on the right is its
image under φ1. The nodes l and m are marked, the nodes in column j are shaded and the tile
t (introduced below) is marked with dots.

m

l

ÝÑ

m

l

Given T in I pλ, µ`q with ÝÑT R Xλ, let t be the highest tile in T starting in column j` 1, and let
A be the set of nodes in column j which are higher than stptq. No node in column j` 1 can be
attached to its NW neighbour, because the highest node in this column (namely SEplq) is not.
So (by the choice of t) every node b higher than stptq in column j` 1 is attached to SWpbq, and
hence each a P A is attached to NEpaq. In a Dyck tiling a node cannot be attached only to its NE
neighbour, so each a P A is attached to either its NW or SW neighbour. But a node in column
j´ 1 cannot be attached to its NE neighbour (because the highest node in column j´ 1 is not),
so every a P A is attached to NWpaq.

Now we consider columns x and x` 1, where x “ ÝÑT ` j “ |t| ` j. Let d “ SEplq. Then
d “ stptq ` ph, hq for some h > 0, so by Theorem 3.1(3) tilepdq contains t` ph, hq. In particular,
tilepdq includes the node e “ enptq ` ph, hq in column x, and (if stptq ‰ enptq) includes SWpeq.
Since d is the highest node in its column, the same is true for every node in tilepdq, and in
particular neither Npeq nor NWpeq is a node of λ. However, e cannot be a removable node of λ,
since then ÝÑT “ |t| would lie in Xλ. So NEpeq is a node of λzµ. Now NEpeq is not attached to
its NW neighbour (since this is Npeq R λ), so no node in column x` 1 is attached to its NW
neighbour, and so no node in column x is attached to its SE neighbour. This implies that any
node in column x of positive depth must be attached to its NE neighbour, while any node in
column x of depth 0 is the end node of its tile, and this tile has a NE neighbour. In particular, t
has a NE neighbour.

Now suppose a P A has depth 1, and write a “ stptq ` pi, i´ 1q for i ą 0. Then tilepaq
contains stptq ` pi, iq, and hence contains enptq ` pi, iq. Since a has depth 1, enptq ` pi, iq has
depth 0, and so from the last paragraph enptq` pi, iq is the end node of tilepaq, and tilepaq has a
NE neighbour.

Now we can construct φ1pTq as follows.

• For each a P A of depth at least 2, change tilepaq by replacing a with Npaq.
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• For each a P A of depth 1, let u “ tilepaq. Then u has a NE neighbour v; replace u and v
with the following tiles:

– the tile consisting of the portion of u ending at NWpaq;

– the tile obtained by combining Npaq, the portion of u starting at NEpaq, and v.

• Finally let w denote the NE neighbour of t, and replace t and w with the tile obtained by
joining NWpstptqq to t and w.

Clearly all these new tiles are Dyck tiles. It’s also clear that the last tile mentioned is a big tile
starting in column j. So to see that φ1pTq lies in the codomain, all that remains is to check that
φ1pTq is cover-inclusive. But this is easy using (for example) Theorem 3.1(4).

To show that φ1 is a bijection, we construct the inverse map

ψ1 :
"

T P I pλ`, µ`q

ˇ

ˇ

ˇ

ˇ

there is a big tile in T
starting in column j

*

ÝÑ

!

T P I pλ, µ`q
ˇ

ˇ

ˇ

ÝÑT R Xλ

)

.

Suppose T is a cover-inclusive Dyck tiling of λ`zµ` in which there is at least one big tile
starting in column j. Since the highest node in column j (namely l) is not attached to its NE or
NW neighbour, no node in column j is attached to its NE or NW neighbour. So from top to
bottom, column j of T consists of:

• (possibly) some nodes attached to both their SE and SW neighbours;

• at least one node attached only to its SE neighbour;

• (possibly) some singleton tiles.

Construct ψ1pTq as follows.

• For each node a in column j which is attached to its SE and SW neighbours, change tilepaq
by replacing a with Spaq.

• For each node a in column j which is the start of a big tile, let b be the first node of tilepaq
to the right of column j which has the same height as a. Replace tilepaq and tilepSWpaqq
with the following tiles:

– the tile consisting of the portion of tilepaq starting at b;

– (if tilepaq is the lowest big tile of T starting in column j) the tile consisting of the
portion of tilepaq running from SEpaq to SWpbq;

– (if tilepaq is not the lowest big tile of T starting in column j) the tile obtained by
joining together tilepSWpaqq, the node Spaq and the portion of tilepaq running from
SEpaq to SWpbq.

Again, it is easy to check that the new tiles are all Dyck tiles, and checking that ψ1pTq is cover-
inclusive is straightforward using Theorem 3.1(4).

So ψ1pTq is a cover-inclusive Dyck tiling. It remains to check that
ÝÝÝÑ
ψ1pTq R Xλ. Let t be the

highest tile in ψ1pTq starting in column j`1; then t starts at SEpaq, where a is the lowest node in
column j which is the start of a big tile in T, and ends at SWpbq, where b is the first node in tilepaq
to the right of column j with the same height as a. In T, SWpbq is attached to b, and so every
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node above SWpbq in the same column is attached to its NE neighbour in T. In particular, the
highest node in this column has a NE neighbour in λ, and so is not removable; so

ÝÝÝÑ
ψ1pTq R Xλ.

So our two maps φ1, ψ1 really do map between the specified sets. It is easy to see from the
construction that they are mutual inverses.

Symmetrically, we have the following result.

Proposition 3.5.
ˇ

ˇ

ˇ

!

T P I pλ, µ`q
ˇ

ˇ

ˇ
´
ÐÝT R Xλ

)ˇ

ˇ

ˇ
“

ˇ

ˇ

ˇ

ˇ

"

T P I pλ`, µ`q

ˇ

ˇ

ˇ

ˇ

there is a big tile in T
ending in column j

*ˇ

ˇ

ˇ

ˇ

.

Our next bijective result is the following.

Proposition 3.6. For each x P X`λ ,
ˇ

ˇ

 

T P I pλ, µ`q
ˇ

ˇ

ÝÑT “ x
(
ˇ

ˇ “ iλrxsµ` .

Proof. Fix x P X`λ . Our aim is to define a bijection

φ2 :
 

T P I pλ, µ`q
ˇ

ˇ

ÝÑT “ x
(

ÝÑ I pλrxs, µ`q.

Again we begin with an example to illustrate the bijection. In this example x “ 5, and the nodes
in columns j and j` x`1 are shaded, and the tiles ρ and t (introduced below) are marked with
dots.

m

l

ÝÑ

m

l

Since x P X`λ , there is a Dyck tile ρ Ă λ consisting of the highest nodes in columns j`
1, . . . , j` x of λ. Take T P I pλ, µ`q with ÝÑT “ x, and let t be the highest tile in T starting in
column j`1. Then every northward translate of t is an interval in a tile; in particular, tilepSEplqq
contains a translate t` ph, hq for some h > 0; since SEplq is the highest node in its column, the
same is true for every node in tilepSEplqq, so the translate t`ph, hq coincides with ρ.

Consider the nodes in column j of λzµ`. Arguing as in the proof of Proposition 3.4, every
node a in column j which is higher than t is attached to NEpaq and NWpaq.

Next we consider nodes in column j` x. The highest node in column j` x of λzµ` is the
end node of ρ, and so is not attached to its NE neighbour (since this node is not in λ); hence no
node in column j` x is attached to its NE neighbour. So no node in column j` x`1 is attached
to its SW neighbour. So from top to bottom, the nodes in column j` x` 1 higher than enptq
comprise:

• (possibly) some nodes attached to their NW neighbours;
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• (possibly) some nodes attached to neither their NW nor SW neighbours.

Now we can construct φ2pTq by doing the following, for each pair pa, dq of nodes with a in
column j, d in column j` x` 1 and htpaq “ htpdq ą htptq.

• If d is attached to NWpdq, then a and d lie in the same tile in T; change this tile by moving
the portion lying in columns j` 1 to j` x south one step.

• If d is not attached to NWpdq, then enptilepaqq “ NWpdq and hence NWpaq has depth 0. Replace
tilepaq and tilepdqwith the following two tiles:

– the portion of tilepaq ending at NWpaq;

– the tile obtained by joining the portion of tilepSEpaqq between columns j`1 and j` x
to a and tilepdq.

Finally remove t. It is easy to see that the new tiles are Dyck tiles, and the cover-inclusive
property follows very easily from the cover-inclusive property for T.

Now we construct the inverse map

ψ2 : I pλrxs, µ`q ÝÑ
 

T P I pλ, µ`q
ˇ

ˇ

ÝÑT “ x
(

.

Suppose T is a cover-inclusive Dyck tiling of λrxszµ`. No node in column j´ 1 or column j of
λrxs can be attached to its NE neighbour (since the NE neighbours of the highest nodes in these
columns are not nodes of λrxs). Hence from top to bottom the nodes in column j comprise:

• (possibly) some nodes attached to their NW and SE neighbours;

• (possibly) some nodes attached only to their SE neighbours;

• (possibly) some singleton nodes.

Note that if a is a node in column j which is not attached to NWpaq, then NWpaq is the end node
of its tile; in particular, tilepaq has a NW neighbour.

Claim. Suppose r > 1, and the node a :“ l´ pr, rq is attached to SEpaq. Then tilepaq
reaches column j` x` 1 and includes all the nodes in ρ´pr, rq.

Proof. We proceed by induction on r. First suppose r “ 1. Since x P Xλ, every node
in columns j` 1, . . . , j` x of λ has height less than htplq. Hence every node in columns
j` 1, . . . , j` x of λrxs has height less than htplq ´ 2 “ htpaq; since tilepaq is a Dyck tile, it
must reach htpaq at some point to the right of SEpaq, and so must reach column x` j` 1.
Furthermore, a is the highest node in its column, so every node in tilepaq is the highest in
its column, and in particular the portion of tilepaq between columns j` 1 and j` x must
consist of the highest nodes in these columns, i.e. the nodes in ρ´p1, 1q.

Now suppose r ą 1. By induction tilepaq cannot include any of the nodes in ρ´ pv, vq
for any v ă r; all the remaining nodes in columns j` 1, . . . , j` r have height less than
htpaq, and so (since tilepaq must reach htpaq at some point to the right of SEpaq) tilepaq
must reach column j` x` 1. The translate tilepaq ` p1, 1q is contained in tilepNpaqq, and
by induction this includes the nodes in ρ´ pr´ 1, r´ 1q; so tilepaq includes the nodes in
ρ´pr, rq.
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Now we consider the nodes in column j` x` 1. If d is a node in column j` x` 1, then
by similar arguments to those used above, d cannot be attached to NWpdq, and if d is attached
to SWpdq, then tilepdq includes a node in column j and also includes all the nodes in ρ´ pr, rq,
where r “ 1

2phtplq´htpdqq.
So we find that if a and d are nodes in columns j and j` x` 1 respectively with the same

height, then a is attached to SEpaq if and only if d is attached to SWpdq, and that in this case
tilepaq “ tilepdq. Say that such a pair pa, dq is a connected pair. Now we can construct ψ2pTq as
follows: for each connected pair pa, dq, write a “ l´pr, rq and then:

• if a is attached to NWpaq, change tilepaq by replacing the portion ρ´ pr, rq with ρ´ pr´
1, r´ 1q;

• if a is not attached to NWpaq, replace tilepNWpaqq and tilepaqwith the following two tiles:

– the tile comprising a, tilepNWpaqq and ρ´pr´ 1, r´ 1q;

– the portion of tilepaq starting at d.

Finally, add the tile ρ´pr, rq, where r is the number of connected pairs.
Once more, we see that the new tiles are all Dyck tiles, and the cover-inclusive property is

easy to check from the construction. Furthermore, the last tile mentioned above is the highest
tile starting in column j` 1, and has size x.

So ψ2 really does map I pλrxs, µ`q to tT P I pλ, µ`q |
ÝÑT “ xu. And it is easy to see that φ2

and ψ2 are mutual inverses.

Symmetrically, we have the following.

Proposition 3.7. For each x P X´λ ,
ˇ

ˇ

 

T P I pλ, µ`q
ˇ

ˇ

ÐÝT “ ´x
(ˇ

ˇ “ iλrxsµ` .

Our third bijection involves the partition λ`.

Proposition 3.8.
ˇ

ˇ

ˇ

ˇ

"

T P I pλ, µq

ˇ

ˇ

ˇ

ˇ

m does not lie in a
singleton tile of T

*ˇ

ˇ

ˇ

ˇ

“

ˇ

ˇ

ˇ

ˇ

"

T P I pλ`, µ`q

ˇ

ˇ

ˇ

ˇ

there is no big tile in T start-
ing or ending in column j

*ˇ

ˇ

ˇ

ˇ

.

Proof. First observe that λ Ě µ if and only if λ` Ě µ`, so we may as well assume that both
these conditions hold. Next note that if l “ m, then λzµ “ λ`zµ`, and this skew Young
diagram contains no nodes in column j; in particular, it does not include m. So in this case,
Proposition 3.8 amounts to the trivial statement iλµ “ iλ`µ` .

So we assume that λ Ą µ and l ‰ m; so m is a node of λzµ. Now we want to construct a
bijection

φ3 :
"

T P I pλ, µq

ˇ

ˇ

ˇ

ˇ

m lies in a
big tile in T

*

ÝÑ

"

T P I pλ`, µ`q

ˇ

ˇ

ˇ

ˇ

there is no big tile in T start-
ing or ending in column j

*

.

The following diagrams gives an illustrative example of how our bijection works; the nodes in
the same column as l and m are shaded to make it easier to see the effect on these nodes.
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m

l

ÝÑ

m

l

Suppose we have T P I pλ, µq with m lying in a big tile. Then m is attached to both NEpmq and
NWpmq, and hence every node a in column j is attached to both NEpaq and NWpaq. In particular,
every node in column j has depth at least 1. Now we construct φ3pTq from T as follows. For
each node a in column j:

• if a has depth greater than 1, then change tilepaq by replacing a with Npaq;

• if a has depth 1, then replace tilepaqwith the following three tiles:

– the portion of tilepaq ending in column j´ 1;

– the portion of tilepaq starting in column j` 1;

– the singleton tile tNpaqu.

Clearly all these new tiles are Dyck tiles. The cover-inclusive property follows easily from the
corresponding property of T, and in particular the fact (Theorem 3.1(2)) that depth weakly
decreases down columns in a cover-inclusive tiling. Moreover, φ3pTq has no big tile starting or
ending in column j, so lies in the codomain.

To show that φ3 is a bijection, we construct its inverse

ψ3 :
"

T P I pλ`, µ`q

ˇ

ˇ

ˇ

ˇ

there is no big tile in T start-
ing or ending in column j

*

ÝÑ tT P I pλ, µq | m lies in a big tile in Tu .

Suppose T P I pλ`, µ`q, and that there is no big tile in T starting or ending in column j. The
highest node in column j of λ`zµ`, namely l, is not attached to NEplq or NWplq (since these are
not nodes of λ`) and so no node in column j is attached to its NE or NW neighbour. So every
node in column j is either a singleton or attached to both its SE and SW neighbours. Now we
can construct ψ3pTq from T as follows: for each node a in column j, replace the tiles tilepaq,
tilepSWpaqq, tilepSEpaqq (which might or might not coincide) with the tile obtained by taking the
union of these three tiles and replacing a with Spaq.

Again, it is easy to check that ψ3pTq is a cover-inclusive Dyck tiling, and clearly m lies in a
big tile in ψ3pTq. Furthermore, it is easy to see that φ3 and ψ3 are mutually inverse.

Now we combine Propositions 3.4–3.8 to prove our main recurrence. We retain the assump-
tions and notation from above.

Our main result is as follows. Recall that iλµ denotes the total number of cover-inclusive
Dyck tilings of λzµ.

Proposition 3.9. With notation as above,

iλµ` iλµ` “ iλ`µ` `
ÿ

xPXλ

iλrxsµ` .
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Proof. By Proposition 3.6, we have
ˇ

ˇ

 

T P I pλ, µ`q
ˇ

ˇ

ÝÑT P Xλ

(ˇ

ˇ “
ÿ

xPX`λ

iλrxsµ` .

So

iλµ` “
ˇ

ˇ

 

T P I pλ, µ`q
ˇ

ˇ

ÝÑT P Xλ

(ˇ

ˇ `
ˇ

ˇ

 

T P I pλ, µ`q
ˇ

ˇ

ÝÑT R Xλ

(ˇ

ˇ

“
ÿ

xPX`λ

iλrxsµ` `

ˇ

ˇ

ˇ

ˇ

"

T P I pλ`, µ`q

ˇ

ˇ

ˇ

ˇ

there is a big tile in T
starting in column j

*ˇ

ˇ

ˇ

ˇ

by Proposition 3.4.
Symmetrically, we have

iλµ` “
ÿ

xPX´λ

iλrxsµ` `

ˇ

ˇ

ˇ

ˇ

"

T P I pλ`, µ`q

ˇ

ˇ

ˇ

ˇ

there is a big tile in T
ending in column j

*ˇ

ˇ

ˇ

ˇ

.

Now consider iλµ. Obviously we have

|tT P I pλ, µq | m lies in a singleton tile in Tu| “ iλµ` ,

and by Proposition 3.8
ˇ

ˇ

ˇ

ˇ

"

T P I pλ, µq

ˇ

ˇ

ˇ

ˇ

m does not lie in a
singleton tile of T

*ˇ

ˇ

ˇ

ˇ

“

ˇ

ˇ

ˇ

ˇ

"

T P I pλ`, µ`q

ˇ

ˇ

ˇ

ˇ

there is no big tile in T start-
ing or ending in column j

*ˇ

ˇ

ˇ

ˇ

.

Hence

iλµ` iλµ` “ |tT P I pλ, µq | m lies in a singleton tile in Tu|`
ˇ

ˇ

ˇ

ˇ

"

T P I pλ, µq

ˇ

ˇ

ˇ

ˇ

m does not lie in a
singleton tile of T

*ˇ

ˇ

ˇ

ˇ

` iλµ`

“

ˇ

ˇ

ˇ

ˇ

"

T P I pλ`, µ`q

ˇ

ˇ

ˇ

ˇ

there is no big tile in T start-
ing or ending in column j

*ˇ

ˇ

ˇ

ˇ

` 2 iλµ`

“
ÿ

xPXλ

iλrxsµ` `

ˇ

ˇ

ˇ

ˇ

"

T P I pλ`, µ`q

ˇ

ˇ

ˇ

ˇ

there is a big tile in T
starting in column j

*ˇ

ˇ

ˇ

ˇ

`

ˇ

ˇ

ˇ

ˇ

"

T P I pλ`, µ`q

ˇ

ˇ

ˇ

ˇ

there is a big tile in T
ending in column j

*ˇ

ˇ

ˇ

ˇ

`

ˇ

ˇ

ˇ

ˇ

"

T P I pλ`, µ`q

ˇ

ˇ

ˇ

ˇ

there is no big tile in T start-
ing or ending in column j

*ˇ

ˇ

ˇ

ˇ

.

Since a cover-inclusive Dyck tiling cannot contain big tiles starting and ending in the same
column, the sum of the last three terms is iλ`µ` , and we are done.

4 Cover-expansive Dyck tilings

In this section we consider cover-expansive Dyck tilings, proving similar (though consid-
erably simpler) recurrences to those in Section 3.
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4.1 Basic properties

We begin by studying left- and right-cover-expansive Dyck tilings. In contrast to cover-
inclusive Dyck tilings, it is not the case that the left-cover-expansive and right-cover-expansive
conditions are equivalent. For example, the unique Dyck tiling of p2qz∅ is left- but not right-
cover-expansive.

We begin with equivalent conditions to the left- and right-cover-expansive conditions.

Proposition 4.1. Suppose λ and µ are partitions with λ Ě µ, and T is a Dyck tiling of λzµ.

1. T is left-cover-expansive if and only if for every tile t in T, we have NWpstptqq R λzµ.

2. T is right-cover-expansive if and only if for every tile t in T, we have NEpenptqq R λzµ.

Proof. We prove (1); the proof of (2) is similar.
Suppose T is left-cover-expansive. Given a tile t, let a “ NWpstptqq. If a P λzµ, then by the

left-cover-expansive property stptilepaqq lies weakly to the right of stptq; but a lies strictly to the
left of stptq, a contradiction.

Conversely, suppose the given property holds, and a, SEpaq are nodes of λzµ. Let b “
stptilepSEpaqqq, and suppose b lies in column i. Then NWpbq R λzµ, and hence there are no nodes
in column i´ 1 of λzµ higher than b (otherwise λzµ would not be a skew Young diagram). In
particular, there are no nodes of tilepaq in column i´ 1, and hence stptilepaqq lies weakly to the
right of b.

Lemma 4.2. Suppose λ, µ are partitions with λ Ě µ, and T is a left-cover-expansive Dyck tiling of
λzµ. If a P λzµ is the lowest node in its column, then every node in tilepaq to the right of a is the lowest
node in its column.

Proof. Suppose a lies in column i, and proceed by induction on the number of nodes to the
right of a in tilepaq. Assuming a is not the end node of its tile, there is a node b in tilepaq in
column i` 1, which must be either NEpaq or SEpaq. The only way b can fail to be the lowest
node in column i` 1 is if b “ NEpaq and SEpaq P λzµ. But in this case, SEpaq is not attached to a
or to Spaq (which is not a node of λzµ), and so SEpaq is the start of its tile; but this contradicts
Proposition 4.1.

So b is the lowest node in its column. By induction every node to the right of b in the same
tile is the lowest node in its column, and we are done.

Proposition 4.3. Suppose λ, µ are partitions with λ Ě µ. Then λzµ admits at most one left-cover-
expansive Dyck tiling, and at most one right-cover-expansive Dyck tiling. If λzµ admits both a left-
and a right-cover-expansive Dyck tiling, then these tilings coincide.

Proof. We use induction on |λzµ|. If λ “ µ then the result is trivial, so assume λ Ą µ. Let a
be the unique leftmost node of λzµ, and suppose a lies in column i. Let m > 0 be maximal
such that columns i, . . . , i`m each contain a node of height at most htpaq. Suppose T is a
left-cover-expansive Dyck tiling of λzµ.

Claim 1. tilepaq consists of the lowest nodes in columns i, . . . , i`m.

Proof. Since a is the start node of its tile, every node in tilepaq has height at most htpaq,
and in particular tilepaq cannot contain a node in column i`m` 1 or further to the right.
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Now we prove by induction on l that tilepaq contains the lowest node in column l, for
i 6 l 6 i`m. Let b be the lowest node in column l; then (assuming l ą i) the lowest
node in column l ´ 1 is either NWpbq or SWpbq. In the first case, b cannot be the start
of its tile, by Proposition 4.1; b cannot be attached to SWpbq, since this is not a node of
λzµ, and so b is attached to NWpbq, and hence lies in tilepaq. In the second case, the fact
that htpSWpbqq ă htpbq 6 htpaq means that SWpbq cannot be the end node of tilepaq, so is
attached to either b or Spbq; but Spbq is not a node of λzµ, and hence SWpbq is attached to
b, i.e. b P tilepaq.

The definition of m means that the nodes in tilepaq can be removed to leave a smaller skew
Young diagram λzν, and the fact that T is left-cover-expansive means that Tzttilepaqu is a left-
cover-expansive Dyck tiling of λzν. By induction on |λzµ| there is at most one such tiling, and
so T is uniquely determined.

So there is at most one left-cover-expansive Dyck tiling of λzµ, and similarly at most one
right-cover-expansive Dyck tiling. To prove the final statement, we continue to assume that
λzµ is non-empty; we choose a connected component C of λzµ, and let a denote the unique
leftmost node of C, and c the unique rightmost node of C. (So there is no node in the column
to the left of the column containing a or in the column to the right of the column containing c,
but there are nodes in all columns in between.)

Claim 2. Suppose there exists a left-cover-expansive Dyck tiling T of λzµ. Then htpaq 6
htpcq, and if equality occurs then a and c lie in the same tile in T.

Proof. Let b1, . . . , br be the nodes in C which are both the end nodes of their tiles and the
lowest nodes in their columns, numbering them so that they appear in order from left to
right. Then b1 “ enptilepaqq by Claim 1, and br “ c. We claim that htpb1q ă ¨ ¨ ¨ ă htpbrq.
Given 1 6 l ă r, let d be the lowest node in the column to the right of bl . Then d is
either NEpblq or SEpblq; but in the latter case, d must be the start node of its tile, and this
contradicts Theorem 3.1. So d “ NEpblq, and in particular htpdq ą htpblq. By Lemma 4.2
enptilepdqq “ bl`1, and hence htpbl`1q “ htpdq ą htpblq.

So we have htpaq “ htpb1q ă ¨ ¨ ¨ ă htpbrq “ htpcq, so htpaq 6 htpcq, with equality if and
only if r “ 1, in which case c “ b1 “ enptilepaqq.

Now we can complete the proof. Assume there is a left-cover-expansive Dyck tiling T of λzµ
and a right-cover-expansive Dyck tiling U. By Claim 2, we have htpaq 6 htpcq, and symmet-
rically (since U exists) we have htpaq > htpcq. Hence htpaq “ htpcq, and so a, c lie in the same
tile t P T, which consists of the lowest node in every column of C. Similarly, t is a tile in U. Re-
moving t from λzµ yields a smaller skew Young diagram, and Tzttu is a left-cover-expansive
Dyck tiling of this diagram, while Uzttu is a right-cover-expansive Dyck tiling. By induction
Tzttu “ Uzttu, and hence T “ U.

Now we restrict attention to cover-expansive Dyck tilings. We shall need the following
lemma, which examines the effect of the cover-expansive property on depths of nodes.

Lemma 4.4. Suppose λ Ě µ, T is a cover-expansive Dyck tiling of λzµ, and a, Npaq P λzµ. Then
dppNpaqq ă dppaq.

Proof. Suppose the lemma is false, and take a P λzµ as far to the left as possible such that
Npaq P λzµ and dppNpaqq > dppaq. We have NWpaq P λzµ, and NWpaq cannot be the end node of
its tile by Proposition 4.1, so is attached to either a or Npaq.
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If NWpaq is attached to Npaq, then a must be attached to SWpaq since it cannot be the start
node of its tile (again by Proposition 4.1). But now dppNWpaqq ´dppSWpaqq “ pdppNpaqq ` 1q ´
pdppaq` 1q > 0, contradicting the choice of a.

So suppose instead that NWpaq is attached to a. Then Npaq cannot be the start node of its
tile, since dppNpaqq > dppaq “ dppNWpaqq ` 1 ą 0. So Npaq is attached to NWpNpaqq. But now
dppNWpNpaqqq ´ dppNWpaqq “ pdppNpaqq ´ 1q ´ pdppaq ´ 1q > 0, and again the choice of a is
contradicted.

We remark that, in contrast to the similar condition in Theorem 3.1(2) for cover-inclusive
Dyck tilings, the condition in Lemma 4.4 does not imply the cover-expansive condition. For
example, the unique Dyck tiling of p2qz∅ satisfies this condition (trivially) but is not right-
cover-expansive.

The following lemma will be useful in the next section.

Lemma 4.5. Suppose λ Ě µ, and that µ has an addable node in column j. If there exists a cover-
expansive Dyck tiling of λzµ, then λ has either an addable or a removable node in column j.

Proof. Suppose not, and let T be the cover-expansive Dyck tiling of λzµ. There must be at
least one node in column j of λzµ (otherwise the addable node of µ would also be an addable
node of λ). Let a be the highest node in column j, and consider the nodes attached to a in T.

The lowest node in column j of λzµ, namely m, is not attached to its SW neighbour (since
this is not a node of λzµ). Now let b be the highest node in column j which is not attached to
its SW neighbour, and suppose b ‰ a. Then the choice of b means that NWpbq is attached to Npbq,
so b is the start node of its tile; but NWpbq P λzµ, and this contradicts Proposition 4.1. So b “ a.

So a is not attached to SWpaq, and symmetrically is not attached to SEpaq. If a is attached to
either NWpaq or NEpaq, then (since T is a Dyck tiling) it is attached to both NWpaq and NEpaq, and
hence both of these nodes belong to λ, so λ has an addable node in column j. The remaining
possibility is that a is a singleton tile. But now Proposition 4.1 implies that neither NWpaq nor
NEpaq is a node of λzµ, so λ has a removable node in column j.

4.2 Recurrences

We now reassume the notation in Section 3: λ, µ are partitions with addable nodes l,m
respectively in column j, and λ`, µ` are the partitions obtained by adding these nodes.

Proposition 4.6. Suppose λ Ě µ`, and let a “ Splq. Then:

1. there exists a cover-expansive Dyck tiling of λzµ in which a has depth 1 if and only if there exists
a cover-expansive Dyck tiling of λzµ`;

2. there exists a cover-expansive Dyck tiling of λzµ in which a has depth greater than 1 if and only
if there exists a cover-expansive Dyck tiling of λ`zµ`.

Proof. Suppose there is a cover-expansive Dyck tiling T of λzµ. Arguing as in the proof of
Lemma 4.5, a cannot be attached to either SEpaq or SWpaq (since µ has an addable node in
column j), and tau cannot be a singleton tile (since λ has an addable node in column j). So a is
attached to both NWpaq and NEpaq. So by the cover-expansive conditions, every node in column
j is attached to its NE and NW neighbours.
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1. Suppose a has depth 1 in T. We construct a cover-expansive Dyck tiling U of λzµ` from
T as illustrated in the following diagram.

m

l

ÝÑ

m

l

Formally, to construct a cover-expansive Dyck tiling of λzµ`:

• replace tilepaqwith the two tiles comprising tilepaqztau;

• for every node b ‰ a in column j, change tilepbq by replacing b with Npbq.

It is easy to check that U really does give a cover-expansive Dyck tiling.

For the other direction, suppose T is a cover-expansive Dyck tiling of λzµ`. We claim
that every node in column j must be attached to its SW and SE neighbours. If there are
no nodes in column j (i.e. if m “ Splq) then this statement is trivial, so suppose otherwise;
then a P λzµ`. a cannot be attached to NWpaq in T, since then every node in column
j´ 1 would be attached to its SE neighbour; but the SE neighbour of the bottom node in
column j´ 1 is not a node of λzµ`. Since a is not attached to NWpaq, it must be attached
to SWpaq. Similarly a is attached to SEpaq, and the cover-expansive property implies that
every node in column j is attached to its SE and SW neighbours as claimed. Now we
construct a cover-expansive Dyck tiling of λzµ as follows:

• for each node b in column j, change tilepbq by replacing b with Spbq;

• replace the tiles tilepNWpaqq and tilepNEpaqqwith the tile obtained by joining these two
tiles to a.

Again, it is easy to see that we have a cover-expansive Dyck tiling. Moreover, a has
depth 1 in this tiling, since NWpaq is the end node of its tile in T, and so has depth 0 (in
both tilings).

2. Suppose a has depth greater than 1 in T. Construct a cover-expansive Dyck tiling U of
λ`zµ` from T as follows: for each node b in column j, change tilepbq by replacing b with
Npbq.

Again, U is a Dyck tiling, since every node in column j of λzµ has depth greater than 1
in T. And the cover-expansive property for U follows from that for T.

The other direction is very similar.

Corollary 4.7. eλµ “ eλµ` ` eλ`µ` .

Proof. First suppose λ Ě µ`. The first paragraph of the proof of Proposition 4.6 shows that
the node a “ Splqmust have positive depth in a cover-expansive Dyck tiling of λzµ. Hence the
result follows from Proposition 4.6.

Alternatively, suppose λ + µ`. Then we have λ Ě µ if and only if λ` Ě µ`, and if these
conditions hold then λzµ “ λ`zµ`; so eλµ “ eλ`µ` .
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Proposition 4.8. eλ`µ “ eλµ.

Proof. Suppose T is a cover-expansive Dyck tiling of λ`zµ. Then l cannot be attached to SEplq,
since then every node in column j would be attached to its SE neighbour; but SEpmq is not a
node of λ`zµ. Similarly l is not attached to SWplq, so forms a singleton tile in T. Removing this
tile yields a cover-expansive Dyck tiling of λzµ.

In the other direction, suppose T is a cover-expansive Dyck tiling of λzµ. From the proof
of Proposition 4.6, Splq is attached to both SEplq and SWplq. Hence if we add l as a singleton tile,
the resulting tiling is a cover-expansive Dyck tiling of λ`zµ.

5 Young permutation modules for two-part compositions

In this section we apply our results on Dyck tilings to compute transition coefficients for
two bases for a certain module for the symmetric group.

5.1 The Young permutation module M p f ,gq

Suppose k > 0, and let Sk denote the symmetric group of degree k, with tt1, . . . , tk´1u the
set of Coxeter generators (so ti is the transposition pi, i` 1q). Let F be any field, and consider
the group algebra FSk. Define si “ ti´ 1 P FSk for i “ 1, . . . , n´ 1.

Now write k “ f `g with f , g non-negative integers. Consider the Young permutation module
M p f ,gq for FSk indexed by the composition p f , gq. This is just the permutation module on the
set of cosets of the maximal Young subgroup S f ˆSg, and has the following presentation:

M p f ,gq “ xm | tim “ m for i ‰ f y .

Lemma 5.1. For 1 6 i 6 k´ 2, the element sisi`1si´ si “ tisi`1si´ si`1si´ si annihilates M p f ,gq.

Proof. In terms of permutations, the given element is

pi, i` 2q´ pi, i` 1, i` 2q´ pi, i` 2, i` 1q` pi, i` 1q` pi` 1, i` 2q´ 1.

M p f ,gq may be viewed as the permutation module on the set of f -subsets of the set t1, . . . , ku;
it is easily seen that the given element kills any such subset.

M p f ,gq has a basis indexed by the set of minimal left coset representatives of S f ˆSg in Sk;
this set is in one-to-one correspondence with the set P f ,g of partitions λ for which λ1 6 f and
λ11 6 g; given λ P P f ,g, we write the corresponding basis element as tλm, where

tλ “
`

tλ1`gtλ1`g`1 . . . t f`g´1
˘ `

tλ2`g´1tλ2`g . . . t f`g´2
˘

. . .
`

tλg`1tλg`2 . . . t f
˘

.

Our objective here is to study the elements

sλ “
`

sλ1`gsλ1`g`1 . . . s f`g´1
˘ `

sλ2`g´1sλ2`g . . . s f`g´2
˘

. . .
`

sλg`1sλg`2 . . . s f
˘

for λ P P f ,g. It is easy to see that
 

sλm
ˇ

ˇ λ P P f ,g
(

is also a basis for M p f ,gq, since when
each sλm is expressed as a linear combination of the elements tµm, the matrix of coefficients is
unitriangular with respect to a suitable ordering.

We shall use cover-expansive Dyck tilings to describe this transition matrix explicitly, and
then describe its inverse using cover-inclusive Dyck tilings. We also give a simple expression
for the sum

ř

λPP f ,g
tλm as a linear combination of the elements sλm, which will be useful in

Section 6.
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5.2 Change of basis

Our first result on transition coefficients is the following.

Theorem 5.2. Suppose f , g are non-negative integers, and µ P P f ,g. Then

sµm “
ÿ

λPP f ,g

p´1q|λ|`|µ| eλµ tλm.

We begin with some simple observations concerning the actions of the generators t1, . . . , tk´1
on the basis elements tλm. We continue to use the Russian convention for Young diagrams.

Lemma 5.3. Suppose λ P P f ,g and 1 6 i ă k. Then:

• if λ has an addable node l in column i´ g, then titλm “ tλ`m, where λ` is the partition obtained
by adding l to λ;

• if λ has a removable node l in column i´ g, then titλm “ tλ´m, where λ´ is the partition
obtained by removing l from λ;

• if λ has neither an addable nor a removable node in column i´ g, then titλm “ tλm.

Proof. This is an easy consequence of the definitions and the Coxeter relations.

Proof of Theorem 5.2. We proceed by downwards induction on |µ|. If µ “ p f gq, then sµ “

tµ “ 1 and the result follows. Assuming µ ‰ p f gq, µ has an addable node in column j, for some
´g ă j ă f . We let µ` denote the partition obtained by adding this addable node; then we
have sµ “ sj`gsµ` , and by induction

sµ`m “
ÿ

λPP f ,g

p´1q|λ|`|µ
`| eλµ` tλm.

Let P`
f ,g denote the set of λ P P f ,g having an addable node in column j, and for λ P P`

f ,g let
λ` denote the partition obtained by adding this addable node; similarly, let P´

f ,g denote the set
of partitions in P f ,g having a removable node in column j, and for each λ P P´

f ,g let λ´ denote
the partition obtained by removing this removable node. Note that the functions λ ÞÑ λ` and
λ ÞÑ λ´ define mutually inverse bijections between P`

f ,g and P´
f ,g. Now

sµm “ ptj`g´ 1q
ÿ

λPP f ,g

p´1q|λ|`|µ
`| eλµ` tλm

“
ÿ

λPP`
f ,g

p´1q|λ|`|µ
`| eλµ`ptλ` ´ tλqm`

ÿ

λPP´
f ,g

p´1q|λ|`|µ
`| eλµ`ptλ´ ´ tλqm by Lemma 5.3

“
ÿ

λPP`
f ,g

p´1q|λ|`|µ|
`

eλµ` ` eλ`µ`
˘

tλm`
ÿ

λPP´
f ,g

p´1q|λ|`|µ|
`

eλµ` ` eλ´µ`
˘

tλm

“
ÿ

λPP`
f ,g

p´1q|λ|`|µ| eλµ tλm`
ÿ

λPP´
f ,g

p´1q|λ|`|µ| eλ´µ tλm by Proposition 4.6

“
ÿ

λPP`
f ,gYP´

f ,g

p´1q|λ|`|µ| eλµ tλm by Proposition 4.8

“
ÿ

λPP f ,g

p´1q|λ|`|µ| eλµ tλm by Lemma 4.5.
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So Theorem 5.2 follows by induction.

Now we give our second main result on transition coefficients.

Theorem 5.4. Suppose f , g are non-negative integers, and µ P P f ,g. Then

tµm “
ÿ

λPP f ,g

iλµ sλm.

The proof of this result is rather more difficult. To begin with, we compute the actions of
s1, . . . , sk´1 on the basis elements sλm.

Proposition 5.5. Suppose µ P P f ,g and 1 6 i ă k. Then exactly one of the following occurs.

1. µ has an addable node in column i´ g. In this case sisµm “ ´2sµm.

2. µ has a removable node in column i´ g. In this case sisµm “ sµ´m, where µ´ denotes the
partition obtained by removing this node.

3. For some 0 6 a 6 g we have µa ą i´ g` a ą µa`1 (where the left-hand inequality is regarded
as automatically true in the case a “ 0).

(a) If µw ă i´ g` 2a´w for all a ă w 6 g, then sisµm “ 0.
(b) Otherwise, let w ą a be minimal such that µw “ i´ g` 2a´w, and set

µa,w “ pµ1, . . . , µa, i´ g` a, µa`1` 1, . . . , µw´1` 1, µw`1, . . . , µgq.

Then sisµm “ sµa,w m.

4. For some 1 6 a ă g we have µa “ µa`1 “ i´ g` a.

(a) If i` 2a ą k and µw ă i´ g` 2a´w for w “ 1, . . . , a´ 1, then sisµm “ 0.
(b) Otherwise, let w ă a be maximal such that µw > i´ g` 2a´w (taking w “ 0 if there is

no such w), and define

µw,a “ pµ1, . . . , µw, i´ g` 2a´w, µw`1` 1, . . . , µa´1` 1, µa`1, . . . , µgq.

Then sisµm “ sµw,a m.

Examples.
1. Suppose f “ 4, g “ 5 and µ “ p4, 24q. Then

sµ “ s6s7s5s6s4s5s3s4.

Taking i “ 3, we find that µ satisfies condition 4(a) of Proposition 5.5, with a “ 4. And
indeed

s3sµm “ s3s6s7s5s6s4s5s3s4m
“ s6s7s5s6ps3s4s3qs5s4m
“ s6s7s5s6s3s5s4m by Lemma 5.1
“ s6s7ps5s6s5qs3s4m
“ s6s7s5s3s4m by Lemma 5.1
“ s6s5s3s4s7m
“ 0 since s7m “ 0.
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2. Now suppose f “ 4, g “ 5 and µ “ p4, 2, 13q. Then

sµ “ s6s7s4s5s6s3s4s5s2s3s4.

Taking i “ 2, we find that µ satisfies condition 4(b) of Proposition 5.5, with a “ 4 and
w “ 1, giving µw,a “ p42, 3, 2, 1q. Now we have

s2sµm “ s2s6s7s4s5s6s3s4s5s2s3s4m
“ s6s7s4s5s6ps2s3s2qs4s5s3s4m
“ s6s7s4s5s6s2s4s5s3s4m
“ s6s7ps4s5s4qs6s2s5s3s4m
“ s6s7s4s6s2s5s3s4m
“ ps6s7s6qs4s2s5s3s4m
“ s6s4s2s5s3s4m
“ sp42,3,2,1qm.

Proof of Proposition 5.5. To see that µ satisfies exactly one of the four conditions, let l denote
the lowest node in column j which is not a node of µ, and consider whether SEplq and SWplq lie
in µ; for the purposes of this argument we regard all nodes of the form pa, 0q or p0, bq as lying
in µ. If both SEplq and SWplq lie in µ, then l is an addable node and we are in case (1). If neither
lies in µ, then Splq is a removable node, and we are in case (2). If SEplq P µ S SWplq, then we are
in case (3), while if SEplq R µ Q SWplq then we are in case (4).

Now we analyse the four cases in Proposition 5.5.

1. Since µ has an addable node in column i´ g, sµ can be written in the form sisµ` . We have
s2

i “ ´2si, and the result follows.

2. By definition (and the fact that si and sj commute when j ‰ i˘ 1) sµ´ “ sisµ.

3. (a) We proceed by induction on i. Consider the case a “ g. In this case sµ only involves
terms sj for j > i` 2, so (since sim “ 0) we get sisµm “ 0.
Now suppose a ă g, and set

µ̄ “ pµ1, . . . , µa, i´ g` a, µa`2, . . . , µgq.

Then µ̄ satisfies the inductive hypothesis, with a replaced by a` 1 and i replaced by
i´ 2. Furthermore, we can write

sµ “ sµa`1`g´a . . . si´1sµ̄.

µ̄ has an addable node pa` 1, i´ g` a` 1q in column i´ g, so sµ̄m can be written in
the form six for some x P M p f ,gq. So we have

sisµm “ sisµa`1`g´a . . . si´1six
“ sµa`1`g´a . . . si´2sisi´1six
“ sµa`1`g´a . . . si´2six by Lemma 5.1
“ sµa`1`g´a . . . si´2sµ̄m
“ 0 by induction.
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(b) We use induction on w´ a. If w “ a` 1, then we have sµ “ si´1sµa,w , and µa,w has an
addable node pa` 1, i´ g` a` 1q in column i´ g, so sµa,w m can be written as six for
some x P M p f ,gq. So by Lemma 5.1

sisµm “ sisi`1six “ six “ sµa,w m.

Now assume that w ą a` 1, and as above set

µ̄ “ pµ1, . . . , µa, i´ g` a, µa`2, . . . , µgq.

Then µ̄ satisfies the inductive hypothesis, with a replaced by a` 1 and i replaced by
i´ 2, and with the same value of w, yielding

µ̄a`1,w “ pµ1, . . . , µa, i´ g` a, i´ g` a´ 1, µa`2` 1, . . . , µw´1` 1, µw`1, . . . , µgq.

As above we write sµ̄ “ six, and obtain

sisµm “ sµa`1`g´a . . . si´2sµ̄m
“ sµa`1`g´a . . . si´3sµ̄a`1,w m by induction

“ sµa,w m.

4. This is symmetrical to case (3), replacing partitions with their conjugates and swapping
f and g.

We now seek to re-phrase Proposition 5.5 so that for a given λ, µ we can write down the
coefficient of sλm in sisµm. Fix i, and suppose that as in part (3) of Proposition 5.5 we have
µa ą i´ g` a ą µa`1 for some 1 6 a 6 g. Let w ą a be minimal such that µw “ i´ g` 2a´w,

assuming there is such a w, and write µ
i
ã µa,w, where µa,w is as defined in Proposition 5.5.

Now recall some notation from Section 2: if j is fixed and λ is a partition with an addable
node l in column j, then Xλ denotes the set of all integers x such that λ has a removable node
n in column j` x, with htpnq “ htplq´ 1, and htppq ă l for all nodes p in all columns between j
and j` x. X`λ denotes the set of positive elements of Xλ, and X´λ the set of negative elements.
Given x P X`λ , λrxs is the partition obtained from λ by removing the highest node in each
column from j` 1 to j` x; λrxs is defined similarly for x P X´λ .

Lemma 5.6. Suppose λ, µ P P f ,g and 1 6 i ă k, and set j “ i´ g. Then µ
i
ã λ if and only if λ has

an addable node in column j and µ “ λrxs for some x P X´λ .

Proof.
pñq If µ

i
ã λ then we have

λ “ µa,w “ pµ1, . . . , µa, j` a, µa`1` 1, . . . , µw´1` 1, µw`1, . . . , µgq,

where µa ą j` a ą µa`1 and w ą a is minimal such that µw > j` 2a´w. Observe that
λ has an addable node l “ pa` 1, j` a` 1q in column j. The choice of w implies that
µw´1 “ µw “ j` 2a´w, and so λ has a removable node n “ pw, j` 2a´w` 1q in column
j` x, where x “ 2pa´wq ` 1. Furthermore, htpnq “ j` 2a “ htplq ´ 1, and we claim
that all the nodes in columns j` x` 1, . . . , j´ 1 of λ have height at most j` 2a: if this
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condition fails, then it must fail for a node of the form px, λxq with a` 2 6 x 6 w´ 1,
but for x in this range we have htppx, λxqq “ x` λx “ x` µx´1` 1 6 x` j` 2a´ x. So
x P X´λ .

To construct µ from λ we remove the nodes

pw, µw` 1q, pw, µw` 2q, . . . , pw, µw´1` 1q,
pw´ 1, µw´1` 1q, pw´ 1, µw´1` 2q, . . . , pw´ 1, µw´2` 1q,
. . .
pa` 2, µa`2` 1q, pa` 2, µa`2` 2q, . . . , pa` 2, µa`1` 1q,
pa` 1, µa`1` 1q, pa` 1, µa`1` 2q, . . . , pa` 1, j` aq,

which lie in columns j` x, . . . , j´ 1 respectively. So µ “ λrxs.

pðq Suppose λ has an addable node in column j. Writing this node as pa` 1, λa`1 ` 1q, we
have a “ 0 or λa ą λa`1, and λa`1´ a “ j.

Now suppose x P X´λ . Then λ has a removable node n “ pw, λwq in column j ` x,
and w ą a since x ă 0. Then λw ą λw`1 and λw ´ w “ j` x, and (since htpnq “
htplq ´ 1) w` λw “ a` 1` λa`1. The fact that htppq ă htplq for all nodes p in columns
j` x` 1, . . . , j´ 1 implies in particular that htppx, λxqq ă htplq for a` 2 6 x 6 w´ 1, i.e.
x`λx 6 a` 1`λa`1.

Constructing λrxs involves removing the nodes

pw, λwq, pw´ 1, λwq, pw´ 1, λw` 1q, . . . , pw´ 1, λw´1q,
pw´ 2, λw´1q, pw´ 2, λw´1` 1q, . . . , pw´ 2, λw´2q,
. . .
pa` 1, λa`2q, pa` 1, λa`2` 1q, . . . , pa` 1, λa`1q,

so
λrxs “ pλ1, . . . , λa, λa`2´ 1, . . . , λw´ 1, λw´ 1, λw`1, . . . , λgq.

Setting µ “ λrxs, the (in)equalities observed above for λ give µa ą j` a ą µa`1, µx ă

j` 2a´ x for a ă x ă w and µw “ j` 2a´w. Furthermore, λ equals the partition µa,w, so

µ
i
ã λ.

We now note a counterpart to this for part (4) of Proposition 5.5, which follows by conju-
gating partitions. Suppose that µ P P f ,g satisfies the conditions of (4), and that µw,a is defined,

and write µ
i
á µw,a.

Lemma 5.7. Suppose λ, µ P P f ,g and 1 6 i ă k, and set j “ i´ g. Then µ
i
á λ if and only if λ has a

removable node in column j and µ “ λrxs for some x P X`λ .

The following result is now immediate from Proposition 5.5 and Lemmas 5.6 and 5.7.

Corollary 5.8. Suppose µ P P f ,g, and write sisµm as a linear combination
ř

λPP f ,g
aλsλm. Then aλ

equals:

• ´2, if λ has an addable node in column i´ g and µ “ λ;
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• 1, if λ has an addable node in column i´ g, and

– µ is the partition obtained by adding this node, or
– µ “ λrxs for some x P Xλ;

• 0, otherwise.

Proof of Theorem 5.4. As with Theorem 5.2, we proceed by downwards induction on |µ|. If
µ “ p f gq, then sµ “ tµ and the result follows, since clearly iλλ “ 1.

Assuming µ ‰ p f gq, µ has an addable node in column j for some ´g ă j ă f . We let
µ` denote the partition obtained by adding this addable node. Then tµ “ tj`gtµ` , and by
induction

tµ`m “
ÿ

λPP f ,g

iλµ` sλm.

As before, we write P`
f ,g for the set of λ P P f ,g having an addable node in column j, and for

λ P P`
f ,g we let λ` denote the partition obtained by adding this addable node. We have

tµm “
ÿ

λPP f ,g

iλµ`psj`g` 1qsλm

“
ÿ

λPP f ,g

iλµ` sλm`
ÿ

λPP`
f ,g

¨

˝iλ`µ` ´2 iλµ` `
ÿ

xPXλ

iλrxsµ`

˛

‚sλm by Corollary 5.8

“
ÿ

λPP f ,gzP
`
f ,g

iλµ` sλm`
ÿ

λPP`
f ,g

¨

˝iλ`µ` ´ iλµ` `
ÿ

xPXλ

iλrxsµ`

˛

‚sλm

“
ÿ

λPP f ,gzP
`
f ,g

iλµ sλm`
ÿ

λPP`
f ,g

iλµ sλm by Propositions 3.3 and 3.9

“
ÿ

λPP f ,g

iλµ sλm.

Theorem 5.4 follows by induction.

5.3 The sum of the elements tµm

It will be critical in the next section to be able to express
ř

λPP f ,g
tλm in terms of the basis

elements sλm. To enable us to do this, we define an integer-valued function F on partitions.
If λ is a partition, we let Baλ denote the partition obtained by removing the first a parts

of λ, i.e. the partition pλa`1, λa`2, . . . q, and let Bbλ denote the partition obtained by reducing
all the parts by b (and deleting all negative parts), i.e. the partition pmaxtλ1´ b, 0u, maxtλ2´

b, 0u, . . . q. We write Ba
bλ “ BaBbλ.

Now we can define F recursively. Set Fp∅q “ 1. Given a partition λ ‰ ∅, take a node pa, bq
of λ for which a` b is maximal (call this a highest node of λ) and define

σ “ Baλ, τ “ Bbλ.

Now set

Fpλq “
ˆ

a` b
a

˙

FpσqFpτq.
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Lemma 5.9. Fpλq is well-defined, i.e. does not depend on the choice of pa, bq.

Proof. Suppose pa, bq and pâ, b̂q are both highest nodes of λ; in particular, a`b “ â` b̂. Assume
without loss that a ă â. Let σ “ Baλ and τ “ Bbλ as above, and define σ̂, τ̂ correspondingly. By
induction Fpσq, Fpτq, Fpσ̂q, Fpτ̂q are well-defined, and we must show that

FpσqFpτq
ˆ

a` b
a

˙

“ Fpσ̂qFpτ̂q
ˆ

â` b̂
â

˙

.

Now pâ´ a, b̂q is a highest node of σ, so we have

Fpσq “ Fpσ̂qFpξq
ˆ

â´ a` b̂
â´ a

˙

,

where ξ “ Ba
b̂
λ. Also, pa, b´ b̂q is a highest node of τ̂, so that

Fpτ̂q “ FpξqFpτq
ˆ

a` b´ b̂
a

˙

.

So (since a` b “ â` b̂) we obtain

FpσqFpτqFpξq
ˆ

â
a

˙

“ Fpσ̂qFpτ̂qFpξq
ˆ

b
b̂

˙

.

Dividing both sides by Fpξqâ!b! (which is obviously positive) and multiplying by pa` bq!pâ´
aq! “ pâ` b̂q!pb̂´ bq! gives the result.

Remark. In the notation of the above lemma, we have

Fpλq “ Fpσ̂qFpξqFpτqpa, â´ a, b̂q!,

where we use px, y, zq! to denote the trinomial coefficient px` y` zq!
x!y!z!

. We will refer to this as

‘factorising using the nodes pa, bq and pâ, b̂q’. This readily generalises to factorising using any
number of highest nodes, with a corresponding multinomial coefficient.

Our main objective is to prove the following statement.

Theorem 5.10. Suppose f , g are non-negative integers. Then
ÿ

µPP f ,g

tµm “
ÿ

λPP f ,g

Fpλqsλm.

We prove this using the following recurrence, in which we again use the notation Xλ and
λrxs from Section 2.

Proposition 5.11. Assume that λ is a partition with an addable node l in column j, and let λ` denote
the partition obtained by adding this node. Then

Fpλ`q`
ÿ

xPXλ

Fpλrxsq “ 2Fpλq.
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Proof. Write l as pa, bq. Suppose first of all that l is not the unique highest node of λ`. Take a
highest node m “ pâ, b̂q ‰ l, and suppose without loss that â ă a. Since the height of m is at
least the height of l, b̂´ â´ j is strictly larger than any element of Xλ. So m is a highest node
of λrxs for every x P Xλ, as well as of λ and λ`. By induction the result holds for the partition
pλâ`1, λâ`2, . . . q, and so it holds for λ, factorising Fpλq (and also Fpλ`q and Fpλrxsq for each x)
using the node pâ, b̂q.

So we can assume that l is the unique highest node of λ`. Let pa1, b1q, . . . , par, brq be the
nodes of λ to the right of l for which ax` bx “ a` b´1; order these nodes so that a1 ą ¨ ¨ ¨ ą ar.
Note that if r > 1, then automatically pa1, b1q “ pa´ 1, bq. Similarly, let pc1, d1q, . . . , pcs, dsq be
the nodes to the left of l for which cx` dx “ a` b´ 1.

We compute Fpλ`q by first factorising using the node l. We may also factorise Fpλq using
the nodes pa´ 1, bq and pa, b´ 1q (omitting either or both of these, if a or b equals 1), and we
readily obtain

Fpλ`q “
a` b

ab
Fpλq. (†)

Now we consider the partitions λrxs, for x P X`λ . From our assumptions so far, X`λ is the set
of integers xi “ bi ´ ai ´ b` a, for i “ 1, . . . , r. Choose such an i, and set κ “ λrxis. We wish to
compare Fpκqwith Fpλq. To do this, we define

γ “ B
ai`1
b´1 λ, δ “ B

ai`1
b´1 κ

(where we put ai`1 “ 0 if i “ r), and we claim that Fpκq{Fpλq “ Fpδq{Fpγq. If s “ 0 and i “ r,
then this is trivial since γ “ λ and δ “ κ; assuming instead that s > 1 or i ă r, factorising
both Fpκq and Fpλq at the nodes pc1, d1q, . . . , pcs, dsq, pai`1, bi`1q, . . . , par, brq (i.e. at all the highest
nodes of κ) gives the result.

Now γ has highest nodes pa´ 1´ ai`1, 1q and pai´ ai`1, bi´ b` 1q (which coincide if i “ 1),
and we factorise Fpγq at these nodes, obtaining

Fpγq “ FpµqFpνq
pa´ ai`1q!

pa´ 1´ aiq!pai´ ai`1q!
,

where µ “ B
ai´ai`1
1 γ and ν “ Bbi´b`1γ.

Claim.
Fpδq
Fpγq

“
ai´ ai`1

pa´ aiqpa´ ai`1q
.

Proof. In the case where ai “ ai`1` 1, we have µ “ δ and ν “ ∅, so the factorisation of
Fpγq above gives the result. If ai ą ai`1` 1, then δ has a highest node pai ´ ai`1´ 1, bi ´

b` 1q, and factorising at this node we get

Fpδq “ FpµqFpνq
ˆ

ai´ ai`1` bi´ b
ai´ ai`1´ 1

˙

.

The claim follows from this factorisation and the factorisation of Fpγq above, using the
fact that ai` bi “ a` b´ 1.

This claim yields
Fpκq
Fpλq

“
Fpδq
Fpγq

“
1

a´ ai
´

1
a´ ai`1

,
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and summing over i we obtain

ř

xPX`λ
Fpλrxsq

Fpλq
“

1
a´ a1

´
1

a´ ar`1
“ 1´

1
a

.

A symmetrical calculation applies to partitions λrxs for x P X´λ , yielding

ř

xPX´λ
Fpλrxsq

Fpλq
“ 1´

1
b

.

Adding these two results together and combining with (†) gives the result.

Corollary 5.12. For 1 6 i ă k we have

si
ÿ

λPP f ,g

Fpλqsλm “ 0.

Proof. As above, write P`
f ,g for the set of λ P P f ,g having an addable node in column i´ g,

and for each such λ let λ` denote the partition obtained by adding this addable node. Then
by Corollary 5.8 we have

si
ÿ

λPP f ,g

Fpλqsλm “
ÿ

λPP`
f ,g

¨

˝´2Fpλq` Fpλ`q´
ÿ

xPXλ

Fpλrxsq

˛

‚sλm,

and each summand on the right-hand side is zero by Proposition 5.11.

Proof of Theorem 5.10. Corollary 5.12 shows that
ř

λ Fpλqsλm is killed by all of s1, . . . , sk´1,
and hence lies in a trivial submodule of M p f ,gq. But M p f ,gq is a permutation module for a
transitive action of Sk, and so has a unique trivial submodule, spanned by the sum of the
elements of the permutation basis, i.e.

ř

λ tλm. So the two sides agree up to multiplication by
a scalar. On the other hand, it is clear that when the right-hand side is expressed as a linear
combination of the tλm, the coefficient of t∅m is Fp∅q “ 1, so in fact the two sides are equal.

5.4 Results of Kenyon, Kim, Mészáros, Panova and Wilson

As we have mentioned, cover-inclusive Dyck tilings were introduced by Kenyon and Wil-
son in [KW], and in fact the main result in their paper has a bearing on the results in the present
paper.

First we explain how cover-expansive Dyck tilings appear in disguise in [KW]. Given a
partition λ, we define a sequence of parentheses ( and ), by ‘reading along the boundary’ of
λ, as follows. Working from left to right, for each node a such that NWpaq is not a node of λ,
we write a ), and for each node a such that NEpaq is not a node of λ we write a (. (If neither
NWpaq nor NEpaq is a node of λ, then we write )(.) We then append an infinite string of (s at the
start of the sequence, and an infinite sequence of )s at the end. The resulting doubly infinite
sequence is called the parenthesis sequence of λ.
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Example. Let λ “ p5, 32, 1q. Then the parenthesis sequence of λ is ¨ ¨ ¨ ((()())(())()) ¨ ¨ ¨ , as
we see from the Young diagram, in which we mark the boundary in bold, extending it infinitely
far to the north-west and north-east; segments � contribute a ( to the parenthesis sequence,
while segments� contribute a ).

Now partition the parenthesis expression for λ into pairs, in the usual way for pairing up
parentheses: each ( is paired with the first subsequent ) for which there are an equal number
of )s and (s in between.

Example. Continuing the last example, we illustrate the pairs by numbering the )s in increas-
ing order, and numbering each ( with the same number as its corresponding ):

¨ ¨ ¨ ( ( ( ( ) ( ) ) ( ( ) ) ( ) ) ) ¨ ¨ ¨

¨ ¨ ¨ 8 7 3 1 1 2 2 3 5 4 4 5 6 6 7 8 ¨ ¨ ¨

Remark. We remark that in [KW] and elsewhere, finite parenthesis expressions are used: in-
stead of appending infinite strings of ( and ) at the start and end of the expression obtained
from the partition, one appends sufficiently long finite strings that the resulting expression is
balanced, meaning that it contains equally many (s and )s, and that any initial segment con-
tains at least as many (s as )s. We find our convention more straightforward in the present
context, and translation between the two conventions is very easy.

Now we recall a definition from [KW]; it is phrased there in terms of finite Dyck paths, but
it is more convenient for us to phrase it in terms of partitions. Given two partitions λ, µ, write
λ

()
Ð µ if the parenthesis expression for λ can be obtained from that for µ by taking some of the

pairs ( ¨ ¨ ¨ ) and reversing them to get ) ¨ ¨ ¨ (.
With this definition, we can describe the connection to cover-expansive Dyck tilings. The

following proposition is not hard to prove, and we leave it as an exercise for the reader.

Proposition 5.13. Suppose λ, µ are partitions. Then λ
()
Ð µ if and only if λ Ě µ and there is a

cover-expansive Dyck tiling of λzµ.

Now we can describe the relationship between our results and those of Kenyon and Wilson.
Suppose f , g are positive integers as in Section 5.1, and define matrices N, P with rows and
columns indexed by P f ,g, and with

Nλµ “ p´1q|λ|`|µ| eλµ, Pλµ “ iλµ .

Then Theorems 5.2 and 5.4 show that N and P are mutual inverses. In fact, Kenyon and Wilson
prove this result, but in a slightly different form. They define a matrix M with Mλµ “ 1 if λ

()
Ð µ
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and 0 otherwise, and show (using a different recursion for iλµ from ours) that pM´1qλµ “

p´1q|λ|`|µ| iλµ [KW, Theorem 1.5]. In view of Proposition 5.13, we have Mλµ “ eλµ, and so the
main result of [KW] shows that Theorems 5.2 and 5.4 are equivalent. (There is another minor
difference with our results, in that instead of the set P f ,g of partitions lying inside a rectangle,
they consider the set of partitions lying inside a partition of the form pc, c´ 1, . . . , 1q; however,
one can easily show the equivalence of the two results by taking very large bounding partitions
and appropriate submatrices.)

Of course, using this result we could remove a lot of the work in this paper, but we prefer to
keep our proofs, thereby keeping our paper self-contained and providing a new (albeit longer)
proof of the main result of [KW].

We remark that Kim [Ki, §7] observes a q-analogue of the above result (for which he also
credits Konvalinka); in this, the integer iλµ is replaced with the polynomial

iλµpqq “
ÿ

TPI pλ,µq

q|T|,

where |T| denotes the number of tiles in the tiling T, and similarly for eλµ. It should be possible
to give a new proof of this result using our techniques: in our bijective results (Propositions 3.3–
3.8 and 4.6) it is easy to keep track of how the number of tiles in a tiling changes, so q-analogues
of our recursive results can easily be proved. Replacing the group algebra of the symmetric
group with the Hecke algebra of type A should enable q-analogues of Theorems 5.2 and 5.4 to
be proved, yielding a new proof of Kim’s and Konvalinka’s result. We leave the details to the
proverbial interested reader.

Another result from the literature relates to Theorem 5.10. To describe this relationship, we
give an alternative characterisation of the function F, for which we need another definition.
Given a partition λ, construct the parenthesis sequence of λ and divide it into pairs as above,
and define a partial order on the set of pairs by saying that the pair (

a
¨ ¨ ¨ )

a
is larger than the

pair (
b
¨ ¨ ¨ )

b
if the former is nested inside the latter: (

b
¨ ¨ ¨ (

a
¨ ¨ ¨ )

a
¨ ¨ ¨ )

b
. Call this partially ordered

set Ppλq.

Example. Continuing the last example and retaining the labelling for the pairs in the parenthe-
sis sequence for λ, we have the following Hasse diagram for Ppλq.

1 2 4

3 5 6

7

8

Now we have the following.
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Proposition 5.14. Suppose λ is a partition. Then Fpλq is the number of linear extensions of the poset
Ppλq.

A proof of this proposition was sketched by David Speyer in a response to the author’s
MathOverflow question [S]. In a comment to the same answer, Philippe Nadeau pointed out
that this provides a non-recursive expression for Fpλq. To state this, we let PNpλq denote the
poset obtained by taking the N largest elements of Ppλq. Then for large enough N the number
of linear extensions of Ppλq equals the number of linear extensions of PNpλq. Given a pair
p P Ppλq, define its length lppq to be 1 plus the number of intervening pairs. Now an easy
exercise [Kn, p.70, Exercise 20] gives the following.

Proposition 5.15. Suppose λ is a partition, and N " 0. Then the number of linear extensions of the
poset PNpλq equals

N!
ś

pPPNpλq
lppq

.

Example. Taking N “ 8 in the last example and labelling each pair by its length, we have

1 1 1

3 2 1

7

8

So Fpλq is the number of linear extensions of P8pλq, which is

8!
2ˆ 3ˆ 7ˆ 8

“ 120.

The author is very grateful to David Speyer and Philippe Nadeau for these comments (and
also to Gjergji Zaimi for similar comments in the same thread), which inspired the introduction
of Dyck tilings in the present work.

Given Theorem 5.4 and Proposition 5.14, Theorem 5.10 is equivalent to the following theo-
rem.

Theorem 5.16. Suppose λ is a partition and N " 0. Then

ÿ

µĎλ

iλµ “
N!

ś

pPPNpλq
lppq

.

This statement (in fact, a q-analogue) was conjectured by Kenyon and Wilson [KW, Con-
jecture 1]. It was proved inductively by Kim [Ki, Theorem 1.1], and then a bijective proof was
given by Kim, Mészáros, Panova and Wilson [KMPW, Theorem 1.1]. We retain our proof of
Theorem 5.10 to keep the paper self-contained (and so that Theorem 5.10 can be proved with-
out reference to tilings), and we note in passing that this yields a new proof of Theorem 5.16.
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6 The homogeneous Garnir relations

In this section we apply our earlier results to the study of representations of the (cyclo-
tomic) quiver Hecke algebras (also known as KLR algebras) of type A, and in particular the
homogeneous Garnir relations for the universal graded Specht modules of Kleshchev, Mathas and
Ram [KMR].

6.1 The quiver Hecke algebra

Suppose F is a field of characteristic p, e P t2, 3, 4, . . . u and n P N. The quiver Hecke algebra
Rn of type A is a unital associative F-algebra with a generating set

ty1, . . . , ynuY tψ1, . . . , ψn´1uY t epiq | i P pZ{eZqnu

and a somewhat complicated set of defining relations, which may be found in [BK] or [KMR],
for example. These relations allow one to write down a basis forRn: to do this, choose and fix
a reduced expression w “ ti1 . . . tir for each w P Sn, and set ψw “ ψi1 . . . ψir . Then the set

 

ψwyc1
1 . . . ycn

n epiq
ˇ

ˇ w P Sn, c1, . . . , cn > 0, i P pZ{eZqn
(

is a basis forRn.
The quiver Hecke algebra has attracted considerable attention in recent years, thanks to

the astonishing result of Brundan and Kleshchev [BK, Main Theorem] that when p does not
divide e, a certain finite-dimensional ‘cyclotomic’ quotient of Rn is isomorphic to the cyclo-
tomic Hecke algebra of type A (as introduced by Ariki–Koike [AK] and Broué–Malle [BM])
defined at a primitive eth root of unity in F; when e “ p, there is a corresponding isomorphism
to the degenerate cyclotomic Hecke algebra (which includes the group algebra FSn as a spe-
cial case). This in particular shows that these Hecke algebras (which include the group algebra
of the symmetric group) are non-trivially Z-graded, and has initiated the study of the graded
representation theory of these algebras.

A crucial role in the representation theory of Hecke algebras is played by the Specht mod-
ules. Brundan, Kleshchev and Wang [BKW] showed how to work with the Specht modules in
the quiver Hecke algebra setting, demonstrating in particular that these modules are graded.
Kleshchev, Mathas and Ram [KMR] gave a presentation for each Specht module with a single
generator and a set of homogeneous relations. These relations include ‘homogeneous Garnir
relations’; although these are in general simpler than the classical Garnir relations for ungraded
Specht modules (which go back to [G] in the symmetric group case), the expressions given for
these relations in [KMR] are quite complicated. The purpose of this section is to use the results
of the previous section to give a simpler expression for each homogeneous Garnir relation. In
computations with graded Specht modules using the author’s GAP programs, implementing
these simpler expressions has been observed to have some benefits in terms of computational
efficiency.

We now define the cyclotomic quotients of the quiver Hecke algebras and their Specht
modules. Choose a positive integer l, and an l-tuple pκ1, . . . , κlq P pZ{eZql . For each a P Z{eZ
define κpaq to be the number of values of j for which κj “ a, and define Rκ

n to be the quotient

of Rn by the ideal generated by the elements yκpi1q
1 epiq for all i P pZ{eZqn. We use the same

notation for the standard generators ofRn and their images inRκ
n.
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6.2 Row permutation modules and Specht modules

From now on, we stick to the case l “ 1, which corresponds to the Iwahori–Hecke algebra
of type A; there is no essential difference in the homogeneous Garnir relations for arbitrary
l, and we save on notation and terminology by restricting to this special case. We work only
with ungraded modules, since the grading plays no part in our results.

In the case l “ 1, the Specht modules (by which we mean the row Specht modules of [KMR,
§5.4]) are labelled by partitions. For the sake of alignment with the rest of the literature, we
now change to using the English convention for Young diagrams in this section, where the first
coordinate increases down the page and the second increases from left to right.

Suppose π is a partition of n. If pa, bq is a node, its residue is defined to be resppa, bqq “
b´ a` κ1 pmod eq. A π-tableau is a bijection from the Young diagram of π to the set t1, . . . , nu.
We specify a particular π-tableau Tπ by assigning the numbers 1, . . . , n to the nodes

p1, 1q, p1, 2q, . . . , p1, π1q, p2, 1q, p2, 2q, . . . , p2, π2q, p3, 1q, p3, 2q, . . .

in order. For example, when π “ p6, 4, 12qwe have

Tπ “

1 2 3 4 5 6
7 8 9 10
11
12

.

We define an element iπ of pZ{eZqn by setting iπ
j “ resppTπq´1pjqq. For example, with π “

p6, 4, 12q, e “ 4 and κ1 “ 0, iπ is the sequence p0, 1, 2, 3, 0, 1, 3, 0, 1, 2, 2, 1q.
Now we can define the row permutation module Mπ from [KMR, §5.3]. This has a single

generator mπ, and relations as follows:

• epiπqmπ “ mπ;

• yjmπ “ 0 for all j;

• ψjmπ “ 0 whenever j and j` 1 lie in the same row of Tπ.

It is easy to write down a basis for Mπ. Say that a π-tableau T is row-strict if the entries
increase from left to right along the rows. If T is row-strict, let wT be the permutation tak-
ing Tµ to T, and define ψT :“ ψwT , and mT “ ψTmπ. Then by [KMR, Theorem 5.6] the set
 

mT
ˇ

ˇ T a row-strict π-tableau
(

is a basis for Mπ.
The Specht module Sπ is the quotient of Mπ by the homogeneous Garnir relations, which

we now define. Say that a node n “ pa, bq of π is a Garnir node if pa` 1, bq is also a node of π. If
n is a Garnir node, define the Garnir belt Bn to be the set of nodes

tpa, bq, pa, b` 1q, . . . , pa, πaq, pa` 1, 1q, pa` 1, 2q, . . . , pa` 1, bqu.

The Garnir tableau Gn is the tableau defined by taking Tπ and rearranging the entries within
Bn so that they increase from bottom left to top right. For example, with π “ p6, 4, 12q and
n “ p1, 3q, the tableau Gn (with the Garnir belt Bn shaded) is as follows.

1 2 6 7 8 9
3 4 5 10

11
12
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Now we define bricks: an n-brick is defined to be a set of e consecutive nodes in the same row
of Bn of which the leftmost has the same residue as n. For example, take π “ p6, 4, 12q and
n “ p1, 3q as above. If e “ 2, then the bricks are

tp1, 3q, p1, 4qu, tp1, 5q, p1, 6qu, tp2, 2q, p2, 3qu,

while if e “ 3 the bricks are

tp1, 3q, p1, 4q, p1, 5qu, tp2, 1q, p2, 2q, p2, 3qu.

Let f denote the number of bricks in row a and g the number of bricks in row a` 1, and set
k “ f ` g. If k ą 0, let d “ dn be the smallest number which is contained in a brick in Gn, and
for 1 6 i ă k define wi to be the permutation

pd` ie´ e, d` ieqpd` ie´ e` 1, d` ie` 1q . . . pd` ie´ 1, d` ie` e´ 1q,

Recalling the notation ψw for w P Sn from above, set σn
i “ ψwi ; unlike the situation for arbitrary

w, ψwi does not depend on the choice of reduced expression for wi. Also set τn
i “ σn

i ` 1.

Remark. In the definition [KMR, (5.7)], the elements τn
i , σn

i include an idempotent epinq as a
factor in order to make them homogeneous; but this factor is unnecessary for our purposes, so
we prefer the simpler version.

Now let Tn be the tableau obtained from Gn by re-ordering the bricks so that their entries
increase along row a and then row a` 1.

Continuing the example above, we illustrate the tableau Tn for e “ 2, 3, shading the Garnir
belt and outlining the bricks:

Tn “

1 2 4 5 6 7
3 8 9 10
11
12

if e “ 2, Tn “

1 2 3 4 5 9
6 7 8 10
11
12

if e “ 3.

Define ψTn as above; as noted in [KMR, §5.4], ψTn is independent of the choice of reduced
expression for wTn .

Now we define elements of Rκ
n corresponding to the elements tλ and sλ of FSk defined in

Section 5. For λ P P f ,g, define

τn
λ “

´

τn
λ1`gτn

λ1`g`1 . . . τn
f`g´1

¯´

τn
λ2`g´1τn

λ2`g . . . τn
f`g´2

¯

. . .
´

τn
λg`1τn

λg`2 . . . τn
f

¯

,

and define σn
λ similarly. Then the elements σn

λψTn are precisely the elements ψT for row-strict
tableaux T obtained from Gn by permuting the bricks.

Now we can define the homogeneous Garnir relations and the Specht module. Given a
Garnir node n, the corresponding Garnir element is

gn “
ÿ

λPP f ,g

τn
λψTn .

The Specht module Sπ is defined to be the quotient of Mπ by the relations gnmπ “ 0 for all
Garnir nodes n of π.
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6.3 Re-writing the Garnir relations

The difficulty with the definition of the Specht module given above, especially from a com-
putational point of view, is that the individual terms τn

λψTnmπ appearing in the Garnir relation
are not readily expressed in terms of the standard basis

 

mT
ˇ

ˇ T row-strict
(

for Mπ; to express
it in these terms, some quite involved reduction is required using the defining relations inRn.

Example. Take π “ p11, 5, 3, 1q, n “ p1, 5q and e “ 3. Then we have f “ 2, g “ 1, and

σn
1 “ ψ9ψ8ψ7ψ10ψ9ψ8ψ11ψ10ψ9, σn

2 “ ψ12ψ11ψ10ψ13ψ12ψ11ψ14ψ13ψ12,

while ψTn “ ψ6ψ5ψ7ψ6ψ8ψ7ψ9ψ8ψ10ψ9ψ11ψ10ψ15ψ14ψ13ψ12ψ11. Hence the Garnir element gn is
´

τn
∅` τn

p1q` τn
p2q

¯

ψTn “ ppσn
1 ` 1q pσn

2 ` 1q` pσn
2 ` 1q` 1qψTn

“ pσn
1 σn

2 ` σn
1 ` 2σn

2 ` 3qψTn .

A non-trivial calculation using the defining relations for Rn and the fact that mπ is killed by
ψ5, ψ6 and ψ7 shows that σn

1 ψTnmπ “ 0. Hence

gnmπ “

´

σn
∅` 2σn

p1q` 3σn
p2q

¯

ψTnmπ “ mGn ` 2mU` 3mTn ,

where

Gn “

1 2 3 4 10 11 12 13 14 15 16
5 6 7 8 9
17 18 19
20

,

U “

1 2 3 4 7 8 9 13 14 15 16
5 6 10 11 12

17 18 19
20

,

Tn “

1 2 3 4 7 8 9 10 11 12 16
5 6 13 14 15

17 18 19
20

.

We wish to generalise the above example, to re-write gnmπ for an arbitrary Garnir node n
as a linear combination of elements σn

λψTnmπ. Fortunately, all the computations that we need
with the defining relations forRn have already been done in [KMR].

Given a Garnir node n of π, define the brick permutation space Tπ,n to be the F-subspace of
Mπ spanned by all elements of the form σn

i1 . . . σn
is

ψTnmπ. Then the σn
i , and hence the τn

i , act on
Tπ,n, and we have the following.

Theorem 6.1 [KMR, Theorem 5.11]. As operators on Tπ,n, the elements τn
1 , . . . , τn

k´1 satisfy the Cox-
eter relations for the symmetric group Sk, and hence Tπ,n can be considered as an FSk-module. In fact,
as an FSn-module Tπ,n is isomorphic to the Young permutation module M p f ,gq, with an isomorphism
given by mapping ψTnmπ to the standard generator m.
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By Theorem 6.1 and the discussion at the start of Section 5, the sets
!

τn
λψTnmπ

ˇ

ˇ

ˇ
λ P P f ,g

)

and
!

σn
λψTnmπ

ˇ

ˇ

ˇ
λ P P f ,g

)

are F-bases of Tπ,n. Theorems 5.2 and 5.4 give the transition coefficients between these bases,
while Theorem 5.10 gives the sum of the elements of the first basis in terms of the second basis.
So we can immediately deduce the following, which is the main result of this section.

Theorem 6.2. Suppose π is a partition and n “ pa, bq is a Garnir node of π, and let f , g denote the
numbers of bricks in rows a and a` 1 of Bn respectively. Define σn

λ and τn
λ for λ P P f ,g as above, and

define the modified Garnir element

ĝn “
ÿ

λPP f ,g

Fpλqσn
λψTn .

Then:

1. σn
µψTnmπ “

ř

λPP f ,g
p´1q|λ|`|µ| eλµ τn

λψTnmπ;

2. τn
µ ψTnmπ “

ř

λPP f ,g
iλµ σn

λψTnmπ;

3. ĝnmπ “ gnmπ.

Hence the Specht module Sπ is the quotient of Mπ by the relations ĝnmπ “ 0 for all Garnir nodes n of
π.

Remarks.
1. Statements (1) and (2) in the theorem are not necessary for the Garnir relations, but may

be of interest for computation in the row permutation modules; indeed, the coefficients
in (1) are essentially the coefficients cw appearing in [KMR, Corollary 5.12].

2. We emphasise that the identities in Theorem 6.2 are not true if the terms mπ are omitted;
in general, τn

µ is not a linear combination of σn
λs (even if the idempotent epinq from [KMR,

(5.7)] is reinstated in the definition of σn
i and τn

i ).

We end with an example which illustrates how the Garnir relations are used in Specht
module computations. Say that a π-tableau is standard if the entries are increasing both along
the rows and down the columns. If we let vT denote the image of mT in the Specht module, then
by [KMR, Corollary 6.24] the set

 

vT
ˇ

ˇ T a standard π-tableau
(

is a basis for Sπ. The Garnir
relations allow one to write vT as a linear combination of this basis when T is a row-strict, but
not standard, tableau. The foundation for this is [KMR, Lemma 5.13] which does this in the
case where T “ Gn for a Garnir node n.

For our example, take π “ p8, 4q and e “ 2. Let n “ p1, 4q. Then f “ g “ 2, and

Gn “
1 2 3 8 9 10 11 12
4 5 6 7 .

As with any Garnir node, Gn is row-strict but not standard. The modified Garnir element is

ĝn “
´

σn
∅` 2σn

p1q` 3σn
p2q` 3σn

p12q` 6σn
p2,1q` 6σn

p22q

¯

ψTn ,
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and the corresponding Garnir relation yields

vG
n
“ ´2vU´ 3vV´ 3vW´ 6vX´ 6vY,

where U, V, W, X, Y are standard tableaux that we describe as follows. We represent the elements
ψU, ψV, ψW, ψX, ψY using the braid diagrams of Khovanov and Lauda [KL]; by using shaded
squares, we illustrate (reverting to the Russian convention!) how the labelling partitions λ P
P2,2 arise.

Gn “
1 2 3 8 9 10 11 12
4 5 6 7 , ψGn “ σn

∅ψTn “

U “
1 2 3 6 7 10 11 12
4 5 8 9 , ψU “ σn

p1qψ
Tn “

V “
1 2 3 6 7 8 9 12
4 5 10 11 , ψV “ σn

p2qψ
Tn “

W “
1 2 3 4 5 10 11 12
6 7 8 9 , ψW “ σn

p12qψ
Tn “

X “
1 2 3 4 5 8 9 12
6 7 10 11 , ψX “ σn

p2,1qψ
Tn “

Y “
1 2 3 4 5 6 7 12
8 9 10 11 , ψY “ σn

p22qψ
Tn “
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