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Real-time Bayesian parameter estimation for
item response models

Ruby Chiu-Hsing Weng1 and D. Stephen Coad2

National Chengchi University, Taipei, Taiwan1

Queen Mary, University of London, UK2

Abstract. Bayesian item response models have been used in modelling educational
testing and Internet ratings data. Typically, the statistical analysis is carried out
using Markov Chain Monte Carlo methods. However, these may not be compu-
tationally feasible when real-time data continuously arrive and online parameter
estimation is needed. We develop an efficient algorithm based on a deterministic
moment-matching method to adjust the parameters in real-time. The proposed
online algorithm works well for two real datasets, achieving good accuracy but
with considerably less computational time.

Keywords: Bayesian inference; deterministic method; moment matching; online
algorithm; Woodroofe-Stein’s identity.

1 Introduction

Markov Chain Monte Carlo (MCMC) methods have revolutionized statistical comput-
ing in the past two decades. The developments in MCMC algorithms and software have
enabled the use of Bayesian inference for item response theory (IRT) models in psy-
chological and educational studies. For example, Johnson and Albert (1999) described
Gibbs sampling methods for Normal Ogive (or Probit) IRT models; Patz and Junker
(1999) developed a Metropolis-Hastings sampling method and illustrated it using the
two-parameter logistic (2PL) IRT model; Fox and Glas (2001) proposed Gibbs sampling
for multilevel IRT models; Ho and Quinn (2008a) fit a Bayesian ordinal item response
theory (IRT) model via MCMC techniques for Internet ratings data, where the data
are typically ordinal measurements on the quality of all kinds of items such as movies,
consumer products, and so on; and Martin and Quinn (2002) and Wang et al. (2013)
presented the MCMC strategy for dynamic item response models. For a brief survey of
developments in item response modeling from a Bayesian perspective, see Albert (2015).

An MCMC method is a sampling, or nondeterministic, approach for implement-
ing Bayesian inference. It is simple and often works well, even for complex models,
but requires considerable computation. Take the ordinal IRT model in Ho and Quinn
(2008a) for illustration: this model has advantages over traditional average ratings by
accounting for the rater bias and item quality, but fitting the model by MCMC methods
may not be feasible for large-scale real-time data. Indeed, for such a scenario, Ho and
Quinn (2008a, Section 5) commented on the possible use of efficient deterministic ap-
proximation algorithms. The present paper aims to fill this gap by proposing an online
deterministic algorithm for Bayesian parameter adjustment of the ordinal IRT models.
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2 Real-time Bayesian estimation

Online methods arise in several areas including statistics, machine learning, and
control literature; see, for instance, Robbins and Monro (1951), Rosenblatt (1958), and
Maybeck (1982). As opposed to an offline algorithm which processes the entire data
at once, an online algorithm learns about one piece of data at a time and discards it
after learning. On the one hand, since online algorithms do not see the entire data in
advance, they often perform worse than their offline counterparts. On the other hand,
online methods require less memory and have advantages when dealing with very large
real-time data. In recent years, there has been a growing interest in online algorithms
due to the emergence of large-scale Internet data. We refer to Saad (1998), Shalev-
Shwartz (2011), and the references therein, for an overview of online methods.

Deterministic methods are useful alternatives to MCMC ones for Bayesian inference.
Deterministic approaches such as variational Bayes (Bishop 2008), expectation propaga-
tion (Minka 2001), and so on, are popular machine learning methodologies. They have
been widely used by computer scientists to solve large data problems. Recently, the
statistical community has devoted more attention to these methods; see, for example,
Rue et al. (2009), Faes et al. (2011), Hall et al. (2011), among others. Variational Bayes
methods are a family of techniques that try to give a lower bound for the marginal
likelihood and provide an analytical approximation to the posterior distribution of the
unobserved variables. Expectation propagation is an extension to assumed-density fil-
tering (Maybeck (1982), Boyen and Koller (1998); also called “moment matching”)
and a general deterministic method that approximately minimizes the Kullback-Leibler
divergence between the exact distribution p and its approximation q:

KL(p|q) =

∫
p(x) log

[
p(x)

q(x)

]
dx.

With the constraint that q is in the Gaussian family, the solution follows from moment
matching, or expectation constraints:

Ep(X) = Eq(X) and Ep(X
2) = Eq(X

2).

It can be viewed as a variation of the extended Kalman filter, a popular sequential
method for inference in dynamic systems that approximately updates the first two
moments of the state distribution. Herbrich et al. (2007) employed the expectation
propagation technique to develop TrueSkillTM, the online ranking system for Xbox
Live.

Recently, Weng and Lin (2011) proposed a new deterministic moment-matching
approach based on a version of Stein’s identity and exact calculation of certain inte-
grals. When applying it for online ranking of players, the accuracy is comparable to
TrueSkillTM, but the running time as well as the code are much shorter. This approach
has been used in other applications. For example, Wistuba et al. (2012) modified it for
move prediction in Computer Go and obtained promising experimental results; Chen
et al. (2013) applied it to obtain an efficient online Bayesian ranking scheme in a crowd-
sourced setting. All these are within the models of ranked data.

The present paper extends the moment matching in Weng and Lin (2011) to IRT
models. We begin by observing that, similar to the models for ranked data, IRT models
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often model the outcomes by normal or logistic distributions, though these can be more
complicated. Next, we obtain online algorithms to adjust the parameters in certain
ordinal IRT models, where the parameters may be allowed to be time-varying. Then
we demonstrate the effectiveness of the proposed algorithm through two real datasets.
Our experiments show that the proposed real-time estimation method works well for
100,000 ratings collected over time.

The organization of the paper is as follows. In Section 2, we introduce the motivating
examples, review IRT models, and comment on parameter estimation. In Section 3, we
describe the approximation method. Section 4 develops online algorithms. Section 5
presents experiments on simulated and real datasets. Section 6 concludes.

2 Online product ratings and IRT models

2.1 Motivating examples

Online consumer product ratings are growing rapidly and they play an increasingly
important role in consumers’ purchase decisions. For example, Chevalier and Mayzlin
(2006) found a positive relationship between consumer book ratings and book sales;
Liu (2006) showed that both positive and negative reviews of a movie increase its box
office revenue. Here we discuss the statistical analysis of online ratings. Two online
ratings datasets are considered: the ratings of news outlets from Mondo Times (http:
//www.mondotimes.com/) used in Ho and Quinn (2008a), and the ratings of movies
from GroupLens Research Project at the University of Minnesota (http://movielens.
umn.edu).

Mondo Times is an online company that disseminates information from over 33,000
media outlets, including newspapers, television stations, and so on, in 213 countries. The
registered members can submit five-point ratings of the content quality of news outlets
from 1=awful, 2=poor, 3=average, 4=very good, to 5=great. The dataset presented in
Ho and Quinn (2008a) consists of 4,511 ratings on 1,515 products (news outlets) from
946 raters, available from their Ratings package (available at http://cran.r-project.
org/). The average number of ratings for a product is 3.0(= 4, 511/1, 515) and the
average number rated by a rater is 4.8(= 4, 511/946).

The movie ratings data were collected through the MovieLens web site during the
seven-month period from September 19th, 1997, to April 22nd, 1998. This dataset
consists of 100,000 movie ratings from 943 users on 1,682 movies. The ratings are also on
a scale of 1 to 5. The average number of ratings for a product is 59.5(= 100, 000/1, 682),
the average number rated by a rater is 106.0(= 100, 000/943), and each user has rated
at least 20 movies.

These online product ratings data are characterized by having numerous products
and raters, and each rater only rates a small proportion of the products. For the Mondo
Times data, the missing rate is 1 − 4, 511/(946 × 1, 515) ≈ 0.997; for the MovieLens
data, it is 1− 100, 000/(943× 1, 682) ≈ 0.937. So, the rater-product matrix of ratings is
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sparse. The ratings data are typically displayed by a number of stars that represent the
mean rating of a product. Ho and Quinn (2008a) pointed out some potential problems
with such displays. First, it does not take into account raters’ rating behavior; for
instance, some may be more inclined to use high or low ratings, while some may use all
the rating categories. Weighting all raters equally may bias the results. Second, with
just a number of stars for the mean rating, it lacks a measure of statistical uncertainty.
To address these problems, Ho and Quinn (2008a) proposed some graphical displays
based on an ordinal IRT model, which can incorporate statistical uncertainty in the
ratings and adjust for rater-specific factors. In the next subsection, we review some
IRT models that are relevant to the present paper.

2.2 The IRT models

IRT models have been widely used in modeling dichotomously and polytomously scored
data from educational tests; see van der Linden and Hambleton (2013) and De Ayala
(2013).

Example 1: Basic IRT. The basic one-parameter IRT model is for analyzing di-
chotomously scored test data. It is based on the idea that the probability of a correct
response to a test item is a function of the examinee’s ability and the item’s difficulty.
The model has the form

P (Yij = 1|θi, βj) = F (θi − βj), (1)

where the item response variable Yij = 0 or 1, corresponding to whether the response
to the jth item taken by the ith person is correct or not, θi represents the ability
parameter of the ith person, βj represents the difficulty parameter of the jth test item,
and the item response function F (·) is a cumulative distribution function (c.d.f.) from
a continuous distribution. Model (1) becomes the Rasch model (Rasch 1961) when F (·)
is the standard logistic c.d.f., and the Normal Ogive (or Probit) model when F (·) is the
standard normal c.d.f.

Example 2: Ordinal IRT. Samejima (1969) introduced the graded response model to
analyze ordered polytomous data. Let Yij denote the score of the ith person on item j.
The model specifies the probability of the ith person responding in category c or higher
on item j as

P (Yij ≥ c|βj , θi, δj,c) = F (βj(θi − δj,c)),

where θi is the proficiency of the ith person, βj is the discrimination parameter for
item j, δj,c is the item response parameter for item j and category c, c = {0, 1, ..., Cj},
and F (·) is the c.d.f. of a logistic or a normal distribution. Muraki (1990) proposed a
modified graded response model suitable for Likert-type data in which the categories
are {1, 2, ..., C} for all items. This model resolved the item response parameter δj,c
into the item location parameter αj and the category threshold parameter dc−1, where
d0 = −∞; that is,

P (Yij ≥ c|βj , θi, αj , dc−1) = F (βj(θi + αj − dc−1)). (2)
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Ho and Quinn (2008a) proposed the following ordinal IRT model to fit online product
ratings data. To begin, let Yij ∈ {1, 2, ..., C} denote the rating of product i by rater j.
They assume that the observed Yij is determined by an unobserved variable Y ∗ij :

Yij = c⇔ Y ∗ij ∈ (γc−1, γc], (3)

where the γc are cutpoints, γ0 = −∞, γC =∞, and Y ∗ij is parameterized as

Y ∗ij = αj + βjθi + εij , εij
iid∼ N(0, 1). (4)

In (4), αj captures the center location of rater j’s rating, βj is assumed positive (to
identify the sign of θi) and it measures how well rater j discriminates between low and
high quality, and θi represents the latent quality of product i. By (3), the probability
of observing Yij in category c or higher is

P (Yij ≥ c|αj , βj , θi, γc−1) = Φ(βjθi + αj − γc−1). (5)

Note that εij in (4) follows either the normal or the logistic distribution. We observe
that model (5) is a variation of the graded response model and that it closely resembles
(2), but they differ in the parameterization of the item location and category threshold
parameters.

Example 3: Dynamic IRT. Many authors have proposed the dynamic IRT model
to capture the changes in a person’s ability over time; for example, Embretson (1991),
Martin and Quinn (2002), Wang et al. (2013), among others. The simplest case has the
form:

System equation: θi,t = θi,t−1 + wi,t, (6)

Observation equation: P (Yi,j,t = 1|θi,t, βj) =
exp(θi,t − βj)

1 + exp(θi,t − βj)
, (7)

where θi,t is the current ability of the ith person, θi,t−1 is the ability at the previous
time point, wi,t represents the random change in ability as in all linear dynamic models,
and Yi,j,t = 1 if the ith person answered correctly on day t for test item j.

For fitting a modified graded response model to product ratings data, the temporal
changes in θi represent the evolution of product perception and popularity. Moreover,
it is sensible that the raters’ inclinations (αj , βj) may change gradually. For example,
see Koren et al. (2009) for modeling temporal effects for both products and raters in
the context of movie ratings. We shall consider models with time-varying coefficients in
Section 4.2.

2.3 Parameter estimation

There are maximum likelihood procedures for item parameters in IRT models; for ex-
ample, joint maximum likelihood, conditional maximum likelihood, and marginal max-
imum likelihood. For a detailed account of these methods, see Bock and Aitkin (1981),
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Molenaar (1995), and the references therein. Albert (1992) and Kim (2001) found that
the IRT parameter estimates using the maximum likelihood methods and the Gibbs
sampling method with non-informative priors are similar.

Although the maximum likelihood methods for IRT models could give good param-
eter estimates in many cases, to the best of our knowledge, these estimation procedures
under large sparse data matrices have not been fully considered in the literature. In fact,
there could be some potential problems. First, the maximum likelihood estimate may
not be unique. For the Mondo Times data, many raters give very few ratings and many
items received very few ratings. Specifically, among the 946 raters, 410 rate just one
item, and 138 rate exactly two items; among 1,515 items, 777 received just one rating,
and 326 received just 2 ratings. The histograms for “number of items rated by a rater”
and “number of ratings an item receives” are given in Figure 1. However, for the ordinal
IRT model (4) in Section 2.2, each rater is associated with an intercept parameter and a
slope parameter; from (4), it is not difficult to see that these two parameters can not be
uniquely determined if a rater only rates one item. Second, obtaining the standard error
estimates for the model parameters involves solving the inverse of a large Hessian matrix
of the log-likelihood. For the Mondo Times data, the matrix is about 3, 500 × 3, 500.
Even if the inverse exists, the computation may be burdensome, especially in an online
setting. Ho and Quinn (2008a) proposed some graphical displays based on an ordinal
IRT model, which can incorporate statistical uncertainty in the ratings and adjust for
rater-specific factors. Their MCMC approach fits well for offline data; however, it may
not be viable for large-scale real-time data.
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Figure 1: Histograms.

3 The approximation method

In what follows, let φ and Φ denote the density and distribution function of a standard
normal variable, and let φ(x|µ, σ) denote the density of the normal distribution with
mean µ and standard deviation σ.
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3.1 Moment equations

The proposed method is based on the moment equations (9) and (10) obtained from
a version of Stein’s identity. Stein’s lemma (Stein 1981) concerns the expectation of a
normally distributed random variable. The lemma is famous and of interest primarily
because of its applications to the James-Stein estimator (James and Stein 1961) and to
empirical Bayes methods.

In the context of deriving sequential confidence levels, Woodroofe (1989) studied inte-
grable expansions for posterior distributions and developed a variant of Stein’s identity.
It concerns the expectation with respect to a distribution of the form p(z) = φ(z)f(z),
where f is defined on Rp. The degree of smoothness of f governs the order of the
expansion. A motivation for considering such a distribution comes from large-sample
theory: many suitably normalized quantities are asymptotically normally distributed
and may be written in this form; therefore, by studying expectations with respect to it,
one can possibly refine the normal approximation. Weng and Lin (2011) referred to this
identity as Woodroofe-Stein’s identity to distinguish it from Stein’s lemma, and used
the identity to obtain a Bayesian approximate moment-matching method.

As the identity involves complex notation, here we describe only some results nec-
essary for the proposed online method. For a detailed account of the identity, we refer
readers to Woodroofe and Coad (1997, Proposition 2) and Weng and Lin (2011, Corol-
lary 2); see also Weng (2010, 2015) for some extensions. Let ψ∗ = (ψ∗1 , . . . , ψ

∗
p)′ be a

vector of parameters whose posterior density takes the form

Cφ(ψ∗)f(ψ∗), (8)

where the dependence on the data is suppressed in the notation and

C =

(∫
φ(ψ∗)f(ψ∗)dψ∗

)−1
,

the normalizing constant. Further suppose that f is a twice continuously differentiable
function. An application of Woodroofe-Stein’s identity gives the following:

E(ψ∗) = E

(
∇f(ψ∗)

f(ψ∗)

)
, (9)

E(ψ∗i ψ
∗
q ) = δiq + E

[
∇2f(ψ∗)

f(ψ∗)

]
iq

, i, q = 1, . . . , k, (10)

provided the expectations on both sides of (9) and (10) exist, where δiq = 1 if i = q and
0 otherwise, and [·]iq indicates the (i, q) entry of a matrix.

From (9) and (10), the mean and variance of ψ∗i are

E(ψ∗i ) =E

(
∂ log f(ψ∗)

∂ψ∗i

)
, (11)

V ar(ψ∗i ) =E((ψ∗i )2)− E(ψ∗i )2 = 1 + E

[
∂2f/∂(ψ∗i )2

f

]
−
[
E

(
∂ log f

∂ψ∗i

)]2
. (12)
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On the right-hand side of (9)-(12), we note that the terms inside the brackets do not
involve the normalizing constant C, which is often intractable.

3.2 A Bayesian moment-matching scheme

In the context of inferring individual skills from group comparisons, Weng and Lin
(2011) proposed a two-step method where the first step approximates team skills and
the second step relates the individual skill update to the team skill update. Both steps
make use of the moment equations (9) and (10). Since the present paper shall exploit
and extend the first step, below we briefly review this step. To begin, consider the paired
comparison case where the strength parameter of player i is denoted as ψi. Assume that
ψi follows N(µi, σ

2
i ), as in online rating systems such as Glicko (Glickman 1999) and

TrueSkill (Herbrich et al. 2007). Next, upon observing the game outcome D (i beats j),
update the skill as N(µnew

i , (σ2
i )new), where µnew

i and (σ2
i )new are the posterior mean and

variance of ψi derived from the joint posterior distribution of (ψi, ψj). Then the µnew
i

and (σ2
i )new are viewed as the prior information for the next game, and the updating

procedure repeats. The paired comparison data are often modeled as

P (i beats j) = P (Xi −Xj > 0), (13)

where the Xi are unobserved actual performance. When Xi − Xj follows the nor-
mal distribution, (13) corresponds to the Thurstone-Mosteller model (Thurstone 1927),
whereas, when Xi−Xj follows the logistic distribution, (13) becomes the Bradley-Terry
model.

Now assume that the actual performance Xi follows N(ψi, η
2
i ) with ψi ∼ N(µi, σ

2
i ).

So, ηi represents the uncertainty in the actual performance, while σi represents the prior
uncertainty in ψi. Let µ = (µi, µj)

′, σ = (σi, σj)
′, and ψ∗ = (ψ∗i , ψ

∗
j )′ with

ψ∗i = (ψi − µi)/σi. (14)

Then the posterior density of ψ given the game outcome D (i beats j) is

p(ψ|D) ∝ φ(ψ)f(ψ∗) = φ(ψ)Φ

(
ψi − ψj

η̄

)
, (15)

where η̄ = (η2i + η2j )1/2. By (11), (14) and the chain rule, we have

E(ψi|D) = µi + E

(
σi

∂

∂ψ∗i
log f(ψ∗)

∣∣∣D) . (16)

Weng and Lin (2011, Section 3.2) proceeded to show that one may evaluate the expec-
tation on the right-hand side of (16) at ψ∗ = 0 and then correct the approximation by
a scaling factor; that is, by letting

g(µ,σ, η̄) = σi
∂

∂ψ∗i
log f(ψ∗)

∣∣∣
ψ∗=0

= σ2
i

∂

∂ψi
log f(ψ∗)

∣∣∣
ψ=µ

, (17)
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it is shown that

E(ψi|D) = µi + g(µ,σ, cη̄), (18)

where c is a scaling factor for which

cη̄ = (η̄2 + σ2
i + σ2

j )1/2. (19)

The posterior variance can be expressed similarly: first, (12), (14) and the chain rule
give

V ar(ψi|D) = σ2
i

[
1 + E

(
∂2f/∂(ψ∗i )2

f(ψ∗)

∣∣∣D)− (E (∂ log f(ψ∗)

∂ψ∗i

∣∣∣D))2
]

; (20)

then, letting

h(µ,σ, η̄) = −

[(
∂2f/∂(ψ∗i )2

f(ψ∗)

∣∣∣
ψ∗=0

)
−
(
∂ log f(ψ∗)

∂ψ∗i

∣∣∣
ψ∗=0

)2
]

= − ∂2

∂(ψ∗i )2
log f(ψ∗)

∣∣∣
ψ∗=0

= −σ2
i

∂2

∂ψ2
i

log f(ψ∗)
∣∣∣
ψ=µ

, (21)

one can show that

V ar(ψi|D) = σ2
i (1− h(µ,σ, cη̄)). (22)

The idea of using a scaling factor to improve an estimate is not new; see, for instance,
Spiegelhalter and Lauritzen (1990, Section 4.3) and MacKay (1992, Section 2.1) in the
context of logistic regression.

One may incorporate the time-varying strengths into the approximation technique
described above. The very idea of modeling time-varying strengths for players of games
has appeared in Glickman (1999), Glickman and Stern (1998), Dangauthier et al.
(2008), and the references therein. Specifically, assume that individual i’s strength
has been updated from outcomes at time t−1 (measurement update), and the strength
is distributed as ψi,t−1 ∼ N(µi, σ

2
i ); and assume that the ability follows a Gaussian

drift ψi,t = ψi,t−1 + wi,t, where wi,t ∼ N(0, ν2) for some ν > 0. Then integrat-
ing the distribution of ψi,t|ψi,t−1 with respect to the prior distribution of ψi,t−1 gives
ψi,t ∼ N(µi, σ

2
i + ν2) (time update), which is considered as the prior information for

the test taken at time t.

4 Online inference of IRT models for Likert-type data

For the basic one-parameter IRT models (1), if the item response function F is taken as
the standard logistic or normal c.d.f., then it is not difficult to derive real-time parameter
adjustment by modifying Algorithms 1 and 3 in Weng and Lin (2011).

Our primary interest here are online inference for models (2) and (5), designed
for Likert-type data. We assume that each αj follows N(µαj , σ

2
αj ), each βj follows
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N(µβj , σ
2
βj

), and each θi follows N(µθi , σ
2
θi

) with all parameters mutually independent.
Now define the normalized quantities

α∗j =
αj − µαj
σαj

, β∗j =
βj − µβj
σβj

, θ∗i =
θi − µθi
σθi

. (23)

The posterior distribution of (α∗j , β
∗
j , θ
∗
i ) given yij = c is

p(α∗j , β
∗
j , θ
∗
i |yij) ∝ φ(α∗j , β

∗
j , θ
∗
i )f(α∗j , β

∗
j , θ
∗
i ), (24)

where f is the likelihood based on data yij = c. Note that (24) is of the form (8).
Therefore, one can apply (11), (12) and (23) to derive expressions similar to (18) and
(22) for αj , βj , θi.

4.1 Sequential update

This subsection presents the sequential update rule when f in (24) is from (5) and
comments on how similar procedures can be applied when f is as (2).

For model (5), the posterior distribution of (α∗j , β
∗
j , θ
∗
i ) given yij = c is (24) with

f(α∗j , β
∗
j , θ
∗
i ) = Φ(βjθi + αj − γc−1)− Φ(βjθi + αj − γc). (25)

The above line resembles f in (15), yet η̄ in (15) is 1 here. The proposed estimates for
the posterior means and variances are

µ̃αj = µαj +

(
σ2
αj

ν

)
· Ω
(µx
ν
,
a

ν

)
, σ̃2

αj = σ2
αj

{
1−

(σαj
ν

)2
·∆
(µx
ν
,
a

ν

)}
, (26)

µ̃βj = µβj +

(
σ2
βj
µθi
ν

)
· Ω(

µx
ν
,
a

ν
), σ̃2

βj = σ2
βj

{
1−

(σβjµθi
ν

)2
·∆
(µx
ν
,
a

ν

)}
, (27)

µ̃θi = µθi +

(
σ2
θi
µβj
ν

)
· Ω(

µx
ν
,
a

ν
), σ̃2

θi = σ2
θi

1−

(
σ2
θi
µβj
ν

)2

·∆
(µx
ν
,
a

ν

) , (28)

where

µx = µβjµθi + µαj − γc−1 and a = γc − γc−1, (29)

Ω(µx, a) =
φ(µx)− φ(µx − a)

Φ(µx)− Φ(µx − a)
,

∆(µx, a) =
µxφ(µx)− (µx − a)φ(µx − a)

Φ(µx)− Φ(µx − a)
+

(
φ(µx)− φ(µx − a)

Φ(µx)− Φ(µx − a)

)2

,

(30)

ν =
√

1 + σ2
αj + σ2

βj
µ2
θi

+ σ2
θi
µ2
βj
. (31)

The scalar ν plays the same role as cη̄ in (19), and is derived by approximate calculation
of a triple integral. The detailed derivations of the above equations are relegated to
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Appendix 1. Since the variance approximations in (26)-(28) may be negative, in the
algorithm below we set a small positive lower bound κ in (38)-(40) to avoid a negative
variance.

The proposed algorithm is described in Algorithm 1. Clearly, from (37), if a rater r
is not discriminating (so µβj ≈ 0), then his/her rating has little effect on µθi ; similarly,

from (36), if µθi ≈ 0, then a rating on it has little effect on µβj .

For the unknown cutpoints γ = (γ1, ..., γC−1)′, we propose to estimate them through
the distribution of y∗ij in (4) and the relation {yij = c} ⇔ {y∗ij ∈ (γc−1, γc]} in (3); the
details are in Section 5.2.

Algorithm 1 Online parameter update for ordinal IRT model (5)

1. Given κ > 0. Given current estimates µ
(t)
αj , µ

(t)
βj

, µ
(t)
θi

, σ
(t)
αj , σ

(t)
βj

, σ
(t)
θi

, where
i = 1, ..., P and j = 1, ..., R.

2. Given the (t+ 1)st observation yij = c. Calculate

ν(t) =
√

1 + (σ
(t)
αj )2 + (σ

(t)
βj

)2(µ
(t)
θi

)2 + (σ
(t)
θi

)2(µ
(t)
βj

)2, (32)

ω(t) =
1

ν(t)
Ω(x∗, a∗), (33)

δ(t) =
1(

ν(t)
)2 ∆(x∗, a∗), (34)

where Ω(·, ·) and ∆(·, ·) are defined in (30), and

a∗ =
γc − γc−1
ν(t)

and x∗ =
µ
(t)
βj
µ
(t)
θi

+ µ
(t)
αj − γc−1

ν(t)
.

3. Update parameters as follows:

µ(t+1)
αj = µ(t)

αj +
(
σ(t)
αj

)2
ω(t), (35)

µ
(t+1)
βj

= µ
(t)
βj

+
(
σ
(t)
βj

)2
µ
(t)
θi
ω(t), (36)

µ
(t+1)
θi

= µ
(t)
θi

+
(
σ
(t)
θi

)2
µ
(t)
βj
ω(t), (37)

(σ(t+1)
αj )2 = (σ(t)

αj )2max
(

1− (σ(t)
αj )2δ(t), κ

)
, (38)

(σ
(t+1)
βj

)2 = (σ
(t)
βj

)2max
(

1− (σ
(t)
βj
µ
(t)
θi

)2δ(t), κ
)
, (39)

(σ
(t+1)
θi

)2 = (σ
(t)
θi

)2max
(

1− (σ
(t)
θi
µ
(t)
βj

)2δ(t), κ
)
. (40)
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For the modified graded response model (2), the posterior distribution of (α∗j , β
∗
j , θ
∗
i )

given yij = c is (24) with

f(α∗j , β
∗
j , θ
∗
i ) = Φ(βj(θi + αj − dc−1))− Φ(βj(θi + αj − dc)). (41)

The parameter update can be derived similarly. To see how, first note that an observed
Yij from model (2) can be determined by an unobserved variable

Y †ij = βj(αj + θi) + εij , εij
iid∼ N (0, 1) (42)

and the relation Yij = c ⇔ Y †ij ∈ (βjdc−1, βjdc]; or, equivalently, Yij = c ⇔ Y †ij/βj ∈
(dc−1, dc]. Therefore, by approximating the distribution of Y †ij/βj , we can estimate the
threshold parameters (d1, ..., dC−1) in the same manner as for γ. The sequential update
for the posterior means and variances of αj , βj , and θi can be derived analogously. We
omit the details, but remark that the property that rating on an item with µθi ≈ 0 has
little effect on µβj does not hold for model (2). The reason is that βj in (2) interacts
with not only θi, but also αj and dc−1.

4.2 Time-varying parameters

At the end of Section 2.2, we reviewed the dynamic IRT model. In particular, we
commented that both the product perception (θ) and the raters’ inclinations (α, β)
may evolve over time in the product ratings scenario. For the ordinal IRT models (2)
and (5), one may simply extend (6) to all the variables α, β, and θ:

αj,t = αj,t−1 + wαj ,t,

βj,t = βj,t−1 + wβj ,t, (43)

θi,t = θi,t−1 + wθi,t,

where wαj ,t, wβj ,t, and wθi,t are assumed to be normally distributed with unknown

variances σ2. The unknown σ2 can be estimated through maximizing the marginal
likelihood (also called “evidence”) over a series of N observations. This approach has
been proposed by Jazwinski (1969) in the context of the Kalman filter and extended
Kalman filter, and by de Freitas et al. (2000) in the context of neural networks, among
others.

For the stationary ordinal IRT model (5), the marginal likelihood of an observation
yij is

p(yij) =

∫ ∫ ∫
p(αj , βj , θi, yij)dαjdβjdθi

≈ Φ

(
µθiµβj + µαj − γc−1

ν

)
− Φ

(
µθiµβj + µαj − γc

ν

)
,

where the approximation follows by (57) in Appendix 1, and ν2 = 1 + σ2
αj + σ2

βj
µ2
θi

+

σ2
θi
µ2
βj

. For the dynamic case, the marginal likelihood is the same except that the prior
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variances for αj , βj , and θi are now σ̄2
αj = σ2

αj +σ2, σ̄2
βj

= σ2
βj

+σ2, and σ̄2
θi

= σ2
θi

+σ2,
respectively; and hence

p(yij |σ) ≈ Φ

(
µθiµβj + µαj − γc−1

ν̄

)
− Φ

(
µθiµβj + µαj − γc

ν̄

)
, (44)

where
ν̄2 = 1 + σ̄2

αj + σ̄2
βjµ

2
θi + σ̄2

θiµ
2
βj . (45)

The unknown state noise parameter σ2 can either be chosen by users or be estimated
by maximizing the sum of the log-marginal over N ratings:

N∑
t=1

log p(y
(t)
ij |σ). (46)

Once σ2 is determined, the online parameter update is the same as Algorithm 1 except
that ν(t) in (32) is now replaced by ν̄ in (45). The marginal likelihood for model (2) and
the update of its time-varying parameters can be done similarly; we omit the details.

5 Experiments

We conduct experiments to assess the performance of Algorithm 1 on simulated data
and two Internet ratings datasets.

5.1 Numerical issues

There are some numerical issues in the implementation. Note that the functions Ω
and ∆ in (30) play important roles in the algorithm. If both the numerator and the
denominator of some term on the right-hand side of (30) approach zero, it may cause
computational difficulties. To have a closer look at these functions, we let

Λ(x, a) =
xφ(x)− (x− a)φ(x− a)

Φ(x)− Φ(x− a)

and rewrite ∆(x, a) as

∆(x, a) = Λ(x, a) + (Ω(x, a))
2
.

Figure 2 presents plots of Ω(x, a), Λ(x, a), and ∆(x, a) with a = 5 and x ranges from -50
to 50. Due to numerical difficulties, the y-values are not available when x is less than
about -35 or is more than about 8. Even so, these plots suggest that, for a fixed value
of a, Λ(x, a) and ∆(x, a) are symmetric around a certain x value, and the right half of
Ω can be obtained by a 180-degree rotation of the left half. Lemma 1 below gives some
properties of these functions. The proofs are given in Appendix 2.

Lemma 1 We have the following results: for each fixed a,
(a) Λ(x, a) is symmetric about x = a/2, that is, Λ

(
a
2 + z, a

)
= Λ

(
a
2 − z, a

)
for all z.
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Figure 2: Left: Ω(x, a); Center: Λ(x, a); Right: ∆(x, a); a = 5

(b) Ω(a2 + z, a) = −Ω(a2 − z, a) for all z.
(c) ∆(x, a) is symmetric about x = a/2.
(d) Ω(x, a) ≈ −x when |x| is large enough.

Therefore, in our implementation, we employ the symmetric properties and give a
bound on Ω(x, a) when |x| is too large to avoid numerical difficulties.

5.2 Simulation

We assume that each αj follows N(1, 1), each θi follows N(0, 1), and each βj follows
N(1, 20), with all parameters mutually independent. This corresponds to setting the

initial parameter values in Algorithm 1 as µ
(0)
αj = 1, µ

(0)
βj

= 1, µ
(0)
θi

= 0, σ
(0)
αj = 1,

σ
(0)
βj

=
√

20, σ
(0)
θi

= 1 for i = 1, ..., I and j = 1, ..., J . Note that these priors are exactly

the same as in Ho and Quinn (2008a), except that their prior for βj is N(−5, 20)
truncated to be positive, while our βj prior has a positive mean but without truncation.
Our reason for not restricting βj is given below. The purpose of constraining βj ∈ R+

for all r is to identify the sign of θi; however, this may result in misleadingly assigning
βj to be near zero for some raters. In fact, it is appropriate not to restrict the parameter
βj because the sign identifiability problem induced can be resolved by constraining a
particular θi to be positive; for example, see Ho and Quinn (2008b).

For the γi values, recall that γ0 = −∞ and γ5 = ∞ in (3). Ho and Quinn (2008a)
proposed to constrain γ1 = 0 and set improper uniform priors for the unknown cutpoints
γi, i = 2, 3, 4. We propose to use relation (3) and set them by the following steps. First,
calculate the observed proportions #{yij = c}/N for c = 1, ..., 5, where N is a pre-
specified number of ratings. Next, find the z-scores corresponding to these proportions.
Finally, convert the z-scores to the y∗ scale approximately.
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yij = 1 yij = 2 yij = 3 yij = 4 yij = 5
E(αj) (26) 0.731 0.897 0.979 1.072 1.253
E(αj) numerical integ. 0.666 0.623 0.901 1.292 1.344
V ar(αj) (26) 0.967 0.957 0.957 0.957 0.968
V ar(αj) numerical integ. 1.023 0.936 0.797 0.869 1.021

Table 1: Approximations by (26) and by numerical integration.

Permutation 1 2 3 4 5 6 7 8 9 10
MSE 0.16 0.03 0.01 0.01 0.1 0.04 0.2 0.04 0.02 0.05

Permutation 11 12 13 14 15 16 17 18 19 20
MSE 0.03 0.09 0.02 0.05 0.03 0.07 0.02 0.03 0.01 0.04

Table 2: MSE of our approximation for each of 20 random permutations.

Now we specifically describe how we set the cutpoints for the Mondo data; the
treatment for other data is similar. To begin, we randomly selected 1,000 ratings and
found the relative frequencies for c = 1, ..., 5 to be about 0.22, 0.13, 0.19, 0.20, 0.26.
The z-values corresponding to these areas are z = (−0.7,−0.3, 0.1, 0.6). Note that βjθi
follows the normal product distribution, which is symmetric about zero; see Glen et al.
(2004) and the references therein for a detailed description of this distribution. There-
fore, roughly speaking, the unconditional distribution of Y ∗ is approximately N(1, 23),
where the variance is derived from the independence assumptions among parameters.
Then, converting the z-values to the y∗ scale gives (γ1, γ2, γ3, γ4) as

1 +
√

23× z = (−2.36,−0.44, 1.48, 3.88). (47)

These cutpoints will be used in Section 5.3.

For evaluating accuracy, we first compute the approximations (26) based on a single
observation yij . Given the parameter values as the initial settings, Table 1 presents our
approximations and the estimates using numerical integration. Note that the initial µαj
and σαj are both 1. In general, our approximations made smaller adjustments (so the
estimates are closer to the initial values 1). Clearly, when the observed rating is higher,
the posterior mean of αj tends to be larger; and the variance is bigger when the rating
is high or low. Overall, the proposed approximation is quite accurate.

Next, we evaluate the performance of our algorithm on simulated data generated
from the ordinal IRT model specified in (3) and (4). We take I = 50, J = 200,
and set the cutpoints to be (γ1, γ2, γ3, γ4) = (−6,−2, 2, 6). Then we follow the prior
distribution in this section to generate αj , βj and θi, to set initial parameter values for
our algorithm, and to estimate the cutpoints by the empirical frequencies of the initial
500 ratings. Here we restrict θ1 to be positive so as to identify the signs of the model
parameters. A total of 10,000 ratings are generated. We conduct online estimation on
20 random permutations of the dataset. Table 2 reports the mean squared error (MSE)
between the estimate θ∗ and the true θ for each of the 20 random permutations; that
is, MSE=

∑
i(θ
∗
i − θi)2/I. In general, our approximations are satisfactory.
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5.3 Internet ratings data

We consider two Internet ratings datasets: Mondo Times and MovieLens; see Section
2.1 for descriptions of the datasets. The starplots here are proposed by Ho and Quinn
(2008a). They are based on the posterior predictive probability that a randomly selected
rater will provide a rating c for product i, defined as

τic =
1

J

J∑
j=1

p(yij = c|Y obs). (48)

In Ho and Quinn (2008a), the probability p(yij |Y obs) in (48) is approximated by

1

M

M∑
m=1

(
Φ(β

(m)
j θ

(m)
i + α

(m)
j − γ(m)

c−1)− Φ(β
(m)
j θ

(m)
i + α

(m)
j − γ(m)

c )
)
, (49)

where {α(m)
j , β

(m)
j , θ

(m)
i , γ(m)}Mm=1 are M Monte Carlo samples. For our proposed online

method, this probability is approximated by

p(yij = c|Y obs) ≈ Φ(µβjµθi + µαj − γc−1)− Φ(µβjµθi + µαj − γc), (50)

where µαj , µβj , and µθi are the current estimates of the posterior means of αj , βj , and
θi.

Mondo Times data

The Mondo Times data are taken from Ho and Quinn (2008a), where they removed
raters who rate fewer than five products and removed products that are only rated
by these raters. They end up with 3,249 ratings on 1,344 products from 232 raters.
Hereafter, we shall call these the “sub-Mondo” data. Since there is no information
about the timestamp of the ratings, we apply our algorithm to two randomly shuffled
ratings.

To compare starplots using (49) and (50), we obtain MCMC samples from the pack-
age Ratings (Ho and Quinn 2008a) with initial γ = (0, 1.5, 3, 4.5), and then estimate τpc
using (49) and (50), respectively. The resulting starplots are in Figure 3. The two plots
are fairly close, indicating that (50) can produce a good approximation.

Next, we compare the starplots by the offline MCMC method and the proposed
online method for the sub-Mondo data, both with fixed γ, as in (47). As the package
Ratings is designed for random γ, we have modified Ratings (available upon request) in
order to obtain MCMC estimates with fixed γ. The results are in the left and center
plots of Figure 4. We observe that, compared with the starplot by MCMC with random
γ (Figure 3), the results of MCMC with fixed γ are much closer to our online method.
The right plot in Figure 4 is by our method for the whole-Mondo data. Overall, the
three starplots are in good agreement.

We also compare the estimates of θ. Since the MCMC samples reveal that the
posterior densities of µθi for the twelve news outlets are roughly bell-shaped (not shown
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Figure 3: Starplots for Sub-Mondo data using MCMC samples. Left: by approximation
(49). Right: by approximation (50).
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Figure 4: Starplots for news outlets with fixed γ, as in (47). Left: MCMC by modified
Ratings for Sub-Mondo. Center: Sub-Mondo by online method. Right: Whole-Mondo
by online method.
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MCMC1 MCMC2 online online
News outlets random γ fixed γ random ordering 1 random ordering 2

US News & World Report -0.17 ( 0.47 ) 0.13 ( 0.33 ) 0.33 ( 0.26 ) 0.42 ( 0.39 )
Toronto Sun -0.98 ( 0.37 ) -1.54 ( 0.26 ) -1.03 ( 0.21 ) -1.36 ( 0.33 )
Toronto Star 0.42 ( 0.38 ) 0.81 ( 0.28 ) 0.45 ( 0.15 ) 0.24 ( 0.29 )

San Diego Union Tribune 0.1 ( 0.49 ) 0.15 ( 0.35 ) -0.09 ( 0.34 ) -0.01 ( 0.15 )
People -1.77 ( 0.59 ) -2.22 ( 0.45 ) -2.06 ( 0.69 ) -2.76 ( 0.59 )
PBS 1.22 ( 0.39 ) 1.49 ( 0.24 ) 1.30 ( 0.22 ) 1.21 ( 0.32 )

Montana Magazine -0.22 ( 0.36 ) -0.37 ( 0.32 ) -0.02 ( 0.15 ) -0.4 ( 0.43 )
London Sun -2.13 ( 0.57 ) -2.91 ( 0.44 ) -2.13 ( 0.43 ) -1.88 ( 0.35 )

Great Falls Tribune -2.8 ( 0.76 ) -5.12 ( 0.7 ) -1.71 ( 0.31 ) -1.93 ( 0.34 )
Daily Utah Chronicle 0.13 ( 0.8 ) 0.44 ( 0.56 ) -0.28 ( 0.26 ) -0.1 ( 0.28 )

Colorado Public Radio 1.45 ( 0.6 ) 2.02 ( 0.47 ) 2.29 ( 0.7 ) 1.61 ( 0.42 )
CNN 0.08 ( 0.19 ) 0.11 ( 0.13 ) -0.34 ( 0.08 ) -0.1 ( 0.1 )

Table 3: Posterior means and standard deviations (in parentheses) of θ for twelve outlets.

here), Table 3 reports only the posterior means and standard deviations. In Table 3, the
column MCMC1 is by package Ratings with default initial γ = (γ1, ..., γ4) = (0,1,3,5),
where γ1 = 0 is fixed, while γ2, γ3, γ4 are to be estimated; MCMC2 is obtained from the
modified package in which the γ values are fixed, as in (47). The two online columns
are results from two random orderings of the data, using the same fixed γ. The two
MCMC columns reveal that the posterior means with random γ are somewhat different
from those with fixed γ, and that the standard deviations are generally smaller if γ is
fixed. Moreover, for each news outlet, the 95% posterior intervals from the four columns
mostly overlap, except for the Great Falls Tribune with MCMC2. Overall, our online
method performs pretty well.

MovieLens data

The MovieLens data contain the timestamp (in unix seconds since 1/1/1970 UTC) for
each rating. So, we sort the ratings according to the timestamp, and study both the

stationary and the dynamic model (Section 4.2). We set initial values σ
(0)
αj = σ

(0)
βr =

σ
(0)
θp = 0.1. For the time-varying case (43), we set the state noise parameter σ2 = 0.002,

obtained by maximizing the approximate marginal likelihood (44) over 5, 000 ratings.
The top 10 movies are presented in Figure 5. The left panel is for the stationary case,
using Algorithm 1; and the right panel is for the time-varying case, which is the same
as Algorithm 1 except that ν(t) in (32) is now replaced by ν̄ in (45).

Remarks

The positive lower bound κ in (38)-(40) is set to be 0.0001 to avoid a negative variance.
Our experiments show that the results for the two real datasets are not sensitive to the
κ value.

For the computational time, to produce a starplot in Figure 3 for the sub-Mondo
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Figure 5: Starplots for MovieLens data. Left: original model; Right: model with time-
varying parameters.

data, it takes about five minutes using the Ratings package, but just three seconds
using the online algorithm written in pure R code. We also generate a subset of the
MovieLens data, with about 68,000 ratings, for which the online algorithm takes about
20 seconds, while the MCMC method via Ratings takes about 30 minutes. The offline
MCMC method may take more time if real-time parameter adjustment is required. The
computations for the online method here are available at http://www3.nccu.edu.tw/

~chweng/BaIRT.zip

6 Concluding Remarks

Online methods are necessary when large data continue to arrive and real-time param-
eter adjustment is needed. We have shown how to develop Bayesian online parameter
estimation for IRT models with Likert-type data. The experiments on two real datasets
are satisfactory.

We have also compared our real-time estimation method with the offline MCMC
methods via the package Ratings and its modification for fixed γ. Though sacrificing
some accuracy, in general, our proposed method achieves a good performance, but with
considerably less computational time. Thus, for situations where faster approximate
methods are desirable, our proposed method can be a useful alternative to offline meth-
ods. That said, we have to point out some limitations of our method. First, with
only mean and variance updates, our method can not provide estimates of quantities
of interest, which are easily obtainable by MCMC methods. Moreover, our use of fixed
cutpoints γ based on initial observed proportions #{yij = c}/N (see Section 5.2) may
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be inappropriate. We may alleviate this weakness by updating the observed propor-
tions sequentially, and then adjust the γ values either sequentially or after collecting
a certain number of observations. The adaptive γ can better reflect the evolution of
the ratings distribution. In an unreported experiment, we adjusted γ whenever col-
lecting 500 ratings for the sub-Mondo data (Section 5.3). The results are close to the
unadjusted case, possibly because the ratings are randomly permuted; furthermore, the
computation time does not increase much because the observed ratings frequencies can
be easily accumulated.

Some questions deserve further study. First, some theoretical analysis on the dis-
crepancies between the offline method and the proposed online one would be worthwhile.
This can be challenging because the rater-product matrix of ratings is very sparse and
the number of parameters would increase with the data. Second, it is desirable to extend
the proposed method to other IRT models, such as the Rating Scale model (Andrich
1978) and the Partial Credit model (Masters 1982). These models are direct extensions
of the one-parameter IRT model in Example 1, and sufficient statistics exist for the
model parameters. One may also consider a bias term for the product in model (5). In
principle, similar derivations could be obtained straightforwardly.

1 Derivations of (26)-(28)

Recall from the beginning of Section 3 that φ and Φ denote the density and distribution
function of N(0, 1), and let φ(x|µ, σ) denote the density of N(µ, σ2). Now we take the
following three steps.

Step 1. Let f be as in (25). Obtain the following derivatives of f :

∂ log f

∂α∗j
= σαj · Ω(x, a),

∂ log f

∂β∗j
= σβjθi · Ω(x, a),

∂ log f

∂θ∗i
= σθiβj · Ω(x, a), (51)

∂2 log f

∂(α∗j )
2

= σ2
αj ·∆(x, a),

∂2 log f

∂(β∗j )2
= (σβjθi)

2 ·∆(x, a),
∂2 log f

∂(θ∗r)2
= (σθiβj)

2 ·∆(x, a),

where
x = βjθi + αj − γc−1 and a = γc − γc−1. (52)

Step 2. Plug the derivatives of f into the right-hand sides of (16) and (20).

Step 3. Evaluate the expectations on the right-hand sides of (16) and (20) to obtain
(26)-(28). Below we give details of the derivation of µ̃αj in (26). To begin, we need the
following results: for c > 0,∫ ∞

−∞
φ(θ|µ, σ)φ(b|aθ, c)dθ = φ(b|aµ,

√
a2σ2 + c2) =

1√
2π(a2σ2 + c2)

e
− (aµ−b)2

2(a2σ2+c2) ,

(53)∫ ∞
−∞

φ(θ|µ, σ)Φ(
b− aθ
c

)dθ = Φ

(
b− aθ√
a2σ2 + c2

)
. (54)



R. C. Weng and D. S. Coad 21

These equations are obtained by writing the function Φ(·) as an integral and interchang-
ing the order of the integrals. By (16) and (51), we have

E(αj |yij) = µαj + σ2
αjE(Ω(x, a)|yij),

where x and a are defined in (52), and

E(Ω(x, a)|yij) =

∫ ∫ ∫ (
φ(x)− φ(x− a)

Φ(x)− Φ(x− a)

)
p(αj , βj , θi|yij)dαjdβjdθi

=

∫ ∫ ∫
[φ(x)− φ(x− a)]φ(αj |µαj , σαj )φ(βj |µβj , σβj )φ(θi|µθi , σθi)dαjdβjdθi∫ ∫ ∫
[Φ(x)− Φ(x− a)]φ(αj |µαj , σαj )φ(βj |µβj , σβj )φ(θi|µθi , σθi)dαjdβjdθi

=
I1 − I2
II1 − II2

.

For I1, write φ(x) = φ(βjθi + αj − γc−1) = φ(γc−1 − βjθi|αj , 1), apply (53) twice and
use the relation φ(θ|µ, σ) = φ(µ|θ, σ) to obtain

I1 =

∫ ∫ ∫
φ(γc−1 − βjθi|αj , 1)φ(αj |µαj , σαj )φ(βj |µβj , σβj )φ(θi|µθi , σθi)dαjdβjdθi

=

∫ ∫
φ(γc−1 − βjθi|µαj ,

√
1 + σ2

αj )φ(βj |µβj , σβj )φ(θi|µθi , σθi)dβjdθi

=

∫ ∫
φ(γc−1 − µαj |βjθi,

√
1 + σ2

αj )φ(βj |µβj , σβj )φ(θi|µθi , σθi)dβjdθi

=

∫
φ(γc−1 − µαj |µβjθi,

√
1 + σ2

αj + σ2
βj
θ2i )φ(θi|µθi , σθi)dθi.

For the last line, we can not apply (53) to evaluate the integral because θi appears in
the variance of the φ function. Now assume that σθi is small, so that θi is close to µθi
with a high probability. In our experiments, σθi is smaller than 1. So, we approximate
θi in the variance by µθi to obtain (55), and then apply (53) to obtain (56):

I1 ≈
∫
φ(γc−1 − µαj |µβjθi,

√
1 + σ2

αj + σ2
βj
µ2
θi

)φ(θi|µθi , σθi)dθi (55)

=φ(γc−1 − µαj |µβjµθi ,
√

1 + σ2
αj + σ2

βj
µ2
θi

+ σ2
θi
µ2
βj

) (56)

=
1

ν
φ(
µβjµθi + µαj − γc−1

ν
),

where ν = (1+σ2
αj +σ2

βj
µ2
θi

+σ2
θi
µ2
βj

)1/2. The expression for I2 is the same as I1 except
that γc−1 is replaced by γc. The calculations of II1 and II2 are similar, but will use
(54) rather than (53); we omit the details and only present the results:

II1 ≈ Φ

(
µθiµβj + µαj − γc−1

ν

)
, II2 ≈ Φ

(
µθiµβj + µαj − γc

ν

)
. (57)

Therefore, the posterior mean of αj can be approximated as

µ̃αj ≈µαj +
σ2
αj

ν

φ
(µθiµβj+µαj−γc−1

ν

)
− φ

(µθiµβj+µαj−γc
ν

)
Φ
(µθiµβj+µαj−γc−1

ν

)
− Φ

(µθiµβj+µαj−γc
ν

) .
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This establishes the first equation in (26). To derive σ̃2
αj in (26), we need (20) and some

equations analogous to (53) and (54). The formulas in (27) and (28) can be obtained
similarly and we omit the derivations.

2 Proof of Lemma 1

Proof. We only prove (a). The proof of (b) is similar and is omitted; (c) is a simple
consequence of (a) and (b). Part (d) can be derived by L’Hôpital’s rule. For (a), we
have

Λ(
a

2
+ z, a) =

(a2 + z)φ(a2 + z)− (z − a
2 )φ(z − a

2 )

Φ(a2 + z)− Φ(z − a
2 )

=
(a2 + z)φ(−a2 − z)− (z − a

2 )φ(a2 − z)
1− Φ(−a2 − z)− 1 + Φ(a2 − z)

=
(a2 − z)φ(a2 − z)− (−a2 − z)φ(−a2 − z)

Φ(a2 − z)− Φ(−a2 − z)

= Λ(
a

2
− z, a),

where the second equality follows from φ(x) = φ(−x) and Φ(x) = 1− Φ(−x). �
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