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1 Introduction

The study of the S-matrix of N = 4 supersymmetric Yang-Mills (SYM) has inspired re-

markable progress and novel ideas, even at tree level. A first crucial result was the integral

representation of this quantity, found by Roiban, Spradlin and Volovich (RSV) in [1] as an

integral over the moduli space of degree k− 1 curves in super twistor space (for Nk−2MHV

amplitudes), following Witten’s groundbreaking insights [2]. An important feature of the

RSV formula, presented below in (2.3), is that the integral is in fact localised on a dis-

crete set of solutions of certain polynomial equations. However, despite being conceptually

beautiful, the RSV representation proved hard to work with because of the difficulty in

determining these solutions. In this respect, the BCFW representation [3, 4] emerged as

a much more tractable and generalisable approach to compute amplitudes, also applicable

in different theories, including gravity [5–7].

Important progress was made later in [8], which accomplished two goals: firstly, it

showed that by rewriting the RSV formula using the link variables introduced in [9] — which

have the neat property of linearising momentum conservation — one can overcome the

roadblocks due to the complexity of the algebraic equations arising in [1]; and furthermore,

it proved that a certain precisely formulated change of integration contour in the RSV

formula, rewritten using link variables, expresses the amplitudes as a sum of residues that

are identical to BCFW diagrams (with appropriate shifts). This is an intriguing result, as

it relates two a priori very different formulations of gauge theory amplitudes.

In this paper we wish to extend these observations to form factors, i.e. partially off-

shell quantities of the form 〈1 · · ·n|O(0)| 0 〉, obtained by applying a local gauge-invariant
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operator O to the vacuum and then projecting the result onto an n-particle state of on-shell

particles with momenta pi obeying q := p1 + · · ·+pn. As we shall see this task turns out to

be surprisingly simple, suggesting also potential new directions to explore for correlation

functions.

An additional, more recent motivation for our work stems from the CHY scattering

equations [10, 11], which describe scattering amplitudes at tree level in a variety of theories

with and without supersymmetry, and in different numbers of dimensions. Specialising to

four dimensions, a new remarkable closed formula for the S-matrix of Yang-Mills theories

with different amounts of supersymmetry was derived in [12] starting from ambitwistor

strings. Taking gluon scattering as an example, these four-dimensional scattering equations

treat positive and negative helicity gluons in a different, complementary way, similarly to

the link representations of [8, 9]. It is then natural to ask how different representations of

the same S-matrix of gauge theory can be related.

This question was answered in [13], which wrote down a map between the polynomial

and rational form of the scattering equations, appearing in the RSV formula and in [12],

respectively. A first observation we will make is that the connection is (and, in fact, was)

immediate once one makes use of the link representation of the RSV formula discussed

in [8]. We will then move on to discuss how to extend the RSV formula to form factors.

Our starting point will be an interesting formula written down in [14] which conjectures an

extension of the four-dimensional scattering equations for Yang-Mills theory to form factors

of the local operator TrF 2
SD. These form factors are of phenomenological importance, given

their connection to Higgs + multi-gluon scattering amplitudes [15, 16], where the Higgs is

represented by the insertion of the operator.1 In that case, very few modifications to the

formula for amplitudes are needed — specifically, two auxiliary gluons of positive helicity

x and y are added.2 Importantly, the amplitudes generated by this formula depend only

on px + py (or px + py and the supermomentum qx + qy in the supersymmetric version

we introduce in section 2) rather than on the two momenta separately. We note another

important feature of this formula: it contains certain Parke-Taylor like denominators of the

form (a b), with σa,b parameterising punctures on the Riemann sphere,3 which only involve

adjacent physical particles, i.e. they do not include x and y.

After establishing in section 2 a quick path to relate the RSV formula of [1] and the

four-dimensional scattering equations of [12], our next goal is to write down a formula (2.2),

analogous to the RSV result, describing supersymmetric form factors of the chiral stress

tensor multiplet operator in twistor space.4 We will then show how this proposal is equiv-

alent to a simple supersymmetric extension of the scattering equations formula for form

factors presented in [14]. In section 3 we show that our formula can naturally be expressed

in terms of link variables, in the same vein as the RSV formula. This link variable formula-

1See also [17–21] for some recent related work also in the maximally supersymmetric theory.
2The choice of positive helicity is such that all-plus and single-minus gluon form factors of Tr F 2

SD are

now non-vanishing.
3The precise meaning of this notation will be explained in the next section.
4We also note the works [22–25] on representing and calculating form factors in twistor space, which

would be interesting to relate to the present work.
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tion turns out to be very advantageous from the point of view of simplifying calculations,

as we demonstrate in several examples in section 4. Importantly, we confirm an important

feature of the link variable representation of the RSV formula found in [8], namely that

a simple deformation of the integration contour in the link variable space and the global

residue theorem lead to an alternative representation of the amplitudes which coincides

with the BCFW recursion relations for form factors [26].

Another important strand of research on amplitudes is that of the Grassmannian (see

for example [27, 28]). These novel representations of amplitudes are derived from on-shell

diagrams where familiar concepts such as locality and unitarity are only emergent, rather

than manifest at each step of the calculation. In an interesting paper [29], a Grassmannian-

based formula was conjectured which describes form factors of the stress tensor multiplet

operator.5 A relevant feature of this conjecture is the appearance of certain Parke-Taylor

denominators where all particles appear on the same footing, including the auxiliary par-

ticles x and y used to describe the form factor insertion, unlike the formula of [14]. Using

a Veronese map [13, 31], we will see in section 5 how one can relate the Grassmannian

formulae of [29] to the four-dimensional scattering equations for form factors of [14], and

hence to our twistor-space and link-representation based formulae for form factors of sec-

tion 2, at least in certain cases. Finally we conclude in section 6 with some observations:

we comment on a possible derivation of form factors from ambitwistor strings, and then

discuss possible extensions of the scattering equation approach beyond form factors.

2 The connected prescription formula

We begin by describing the main ingredients of the connected formula for form factors.

1. The first ingredient is a set of supertwistor variables Za, a = 1, . . . , n describing the

n particles, with Z = (λα, µ
α̇, ηA). As in [14, 29], we describe the form factor insertion

through two extra particles x and y. The momentum and supermomentum carried by the

form factor will then be q := λxλ̃x + λyλ̃y and γ := λxηx + λyηy, respectively. In twistor

space, this amounts to introducing two extra super-twistors Zx and Zy.

2. As in [1], we introduce a degree k− 1 map from CP1 to C4|4, where k− 2 is the MHV

degree of the superamplitude.6 This polynomial has the form

P(σ, {A}) :=
k−1∑
d=0

Ad σd , (2.1)

where the supertwistors Ad are the supermoduli of the curve.

We propose that all form factors of the supersymmetric stress tensor multiplet operator

in N = 4 SYM are described in twistor space by the following simple generalisation of the

5The same approach has been later extended in [30] to take into account other operator insertions.
6For pure gluon amplitudes, k is the number of negative helicity gluons.

– 3 –



J
H
E
P
1
1
(
2
0
1
6
)
1
4
3

RSV formula of [1]:

F (Z) = 〈ZxIZy〉2
∫

d4k|4kA dn+2σ dn+2ξ

vol GL(2)

n∏
a=1

δ(4|4)(Za − ξaP(σa, {A}))
ξa (σa − σa+1)

×
∏
a=x,y δ

(4|4)(Za − ξaP(σa, {A}))
ξx ξy (σx − σy)2

,

(2.2)

where I is the infinity twistor, so that 〈ZxIZy〉 = 〈x y〉, and σn+1 := σ1.

It is instructive to compare this formula to the corresponding one for amplitudes,

which is

A (Z) =

∫
d4k|4kA dnσ dnξ

vol GL(2)

∏n
a=1 δ

(4|4)(Za − ξaP(σa, {A}))∏n
a=1 ξa (σa − σa+1)

. (2.3)

The only modifications needed to describe form factors are: the presence of the multiplica-

tive factor 〈ZxIZy〉2; the presence of the two extra twistors Zx and Zy; and the inclusion

of the corresponding integration variables ξx, ξy and σx, σy, with an integrand containing

1/(ξxξy(σx−σy)2). Note that we do not involve the coordinates for particles x and y in the

string of Parke-Taylor type denominators, similarly to [14] (but at variance with e.g. (3.27)

of [29], which includes terms of the type (nx)(x y)(y 1) in the denominator).

We now show how from (2.2) we can deduce the scattering equation representation

of [14] for form factors (or, more precisely, its generalisation describing supersymmetric

form factors of the stress tensor multiplet operator). The proof parallels closely that of [8].

1. To begin with, we divide the particles into two sets containing k and n−k+2 particles,

which we label with indices J and i, respectively, with the auxiliary particles belonging

to the second set. We will denote by m the first set of k particles, and by p that of

the remaining n − k (physical) particles, and also define p̄ = p ∪ {x, y}. A particularly

convenient choice when working with, say, component gluon amplitudes is then to assign

gluons of negative (positive) helicity to the first (second) group, with the fictitious particles

x and y being included in the second set. This parallels the assignments made in [14] for

the non-supersymmetric scattering equations for form factors, where these two particles

are treated as gluons of positive helicity.

2. Next, one Fourier transforms all the twistor variables of the i-particles to dual twistor

variables: Zi →Wi. Calling the resulting expression F (Wi,ZJ) we have

F (Wi,ZJ) =

∫
d4k|4kA dn+2σ dn+2ξ

vol GL(2)

∏
J∈m δ

(4|4)(ZJ − ξJP(σJ , {A}))
ξx ξy (σx − σy)2

∏n
a=1 ξa (σa − σa+1)

×
〈

∂

∂Wx
I ∂

∂Wy

〉2 ∏
i∈p̄

exp
(
i ξiWi · P(σi, {A})

)
.

(2.4)

3. The key observation of [8] is that this procedure has the advantage that there are now

as many δ-functions as moduli, and the integration over the A can be performed explicitly,

with the net effect of localising the polynomial P(σ, {A}) onto

P(σ) =
∑
J∈m

ZJ
ξJ

∏
K 6=J

σK − σ
σK − σJ

. (2.5)
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One is then left with

F (Wi,ZJ) =

∫
1

vol GL(2)

dσx dξx dσy dξy
ξx ξy (σx − σy)2

n∏
a=1

dσa dξa
ξa (σa − σa+1)

×
〈

∂

∂Wx
I ∂

∂Wy

〉2

exp

(
i
∑

i∈p̄,J∈m
Wi · ZJ

ξi
ξJ

∏
K 6=J

σK − σi
σK − σJ

)
.

(2.6)

4. The change of variables (ξi, ξJ)→ (ti, tJ) with [8]

ti := ξi
∏
K

(σK − σi) , t−1
J := ξJ

∏
K 6=J

(σK − σJ) , (2.7)

simplifies (2.6) to

F (Wi,ZJ) =

∫
1

vol GL(2)

dσx dtx dσy dty
tx ty (σx − σy)2

n∏
a=1

dσa dta
ta (σa − σa+1)

×
〈

∂

∂Wx
I ∂

∂Wy

〉2

exp

(
i
∑

i∈p̄,J∈m
Wi · ZJ

ti tJ
σJ − σi

)
.

(2.8)

We now introduce spinor coordinates σα = t−1(1, σ), with (a b) := εαβσ
α
aσ

β
b . Then d2σ =

t−3 dt dσ, and
n∏
a=1

dta dσa
ta(σa − σa+1)

=

n∏
a=1

d2σa
(a a+ 1)

. (2.9)

We then arrive at the very simple result

F (Wi,ZJ) =

∫
1

vol GL(2)

d2σx d2σy
(x y)2

n∏
a=1

d2σa
(a a+1)

〈
∂

∂Wx
I ∂

∂Wy

〉2

exp

(
i
∑

i∈p̄,J∈m

Wi · ZJ
(i J)

)
.

(2.10)

5. It is now easy to go back to spinor variables by performing a Fourier transform. The

result is7

F ({λ, λ̃}) = 〈x y〉2
∫

1

vol GL(2)

d2σx d2σy
(x y)2

n∏
a=1

d2σa
(a a+ 1)

×
∏
i∈p̄

δ(2)(λi − λ(σi))
∏
J∈m

δ(2|4)(λ̃J − λ̃(σJ), ηJ − η(σJ)) ,
(2.11)

where we have defined the functions

λ(σ) :=
∑
J∈m

λJ
(σ σJ)

, λ̃(σ) :=
∑
i∈p̄

λ̃i
(σi σ)

, η(σ) :=
∑
i∈p̄

ηi
(σi σ)

. (2.12)

Eq. (2.11) is nothing but the supersymmetric form of the scattering equation for form

factors presented in [14]. By performing in reverse the same steps of this proof, one

can of course derive the connected prescription for form factors (2.2) from the scattering

equations.8

7We recall that Z = (λ, µ, η) and W = (µ̃, λ̃, η̃), with Z ·W := λαµ̃α + µα̇λ̃
α̇ + η̃Aη

A.
8We comment that the four-dimensional version of the amplitude scattering equations was noted in [8].
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3 A link representation for form factors

In [8], Spradlin and Volovich presented an interesting formula for the S-matrix of N = 4

SYM using the link variables introduced in [9], and we now give the corresponding formula

for the form factors of the stress tensor multiplet operator.

The link representation is obtained by introducing auxiliary variables

ciJ :=
1

(i J)
, (3.1)

where we note that the first and second index run over the sets p̄ and m, respectively.

This identification is achieved by introducing 1 =
∫

dciJ δ (ciJ − 1/(iJ)). Doing so, we can

recast (2.11) as9

F ({λ, λ̃}) = 〈x y〉2
∫ ∏
i∈p̄,J∈m

dciJ U(ciJ)
∏
i∈p̄

δ(2)(λi − ciJλJ)
∏
J∈m

δ(2|4)(λ̃J + ciJ λ̃i, ηJ + ciJηi) ,

(3.2)

where

U(ciJ) :=

∫
1

vol GL(2)

d2σx d2σy
(x y)2

n∏
a=1

d2σa
(a a+ 1)

∏
i∈p̄,J∈m

δ

(
ciJ −

1

(i J)

)
. (3.3)

There are several reasons why it is interesting to study the link representation form (3.2).

Firstly, it has the advantage of linearising momentum conservation in terms of the ciJ
variables. Secondly, the quantity U(ciJ) defined in (3.3) appears to be much more easily

computed for any k — this is a considerable advantage in comparison to the scattering

equations. Finally, it was shown in [8] that by using the (global) residue theorem, one can

arrive at an alternative representation of the amplitudes which precisely matches BCFW

diagrams, thus establishing a direct connection between the twistor-string representation

of amplitudes and on-shell recursion relations. We will see that the same is also true for

our representation of form factors, as we will explain in section 4.

In performing explicit calculations, a natural way to fix the GL(2) gauge freedom is to

fix the four variables corresponding to the two auxiliary legs x and y,

σx = (1, 0) , σy = (0, 1) , (x y) = 1 . (3.4)

We can then change variables from the spinors σαa to the brackets (x a) and (y a) so that

U(ciJ) =

∫ n∏
a=1

d(x a) d(y a)

(a a+ 1)

∏
i∈p̄,J∈m

δ

(
ciJ −

1

(i J)

)
. (3.5)

All the other brackets can be obtained from those used as integration variables using the

Schouten identity,

(x y)(a b) = (x a)(y b)− (y a)(x b) . (3.6)

9In the delta functions appearing in (3.2) and (3.7) we are implicitly summing over repeated indices.
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In (3.5) we have 2n integration variables and k(n + 2 − k) delta functions, which means

that U(ciJ) contains (k − 2)(n − k) delta functions after integration. In (3.2), four of

the Grassmann-even delta functions enforce momentum conservation, leaving 2n delta

functions and k(n + 2 − k) variables ciJ to integrate over. This leaves (k − 2)(n − k)

integration variables, which we denote by τk. Thus (3.2) can be written as

F ({λ, λ̃}) = J 〈x y〉2 δ(4)

(
q −

n∑
a=1

pa

)∫
d(k−2)(n−k)τ U(ciJ)

∏
J∈m

δ(4)(ηJ + ciJηi) , (3.7)

for some ciJ(τ) linear in τ , and an appropriate Jacobian J .

4 Examples

In this section we work out explicitly the form of U(ciJ) defined in (3.3) for various form

factors. We will always use the gauge fixing (3.4) so that U(ciJ) is computed using (3.5).

4.1 The maximally non-MHV form factor

The simplest form factor to discuss turns out to be the maximally non-MHV form factor,

where p̄ = {x, y} and m = {1, . . . , n}. This corresponds to the case where for the component

operator Lon-shell the on-shell state contains n gluons all with negative helicity. In this case

we find

UNmaxMHV =

n∏
J=1

1

cxy;J J+1
, (4.1)

where we have defined

cab;cd := cac cbd − cad cbc . (4.2)

The expression for the n-point maximally non-MHV form factor is

FNmaxMHV = 〈x y〉2
∫ n∏

J=1

dcxJ dcyJ δ
(2)

(
λx −

n∑
J=1

cxJλJ

)
δ(2)

(
λy −

n∑
J=1

cyJλJ

)

×
n∏
J=1

δ(2|4)(λ̃J + cxJ λ̃x + cyJ λ̃y, ηJ + cxJηx + cyJηy)× UNmaxMHV ,

(4.3)

with UNmaxMHV given in (4.1). We can first extract momentum conservation,

δ(2)

(
λx −

n∑
J=1

cxJλJ

)
δ(2)

(
λy −

n∑
J=1

cyJλJ

)
= [x y]2 δ(4)

(
q −

n∑
J=1

pJ

)
, (4.4)

where we used px + py = q. It is then immediate to solve for the variables cxJ and cyJ .

The result is

cxJ =
[J y]

[y x]
, cyJ =

[J x]

[x y]
. (4.5)

The Jacobian from the delta functions for the λ̃ variables in (4.3) contributes a factor of

[x y]−n, while a short calculation shows that

cxy;JJ+1 =
[J J + 1]

[x y]
. (4.6)

– 7 –
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Combining the Jacobian with the expression for (4.1) evaluated on (4.6) leads to the known

supersymmetric expression from [32],

FNmaxMHV =
q4

[1 2] · · · [n 1]

n∏
J=1

δ(4)

(
ηJ +

[J y]

[y x]
ηx +

[J x]

[x y]
ηy

)
. (4.7)

Note that the fermionic delta function in (4.7) imposes supermomentum conservation∑n
J=1 λJηJ = λxηx + λyηy (and we have dropped the obvious momentum conservation

delta function). In particular the form factor of Tr(F 2
SD) can be obtained by setting

ηx = ηy = 0 [32]. For a state consisting only of gluons with negative helicity one ob-

tains immediately the known result q4/([1 2] · · · [n 1]).

It is interesting to contrast the remarkable simplicity of this derivation from link vari-

ables with the original calculation presented in [32] of this component form factor, which

required a more significant amount of work.

4.2 The MHV form factors

The next simplest case is that of an MHV form factor. In this case the two sets are

p̄ = {1, . . . , Ĵ1, . . . , Ĵ2, . . . , n, x, y} and m = {J1, J2}, where hatted entries are to be omitted

from the set. This corresponds to the case where, for the component operator Lon-shell and

a purely gluonic on-shell state, there are exactly two gluons with negative and n− 2 with

positive helicity.

The U function in (3.5) is given by

UMHV =
1

(cxy;J1J2)2 cJ1−1 J2 cJ1+1 J2 cJ1 J2−1 cJ1 J2+1

∏
a 6=J1−1,J1,J2−1,J2

1

ca a+1;J1J2

. (4.8)

Performing the integration over the link variables is again straightforward, and one arrives

at the MHV super form factor of the chiral part of the stress tensor multiplet

FMHV =
1

〈1 2〉 · · · 〈n 1〉
δ(8)

( n∑
a=1

λaηa + λxηx + λyηy

)
, (4.9)

which agrees with the known result [32] if we identify γ+ = λxηx + λyηy.

4.3 The 1−2−3−4+ form factor and connection to BCFW diagrams

In this case we have m = {1, 2, 3} and p̄ = {4, x, y}, and (3.5) reads

U1−2−3−4+ =

∫ 4∏
a=1

d(x a) d(y a)

(a a+ 1)

3∏
J=1

δ

(
cxJ −

1

(xJ)

)
δ

(
cyJ −

1

(y J)

)
δ

(
c4J −

1

(4 J)

)
.

(4.10)

With nine delta functions and eight integrations, there is one delta function remaining after

all integrations are carried out. The integrations over (xJ) and (y J) are straightforward,

and one can then choose to solve the two delta functions involving (4 1) and (4 2), producing
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a Jacobian, and insert this solution into the remaining delta function for (4 3). Collecting

all terms from this process, one finds that that

U1−2−3−4+ =
cx2 cy2

c42 cxy;21 cxy;23
δ(S123;4xy) , (4.11)

where, following the notation introduced in [8], we define

Sijk;lmn := cmi cmj clk cnk cln;ij − cni cnj clk cmk clm;ij − cli clj cmk cnk cmn;ij . (4.12)

We comment that in this case Sijk,LMN = (
∏
iJ CiJ) det([1/CiJ ]) where [1/CiJ ] is the

matrix with elements 1/CiJ . As in (3.7), the form factor can be obtained by integrating

out the remaining delta function. However, there is a more efficient way to derive the final

result which avoids solving the constraint of δ(S123;4xy) altogether.

In general, the complex delta function has the property∫
dz1 . . . dzm g(z) δ(f1(z)) · · · δ(fm(z)) =

∑
z0∈f−1(0)

Res ω
∣∣
z0
, (4.13)

where

ω :=
g(z) dz1 ∧ . . . ∧ dzm
f1(z) . . . fm(z)

. (4.14)

In our case, this means that the integral in (3.7) can be written as a sum of residues of

ωU =
cx2 cy2

c42 cxy;21 cxy;23

dτ

S123;4xy
, (4.15)

evaluated on the zeros of the quartic polynomial S123;4xy(τ). However, since ωU can be

straightforwardly extended to a meromorphic form on CP1, we can use the global residue

theorem to compute the result in terms of the other poles of ωU , which correspond to the

simple zeros of c42(τ), cxy;21(τ) and cxy;23(τ). Focusing on gluon scattering, the corre-

sponding residues are

F42 = − 〈1 3〉 q4

s134 〈1 4〉 〈3 4〉 〈3|q|2] 〈1|q|2]
,

Fxy;21 = − 〈3|q|4]3

s124 [1 2] [1 4] 〈3|q|2]
,

Fxy;23 = − 〈1|q|4]3

s324 [3 2] [3 4] 〈1|q|2]
,

(4.16)

and the complete result is obtained by adding the three terms,

F 1−2−3−4+ = F42 + Fxy;21 + Fxy;23 . (4.17)

It is notable that each term in (4.16) depends on px and py only through the combination

px + py = q. Moreover, each term is a rational function of external kinematics. Interest-

ingly, these two properties do not hold for the four terms arising from the solutions of the

scattering equation S123;4xy = 0, and are only recovered in the sum over the four solutions.
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Perhaps more remarkably, each term in (4.16) corresponds to a BCFW diagram for a

[1 2〉 shift, analogously to the amplitude case, as discussed in [8] (see also [33]). Specifically,

we have found that the sum in (4.17) corresponds, term by term, to the sum

F

1̂−

4+

2̂−

q

3−

+ F

1̂−

4+

3−

2̂−

q

+ F

1̂−

q

2̂−

3−

4+

(4.18)

given by the BCFW expansion of the form factor.

5 Connections to the Grassmannian

In [29] it was conjectured that the n-point Nk−2MHV chiral stress-tensor super form factor

in N = 4 SYM can be obtained as an integral over the Grassmannian10 G(k, n + 2) of

the form

〈n+1n+2〉2
∫

dk(n+2)C d2kρ

vol GL(k)

∑
ins

Ωn,k(C)

(1 · · · k) · · · (n+ 2 · · · k − 1)

× δ2k(C · λ̃) δ2(n+2)(ρ� C − λ) δ4k(C · η) ,

(5.1)

where in this section the auxiliary particles x and y are denoted as n + 1 and n + 2,

respectively. CIa is a k× (n+2) matrix, describing a k-plane in Cn+2, ραJ is a k×2 matrix,

· indicates contraction of the a indices, � denotes contraction of the J indices,11 (a · · · b) is

a k×k minor of C, and the sum runs over allowed insertions of {n+1, n+2} into {1, . . . n}.
The integrand Ωn,k(C) appearing in (5.1) is defined to be

Ωn,k(C) =
Y

1− Y
, Y =

(n+ 2− k · · ·n n+ 1)(n+ 2 1 · · · k − 1)

(n+ 2− k · · ·n n+ 2)(n+ 1 1 · · · k − 1)
. (5.2)

We are interested in connecting this conjecture with the result (2.11) expressing the form

factor as a sum over solutions to the rational scattering equations. An obvious approach is

suggested by comparison to [31], in which Grassmannian amplitude formulae are mapped

to CHY-type formulae courtesy of the Veronese map. The Veronese map is an embedding

of G(2, n+ 2) in G(k, n+ 2) defined by taking

CJa = ξa σ
J−1
a . (5.3)

10G(k, n) is defined to be the set of k-dimensional linear subspaces of Cn.
11For clarity, a = 1, . . . , n + 2 and J ∈ m. In this section we will also set m = {1, . . . , k} and p =

{k + 1, . . . , n} for convenience.
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We can perform a partial integration of (5.1), reducing it to an integral over G(2, n + 2)

in this embedding:12

〈n+1n+2〉2
∫

dn+2σ dn+2ξ d2kρ

vol GL(2)

∑
ins

ΩV
n,k(σa, ξa)∏n+2

a=1 ξa(σa − σa+1)

×
n+2∏
a=1

δ(2)

(
λa − ξa

∑
J∈m

ρJσ
J−1
a

) ∏
J∈m

δ(2|4)

( n+2∑
a=1

ξaσ
J−1
a {λ̃a|ηa}

)
.

(5.4)

The δ-functions enforce the polynomial scattering equations in the language of [13]. For

practical purposes it it more convenient to gauge fix the GL(k) symmetry before applying

the Veronese map, enforcing the rational scattering equations of [12]. We also apply the

change of variables (2.7) to yield

〈n+1n+2〉2
∫

d2(n+2)σ

vol GL(2)

∑
ins

ΩV
n,k(σa, ta)

(σ1σ2) · · · (σn+2σ1)

×
∏
i∈p̄

δ(2)(λi − λ(σi))
∏
J∈m

δ(2|4)(λ̃J − λ̃(σJ), ηJ − η(σJ)) ,
(5.5)

where the functions defining the scattering equations are given by (2.12).

Under the Veronese map, Y then becomes

Y V (σa, ξa) =
n∏

j=n+2−k

σj − σn+1

σj − σn+2

k−1∏
i=1

σn+2 − σi
σn+1 − σi

, (5.6)

after using the Vandermonde determinant formula. Note immediately that this is indepen-

dent of the ξa, thus the transition to the rational scattering equation version is simply the

identity map.

In relation to (5.1), with Yk = Y V (σa, ξa) and Cn = (σ1 − σ2)(σ1 − σ2) · · · (σn − σ1) it

may be of interest to note the following recursive expression

1

Cn+2

Yk
1− Yk

=
1

(σn+1 − σn+2)2Cn

Nk

Dk
, (5.7)

with

Nk = (σn − σ1)
k−2∏
i=1

(σn−i − σn+1)(σn+2 − σn+3+i) , (5.8)

and

Dk = Nk + (σn − σn+2)(σn+1 − σ1)Dk−1(σ̂n, σ̂1) , (5.9)

with Dk−1(σ̂n, σ̂1) meaning Dk−1 with variables σ1, σ2, . . . , σn+2 but omitting σ1 and σn.

We have checked (5.7) algebraically with Mathematica up to k = 10 and numerically for

various higher values.

12Naively one might worry that there are four fewer integration variables than δ-functions. However

the leftover constraints combine to form the δ-function of momentum conservation in the final answer, as

required.
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In terms of the homogeneous coordinates, (5.6) is

Y V (σa) =
n∏

j=n+2−k

(j n+ 1)

(j n+ 2)

k−1∏
i=1

(n+ 2 i)

(n+ 1 i)
. (5.10)

The authors of [14] conjectured a simpler formula for the chiral stress tensor super form

factor, namely (2.11). In the cases k = 2 and k = n a short calculation shows agreement

with the formula (5.10) obtained from the Grassmannian. Indeed, these cases correspond

to the MHV and maximally non-MHV form factor, where the sum in (5.1) consists of a

single term. More generally, one must sum over terms arising from several top-cell forms

constructed via on-shell diagrams. These correspond to particular cyclic shifts of the

insertion point of the additional legs representing the form factor.

The first non-trivial case in which we wish to show agreement between (5.5) and (2.11)

is n = 4, k = 3, which corresponds to the helicity assignment 1−2−3−4+ in our chosen con-

vention. For this case it was shown in [29] that the appropriate insertions are {1, 2, 3, 4, 5, 6}
and {1, 2, 5, 6, 3, 4}. A little algebra suffices to prove that

Y1

1− Y1

1

(1 2)(2 3)(3 4)(4 5)(5 6)(6 1)
+

Y2

1− Y2

1

(1 2)(2 5)(5 6)(6 3)(3 4)(4 1)

=
1

(1 2)(2 3)(3 4)(4 1)(5 6)2
,

(5.11)

where

Y1 =
(3 5)(4 5)(6 1)(6 2)

(3 6)(4 6)(5 1)(5 2)
, Y2 =

(1 5)(2 5)(6 3)(6 4)

(1 6)(2 6)(5 3)(5 4)
. (5.12)

Note that in (5.11) we have obtained the expected integrand, where the auxiliary particles

associated to the form factor now only appear in the factor (5 6)2.

The next non-trivial case is n= 5, k = 3. In this case, we have checked numerically

that no combination of insertions reproduces the formula (2.11). This is not so surprising,

since in this case different residues are required from each top-cell diagram, whereas the

Veronese map treats terms democratically. It would be interesting to determine whether

there is an improved choice of top-cells compatible with a Veronese reduction. We leave

this question to future work.

6 Form factors from ambitwistor strings

The result (2.11) bears a close resemblance to the formula13

A ({λ, λ̃}) =

∫
1

vol GL(2)

n∏
a=1

d2σa
(a a+ 1)

×
∏
i∈p̄

δ(2)(λi − λ(σi))
∏
J∈m

δ(2|4)(λ̃J − λ̃(σJ), ηJ − η(σJ)) ,
(6.1)

13Our superamplitudes have η0 for positive helicity and η4 for negative helicity gluons, which is the

opposite of the convention employed in [12].

– 12 –



J
H
E
P
1
1
(
2
0
1
6
)
1
4
3

first derived in [12] from an ambitwistor-string model, describing the tree-level n-particle

scattering in four-dimensional N =4 SYM.

In this construction the Parke-Taylor denominator of the measure emerges from a

current algebra on the worldsheet, similarly to the standard heterotic string construction.

Each vertex operator is dressed with a current Ja built from N free complex fermions ψi

and SU(N) generators T a. More explicitly, we define

Ja(σ) =
i

2
T aij : ψi(σ)ψ̄j(σ) : , (6.2)

where i, j are fundamental representation indices and a is an adjoint representation in-

dex. Recall that the only non-vanishing Wick contraction between complex fermions takes

the form

〈ψi(σ1)ψ̄j(σ2)〉 =
δij

σ1 − σ2
, (6.3)

so we may immediately evaluate the correlator of n currents to be

〈Ja1 · · · Jan〉 =
Tr (T a1 · · ·T an)

(σ1 − σ2) · · · (σn − σ1)
+ perms + · · · , (6.4)

where we have ignored multiple trace terms. Keeping only the first term corresponds to

computing a certain colour-ordered amplitude.

We may construct the measure of formula (2.11) from ambitwistor strings in a similar

way, at least up to an overall factor. We must include two additional vertex operators,

corresponding to the punctures σn+1 and σn+2 on the Riemann sphere. These are dressed

with additional currents defined as above. However, in order to obtain the chiral stress

tensor super form factor, we now do not require the single trace term. Rather we extract

from Wick’s theorem the double trace term displayed below,

〈Ja1 · · · Jan+2〉 = · · ·+ Tr (T a1 · · ·T an)

(σ1 − σ2) · · · (σn − σ1) (σn+1 − σn+2)2
·Tr (T an+1T an+2)+· · · , (6.5)

providing the appropriate denominator and colour factor for the on-shell state. It would

be very interesting to have a complete derivation of (2.11) from ambitwistor strings, also

explaining the 〈x y〉2 prefactor.

Of course, the current algebra in the four-dimensional ambitwistor string construction

is identical to that in the ten-dimensional formula of [34] which reproduces standard CHY

formulae. We might thus recast the formula (2.11) as a sum over solutions to the standard

scattering equations [10]. To do this would require an appropriate prescription for the

polarisation vector associated with the off-shell insertion.

Given that form factors emerge so naturally from an ambitwistor string construction,

it is tempting to speculate that appropriate current algebra modifications might allow the

construction of still more general objects, namely correlation functions.

An obvious generalisation of the approach followed for form factors would be to include

additional auxiliary particles to represent further operator insertions. The simplest example

would be that of a two-point correlator of O = TrF 2
SD with the vacuum as the external
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state. In order to contract the two operators, we choose the two pairs of auxiliary particles

to have opposite helicity, (x+, y+) and (u−, v−). The corresponding quantity is

〈x y〉2 [u v]2
∫

1

vol GL(2)

d2σx d2σy
(x y)2

d2σu d2σv
(u v)2

∏
i=x,y

δ(2)(λi − λ(σi))
∏
J=u,v

δ(2)(λ̃J − λ̃(σJ)) ,

(6.6)

with

λ(σ) :=
∑
J=u,v

λJ
(σ σJ)

, λ̃(σ) :=
∑
i=x,y

λ̃i
(σi σ)

. (6.7)

An explicit calculation shows that (6.6) is equal to

q4 δ(4)(px + py + pu + pv) . (6.8)

with q = px + py. This is not quite the result one expects to find for 〈O(q)Ō(q′)〉 from

Equation (26) of [35], namely 〈O(q)Ō(q′)〉 ∼ δ(4)(q + q′) q4 log(q2) + analytic terms. Note

in particular that the log q2 term is absent. In order to be able to derive such terms one

may need to understand scattering equations for off-shell quantities at loop level, along the

lines of [36–38]. It would also be very interesting to find concrete vertex operators in the

ambitwistor string construction of (2.11) that correspond to the operator insertions on the

field theory side, possibly making contact with the the recent ideas in [22–25]. We hope to

report on some of these ideas in a future publication.
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