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ON SYMMETRIC 3-WISE INTERSECTING FAMILIES

DAVID ELLIS AND BHARGAV NARAYANAN

Abstract. A family of sets is said to be symmetric if its automorphism group is

transitive, and 3-wise intersecting if any three sets in the family have nonempty

intersection. Frankl conjectured in 1981 that if A is a symmetric 3-wise inter-

secting family of subsets of {1, 2, . . . , n}, then |A| = o(2n). Here, we give a short

proof of Frankl’s conjecture using a ‘sharp threshold’ result of Friedgut and

Kalai.

1. Introduction

A family of sets is said to be intersecting if any two sets in the family have

nonempty intersection. One of the best-known theorems in extremal combinatorics

is the Erdős–Ko–Rado (EKR) theorem [4], which bounds the size of an intersecting

family of sets of a fixed size.

Theorem 1.1. Let k, n ∈ N with k < n/2. If A is an intersecting family of

k-element subsets of {1, 2, . . . , n}, then |A| ≤
(
n−1
k−1

)
, with equality holding if and

only if A consists of all the k-sets that contain some fixed element i ∈ {1, 2, . . . , n}

Over the last fifty years, many results have been obtained which bound the sizes

of families of sets, under various intersection requirements on the sets in the family.

Such results are often called EKR-type results.

Often in EKR-type results, the extremal families are highly asymmetric; this is

the case in the Erdős–Ko–Rado theorem itself, and in the Ahlswede–Khachatrian

theorem [1], for example. It is therefore natural to ask what happens to the

maximum possible size of an intersecting family when one imposes a ‘symmetry’

requirement on the family.

To make the idea of a ‘symmetric’ family precise, we need a few definitions. For

a positive integer n ∈ N, we denote the set {1, 2, . . . , n} by [n]. We write Sn for
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the symmetric group on [n] and Pn for the power-set of [n]. For a permutation

σ ∈ Sn and a set x ⊂ [n], we write σ(x) for the image of x under σ, and if A ⊂ Pn,

we write σ(A) = {σ(x) : x ∈ A}. We define the automorphism group of a family

A ⊂ Pn by

Aut(A) = {σ ∈ Sn : σ(A) = A}.

We say that A ⊂ Pn is symmetric if Aut(A) is a transitive subgroup of Sn, i.e., if

for all i, j ∈ [n], there exists a permutation σ ∈ Aut(A) such that σ(i) = j.

For an integer r ≥ 2, a family of sets A is said to be r-wise intersecting if any r

of the sets in A have nonempty intersection, i.e., if x1 ∩ x2 ∩ · · · ∩ xr 6= ∅ for all

x1, x2, . . . , xr ∈ A. Clearly, an r-wise intersecting family is also t-wise intersecting

for all 2 ≤ t ≤ r. Since an r-wise intersecting family A ⊂ Pn is also intersecting, it

cannot contain both a set and its complement, so we clearly have |A| ≤ 2n−1. This

is best-possible, since the family A = {x ⊂ [n] : 1 ∈ x} is r-wise intersecting for

any r ≥ 2. However, this family is very far from being symmetric. It is therefore

natural to ask, for each r ≥ 2, how large a symmetric r-wise intersecting family of

subsets of [n] can be. When r = 2 and n is odd, the family {x ⊂ [n] : |x| > n/2} is

a symmetric intersecting family of (the maximum possible) size 2n−1. However, an

old conjecture of Frankl [5] asserts that symmetric r-wise intersecting families must

be much smaller when r ≥ 3. More precisely, Frankl conjectured that if A ⊂ Pn
is a symmetric 3-wise intersecting family, then |A| = o(2n). Our purpose in this

paper is to give a short proof of Frankl’s conjecture; in fact, we prove the following.

Theorem 1.2. There exists a universal constant c > 0 such that the following

holds for all n ∈ N. If A ⊂ Pn is a symmetric 3-wise intersecting family, then

|A| ≤ 2n/nc.

Our proof relies on certain properties of the p-biased measure on Pn as well as a

result of Friedgut and Kalai [6] on the thresholds of symmetric increasing families.

We describe these tools and then give the proof of Theorem 1.2 in Section 2.

An obvious example of a symmetric r-wise intersecting subfamily of Pn is the

family {x ⊂ [n] : |x| > (r − 1)n/r}, the size of which is an exponentially small

fraction of 2n for any r ≥ 3. However, for each r ≥ 3, it is possible to construct

much larger examples. We give such a construction, and state some open problems,

in Section 3.
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2. Proof of the main result

Before proving Theorem 1.2, we briefly describe the notions and tools we will

need for the proof.

For 0 ≤ p ≤ 1, we write µp for the p-biased measure on Pn, defined by

µp({x}) = p|x|(1− p)n−|x|

for all x ⊂ [n]. Note that µ1/2 is just the uniform measure, since µ1/2(A) = |A|/2n

for any A ⊂ Pn.

We say that two families A,B ⊂ Pn are cross-intersecting if x ∩ y 6= ∅ for all

x ∈ A and y ∈ B. We need the following generalisation of the simple fact that an

intersecting subfamily of Pn contains at most 2n−1 sets.

Lemma 2.1. If A,B ⊂ Pn are cross-intersecting families, then

µp(A) + µ1−p(B) ≤ 1

for any 0 ≤ p ≤ 1.

Proof. Since A and B are cross-intersecting, it is clear that A ⊂ Pn \ B, where

B = {[n] \ x : x ∈ B}. Therefore,

µp(A) ≤ µp(Pn \ B) = 1− µp(B) = 1− µ1−p(B). �

For a family A ⊂ Pn, we write I(A) = {x ∩ y : x, y ∈ A} for the family of all

possible intersections of pairs of sets from A. We require the following easy lemma

that relates the (1/4)-biased measure of I(A) to the (1/2)-biased measure of A.

Lemma 2.2. For any A ⊂ Pn, if µ1/2(A) ≥ δ, then µ1/4(I(A)) ≥ δ2.

Proof. Let F be the map from Pn × Pn to Pn defined by F (x, y) = x ∩ y. For

j ∈ {0, 1, . . . , n}, write [n](j) for the family of all j-element subsets of the set [n]

and note that a fixed set z ∈ [n](j) is the image under F of exactly 3n−j ordered

pairs (x, y) ∈ Pn × Pn. Consequently, writing Nj = |F (A×A) ∩ [n](j)|, we have

n∑
j=0

3n−jNj ≥ |A|2 ≥ δ222n.
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It follows that

µ1/4(I(A)) = µ1/4(F (A×A)) =
n∑
j=0

(
1

4

)j(
3

4

)n−j
Nj

= 2−2n
n∑
j=0

3n−jNj ≥ δ2. �

We say that a family A ⊂ Pn is increasing if it is closed under taking supersets,

i.e., if x ∈ A and x ⊂ y, then y ∈ A. It is easy to see that if A ⊂ Pn is increasing,

then µp(A) is a monotone non-decreasing function of p. Our main tool is the

following well-known ‘sharp threshold’ result of Friedgut and Kalai from [6], proved

using Russo’s Lemma [7] and the so-called ‘BKKKL’ theorem of Bourgain, Kahn,

Kalai, Katznelson and Linial [2] on the influences of Boolean functions on product

spaces.

Proposition 2.3. There exists a universal constant c0 > 0 such that the following

holds for all n ∈ N. Let 0 < p, ε < 1 and let A ⊂ Pn be a symmetric increasing

family. If µp(A) > ε, then µq(A) > 1− ε, where

q = min

{
1, p+ c0

(
log(1/2ε)

log n

)}
. �

We are now ready to prove our result.

Proof of Theorem 1.2. Let A ⊂ Pn be a symmetric 3-wise intersecting family.

Observe that the family {y : x ⊂ y for some x ∈ A} is also symmetric and 3-wise

intersecting. Therefore, by adding sets to A if necessary, we may assume that A is

increasing.

Let µ1/2(A) = δ and note that δ ≤ 1/2 since A is intersecting. We may also

assume that δ > 0 since the result is trivial if A is empty.

Since µ1/2(A) = δ > δ2, we may apply Proposition 2.3 with p = 1/2 and ε = δ2

to conclude that µq(A) > 1− δ2, where

q = min

{
1,

1

2
+ c0

(
log(1/2δ2)

log n

)}
.

By Lemma 2.2, we also have µ1/4(I(A)) ≥ δ2. Since A is 3-wise intersecting, it

follows that A and I(A) are cross-intersecting. Hence, by Lemma 2.1, we have

µ3/4(A) ≤ 1− δ2.
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Now, as µq(A) > 1− δ2 and µ3/4(A) ≤ 1− δ2, it follows from the fact that A is

increasing that q > 3/4. Consequently, we have

c0

(
log(1/2δ2)

log n

)
>

1

4
.

It is now easy to check that δ < n−1/(8c0), proving the theorem. �

3. Conclusion

We suspect that Theorem 1.2 is far from best-possible. Cameron, Frankl and

Kantor [3] showed that a symmetric 4-wise intersecting subfamily of Pn has size at

most 2n exp(−Cn1/3), where C = (log 2/2)1/3. We believe a similar result should

also hold for symmetric 3-wise intersecting families and conjecture the following

strengthening of Theorem 1.2.

Conjecture 3.1. If A ⊂ Pn is a symmetric 3-wise intersecting family, then

log2 |A| ≤ n− cnδ,

where c, δ > 0 are universal constants.

This would be best-possible up to the values of c and δ, as evidenced by the

following construction communicated to us by Oliver Riordan. Let k be an odd

integer and let n = k2, partition [n] into k ‘blocks’ B1, B2, . . . , Bk each of size k,

and take A ⊂ Pn to be the family of all those subsets of [n] that contain more than

half the elements in each block and all the elements in some block; in other words,

A = {x ⊂ [n] : (∀ i ∈ [k] : |x ∩Bi| > k/2) ∧ (∃ j ∈ [k] : Bj ⊂ x)}.

It is easy to see that A is symmetric and 3-wise intersecting, and that

log2 |A| = n− 2n1/2 + o
(
n1/2

)
.

It is straightforward to generalise the construction described above to show that,

for any r ≥ 3, there exists a symmetric r-wise intersecting family A ⊂ Pn with

log2 |A| = n− (r − 1)n(r−2)/(r−1) + o
(
n(r−1)/r),

for infinitely many n ∈ N. Let k be an odd integer and let n = kr−1. Now, consider

a k-ary tree T of depth r − 1, so that T has (kr − 1)/(k − 1) nodes in total (with

ki nodes at level i for each i ∈ {0, 1, . . . , r − 1}). A node at level r − 1 is called a

leaf, and the set of leaves of T is denoted by L(T ). Identify the ground-set [n] with

the set of leaves L(T ) and take A to be the family of sets x ⊂ L(T ) such that

5



(1) x contains more than half the leaf-children of each node at level r − 2, and

(2) for each l ∈ {1, 2, . . . , r − 2}, there exists a node v at level l such that x

contains all the leaf-descendants of v.

It is easy to see that log2 |A| = n− (r − 1)n(r−2)/(r−1) + o(n(r−1)/r), and that A is

symmetric and r-wise intersecting.

Let us also mention the following elegant projective-geometric construction

related to us by Sean Eberhard (that produces slightly smaller families). Let q

be a prime power, and let Pr(Fq) denote the r-dimensional projective space over

the field Fq. Now, take A to be the family of all subsets of Pr(Fq) that contain

an (r − 1)-dimensional projective subspace. Clearly, A is symmetric and r-wise

intersecting. The number of (r − 1)-dimensional projective subspaces of Pr(Fq) is

(qr+1 − 1)/(q − 1), and each such subspace has cardinality (qr − 1)/(q − 1). Hence,

writing n = |Pr(Fq)| = (qr+1 − 1)/(q − 1), we have

2n−(q
r−1)/(q−1) ≤ |A| ≤

(
qr+1 − 1

q − 1

)
2n−(q

r−1)/(q−1),

so log2 |A| = n− n(r−1)/r + o(n(r−1)/r).

Finally, it would be very interesting to determine more precisely, for each r ≥ 3,

the asymptotic behaviour of the function

fr(n) = max{|A| : A ⊂ Pn such that A is symmetric and r-wise intersecting}.
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