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Bialgebroids (resp. Hopf algebroids) are bialgebras (Hopf algebras) over noncommutative rings.
Drinfeld twist techniques are particularly useful in the (deformation) quantization of Lie algebras
as well as underlying module algebras (=quantum spaces). Smash product construction combines
these two into the new algebra which, in fact, does not depend on the twist. However, we can turn
it into bialgebroid in the twist dependent way. Alternatively, one can use Drinfeld twist techniques
in a category of bialgebroids. We show that both techniques indicated in the title: twisting of a
bialgebroid or constructing a bialgebroid from the twisted bialgebra give rise to the same result
in the case of normalized cocycle twist. This can be useful for better description of a quantum
deformed phase space. We argue that within this bialgebroid framework one can justify the use of
deformed coordinates (i.e. spacetime noncommutativity) which are frequently postulated in order
to explain quantum gravity effects.

I. INTRODUCTION

Quantum groups and Hopf algebras over the years have proved their important role in approach to Quantum
Gravity. They are considered as one of the tools of the Noncommutative Geometry which introduces more general
idea of the geometry and allows for a natural quantization of manifolds (e.g. spacetime). In some recent works [1], [2]
the idea of generalization of Hopf algebras into Hopf algebroids [3, 5] in the quantum spacetimes context have been
approached. It is rather well known that the unification of spacetime coordinates with a Lie algebra of symmetries
cannot be done within the category of Lie algebras. The corresponding construction is called smash (or more generally
cross) product which requires introducing the Hopf algebra framework. The algebra of spacetime coordinates is then
Hopf module algebra. A special example of this construction is provided by the so-called phase space algebra (as
the Heisenberg algebra in Quantum Mechanics). The phase space algebra cannot be equipped with the Hopf algebra
structure (at most it can be made into unital-non-counital bialgebra). However such smash product can be generalized
into the bialgebroid. This approach leads to more sophisticated algebraic structures as Hopf algebroids [3],[5],[6],[7],[8].
Recently the quantum (deformed) phase spaces with the noncommutative coordinates equipped with the bialgebroid
(Hopf algebroid) structures gained some attention in the mathematical physics literature.

Deformed quantum phase spaces have been considered shortly after the noncommutative spacetimes were intro-
duced, especially in the context of the κ-deformation [9]. A natural extension of the κ-Poincare quantum group [9, 10]
by the κ-Minkowski commutation relations contains deformation of the Heisenberg subalgebra (phase space). There
have been many constructions of such deformed phase space, e.g. within Heisenberg double construction [11] or smash
product construction [12, 13]. Deformed quantum phase spaces are constantly studied with a number of interesting
papers appearing recently, like e.g. [14].

Focusing on the special case of deformed quantum phase spaces with the noncommutative coordinates satisfying
the κ-deformed Minkowski algebra [10, 15], the Hopf algebroid structure was firstly investigated in [1]. Later on
the more detailed study on the covariance of such space under the action of the κ-deformed Poincare symmetry
within the Hopf algebroid framework was proposed with the Heisenberg double construction naturally providing the
bialgebroid structure [2]. Still the physical meaning of Hopf algebroids stays not entirely clear in this context and
requires more studies in this direction. We believe that within the bialgebroid framework one can better justify the
deformed Casimir relations which are frequently used in order to explain some quantum gravity effects coming from
the spacetime noncommutativity.

Hopf algebroids are Hopf algebras over unital noncommutative rings. One of the oldest definitions of bialgebroids go
back to Sweedler [6] and Takeuchi [7]. Schauenberg [4] also contributed to the topic with his paper on bialgebras over
the noncommutative rings. However the concept of Hopf algebroids (bialgebroids with an antipode) was introduced
by Lu [3] in 1996. The concept of twisted bialgebroids was firstly considered by Xu in 2000 [5]. Lu’s definition came
as a result of work on grupoids in Poisson geometry whereas the one by Xu came from quantum universal enveloping
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algebroids (quantum groupoids) point of view. It was later shown [16] that these two definitions are equivalent. In
2004, G. Böhm and K. Szlachanyi [8] considered pairs of bialgebroids on which the antipode map was defined.

We will be interested in the Drinfeld twist techniques which are particularly useful in the (deformation) quantization
of (complex or real) Lie algebras as well as underlying module algebras (=quantum spaces). The smash product
construction combines these two into a new algebra which, in fact, remains isomorphic to itself under twisting.
However, if this algebra is turned into a bi- (or Hopf) algebroid, the latter is no longer isomorphic under twisting.

Our aim in this note is to show the equivalence between the bialgebroid obtained as a result of the smash product
of a twisted triangular bialgebra with the twisted braided commutative module algebra [16] and the one obtained as
a result of twisting of the smash product in the category of bialgebroids [5].

II. PRELIMINARIES AND NOTATIONS

In this note we shall work in a category of K−modules, where K is a base commutative ring with unit 1 ≡ 1K .
Therefore all objects are by default K−modules, all maps are K−linear maps. The tensor ⊗ product if not indicated
otherwise is over the ring K. Particularly interesting cases are when K = K is a field (of characteristic 0) or K = K[[h]]
is a (topological) ring of formal power series in the (formal) variable h. All rings (algebras) are assumed to be unital.
All modules and module maps are assumed to respect the unit. Below, for the notational convenience, we shall briefly
introduce the main notions involved in our presentation. For deeper study we refer the reader to the literature.

A. Smash Product Construction [17–19]

Let H = (H,∆, ε, 1H) be a bialgebra and A = (A, ?, 1A) be a left H-module algebra with the action B : H⊗A→ A
such that: 1HBa = a, MB1A = ε(M)1A. Smash product algebra AoH is an algebra determined on the vector space
A⊗H by the multiplication (a⊗ L)(b⊗ J) = a(L(1) B b)⊗ L(2)J , where a, b ∈ A; L, J ∈ H and ∆(L) = L(1) ⊗ L(2)

in Sweedler shortcut notation. Obviously, the algebra A o H contains algebras A 3 a 7→ a ⊗ 1 ∈ A o H and
H 3 L 7→ 1⊗ L ∈ AoH as subalgebras. Later on we shall denote by ao L elements from AoH of the form a⊗ L.
Therefore the previous formula can be rewritten as

(ao L)(bo J) = a(L(1) B b) o L(2)J. (1)

A special case of this construction provides the algebra of canonical commutation relations between commuting
coordinates and momenta generators (see e.g. [20] and references therein), which are fundamental from the point of
view of Quantum Mechanics (quantum phase space). In the physically motivated examples this algebra is further
extended by the presence of symmetry, e.g. Lorentz generators, which together with the position and momentum
generators form the so-called extended spacetime-Poincaré algebra (also called the extended phase space, see e.g. [13]
and the references therein). Various applications to the description of Quantum Gravity effects rely on a suitable
(quantum) deformation of both a coordinate algebra as well as a corresponding symmetry (Hopf) algebra (see e.g.
[21]). In such cases besides the traditional position-momentum noncommutativity one postulates following [23, 24]
also the noncommutativity between position variables and/or, less frequently, between momentum variables. Such
kind of theories can be also considered as noncommutative versions of Quantum Mechanics [25, 26]. Drinfeld twist
techniques turn out to be useful tool in their construction. This point will be a subject of the present note.

B. Quasitriangular Hopf Algebras [27, 28] and Drinfeld twist techniques [29]

Let (H, R) be a quasi-triangular bialgebra with the universal quantum R-matrix R = R1 ⊗R2 ∈ H ⊗H satisfying

R∆(X)R−1 = ∆op(X), (∆⊗ id)R = R13R23, (id⊗∆)R = R13R12, (ε⊗ id)R = (id⊗ ε)R = 1 (2)

which imply quantum Yang-Baxter equation

R12R13R23 = R23R13R12 (3)
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As is known [30],[31] any (left) module A over (H, R) becomes automatically a (left-right) Yetter-Drinfeld module
with the right coaction δR(a) = (R2 B a)⊗R1 for all a ∈ A.1

The category of all (left-right) Yetter-Drinfeld modules HYDH is a prebraided (and braided if H is a Hopf algebra)

monoidal category [32]. In particular, a left H- module algebra A = (A, ?, 1A) is an algebra in HYDH if and only if
it is a braided commutative, i.e.

a ? b = (R2 B b) ? (R1 B a) (4)

Let F ∈ H ⊗ H be a normalized cocycle twist in (H, R), i.e an invertible element which satisfies the following
conditions

F12(∆⊗ id) (F ) = F23(id⊗∆) (F )⇔ F1′ (F1)(1) ⊗ F2′ (F1)(2) ⊗ F2 = F1 ⊗ F1′ (F2)(1) ⊗ F2′ (F2)(2) (5)

(ε⊗ id) (F ) = 1H ⊗ 1H = (id⊗ ε(F ) (6)

Its inverse satisfies the similar conditions (according to our notation F = F1 ⊗ F2 , F−1 = F̄1 ⊗ F̄2):(
(∆⊗ id)F−1

)
F−112 =

(
(id⊗∆)F−1

)
F−123 ⇔

(
F̄1

)
(1)
F̄1′ ⊗

(
F̄1

)
(2)
F̄2′ ⊗ F̄2 = F̄1 ⊗

(
F̄2

)
(1)
F̄1′ ⊗

(
F̄2

)
(2)
F̄2′ (7)

(ε⊗ id)F−1 = 1H ⊗ 1H = (id⊗ ε)F−1 (8)

The twisting element serves the purpose of deformation both the bialgebra structure ∆ 7→ ∆F = F∆F−1 as well
the corresponding module algebra structure ? 7→ ?F = ? ◦ (F̄1 . ⊗F̄2.). We shall denote these new algebras as
HF = (H,∆F , ε) and AF = (A, ?F ). Moreover, (HF , RF ≡ F21RF

−1) is quasi-triangular and the module algebra

(A, ?F ) ∈ HFYDH
F

if and only if (A, ?) ∈ HYDH. Drinfeld twisting techniques are very useful in mathematical
physics, noncommutative geometry (see e.g [33]) when looking for new quantum spaces and their quantum symmetries
(e.g. [34]).

C. Bialgebroids [3, 5, 8]

The bialgebroid M = (M,A, s, t,∆, ε) consists of a total algebra M and a base algebra A and the following data:
B1) Two mappings: an algebra homomorphism s : A � M called a source map and an algebra anti-homomorphism

t : A � M called a target map such that: s(a)t(b) = t(b)s(a) is satisfied for all a, b ∈ A.
We consider a left bialgebroid M as an A−bimodule (with the bimodule structure which prefers the left side) as

follows: a.m.b = s (a) t (b)m for all a, b ∈ A, m ∈M .
B2) Additionally, it is equipped with coproduct and counit maps. Coproduct and counit make M an A-coring [16]

(with axioms like that of a coalgebra such that all mappings are A-bimodule homomorphisms and all tensors are over
A).

More exactly, the bialgebroid coproduct map ∆ : M →M⊗AM is anA-bimodule map, whereM⊗AM is constructed
in such a way that (t (a)m)⊗A n = m⊗A (s (a)n); simplifying the notation one can write (m.a)⊗A n = m⊗A (a.n).
This is due to the fact that as an Abelian (additive) group M ⊗A M is a quotient group of M ⊗M by a subgroup
generated by the elements {(t (a) ⊗ 1 − 1 ⊗ s (a))m ⊗ n : a ∈ A,m, n ∈ M}. This subgroup is, in fact, a left
ideal in the algebra M ⊗M . However, M ⊗A M (unlike M ⊗M)is not an algebra in general. To fix this problem
one introduces the so-called Takeuchi product M ×A M [7].2 It is defined as a subgroup of invariant elements
M ×A M = {m ⊗A n ∈ M ⊗A M : (mt (a)) ⊗A n = m ⊗A n(s (a));∀a ∈ A} which has natural (component-
wise) multiplication ((m ⊗A n)(p ⊗A q) = mp ⊗A nq). Both M ⊗A M and M ×A M inherit A-bimodule structure
determined by the action m ⊗A n 7→ (s(a)m) ⊗A (t(b)n), or a.(m ⊗A n).b = (a.m) ⊗A (n.b). Now we can request
additionally that the image of the coproduct map is in M ×AM , i.e. that one deals, in fact, with the algebra map:
∆(mn) = ∆(m)∆(n) ≡ m(1)n(1) ⊗A m(2)n(2).

1 Throughout the paper we shall be using a shorthand notation of Sweedler type. The coproduct is denoted as ∆(L) = L(1) ⊗ L(2). For

elements R ∈ H ⊗H we write R = R1 ⊗R2, If R is invertible we write R−1 = R̄1 ⊗ R̄2: R̄1R1′ ⊗ R̄2R2′ = R̄1′R1 ⊗ R̄2′R2 = 1H ⊗ 1H .
2 We follow notational convention introduced in the previous section also for elements of M ⊗A M .
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The counit map ε : M � A has to satisfy:

ε(1M ) = 1A, ε(mn) = ε(ms(ε(n))) = ε(mt(ε(n))), s(ε(m(1)))m(2) = t(ε(m(2)))m(1) = m (9)

The axioms [3] are similar to those of a bialgebra but are complicated by the possibility that A is a noncommutative
algebra, instead of a commutative ring K, or its images under s and t are not in the center of M .

In a case of Hopf algebroids, one additionally assumes that an antipode τ : M � M is to be an algebra anti-
automorphism satisfying conditions of exchanging the source and target maps and satisfying two axioms similar to
the Hopf algebra antipode axioms. The different versions of introducing the antipode map are possible (see e.g. the
second reference in [8]).

We recall that a morphism between two bialgebroids: (M,A, s, t,∆, ε) and (M ′, A, s′, t′,∆′, ε′) over the same algebra
A consists of algebra map φ : M →M ′ such that φ ◦ s = s′, φ ◦ t = t′, ε = ε′ ◦ φ and the following diagram commutes

M
φ−−−−→ M ′

∆ ↓ ↓ ∆′

M ⊗AM
φ⊗Aφ−−−−−→ M ′ ⊗AM ′

(10)

i.e. ∆′◦φ = (φ⊗Aφ)◦∆. For the case of Hopf algebroids with an antipode τ one should also assume that τ ′◦φ = φ◦τ .

D. Smash product algebras as bialgebroids [16]

In [16] it was shown how a Hopf algebroid structure can be associated to a smash product of a Hopf algebra with a
braided commutative algebra in the Yetter-Drinfeld YD category. The theorem [Theorem 4.1 in [16]] adapted to our
needs reads as follows:

Theorem II.1 Let H = (H,∆, ε) be a bialgebra, A = (A, ?) is a left H-module algebra and (A, ρ) a right H-comodule .

If (A, ?, ρ)3 is a braided commutative algebra in HYDH then
(
AoH, s, t, ∆̃, ε̃

)
is an A-bialgebroid with the source,

target, coproduct and the counit given by the following maps:

s (a) = ao 1H , t (a) ≡ ρ(a) = a<0> o a<1> (11)

∆̃ (ao L) = (ao L(1))⊗A (1A o L(2)) (12)

ε̃ (ao L) = ε(L)a (13)

for all a ∈ A and L ∈ H.

Thus (a o L) I b = a ? (L . b). In particular, (a o 1H) I b = a ? b acts by multiplication from the left, while
(1A o L) I b = L . b preserves the initial action.

E. Twisted bialgebroids [5]

The category of bialgebroids (Hopf algebroids) was introduced by P. Xu in [5] 4. Let us recall the relevant results
from [5] on twist deformation of bialgebroids. Before proceeding further one should remember that bialgebroid
definition provides a canonical action I: M ⊗A→ A: 5

m I a = ε(ms(a)) = ε(mt(a)), (14)

3 ρ is an algebra map called coaction: ρ : A→ A⊗Hop, ρ (a) = a<0> ⊗ a<1> in Sweedler notation.
4 It should be noted that Xu’s paper concerns, in fact, bialgebroids (his definition does not include the antipode map).
5 This action is sometimes referred as an anchor M 3 m→ m I∈ EndA, see [16].
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induced by the counit ε (cf. (9)). We should point out that the multiplication in M does not change like in the
case of Drinfeld theory, where twist deformation modifies coalgebraic sector only. Nevertheless the one in A changes
(A 7→ AF ):

· 7→ ·F =· ◦(F̄1 I ⊗F̄2 I) .

We are now in position to present the simplified version of [Theorem. 4.14 in [5]], skipping some details which are not
relevant for our considerations (following Drinfeld convention our twist is inverse with respect to the one considered
by Xu in [5].):

Theorem II.2 Assume that (M,A, s, t,∆, ε) is bialgebroid over the algebra A and F = F1 ⊗A F2 ∈ M ⊗A M is a
”twistor” (Hopf algebroid twist 6). Then (M,AF , sF , tF ,∆F , ε) is a bialgebroid over the algebra AF , where

sF (a) = s
(
F̄1 I a

)
F̄2 ; tF (a) = t

(
F̄2 I a

)
F̄1 ∀a ∈ A. (15)

and new twisted coproduct ∆F : M � M ⊗AF M :

∆F (m) = F#
(
∆ (m)F−1

)
, ∀ m ∈M (16)

The map F# : M ⊗AM →M ⊗AF M is defined by (cf. Corollary 4.4 in [5]):

F#(m⊗A n) = (F1m)⊗AF (F2 n). (17)

III. MAIN RESULT

In this section we are going to revisit bialgebroids in a context of twist deformation of smash product algebras . It
appears according to construction of Brzezinski-Militaru from [16] that the smash product algebras, under suitable
assumptions, can be equipped with the bialgebroid structures. Moreover, we are going to show that the bialgebroid
obtained by bialgebroid twisting [5] of the smash product algebra and bialgebroid obtained from the smash product
algebra of twisted bialgebra with its twisted module algebra are equivalent (isomorphic).

Let H ≡ (H,∆, ε) be a bialgebra and A ≡ (A, ?) be a (left) module algebra over H. We denote the corresponding
(left) action as . : H ⊗A→ A: L . (a ? b) = (L(1) . a) ? (L(2) . b). Assume that F = F1⊗F2 ∈ H ⊗H is a normalized

cocycle twist for H. It allows us to construct new bialgebra HF ≡
(
H,∆F , ε

)
and new module algebra AF ≡ (A, ?F )

with the same action, where ∆F = F∆F−1 and ?F = ?(F−1 ◦ (.⊗ .)) with F−1 = F̄1⊗ F̄2. Actually, as far as smash
product is concerned, it turns out that:

Proposition III.1 For any Drinfel’d twist F two smash product algebras AoH and AF oHF are isomorphic, even
though the algebras A and AF are not isomorphic and H and HF are not isomorphic as bialgebras (see e.g. [13]).

Although this fact seems to be known, e.g. [35], we provide the proof for completeness.
Proof:
Firstly, we recall that both algebras are determined on the same K-module A ⊗H but differ by the multiplications
(cf. (1)):

(ao L) ? (bo J) = a ? (L(1) . b) o L(2)J , (ao L) ?F (bo J) = a ?F (L(1F ) . b) o L(2F )J (18)

where ∆F (L) = F∆(L)F−1 = L(1F ) ⊗ L(2F ) = F1L(1)F̄1′ ⊗ F2L(2)F̄2′ is the twisted coproduct of the bialgebra HF .
Both algebras are generated by simpler elements: ao1H , a ∈ A and 1AoL,L ∈ H, i.e. aoL = (ao1H)? (1AoL) =
(ao 1H) ?F (1A o L). Of course, the unit 1A o 1H is the same for both multiplications.

The isomorphism ϕ : AF oHF → AoH can be defined by the formula

ϕ (ao L) =
(
F̄1 . a

)
o F̄2L (19)

such that:

ϕ ((ao L) ?F (bo J)) = ϕ (ao L) ? ϕ (bo J) (20)

6 It satisfies the same Drinfeld conditions (5)-(8) with ⊗ replaced by ⊗A.
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for all a, b ∈ A and L, J ∈ H. One notices that due to the normalization condition ϕ(1A o L) = 1A o L. The inverse
map ϕ−1 : AoH → AF oHF is, of course, given by ϕ−1 (ao L) = (F1 . a) o F2L.

We begin by checking the equality (20) for some special cases. Firstly we take

i) ϕ ((ao 1H) ?F (bo J)) = ϕ (ao 1) ? ϕ (bo J).
In AF oHF : (ao 1) ?F (bo J) = (a ?F b) o J and in AoH: (ao 1H) ? (bo J) = (a ? b) o J .
On one hand, from the above and from (20) we have the following series of equalities:

ϕ ((ao 1H) ?F (bo J)) = ϕ ((a ?F b) o J) =(
F̄1 . (a ?F b)

)
o F̄2J = F̄1 .

[(
F̄1′ . a

)
?
(
F̄2′ . b

)]
⊗ F̄2J =

=
[
(F̄1)(1)F̄1′ . a

]
?
[
(F̄1)(2)F̄2′ . b

]
o F̄2J =

=
(
F̄1 . a

)
?
((
F̄2

)
(1)
F̄1′ . b

)
o
(
F̄2

)
(2)
F̄2′J

where we used the cocycle identity for the inverse twist (7).
On the other hand we have from (20) and the above:

ϕ (ao 1H) ? ϕ (bo J) = [
(
F̄1 . a

)
o F̄2] ? [

(
F̄1′ . b

)
o F̄2′J ] =

=
(
F̄1 . a

)
?
((
F̄2

)
(1)
F̄1′ . b

)
o
(
F̄2

)
(2)
F̄2′J =

= ϕ ((ao 1H) ?F (bo J))

As a next step we consider
ii) ϕ ((1A o L) ?F (bo J)) = ϕ (1A o L) ? ϕ (bo J)

In AF oHF one calculates:

(1A o L) ?F (bo J) =
(
L(1F ) . b

)
o L(2F )J =

(
F1L(1)F̄1′ . b

)
o F2L(2)F̄2′J = ϕ−1(

(
L(1)F̄1′ . b

)
o L(2)F̄2′J)

where the first equality is due to the normalization condition ε
(
F̄1

)
F̄2 = 1H = F̄1ε

(
F̄2

)
. Therefore one has the

following equalities:

ϕ ((1 o L) ?F (bo J)) =
(
L(1)F̄1′ . b

)
o L(2)F̄2′J = (1A o L) ? (

(
F̄1′ . b

)
o F̄2′J)

= ϕ(1A o L) ? ϕ(bo J)

Verification on the remaining pair of generators: (ao 1H) ?F (1Ao J) = ao J and (1AoL) ?F (1Ao J) = 1AoLJ
is rather straightforward.

To finish the proof one checks (20) using above partial results:

ϕ ((ao L) ?F (bo J)) = ϕ
(

(ao 1H) ?F ((L̃(1) . b) o L̃(2)J)
)

= ϕ (ao 1H) ? ϕ
(

(L̃(1) . b) o L̃(2)J
)

= ϕ (ao 1H) ? ϕ ((1A o L) ?F (bo J)) = ϕ(ao 1H) ? ϕ(1A o L) ? ϕ(bo J)

= ϕ(ao L) ? ϕ(bo J)

The proof is done.

From now on we assume that (H, R) is quasi-triangular bialgebra and the algebra A is braided commutative in the

category HYDH, i.e. a?b = (R2.b)?(R1.a). Then according to Brzezinski-Militaru construction (Theorem II.1, [16])

AoH is a bialgebroid over the algebra A if we define (shifting ∆ : H → H⊗H to ∆̃ : AoH → (AoH)⊗A (AoH))

∆̃(ao L) = (ao L(1))⊗A (1A o L(2)), s (a) = ao 1H , t (a) = (R2 . a) oR1, ε̃(ao L) = ε(L)a (21)

The bialgebroid counit map ε̃ will not change through the rest of this note. Following the same idea we can shift the
quantum R-matrix from the bialgebra H to the bialgebroid AoH

R→ R̃ = (1A oR1)⊗A (1A oR2) ∈ (AoH)⊗A (AoH). (22)
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One can easily check by direct calculations that properties of the cocycle type will be preserved (cf. (2)):

(∆̃⊗A id)R̃ = R̃13R̃23, (id⊗A ∆̃)R̃ = R̃13R̃12, (ε̃⊗A id)R̃ = (id⊗A ε̃)R̃ = (1A o 1H)⊗A (1A o 1H) (23)

while the remaining is lost

R̃∆̃(ao L)R̃−1 = ((R1 . a) o L(2))⊗A (1A oR2L(1)) 6= ∆̃op(ao L) = ((R2 . a) oR1L(2))⊗A (1A o L(1)), (24)

where in the last equation we have used the property X ⊗A s(a)Y = t(a)X ⊗A Y . Therefore, any Drinfeld twist

F = F1 ⊗ F2 ∈ H ⊗H in the bialgebra H can be also shifted to the bialgebroid twist F̃ ∈ (AoH)⊗A (AoH) by 7

F → F̃ = (1A o F1)⊗A (1A o F2) (25)

which automatically satisfies bialgebroid cocycle and normalization conditions.
Similarly, the construction of Brzezinski-Militaru (Theorem II.1, [16]) makes AFoHF a bialgebroid over the algebra

AF if we set

∆̃F (ao L) = (ao L(1F ))⊗AF (1A o L(2F )), sF (a) = ao 1H , tF (a) =
(
RF2 . a

)
oRF1 (26)

where RF = F21RF
−1 = F2′R1F̄1′′ ⊗ F1′R2F̄2′′ and the algebra AF is braided commutative as well: a ?F b =

(RF2 . b) ?F (RF1 . a). More explicitly

∆̃F (ao L) = (ao F1L(1)F̄1′)⊗AF (1A o F2L(2)F̄2′) (27)

As a next task, according to Xu (Theorem II.2), one applies bialgebroid twisting in order to obtain new twisted

bialgebroid (AoH)F̃ by making use of the twist (25):

∆̃F̃ (ao J) = F̃#(∆̃(ao J)F̃−1), sF̃ (a) = (F̄1 . a) o F̄2, tF̃ (a) =
(
R2F̄2′ . a

)
oR1F̄1′ (28)

where, in our case, F̃# : (AoH)⊗A (AoH)→ (AoH)⊗AF (AoH) is determined by the formula (cf.(17))

F̃#((ao L)⊗A (bo J)) = (((F1)(1) . a) o (F1)(2)L)⊗AF (((F2)(1) . b) o (F2)(2)J) (29)

Since (1A oM) I a = M . a for any M ∈ H the base algebra is just AF .

Our goal is to compare bialgebroids AF oHF and (AoH)F̃ . In fact we are going to prove the following

Theorem III.1 Let (H, R) be a quasi-triangular bialgebra and A stands for braided commutative module algebra
w.r.t. (H, R). Assume that F = F1 ⊗ F2 ∈ H ⊗H is a normalized cocycle twist in H. Then

AF oHF ∼= (AoH)
F̃

(30)

are isomorphic bialgebroids, where F̃ denotes bialgebroid cocycle twist (25) obtained from F .

Proof:
All properties of bialgebroid are fulfilled according to Theorems II.1 and II.2. The base algebra AF is the same on

both sides. Therefore we can use the isomorphism (20) ϕ : AF o HF → A o H of total algebras and at the same
time, demonstrate that the following diagram commutes (cf. (10))

AF oHF ϕ−−−−−−→ A oH

∆̃F ↓ ↓ ∆̃
F̃

(AF oHF )⊗AF (AF oHF )
ϕ⊗AF ϕ−−−−−−−→ (A oH)⊗AF (A oH)

(31)

7 Our twist is inverse with respect to the one considered by Xu in [5].
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i.e. ∆̃F̃ ◦ ϕ = (ϕ⊗AF ϕ) ◦ ∆̃F .

The coproduct ∆̃F̃ can be found in more explicit form as

∆̃F̃ (ao J) = (((F1)(1) . a) o (F1)(2)J(1)F̄1′)⊗AF (1A o F2J(2)F̄2′) (32)

since ε((F2)(1))(F2)(2) = F2.
In order to simplify the proof we check the diagram (31) on generators. We begin from

∆̃F̃ (ϕ(1A o J)) = ∆̃F̃ (1A o J) = (((F1)(1) . 1A) o (F1)(2)J(1)F̄1′)⊗AF (1A o F2J(2)F̄2′)

= (1A o F1J(1)F̄1′)⊗AF (1A o F2J(2)F̄2′) = ∆̃F (1A o J)

Next we check

∆̃F̃ (ϕ(ao 1H)) = ∆̃F̃ ((F̄1 . a) o F̄2) = F̃#
(
((F̄1 . a) o (F̄2)(1)F̄1′)⊗A (1A o (F̄2)(2)F̄2′)

)
=

F̃#
(
(((F̄1)(1)F̄1′ . a) o (F̄1)(2)F̄2′)⊗A (1A o F̄2)

)
= ((((F1′′)(1)F̄1)(1)F̄1′ . a) o (F1′′)(2)(F̄1)(2)F̄2′)⊗AF (1A o F̄2′′F2)

Since (∆⊗ id)(F )(∆⊗ id)(F−1) = 1H ⊗ 1H the last expression simplifies to

((F̄1 . a) o F̄2)⊗AF (1A o 1H) = ϕ(ao 1H)⊗AF ϕ(1A o 1H) = (ϕ⊗AF ϕ)
(

∆̃F (ao 1H)
)

In order to complete the proof one has to check that ϕ(sF (a)) = sF̃ (a), ϕ(tF (a)) = tF̃ (a) and ε̃ ◦ ϕ = ε̃. It is not
difficult to get these equalities.

For example, for the target maps we have

ϕ(tF (a)) =
(
F̄1R

F
2 . a

)
o F̄2R

F
1 =

(
F̄1

(
F1′R2F̄2′′

)
. a
)
o F̄2

(
F2′R1F̄1′′

)
=
(
R2F̄2′′ . a

)
oR1F̄1′′ = tF̃ (a)

using RF = RF1 ⊗RF2 = F2′R1F̄1′′ ⊗ F1′R2F̄2′′ and F̄1F1′ ⊗ F̄2F2′ = F−1F = 1H ⊗ 1H .

Therefore the proof is completed.

A. Comments on crossed product and Hopf-Galois extension

A smash product A oH is a particular kind of a crossed product algebra A oσ H, where a convolution invertible
map σ : H⊗H → A has to satisfy (in A) the so-called 2-cocycle

[L(1) B σ(J(1),K(1))]σ(L(2), J(2)K(2)) = σ(L(1), J(1))σ(L(2)J(2),K), σ(J, 1H) = σ(1H , J) = ε(J)1A

as well as twisted module

[L(1) B (J(1) B a)]σ(L(2), J(2)) = σ(L(1), J(1))[(L(2)J(2)) B a]

conditions for any a ∈ A and L, J,K ∈ H. These properties allow to establish on the vector space A⊗H the structure
of unital, associative algebra with the multiplication

(a⊗ L)(b⊗ J) = a(L(1) B b)σ(L(2), J(1))⊗ L(3) J(2)

This algebra is denoted as AoσH [36]. It has a natural left A module and right H comodule structures (the so-called
normal basis property), which makes it a H-comodule algebra (a coring) with the subalgebra A⊗ 1H = (Aoσ H)coH

composed of coinvariants of the coaction. 8

Due to this fact it provides a canonical example of Hopf-Galois extension [36] which, in turn, is an algebraic
counterpart of a quantum principal bundle [36–38]. Various twist deformations of such principal bundles have been
proposed recently in [38]. Taking the trivial cocycle σ0(L, J) = ε(L)ε(J) 1A one reconstructs the smash product.
A natural question which appears now is whether the result of the present section can be extended to the case of
nontrivial cocycle σ : H⊗H → A ?

8 For a coring M over the Hopf algebra H with the right coaction ρ : M → M ⊗ H one defines a subalgebra of coinvariant elements,
McoH = {h ∈M : ρ(m) = m⊗ 1H}. We say that the extension McoH ⊂M is H-Hopf-Galois if the map M ⊗McoH M →M ⊗H, given
by m⊗ n 7→ (m⊗ 1H)ρ(n), is bijective [36].
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IV. LIE ALGEBRA CASE

Nice and simple illustration of the framework presented in this paper is provided by the Lie algebra g itself. It
is also important from physical point of view as the symmetries in physics are described by Lie algebras. The Lie
algebra g can be generalized as Ug - universal enveloping algebra to a Hopf algebra (with primitive Hopf algebra
maps) Ug = (Ug,∆0, ε, S0) over the field K = C orR of complex or real numbers. Through the deformation procedure
(see Sec. II B), which requires extension to K[[h]], it becomes Ug,h =

(
Ug[[h]],∆, ε, S

)
deformed quantum symmetry

algebra (quantum group) of the corresponding noncommutative quantum spacetime (=Hopf module algebra). In the
case of Lie algebras there is well known correspondence between classical and quantum r-matrices

R = 1 + h r +O(h2) (33)

where r ∈ g ⊗ g denotes the classical r-matrix satisfying, due to (3), classical Yang-Baxter equation (CYBE). Its
skew symmetric part r − r21 describes Poisson-Lie structure on the corresponding Lie group. In fact, there are two
types of quantum deformations of Lie algebras: triangular (nonstandard) and quasi-triangular (standard). The former
corresponds to the situation when r is skew-symmetric, i.e. r ∈ g∧ g. In this case existing of cocycle twist is ensured
by Drinfeld theorem, even if its explicit form not always is known. Knowing the twist F ∈ Ug[[h]] ⊗ Ug[[h]] one can

proceed with the deformation procedure and construct quantum r-matrix R = F21F
−1 which is triangular. Twisting

techniques are well developed and very useful in mathematical physics (see e.g. [33]). In contrast, quasi-triangular
deformations, which apply to semi-simple Lie algebras, are related to the classical r-matrices with the skew-symmetric
part satisfying modified classical Yang-Baxter equation (MCYBE).

Representations of Lie algebra g provide examples of module algebras via deformation of (commutative) algebra
of smooth functions A = C∞(V )(=algebra of spacetime coordinates) on the corresponding vector space V in the
following way. Given representation ρ induces the action on the vector space V :

ρ : g→ EndKV ⇔ . : g⊗ V → V (34)

L . v ≡ ρ(L)(v). This action can be uniquely extended to the action of the entire universal enveloping algebra
. : Ug ⊗ V → V (and eventually to its topological extension Ug[[h]]).

Further extension relies on the possibility of replacing V by the commutative algebra of smooth functions on V
in the case of finite dimesional representation. Assume {ei}m1 (m = dimKV ) is some basis providing coordinates for

the vectors: v = xiei. Let us denote ρ(L) = [Lji ] as the corresponding matrix. Then we are in position to construct
the first order differential operators acting on the manifold V or more exactly on the algebra of its smooth functions
C∞(V ):

ρ̂(L) = −Lβαxα∂β (35)

which is in fact coordinate independent object. Therefore, it defines an extended action . : Ug ⊗C∞(V )→ C∞(V ).9

Note that the Leibniz rule

ρ̂ (L) (a · b) = ρ̂ (L) a · b+ a · ρ̂ (L) b (36)

for all a, b ∈ C∞(V ) is automatically satisfied. And since ρ̂(L) is a vector field on V one can make use of the primitive
Hopf algebra structure (∆ (L) = L⊗ 1 + 1⊗ L) and rewrite (36) as L . (a · b) =

(
L(1) . a

)
·
(
L(2) . b

)
which provides

the module algebra condition over Ug.
Realization (35) allows to merge the initial Lie algebra g with a canonical Heisenberg algebra. Resulting algebra

can be represented by the following commutation relations

[La, Lb] = γcabLc, [Lb, pν ] = (Lb)
α
ν pα, [pµ, pν ] = 0 (37)

[La, x
µ] = −(La)µαx

α, [pν , x
µ] = 1 δµν , [xµ, xν ] = 0 (38)

The first line (37) represents a Lie subalgebra which can be identified as a inhomogeneous extension igρ of the initial
Lie algebra g with respect to the representation ρ. Thus the unital associative algebra generated by the relations

9 More generally we can assume that X is a (smooth) G-manifold, where g denotes Lie algebra of G. Then we have the action Ug ⊗
C∞(X)→ C∞(X) provided by so-called Killing vector fields.
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(37)-(38) can be introduced as a smash product Pol[x1, . . . , xm] o Uigρ , where Pol[x1, . . . , xm] = UAb[x1,...,xm] is the
same as an enveloping algebra of the Abelian Lie algebra [xµ, xν ] = 0. This former algebra can be interpreted as an
extended (quantum) phase space. Natural Hopf action of Uigρ on the module algebra Pol[x1, . . . , xm] is given by the
commutators (38): La . x

µ = −(La)µαx
α, pν . x

µ = 1 δµν .
We would like to point out that while extending the Lie algebra (37) by adding the vector space (38) of some

representation we exit beyond the category of Lie algebras. However, we remain in a category of associative unital
algebras which include Lie algebras as a subcategory. To be more precise, obtained algebra is not an enveloping algebra
of some Lie algebra. In other words the unit as a group-like element cannot belong to any Lie algebra. Consequently,
instead of bi- (Hopf) algebras one gets bi- (Hopf) algebroids. Replacing the unit by a central (primitive) Lie-algebraic
element we change the structure in such a way that Lie algebra and therefore Hopf algebra are possible. But both
structures are not equivalent (isomorphic) in the algebraic sense. We claim that our construction is more natural for
physics since in the undeformed case it is related to Quantum Mechanics and representations (infinitesimal version)
of the so-called Mackey’s imprimitivity systems.

Any Drinfel’d twist in the Hopf algebra Uigρ can be used to deforme the smash product algebra Pol[x1, . . . , xm]oUigρ

in two equivalent ways as described by Theorem III.1 in order to obtain new quantum phase space. In the process of
twist deformation (Sec. II B) (requiring extension of all objects and morphisms to the category of modules over K[[h]]
ring) the Hopf algebra Uigρ gets new coproduct and antipods while the underlying module algebra Pol[x1, . . . , xm]
gets new twist deformed (noncommutative) star product:

a ?F b = m ◦ F−1 . (a⊗ b) = (F̄1 . a) · (F̄2 . b) (39)

replacing ordinary (commutative) multiplication of scalar-valued functions. Two-cocycle condition guarantees associa-
tivity of the corresponding twisted star-product (39). Note that the twisted star product ?F is braided commutative.
One can check that using the relation: R = F21F

−1 = F2F̄1′ ⊗ F1F̄2′ = R1 ⊗ R2. Starting from the definition of
braided commutativity (4) then from definition of star product (39)

(R2 . b) ?F (R1 . a) = (F̄1 . R2 . b) · (F̄2 . R1 . a) =

(F̄1F1′ F̄2′′ . b) · (F̄2F2′ F̄1′′ . a) = (F̄2′′ . b) · (F̄1′′ . a) =

(F̄1′′ . a) · (F̄2′′ . b) = a ?F b

the second line equality is due to the identity: 1⊗1 = F−1F = F̄1F1′⊗F̄2F2′ and the third is using the · commutativity
and definition of ?F product.

Therefore, AF = (A, ?F ) ∈Ug,h YDUg,h , hence AF o UFg,h can be equipped with the bialgebroid structure (with all

the maps as defined in II.1). Besides the triangular deformations one can consider smash product algebras based on
quasi-triangular ones. However, in this case we may not know quantum r-matrix R explicitly (e.g. in the case of
non-semi-simple Lie algebras) and then we are unable to check braided commutativity of the corresponding module
algebra. This happens, e.g. in the case of the celebrated κ-Poincare symmetry (see e.g. [39] and references therein).
Recently it has been proposed in this case to construct Hopf algebroid which is based on Heisenberg double instead
of the smash product construction [2].

Many examples of the smash product algebras, for specific Lie algebras have been already investigated before. For
example, the κ-deformation by twists providing κ-Minkowski algebra:

[x̂i, x̂j ] = 0, [x̂0, x̂i] =
i

κ
x̂i, (40)

as a covariant quantum space of the extended symmetries and their smash products was investigated in [13] for
UFigl(n),h-inhomogeneous general linear algebra, in [40] for UFipw,h- Poincaré-Weyl algebra (one generator extension of

Poincaré algebra) or in [41] for the case of UFso(2,4),h - the conformal algebra.

Such smash product algebras, called extended phase spaces, contain deformed quantum-mechanical phase space
(i.e. [Pµ, x̂ν ] commutators). The deformation of the momenta - coordinates sector leads to the deformation of the
Poincaré Casimir operator and therefore to the deformation of dispersion relations. It is due to the fact that the
standard Casimir operator P 2 of the Poincaré algebra does no longer satisfy:

[P 2, x̂µ] 6= 2Pµ (41)

once the phase space is deformed. One then looks for another invariant operator - deformed Casimir operator Cκ for
which :

[Mµν , Cκ] = [Cκ, Pµ] = 0; [Cκ, x̂µ] = 2Pµ (42)
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It will lead to deformed dispersion relation of the form:

Cκ +m2
κ = 0 (43)

(for consequences of this effect see e.g. [21], for discussion of the triangular case, see e.g. [22] and references therein).
In this framework the deformation of the Poincaré Casimir operator (and the corresponding deformation of disper-

sion relations) is motivated by the use of the noncommutative coordinates assuming that the relations (42) are pre-
served. However from purely algebraic point of view one deals with isomorphic algebraic structures AFoUFg,h ≡ AoUg
therefore both commuting and noncommuting coordinates are equally justified.

We argue in this paper that distinguishing between noncommutative coordinates can be in turn dictated by the
choice of bialgebroid structure. In such approach the deformed extended phase space AF o UFg,h is not isomorphic to
the undeformed one Ao Ug as bialgebroids, therefore the corresponding deformed coordinates are preferred.

V. CONCLUSIONS

The Hopf algebroids (bialgebroids) only recently have gained attention from mathematical physics point of view.
In this note we focus on one of the physically important cases where the bialgebroid structure arises, i.e. the smash
product construction. We focus on the smash product of triangular Hopf algebra with the Yetter-Drinfeld module
algebra and then on the smash product of their twist deformed counterparts. On the other hand we investigate the
Drinfeld twist techniques in a category of bialgebroids. We prove that these two approaches, i.e. the twisting of a
bialgebroid or constructing bialgebroid from twisted bialgebra are isomorphic in the case of normalized cocycle twist.

As a special example we presented how to obtain Hopf algebroid from Lie algebra. As it is known Lie algebras have
special role in physics and many of them have been considered already in the Hopf algebras framework. The smash
product algebras of symmetry algebra (i.e. their corresponding Hopf algebra) with the noncommutative coordinates
(Hopf) module algebra are called extended phase spaces. In the case of the twist deformation, such extended phase
spaces can easily be equipped with the bialgebroid structure as shown in Sec. E. However it is still an open issue
if κ-Minkowski spacetime (40) and κ-Poincaré (quasi-triangular non triangular case) smash product algebra (true
κ-extended phase space) can be equipped with the Hopf algebroid maps. Some approaches have been made in this
direction in [1], [2]. Another two points to consider in the future would be an accommodation of the antipode map
within this formalism (knowing it is possible in the case presented in Sec. D and it was already done in [16]) and an
extension of the present formalism to the more general cross product construction.

Moreover, there are plenty of other examples of particular interest in physics where the braided commutativity
appears naturally, like for example commutative superalgebras (see e.g. [42]). Also the very well known Drinfeld
doubles can provide examples of Hopf algebroids (see e.g. [3], Theorem 5.1), i.e. the smash product of the Hopf
algebra and the module of its Drinfeld double algebra is Hopf algebroid. More complete presentation of the physically
motivated Hopf algebroids as well as more interesting examples we postpone to another paper.
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