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We study an interesting relevant deformation of the simplest interacting N ¼ 2 superconformal field
theory (SCFT)—the original Argyres-Douglas (AD) theory. We argue that, although this deformation is not
strictly speaking Banks-Zaks–like (certain operator dimensions change macroscopically), there are senses
in which it constitutes a mild deformation of the parent AD theory: the exact change in the a anomaly is
small and is essentially saturated at one loop. Moreover, contributions from IR operators that have a simple
description in the UV theory reproduce a particular limit of the IR index to a remarkably high order. These
results lead us to conclude that the IR theory is an interactingN ¼ 1 SCFTwith particularly small a and c
central charges and that this theory sheds some interesting light on the spectrum of its AD parent. Our
results also lead us to the conclusion that the theory spaces emanating from some of the simplest N ¼ 1

gauge theories may be richer than anticipated.

DOI: 10.1103/PhysRevD.94.125002

I. INTRODUCTION

Argyres-Douglas (AD) theories [1–3] are considered
to be relatively mysterious superconformal field theories
(SCFTs). One reason for this view is the way they
were initially constructed as special points in the moduli
space of N ¼ 2 gauge theories where mutually nonlocal
Bogomol’nyi-Prasad-Sommerfeld states become simulta-
neously massless.
On the other hand, there is evidence that AD theories

are particularly simple: their conformal anomalies scale
linearly with the dimensions of their Coulomb branches
[4,5], and their superconformal indices take a particularly
simple form [6–11].
This simplicity manifests itself in many ways. For

example, even though the Schur limit of the index [12]
does not receive direct “single letter” (SL) contributions
from N ¼ 2 chiral operators whose vacuum expectation
values parametrize the Coulomb branch, the AD Schur
index still “nonperturbatively” encodes the spectrum of
these operators in its pole structure [7] (we can therefore
think of these theories as dominated by the few degrees of
freedom (DOF) parametrizing the Coulomb branch).
One consequence of this paper will be to see how to make

contributions from N ¼ 2 chiral operators more manifest
by performing certain small deformations of the parent AD
theory. The price we will pay for making these operators
more visible is that we will break N ¼ 2 → N ¼ 1.
Another striking fact about AD theories is that the

simplest AD theory—the so-called (A1, A2) theory—
saturates a universal lower bound for the c central charge
of a unitary interacting N ¼ 2 SCFT [13]. Moreover, the

(A1, A2) theory has the smallest-known value of a for an
interacting N ¼ 2 theory. As a result, one can think of it
as the simplest member of the simplest class of N ¼ 2
SCFTs.
Therefore, it is interesting to deform this theory, since

renormalization group (RG) intuition tells us that the
resulting IR theory should be simpler. However, the above
discussion suggests that we should, at best, find a free
theory if we deform the (A1, A2) SCFT while preserving
N ¼ 2. Indeed, this is true [5,14]. On the other hand, we
find a more interesting IR theory if we deform the UV
SCFT in such a way as to break N ¼ 2 → N ¼ 1 via

δW ¼ λO2; ð1Þ

whereO is the dimension 6=5 chiral primary of the (A1, A2)
theory. One reason to study (1) is that, among the available
deformations, it is the lowest-dimensional deformation that
gives rise to a stable vacuum with an interacting theory
at long distance (another deformation has been recently
studied in [15]) [16].
In what follows, we will analyze the IR theory, T ,

resulting from the deformation in (1). We will see that
(i) T is interacting.
(ii) In T ’s chiral ring

O2 ¼ O ·Oα ¼ 0; ð2Þ

where Oα is a spin-half chiral primary related to O
by N ¼ 2 supersymmetry (SUSY) in the UV.

(iii) There is strong evidence suggesting our flow does
not have accidental symmetries.
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(iv) T has

aT ¼ 263

768
; cT ¼ 271

768
; ð3Þ

where a free chiral superfield has c ¼ 1=24.
The first point might come as a surprise, since T can be

reached by a flow from one of the simplest-known gauge
theories: SUð2ÞN ¼ 1 adjoint SQCD with one flavor. The
advantage of starting at the AD point is that we find simple
variables to describe T .
In addition, we will use the index to argue that in the IR
(i) There is a semishort multiplet with a spin half

primary, Jα, of dimension DðJαÞ ¼ 11
4
satisfying

DαJα ¼ 0: ð4Þ

We will also find evidence that
(i) O, Oα, and a third chiral primary, O0 (also related

to the other two by N ¼ 2 SUSY in the UV), exist
as flavor-singlet chiral operators in T with scaling
dimensions DðOÞ ¼ 3

2
, DðOαÞ ¼ 7

4
, and DðO0Þ ¼ 2,

respectively.
The apparent existence of a flavor singlet chiral primary,

O, satisfying O2 ¼ 0 with a scaling dimension that is
within 5% of the extrapolated dimension for the flavor-
singlet chiral primary ϕ operator (satisfying ϕ2 ¼ 0) in [18]
begs the question of whether T is the minimal N ¼ 1
SCFT discussed in [18] and if O ¼ ϕ. While these points
give some reason to suspect this identification of theories
might be correct, the value of the extrapolated c central
charge in [18] is roughly a factor of 3 smaller than the
central charge in (3). Therefore, we are not sure if T is the
theory in [18,19].
On the other hand, our study of this SCFTwill shed new

light on the (A1, A2) theory and on aspects of N ¼ 1
dynamics. Moreover, the values of the central charges in (3)
are particularly small for an interacting N ¼ 1 SCFT in
four dimensions [20]. Therefore, T clearly deserves to be
studied in its own right.
Our plan is as follows. Next, we will construct our theory

and establish (2) and (3). In the following section we will
use recent insights into the superconformal indices of AD
theories to argue that T is interacting. We will then discuss
constraints on accidental symmetries. In the following
section, we use the index to find evidence for the existence
of the primaries O, Oα, O0, and Jα in the IR. Finally, we
conclude with some brief comments on the implications of
our results.

II. THE MINIMAL N = 1 DEFORMATION

We will make one assumption in studying the deforma-
tion (1): there are no accidental flavor symmetries along the
corresponding RG flow. In Sec. III, we will give some
justifications for this assumption.

From this starting point, we compute aT and cT using
anomaly matching and [4,22]

aðA1;A2Þ ¼
43

120
; cðA1;A2Þ ¼

11

30
: ð5Þ

Indeed, since the (A1, A2) theory has no N ¼ 2 flavor
symmetries, there is a unique R symmetry along the
RG flow

R̂ ¼ −2
�
r −

7

12
J

�
¼ 1

6
ð−5rþ 7RÞ; ð6Þ

where r is the overall N ¼ 2 Uð1ÞR charge, R is the
SUð2ÞR Cartan, and J is the N ¼ 1 flavor symmetry

J ¼ rþ R: ð7Þ
We adopt the conventions rðQ2

αÞ ¼ −RðQ2
αÞ ¼ 1=2 so that

JðQ2
αÞ ¼ 0 [we are integrating the deformation (1) over the

half of superspace corresponding to ~Q2_α and Q2
α [23]].

Therefore

rðOÞ ¼ JðOÞ ¼ −
6

5
; RðOÞ ¼ 0; ð8Þ

from which (6) follows.
Next, using the fact that the ’t Hooft anomalies are [4]

(our conventions are r ¼ − 1
2
RN¼2, where RN¼2 is defined

in [4])

Aðr3Þ ¼ −6ða − cÞ; AðrR2Þ ¼ −ð2a − cÞ;
AðrÞ ¼ −24ða − cÞ; ð9Þ
with all other R anomalies vanishing, we get

AðR̂Þ ¼ −
1

6
; AðR̂3Þ ¼ 251

216
: ð10Þ

Therefore we obtain (3) (which is compatible with [24]).
Moreover, in the IR, O2 is a descendant since (1) breaks

the J symmetry in (7)

~D2J ∼ λO2: ð11Þ
As promised in (2), O2 vanishes in T ’s chiral ring.
In fact, we get more information by studying the N ¼ 2

supercurrent multiplet. This multiplet (see [25]) contains
an N ¼ 1 submultiplet, Jα, with a primary of dimension
5=2 and the (broken) second supersymmetry current. In the
absence of supersymmetry breaking, it satisfies ~D2Jα ¼ 0.
However, in the presence of the SUSY breaking deforma-
tion (1), we find

~D2Jα ∼ λO ·Oα: ð12Þ
Therefore, as promised in (2), O ·Oα vanishes in T ’s
chiral ring.
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III. T IS INTERACTING

To gain further insight into T , it is useful to study the
superconformal index of the (A1, A2) theory. Recall that the
N ¼ 2 index can be defined as

Iðp; q; tÞ ¼ Trð−1ÞFtRþrpj2−j1−rqj2þj1−re−βΔ; ð13Þ

where R, r, and j1;2 are the SUð2ÞR Cartan, the
overall superconformal Uð1ÞR generator, and the two
Cartans of the rotation group, respectively. Note that the
contributions to the trace come from states that are annihi-
lated by ~Q2 _− [i.e., states that have Δ¼ 1

2
f ~Q2 _−; ~Q

†
2 _−g¼

1
2
ðE−2j2−2Rþ rÞ¼ 0], that the fugacities p, q, t satisfy
jpj; jqj; jtj; jpq=tj < 1, and that the corresponding charges
also commute with ~Q2 _− (for simplicity, we have dropped
the dependence on potential flavor fugacities). While the
full indices of AD theories are not presently known, results
are known for various special limits [6–11]. In particular,
we will use the Schur limit of the (A1, A2) index [8].
This limit is defined by taking t ¼ q in (13). As a result,

all contributing states are annihilated by both ~Q2 _− and Q1
−.

Using fQ1
−; Q1†

− g ¼ 1
2
ðE − 2j1 − 2R − rÞ and recalling

that contributions to the index satisfy E ¼ 2j2 þ 2R − r,
we see that for the contributing states in (13),
fQ1

−; Q1†
− g ¼ j2 − j1 − r. Therefore, we conclude that

the Schur index is independent of p.
Using this freedom, take p ¼ q

5
7 and obtain

ISðqÞ ¼ Iðq5
7; q; qÞ ¼ Trð−1ÞFq1

7
ð12j2þ2j1þ6R̂Þe−βΔ: ð14Þ

In particular, we see that this index is explicitly preserved
when we turn on our N ¼ 2 → N ¼ 1 breaking deforma-
tion in (1). Moreover, from [8] we know that

ISðA1;A2ÞðqÞ ¼ 1þ
X∞
l¼1

qlðlþ1ÞQl
k¼1ð1 − qkÞ ¼ 1þ q2 þ…;

ð15Þ

where the right-hand side is the Rogers-Ramanujan H
function.
After we deform our theory, we should think of the index

as corresponding (up to a prefactor) to a twisted partition
function for the massive theory on S1 × S3. This partition
function does not depend on the RG scale. In the deep IR,
after flowing to T , we interpret the resulting partition
function as an index that counts states annihilated by ~Q2 _−
(i.e., those states satisfying ΔIR ¼ E − 2j2 − 3

2
~R ¼ 0,

where ~R is the IR superconformal R symmetry). More
precisely, since we start from a well-defined index in the
UV, and our relevant deformation leads to a stable vacuum,
then the partition function should interpolate to the IR
index or to a suitable continuation of the IR index.

We now use this logic to rule out the possibility that T is
a collection of free fields. In particular, the a-theorem [26]
guarantees that the IR SCFT can at most consist of (a) 17
free chiral multiplets and no vector multiplets or (b) at most
8 free chiral multiplets and an Abelian vector multiplet.
Neither of these possibilities reproduce (15).
To understand this claim, consider (a). We have a

collection of free chiral multiplets, ϕi, with R̂ charges R̂i.
In our conventions, contributions to the IR index come from
operators satisfying ΔIR ¼ E − 2j2 − 3

2
~R ¼ 0, where ~R is

the free superconformal R symmetry. These contributions
can only come from states built out of bosonic chiral
primaries, ϕi, antichiral fermions, ~ψ i _þ, and their derivatives.
Thinking in terms of the partition function, it is natural to

consider theories with R̂i ∈ ð0; 2Þ since the curved space
potential is bounded from below (moreover, the index is
absolutely convergent) [27,28]. However, it is easy to see
that such a theory cannot reproduce (15) in the IR.
Indeed,

I IRðqÞ ¼
YN
i¼1

Y
m;l≥0

1 − q
6
7
ð2−R̂iÞþ5

7
mþl

1 − q
6
7
R̂iþ5

7
mþl

; ð16Þ

where N ≤ 17. We have boson(s), ϕa, of lowest R charge,
R̂min ∈ ð0; 2Þ. In order to match (15), we see that the zero-
derivative single-letter contributions of the ϕa must be
canceled by fermionic contributions from some ~Ψa [since
the bosonic contributions appear at order less thanOðq2Þ in
the index]. If the ~Ψa are composites (in ~ψ i _þ, ϕi, and
derivatives), then there are contributions of lower order than
the index contributions of the ϕa, and these contributions
cannot be canceled, which is in contradiction with (15).
On the other hand, if ~Ψa ¼ ~ψ ia _þ, then we have an exact
pairing ϕa ⊕ ~ψ ia and ϕia ⊕ ~ψ i. Therefore, the correspond-
ing contributions to the index cancel pairwise. We proceed
iteratively through the remaining DOF and find that the IR
index is unity. In particular, we see that (16) cannot match
the UV index.
More generally, we can ask if T can be free if we allow

some R̂i ∈ ð0; 2Þ. In this case we can try to define the index
by a suitable continuation. More precisely, starting from the
index of free chiral superfields

I IRðqÞ ¼
YN
i¼1

Y
m;l≥0

1 − q
6
7
ð2− ~RiÞþ5

7
mþlu−1i

1 − q
6
7
~Riþ5

7
mþlui

; ð17Þ

with fugacities ui for the symmetries that act on ϕi with
charge one and leave the other primaries invariant. In parti-
cular, taking ui → q

6
7
αi so that R̂i ¼ ~Ri þ αi, we can obtain

~I IRðqÞ ¼
YN
i¼1

Y
m;l≥0

1 − q
6
7
ð2−R̂iÞþ5

7
mþl

1 − q
6
7
R̂iþ5

7
mþl

; ð18Þ
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with some of the R̂i ∈ ð0; 2Þ. In (18), we have added a tilde
over I IR to remind ourselves that this is a continued
expression for the index. This continuation is well defined
and nonvanishing so long as R̂i ≠ − 5

6
mi − 7

6
li and R̂i ≠

2þ 5
6
m0

i þ 7
6
l0
i for all non-negative integers mi;m0

i;li;l0
i.

Now, we can rewrite (18) as

~I IR ¼
YN−

a¼1

Y
m;l≥0

�
1

1 − q
6
7
R̂aþ5

7
mþl

�

×
YNþ

A¼1

Y
m;l≥0

ð1 − q
6
7
ð2−R̂AÞþ5

7
mþlÞ × ~I 0

IR; ð19Þ

where the first factor contains the contributions of the
bosons with R̂a < 0, the second factor contains the con-
tributions of the fermions coming from superfields con-
jugate to chiral multiplets with R̂A > 2, and ~I 0

IR contains
contributions from the remaining DOF. Moreover, we can
rewrite the products over the R̂a and R̂A in (19) as

YN−

a¼1

Y
m;l≥0

�
1

1 − q
6
7
R̂aþ5

7
mþl

�
×
YNþ

A¼1

Y
m;l≥0

ð1 − q
6
7
ð2−R̂AÞþ5

7
mAþlAÞ

¼
YN−

a¼1

YMa

ma¼0

YLaðmaÞ

la¼0

�
1

1 − q
6
7
R̂aþ5

7
maþla

�

×
YNþ

A¼1

YMA

mA¼0

YLAðmAÞ

la¼0

ð1 − q
6
7
ð2−R̂AÞþ5

7
mAþlAÞ � � � ; ð20Þ

where we have separated contributions with 6
7
R̂a þ 5

7
ma þ

la < 0 in the product over the R̂a and fermionic contri-
butions with 6

7
ð2 − R̂AÞ þ 5

7
mA þ lA < 0 in the product

over the R̂A (all other terms, with sufficiently many
derivatives so that they give rise to contributions with
positive powers of q, appear in the ellipsis).
Note that none of the contributions to the IR index

can come from contributions appearing explicitly in (20).
Indeed, if this statement did not hold, then, by acting with
sufficiently many derivatives, we would get contributions
that render the IR index vanishing or ill defined. Therefore,
the bosonic and fermionic factors with the most negative q
exponents in (20) must cancel. Such terms necessarily
come from contributions of the ϕa with the most negative
R̂a < 0 and the ~ψA _þ with the most negative 2 − R̂A. In
particular, we see that R̂a ¼ 2 − R̂A and that therefore the
ϕa pair up with the ~ψA _þ and cancel in the index (similarly,
the ~ψa _þ pair up with the ϕA and cancel). We can proceed
this way iteratively through all the DOF having R̂a < 0 and
R̂A > 2. In particular, we are back to the previous case with
R̂i ∈ ð0; 2Þ, and so we see that the IR theory cannot consist
solely of free chiral superfields. Case (b) can be understood
similarly.

IV. CONSTRAINTS ON ACCIDENTAL
SYMMETRIES

One reason to be skeptical about the appearance of
accidental symmetries is that there are no apparent
unitarity bound violations. For example, if O, Oα, and
O0 exist in the IR chiral ring, their dimensions are above
the relevant unitarity bounds. Moreover, none of the UV
DOF in the Schur sector have any apparent unitarity
bound violations in the IR. For example, we will argue
that the nonchiral IR N ¼ 1 operator, Jα, which descends
from the UV N ¼ 2 stress tensor multiplet, has dimen-
sion 11=4 > 3=2.
Another reason to doubt the existence of accidental

symmetries in the IR is because the one-loop change in a is
close to the value we compute using R̂. In particular,

δa1−loop ¼ −2π4
Z

λ�

0

dλ × β ¼ 1

8
τU ¼ 11

640
∼

61

3840

¼ aðA1;A2Þ − aT ; ð21Þ

where β ¼ 3
25
λð−5þ 12π4τ−1U λ2 þ…Þ, we have taken O2

to have unit normalization in the UV, aT is defined in (3),
and [29]

τU ¼ −
27

4
Að ~RUVð ~RUV − R̂Þ2Þ ¼ 11

80
: ð22Þ

Therefore δa1−loop ∼ aðA1;A2Þ − aT ≪ aðA1;A2Þ. As a result,
the one-loop fixed point seems to yield a consistent and
surprisingly good approximation of T [32].

V. COMMENTS ON IR OPERATORS

Now we would like to motivate the existence of the O,
Oα, and O0 chiral primaries in the IR SCFT, T . If these
operators exist, we can reproduce the superconformal index
to a very nontrivial order in q.
To that end, the IR SL contributions are

ISL
S ðOÞ ¼ q

6
7

ð1 − qÞð1 − q
5
7Þ ;

ISL
S ðOαÞ ¼ −

q
6
7 þ q

8
7

ð1 − qÞð1 − q
5
7Þ ;

ISL
S ðO0Þ ¼ q

8
7

ð1 − qÞð1 − q
5
7Þ : ð23Þ

These contributions cancel since the Coulomb branch
sector does not contribute to the Schur limit of the
UV index.
On the other hand, we have brokenN ¼ 2 → N ¼ 1 by

turning on (1). At leading order in the Coulomb branch
sector, this breaking is encoded in (2). These relations
give [33]
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ISL
S ðO2 ¼ 0Þ ¼ −

q
12
7

ð1 − qÞð1 − q
5
7Þ ;

ISL
S ðO ×Oα ¼ 0Þ ¼ q

12
7 þ q2

ð1 − qÞð1 − q
5
7Þ : ð24Þ

Now, we know that we must also have a short N ¼ 1
supercurrent, Jα _α, in the IR contributing

ISL
S ¼ −

q
17
7 þ q

19
7

ð1 − qÞð1 − q
5
7Þ : ð25Þ

Assuming these are the only low-order contributions,
then

I IRðqÞ ¼ 1þ q2 − q
17
7 þ…; ð26Þ

and we reproduce the IR index up to order less thanOðq17
7 Þ.

We can do better.
Indeed, recall from (the conjugate of) (12) that

D2 ~J _α ∼ ~λ ~O× ~O _α: ð27Þ

Therefore, we might naively conclude this is a long
multiplet. However, in conformal perturbation theory

~D _α
~J _α ¼ 0: ð28Þ

At a fixed point, (28) is the shortening condition for a
C̄−1

6
ð0;1

2
Þ multiplet [34]. Therefore, it is reasonable to believe

that ~J _α exists as a short multiplet in the IR theory with
dimension 11=4. It is straightforward to check that the
corresponding index contribution is

ISL
S ð~J _αÞ ¼

q
17
7

ð1 − qÞð1 − q
5
7Þ : ð29Þ

Taking (29) into account gives

I IRðqÞ ¼ 1þ q2 þ q3 þOðq4Þ; ð30Þ

and we reproduce the H function to a high order using just
the N ¼ 2 stress tensor multiplet and operators from the
Coulomb branch sector.

Finally, one sees that
(i) There are no additional SL contributions from the IR

N ¼ 1 multiplets that descend from the N ¼ 2
supercurrent multiplet.

(ii) The IR contributions due to operators that are
annihilated in the UV by ~Q2 _− and sit in the
remaining N ¼ 2 Schur multiplets cannot arise at
order smaller than Oðq29

7 Þ.

VI. CONCLUSIONS

We have learned a surprising amount by studying a
simple deformation of the minimal Argyres-Douglas
theory. At the level of the parent theory, we have seen
evidence that the full low-lying spectrum of short multiplets
is likely simpler than one might expect. Indeed, we were
able to reproduce (30) simply from the IR descendants of
the N ¼ 2 Coulomb branch and stress tensor multiplets
(the existence of the semishort Jα multiplet in the IR
suggests that our deformation of the parent AD theory is
particularly mild). Moreover, we saw that we could trade
UV index contributions from the SUð2ÞR current with
contributions from constrained chiral operators in the IR.
This result points to deeper connections between the
physics of chiral algebras and N ¼ 2 chiral rings upon
N ¼ 2 → N ¼ 1 breaking that we will return to soon.
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Note added.—Recently, Ref. [35] appeared, which has
overlap with our Sec. I (our calculations agree with theirs).
On the other hand, our papers are largely complementary.
Indeed, [35] motivates additional conjectures regarding
N ¼ 2-preserving chiral ring relations [their Eq. (11)] that
are compatible with our results, while our paper discusses
aspects of nonchiral operators, the superconformal index,
accidental symmetries, and absence of free fields.
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