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An Extended Differential Flatness Approach for the
Health-Conscious Nonlinear Model Predictive Control of

Lithium-Ion Batteries
Ji Liua, Guang Lib, and Hosam K. Fathya*

Abstract—This article examines the problem of optimizing
lithium-ion battery management online, in a health-conscious
manner. This is a computationally intensive problem. Previous
work by the authors addresses this challenge by exploiting the
differential flatness of Fick’s law of diffusion to improve compu-
tational efficiency, but is limited by the fact that the dynamics
of a full battery cell are not differentially flat, even when the
individual battery electrode dynamics are. The article addresses
this challenge by extending the application of differential flatness
to a full single particle model (SPM). Specifically, we use the
conservation of charge to express the flat output trajectory of one
electrode as an affine function of the other electrode’s flat output
trajectory. In this way, we enforce differential flatness for the
full battery model. This makes it possible to express the battery
charge/discharge trajectory in terms of one flat output trajectory.
We optimize this trajectory using a pseudospectral method. This
reduces the computational cost of the optimization by about
a factor of 5 compared to pseudospectral optimization alone.
Additionally, the robustness of the nonlinear model predictive
control (NMPC) strategy is demonstrated in simulation by adding
state of health (SOH) parameter uncertainties.

Index Terms—optimal charging, model predictive control,
lithium-ion battery, differential flatness, pseudospectral methods

I. INTRODUCTION

This article proposes a computationally efficient nonlin-
ear model predictive control (NMPC) framework for health-
conscious lithium-ion battery management. The article extends
previous work by the authors [1], [2] where battery electrode
dynamics are shown to be differential flat, and this flatness
property is exploited for efficient trajectory optimization. The
article’s main contribution compared to that work is the
fact that it represents the charge dynamics of a full battery
cell using a single flat output variable, rather than one flat
output variable per electrode. This flat output trajectory is
optimized using a pseudospectral method for a reduced-order,
electrochemistry-based single particle model (SPM). The use
of NMPC can compensate for unmodeled effects [3], which is
attractive compared to the implementation of charge/discharge
trajectories optimized offline.

Motivation for this article stems from the need to manage
lithium-ion battery charging and discharging in a manner that
maximizes their power and energy densities while ensuring
safety, reliability, and longevity. Traditional battery manage-
ment systems avoid excessive battery damage and aging by
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imposing predefined limits on charge/discharge rates, state of
charge (SOC), and temperature. This results in simple battery
charge/discharge policies, e.g., the constant-current, constant-
voltage (CCCV) policy. In contrast, model-based battery con-
trol is attractive for two main reasons. First, a model-based
controller makes it possible to charge and discharge batteries
more aggressively while directly constraining the internal vari-
ables (e.g., side reaction overpotentials) associated with aging
and degradation. Second, a model-based controller can adapt
to battery state of health (SOH), thereby charging/discharging
different battery cells with a level of aggressiveness that is con-
sistent with how much they have aged [4]. There is a growing
body of research on developing model-based controllers that
explore these potential benefits (e.g., [4]–[8]).

There are many challenges associated with model-based bat-
tery management, including the need for high-fidelity battery
models and accurate battery parameters. This article focuses on
alleviating the computational burden associated with model-
based battery control. There are two main factors contribut-
ing to this computational burden. First, battery management
problems involve optimizing the trajectories of battery input
current and the internal state variables (such as solid and
solution-phase concentrations and potentials). This results in
a high computational load, especially for high-fidelity battery
models. Second, the dynamics governing battery diffusion,
intercalation, and side reactions are often nonlinear and non-
convex. This makes it difficult to employ traditional convex
optimization schemes in health-conscious battery control.

The control literature offers a fundamental tool that makes
battery trajectory optimization problems significantly more
tractable, namely, differential flatness [9]. Solid-phase battery
diffusion dynamics are governed by Fick’s second law of diffu-
sion in each electrode. Fick’s law is known to be differentially
flat [1], [2]. This concept makes it possible to capture all of
the diffusion dynamics in each electrode using one trajectory
of a single flat output variable instead of all of the state and
input variables. Previous work by the authors demonstrates the
computational benefits of exploiting differential flatness for
battery trajectory optimization. However, one major drawback
remains: the dynamics of a full electrochemical battery model
are not differentially flat. One way to solve this issue is to
exploit time-scale separation by using a battery model which
only models the electrode with slower dynamics and neglects
the faster dynamics in the other electrode, as shown in [2].
This is not always desirable, since the single-electrode model
fails to capture full battery transient dynamics accurately.

This article’s novel and unique contribution is the devel-
opment of an “extended” differential flatness approach for
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optimal lithium-ion battery charging and discharging. The
proposed extended approach recovers differential flatness by
expressing the flat output trajectory of one battery electrode
explicitly as a function of the other electrode’s flat output. We
optimize the flat output trajectories using a computationally
efficient pseudospectral method [10]. We perform the opti-
mization within an NMPC framework and demonstrate frame-
work’s performance in the presence of parameter uncertainties.

The literature presents several algorithms that can be used
for optimizing lithium-ion battery charge/discharge online,
in a health-conscious manner. However, the computational
burdens associated with these algorithms, such as dynamic
programming and genetic algorithms, are prohibitive for model
predictive control [11]–[13]. Some researchers alleviate com-
putational burden using the pseudospectral method, and effi-
cient reformulated battery models [8], [14]. While the above
tools are valuable, they do not exploit the differential flatness
of battery dynamics and the associated computational gains.

The remainder of this article is organized as follows. Section
II presents the governing equations and model reduction for
the SPM. Section III formulates the health-conscious battery
optimal charging problem. Section IV introduces the differ-
ential flatness property. In addition, the proposed differential
flatness-based Gauss pseudospectral method is introduced in
Section V. Section VI shows the results of battery opti-
mal control problem and compares them to an optimized
benchmark CCCV protocol. Additionally, the sensitivity of
the proposed NMPC framework to parameter uncertainties is
studied. Finally, section VII concludes the article.

II. SINGLE PARTICLE MODEL

In this section, the governing equations of the SPM are
presented. The partial differential equations are reduced into
ordinary differential equations using orthogonal projection
techniques presented in [15]. This article utilizes a physics-
based SPM to achieve a reasonable tradeoff between accuracy
and computational efficiency [16]–[18]. The parameters of the
SPM are obtained from [19] and the reference potential curves
for both electrodes are from [20] for a commercial LiFePO4

(LFP) 26650 2.3Ah cell. SPM modeling assumptions can be
found in [2].

A. Governing Equations

The governing equations of the SPM are shown below. Solid
phase diffusion dynamics are governed by Fick’s second law
of diffusion. The governing differential equation is

∂cj(r, t)

∂t
=
Ds,j

r2
∂

∂r

(
r2
∂cj(r, t)

∂r

)
(1)

where r is the radial coordinate, t is time, cj is the lithium-
ion concentration in the solid electrode particles, Ds,j is the
solid phase diffusion coefficient, and j = p corresponds to the
positive electrode and j = n to the negative electrode.

The boundary conditions at the particle center (r = 0) and
particle surface (r = Rj) are

∂cj(r, t)

∂r

∣∣∣
r=0

= 0 (2)

∂cj(r, t)

∂r

∣∣∣
r=Rj

= − Jj
FDs,jaj

(3)

where F is Faraday’s number and aj is the specific interfacial
area defined as

aj =
3εj
Rj

(4)

The term Rj is the particle radius and εj is active material
volume fraction. The molar flux of ions Ji is defined as

Jn(t) = − I(t)

ALn
for negative electrode (5)

Jp(t) =
I(t)

ALp
for positive electrode (6)

where I is the input current, defined as positive for charging,
A is the battery sheet area, and Ln and Lp are the thicknesses
of the negative and positive electrode, respectively.

The bulk state of charge (SOC) is defined as

SOCj(t) =
cj,avg(t)

cj,max
(7)

where cj,max is the maximum concentration of lithium-ions
in the electrode and cj,avg is the average lithium-ion concen-
tration in the electrode, i.e.,

cj,avg(t) =

∫ Rj

0

cj(r, t)dr (8)

The surface SOC is defined as

SOCsurfj (t) =
cj(t)

surf

cj,max
(9)

where csurfj is the surface lithium-ion concentration.
The Butler-Volmer equation describes the relationship be-

tween the molar flux of lithium ions and solid phase potential
and can be expressed as

Jj(t) = i0,j(t)

[
exp

(
αaF

RT
ηj(t)

)
− exp

(
−αcF
RT

ηj(t)

)]
(10)

where αa and αc are the apparent transfer coefficients, R is
the ideal gas constant, T is the cell temperature, and η is the
overpotential. The exchange current density i0 is defined as

i0,j(t) = ajkj(cs,j,max − csurfj (t))αa(csurfj (t))αccαa
e (11)

where kj is the reaction rate constant and ce is the lithium-ion
concentration in solution.

The overpotential ηj is defined as the difference between the
solid and solution potential minus the open-circuit potential
(OCP) of the electrode

ηj(t) = φ1,j(t)− φ2,j(t)− Uj(SOCsurfj (t)) (12)

where φ1,j is the solid phase potential, and φ2,j is the solution
phase potential. The term Uj is the OCP as a function of the



3

surface SOC. The reference potential curves are obtained from
[21].

The potential drop in the solution phase between two
electrodes is

φ2,p(t)− φ2,n(t) = I(t)Rcell (13)

where Rcell is a lumped parameter which captures the effective
resistance of the solution. Details can be found in [1].

The cell voltage is defined as the difference in potential
between the positive and negative electrode

V (t) = φ1,p(t)− φ1,n(t) (14)

This article adopts a physics-based side reaction constraint
from [22] for health-conscious optimal charging. This side
reaction represents lithium plating and can be expressed as

ηsr(t) = φ1,n(t)− φ2,n(t)− Usr(csurfn (t)) ≥ 0 (15)

where ηsr is the side reaction overpotential and Usr(c
surf
n )

denotes the reference potential of the side reaction and is zero
for lithium-ion batteries [4].

B. Model Reduction

This article adopts an efficient Legendre polynomial-based
orthogonal projection method. We approximate the lithium ion
concentration profile cj(r, t) along the particle radius using as
a linear combination of some unknown coefficients βj(t) (as
functions of time t) and known Legendre polynomials Pj,i(r)
with degree i (as a function of radius r)

cj(r, t) ≈
M∑
i=0

βj,i(t)Pj,i(r) (16)

where M is the degree of Legendre polynomials and is an
even integer to satisfy the boundary condition (2), Pj,i is the
i-th degree Legendre polynomial corresponding to the term cj
for electrode j, and βj,i(t) is the i-th unknown coefficient for
electrode j.

The Legendre polynomials are normalized such that∫ Rj

0

Pj,i(r)Pj,k(r)dr =

{
0 if i 6= k
1 if i = k

(17)

where Rj is the radius of particles.
Substituting Eq. (16) into Eq. (1) gives
M∑
i=0

Pj,i(r)β̇j,i(t)

= Ds,j

[
2

r

M∑
i=0

dPj,i(r)

dr
βj,i(t) +

M∑
i=0

d2Pj,i(r)

dr2
βj,i(t)

]
(18)

where β̇j,i(t) is the derivative with respect to time.
Galerkin projection is used to get the unknown coefficients

βj,i(t). This is achieved by multiplying both sides of (18)
by Pj,i(r) and integrating over the radial coordinate. This fur-
nishes the dynamics of the coefficients [βj,0, βj,2, . . . , βj,M ]T .

The number of Legendre polynomials decides the accuracy
and the efficiency of the model reduction method and we

choose M = 6 in this article. The diffusion dynamics Eq.
(1) in each electrode can then be expressed as follows

β̇j,0
β̇j,2
β̇j,4
β̇j,6

 =
Ds,j

R2
j


0, 9

√
5, 20, 29.4

√
13

0, 0, 35
√

5, 16.8
√

65

0, 0, 0, 46.2
√

13
0, 0, 0, 0



βj,0
βj,2
βj,4
βj,6


(19)

Similarly, the boundary condition Eq. (3) can be expressed
as

3

Rj

√
5

2Rj
βj,2(t) +

10

Rj

√
9

2Rj
βj,4(t)+

21

Rj

√
13

2Rj
βj,6(t)

= − Jj
Ds,jaj

(20)

From Eq. (19) and Eq. (20), it can be seen that the term βj,6
does not have dynamics and can be expressed as a function
of other unknown variables. Therefore, it is not considered as
a state variable. As a result, we achieve a standard state-space
representation for the dynamics of the electrode j

ẋj(t) = Ajxj(t) +Bju(t) (21)

where state vector for electrode j is

xj = [βj,0(t), βj,2(t), βj,4(t)]T (22)

xj ∈ R3 and input is u ∈ R1. From Eq. (23), the diffusion
dynamics in each electrode in the SPM are decoupled. There-
fore, the state space representation of full SPM dynamics can
be expressed as

ẋ(t) = Ax(t) +Bu(t) (23)

where xj ∈ Rnx and u ∈ Rnu . In this article, the state
variables are

x(t) = [xTn (t), xTp (t)]T

= [βn,0(t), βn,2(t), βn,4(t), βp,0(t), βp,2(t), βp,4(t)]T

(24)

and the input u is the applied current, i.e., u(t) = I(t).
Therefore, nx = 6 and nu = 1. The state matrix is

A =

[
An 0
0 Ap

]
(25)

where 0 is a 3× 3 zero matrix and the input matrix is

B =

[
Bn
Bp

]
(26)

III. PROBLEM FORMULATION

The proposed NMPC framework can be applied to solve
general battery trajectory optimization problems, such as opti-
mal charging and discharging in the presence of different aging
and degradation constraints. In the remainder of this article,
we focus on optimal charging in the presence of a lithium
plating side reaction constraint as an illustrative example, and
our focus on charging (rather than discharging) is justified by
the fact that plating is more likely to occur during charging.
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The problem is formulated as follows

min
u
J =

∫ tf

t0

(SOCn(t)− SOCref )
2
dt

s.t: model Eq. (7)− (12), (15), (16), (23)
0 ≤ u(t) ≤ umax

ηsr(t) ≥ 0

SOCn(0) = SOCini

(27)

The goal of this problem is to bring battery state of charge to
a level as close as possible to some target, SOCref , given the
initial SOC, SOCini, within the time duration [t0, tf ]. This
optimization problem is subject to constraints imposed by:
battery dynamics, maximum and minimum current limitations,
and the desire to avoid side reaction overpotentials conducive
to lithium plating. The side reaction constraint Eq. (15) dis-
tinguishes the problem from the traditional CCCV strategy
which charges batteries using pre-determined voltage and input
constraints. Additionally, the side reaction overpotential ηsr in
Eq. (15) is a nonlinear and nonconvex function with respect
to x and u.

We solve the above optimization problem using NMPC. The
nonlinearity of the optimization problem is mainly due to the
side reaction constraint (15). The input charging trajectory is
optimized at each sampling time and only the first value of this
trajectory is utilized. The optimization is then repeated using
the updated state variables at the next sampling time. The use
of the NMPC strategy can compensate for uncertainties (e.g.,
parameter uncertainty) and noise by re-optimizing the problem
at each sampling time, which is demonstrated in Section
VI-C. Due to the complexity of the NMPC problem, stability
analysis is beyond the scope of this article. Note that the
optimization problem assumes that all SPM state variables are
known. Battery parameter and state estimation is an interesting
research topic that is already addressed extensively in the
literature [23]–[25].

IV. DIFFERENTIALLY FLAT SYSTEMS

A. Introduction

Mathematically, a system is differentially flat if there exists
a flat output z such that [9], [26]:

1) the state x and input u can be expressed in terms of the
flat output z and a finite number of its derivatives as

x = fx(z, ż, . . . , z(α)) (28a)

u = fu(z, ż, . . . , z(β)) (28b)

2) the flat output z can be expressed in terms of state x,
input u, and a finite number of input’s derivatives

z = fz(x, u, u̇, . . . , u
(γ)), (29)

where α, β, γ are positive integers that depend on the order of
the model and z(r) is the rth derivative with respect to time.
The flat outputs are equal in number to the input variables.

B. Application to Batteries

Differential flatness can be seen as an extension of the
concept of controllability to nonlinear systems. In fact, for
linear systems, a system is differentially flat if and only if it
is controllable [27]. The diffusion dynamics in each battery
electrode are controllable and hence differentially flat. As a
result, only one flat output trajectory is required to represent
the system dynamics in each electrode. The state and input
variables can then be recovered using the flat output trajectory
according to Eq. (28). Therefore, the application of differential
flatness makes it possible to represent battery dynamics in a
computationally efficient manner.

The flat output for the electrode j, zj , is found by transform-
ing the reformulated diffusion sub-model for each electrode
into the controllable canonical form. One can define the flat
output as the first transformed state:

zj(t) := x̄j,1(t) (30)

where x̄j is transformed state vector for the sub-model of
electrode j.

The transformed state variables x̄j can then be expressed
using the flat output and a finite number of its derivatives.
Therefore, the original state variables xj can be expressed by

xj(t) = fx(zj(t), żj(t), z̈j(t)) = Q

1 0 0
0 1 0
0 0 1

zj(t)żj(t)
z̈j(t)


(31)

where Q is the transformation matrix for the controllable
canonical form and the product in parentheses is the trans-
formed state x̄j . The input can be expressed similarly as well

u(t) = fu(zj(t), żj(t), z̈j(t),
...
z j(t))

= [−αj,1,−αj,2,−αj,3, 1]


zj(t)
żj(t)
z̈j(t)...
z j(t)

 (32)

where αj,i are the coefficients of characteristic equation of the
state matrix Aj in Eq. (25).

V. FLATNESS-BASED GAUSS PSEUDOSPECTRAL METHOD

Pseudospectral methods are a class of direct methods which
transform the original problem into a nonlinear programming
(NLP) problem that can be solved using well-developed
NLP algorithms. The Gauss pseudospectral method (GPM) is
adopted in this article. The collocation points τi in the GPM
are the Legendre-Gauss (LG) points which are the roots of
N th degree Legendre polynomials PN (τi) and are located in
the interior of the range [−1, 1], i.e., τi ∈ (−1, 1) [10]. The
discretization points are collocation points plus the boundaries,
i.e., τ0 = −1 and τN+1 = 1. The remainder of this section
describes how to use the GPM to optimize the flat output
trajectory for differentially flat systems.

First, the time t ∈ [t0, tf ] needs to be mapped into τ domain
to use collocation points

t =
(tf − t0)τ + (tf + t0)

2
(33)
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The GPM approximates the trajectories of flat output as
a linear combination of N + 1 Lagrange polynomials at N
collocation points and the initial point τ0 = −1. The flat output
zj (the subscript represents the electrode j) is approximated

zj(τ) ≈ zj(τ) =

N∑
k=0

Lk(τ)zj(τk) (34)

where zj(τ) is the approximated trajectory of the flat output in
the electrode j and Lk(τ) is the Lagrange polynomial bases.
The property of Lagrange polynomials leads to

zj(τk) = zj(τk) (35)

as stated in [1].
One benefit of using pseudospectral methods is that one can

express the derivatives of variables analytically by differenti-
ating Eq. (34). The first derivative of the flat output evaluated
at collocation points gives

z
(l)
j (τi) =

N∑
k=0

L
(l)
k (τi)zj(τk) (36)

where the term Llk(τi) represents the l-th derivative of La-
grange polynomials evaluated at time τi and can be expressed
using the differentiation matrix Dl(i, k) = L

(l)
k (τi).

Therefore, the l-th derivative of the flat output in Eq. (36)
can be expressed using a more compact way

Z
(l)
j = DlZj (37)

where Zj := [zj(τ0), zj(τ1), · · · , zj(τN )]T and Z
(l)
j is a

vector of the l-th derivative of zj(τi). Therefore, the following
equations holds X̄j,1 = Zj , X̄j,2 = D1Zj , and X̄j,3 = D2Zj ,
where X̄j,k := [x̄j,k(τ1), x̄j,k(τ2), · · · , x̄j,k(τN )]T .

As a result, the trajectory of the state xj evaluated at
collocation points can be expressed using the flat output
trajectory with Eq. (31). Equation (32) provides the mapping
from zj to u

U := [u(τ0), u(τ1), · · · , u(τN )]T

= −αj,1INZj − αj,2D1Zj − αj,2D2Zj − αj,3D3Zj
(38)

where IN is a identity matrix.
Moreover, pseudospectral methods integrate the cost func-

tion J using the LG quadrature rule

J =

∫ tf

t0

(SOCn(τ)− SOCref )
2
dτ

≈ tf − t0
2

N∑
i=1

wi (SOCn(τi)− SOCref )
2

=
tf − t0

2

N∑
i=1

wiLz(Zn, Zp, τi)

(39)

with [ZTn , Z
T
p ]T as a vector consisting of optimization vari-

ables and Lz,i(·) is the cost function evaluated at ith collocation
point. The Gauss weights wi are determined by

wi =
2

1− τ2i

[
ṖN (τi)

]2
(40)

The term ṖN (τi) is the first derivative of the Nth degree of
Legendre polynomials PN (τi) evaluated at collocation point
τi.

The inequality constraints can also be expressed as a func-
tion of the optimization variables

C(Zn, Zp) ≤ 0 (41)

A. Two Flat Outputs Approach

In authors’ previous work [1], two flat outputs are required
for the optimization problem (27). The resulting optimization
problem with the application of differential flatness is shown
as follows

min
Zn,Zp

J =

∫ tf

t0

(SOCn(t)− SOCref )
2
dt

s.t: model Eq. (7)− (12), (15), (16), (31), (32)
un(τi) = up(τi)

0 ≤ u(τi) ≤ umax

ηsr(τi) ≥ 0, where i = 1, 2, · · · , N
SOCn(0) = SOCini

(42)

This problem formulation explicitly optimizes the trajectories
of both zn and zp, subject to model dynamics and inequality
constraints. The term N is the number of collocation points
in the prediction horizon. Additionally, unlike the formulation
in problem (27), there is no explicit model dynamic constraint
Eq. (23). This is because model dynamics are automatically
satisfied by exploiting the flatness property using Eq. (31) and
Eq. (32). Note that there is an extra equality constraint on
the current in each electrode, which is required to satisfy the
conservation of charge.

B. Extended Differential Flatness Approach

While the approach described above is efficient, it is nec-
essary to use two trajectories of the flat outputs, zn(t) and
zp(t), to represent full battery dynamics. This doubles the
number of optimization variables needed for determining the
optimal battery trajectory, and also introduces linear equality
constraints between these variables. In contrast, this article
shows that the dynamics of the entire battery can be forced
to be differentially flat for the first time. Typically, the battery
only has one input, i.e., the input current, and hence one flat
output variable is enough to represent the dynamics of the
entire SPM. We achieve this using the law of conservation
of charge: the amount of charge transferring through each
electrode per unit time is the same, and therefore the current
through both electrodes is the same

un(t) = up(t) (43)

Equation (38) and (43) give the relationship between the
flat output Zp and Zn

Zp = (−αp,1 − αp,2D1 − αp,2D2 − αp,3D3)
−1

(−αn,1 − αn,2D1 − αn,2D2 − αn,3D3)Zn
(44)

While the matrix inversion in Eq. (44) takes some computa-
tional time, this matrix inversion can be performed offline a
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Fig. 1: Comparison of two charging strategies: health-conscious optimal charging pattern (CCCη) from problem (27) versus
CCCV charging pattern from problem (46). The CCCη charging can protect the cell from lithium plating side reaction.

priori, and does not affect the computational burden of online
MPC. As a result, the problem (27) can be formulated and
solved in a more efficient way

min
Zn

J =

∫ tf

t0

(SOCn(t)− SOCref )
2
dt

s.t: model Eq. (7)− (12), (15), (16), (31), (32), (44)
0 ≤ u(τi) ≤ umax

ηsr(τi) ≥ 0 where i = 1, 2, · · · , N
SOCn(0) = SOCini

(45)

This problem formulation only requires the optimization of
Zn, the flat output variable zn evaluated at each collocation
point. Therefore, the resulting optimization problem using
the extended approach only needs half of the optimization
variables and no equality constraints compared to the NLP in
Eq. (42). This makes the proposed framework computationally
very efficient.

VI. RESULTS AND DISCUSSION

A. Results of Online Health-Conscious Optimal Charging

Problem (27) is set to start at t0 = 0 with the initial SOC as
0.5 and with the sampling time as 10s (i.e., ∆t = 10s). The
sampling time is chosen such that it is about 5 times faster
than the fastest time constant (about 60s). But the sampling
time can be smaller. The prediction horizon is Tp = 100s
and at each time step the optimization problem is solved with
4 collocation points, i.e., N = 4. Due to the computational
benefits, the proposed NMPC framework is able to solve the
problem during each sampling time. The hot-start strategy is
used: the solution of previous sampling instance is used as the
starting point (i.e., initial guess) for the current problem. All

of simulations are solved in MATLAB using the “Fmincon”
function on a laptop with a 2.4GHz CPU.

Figure 1 depicts the results of problem (27) using two
current upper bounds. Focusing on Fig. 1b, i.e., the trajectory
with umax = 9.6A (i.e., 4C where 1C corresponds to 2.3A
current), one can see the input trajectory first charges the
battery with the maximum rate, because when a cell has low
SOC the overpotential of lithium plating (15) can be positive
even with high current. This is due to the fact that batteries at
low SOC tend to have high positive reference potential. Once
the side reaction constraint reaches zero, the charging current
is tapered to satisfy the side reaction constraint. This charging
process terminates when the battery SOC reaches the desired
SOC. From the results, one can see the charging profiles have
the following pattern: batteries are charged first with constant
maximum current rate and then the current is decreased to
keep constant overpotential. We call this charging profile as
constant current constant overpotential (CCCη) strategy. The
other trajectory shown in Fig. 1a demonstrates a similar pattern
as described above.

B. Traditional CCCV Charging

To compare with the health-conscious optimal charging
results, this article also solves a standard CCCV charging
problem with only voltage and current limits

min
u
J =

∫ tf

t0

(SOCn(t)− SOCref )
2
dt

subject to: model Eq. (7)− (14), (16), (23)
0 ≤ u(t) ≤ umax

V (t) ≤ Vmax

(46)
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where this problem has the same SOC reference and current
limits as problem (27) and Vmax is voltage limit. The problem
is solved using the proposed NMPC framework with ∆t =
10s, Tp = 100s, Vmax = 3.6V and N = 4.

The dashed lines in Fig. 1 depicts the simulation results
of problem (46): the traditional CCCV strategy. The optimal
charging current first charges the battery with the constant
maximum charging rate until the voltage upper limit is
reached. Then voltage is kept as constant by charging the
battery using reduced current. Note that while the side reaction
overpotential is shown in Fig. 1, it is not considered as a
constraint in the optimization.

The benefits of health-conscious battery optimal charging
can be seen by comparing two charging trajectories in either
Fig. 1a or Fig. 1b. The side reaction overpotentials are
negative for substantial durations of time for CCCV charging.
Therefore, CCCV charging can lead to excessive lithium-ion
loss through lithium plating. The charging patterns in problem
(27), i.e., the CCCη charging, however, can charge the battery
without excessive degradation and reach the targeted charge
capacity at the same time, even if the current upper limit is
set to be aggressive.

C. NMPC Sensitivity to Parameter Uncertainties
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Fig. 2: The NMPC framework is more robust than offline
framework.

This article demonstrates the robustness of the proposed
NMPC framework with respect to SOH parameters by com-
paring with an offline optimal charging solution. The volume
fraction of the active material εj in Eq. (4) is one of the SOH
parameters relating to electrode capacity in SPM and hence

cell capacity, which changes with aging for a given battery
[28]. Suppose the controller assumes each electrode has its
original capacity, while the actual capacity is only 90% of the
original due to aging.

Figure 2 demonstrates the robustness of the NMPC frame-
work. Both online and offline solutions do violate lithium
plating overpotential constraints due to the uncertain SOH
parameter εj . However, the online solution has much smaller
lithium plating overpotential violation over a shorter duration
and therefore exhibits less lithium plating. This is because
the NMPC framework updates the optimal trajectory at every
sampling time based on the updated state variables.

D. Comparison of Three NMPC Frameworks

TABLE I: Comparison of 3 NMPC frameworks: The proposed
framework is the most efficient.

NMPC Framework Optimization variables Equality constraints
GPM (nx + nu)×N = 7N nx ×N = 6N

Two flat outputs GPM 2nu ×N = 2N nu ×N = N
One flat output GPM nu ×N = N 0

The efficiency of the proposed framework in this article
is demonstrated by solving problem (27) online using 3
approaches: i) the GPM, ii) the flatness-based GPM with two
flat outputs shown in problem (42) (differential flatness only
applies to each electrode but not the entire battery), and iii)
the flatness-based GPM with one flat output in problem (45)
(the one proposed in this article). All three simulations are
conducted using the same set of parameters (i.e., ∆t = 5s,
Tp = 400s, SOC(t0) = 0.4, t0 = 0s, and tf = 2100s).
Figure 3 depicts the average simulation time for one time step
as a function of the number of collocation points. The average
simulation time is calculated by dividing the simulation time
for the entire optimization by the number of time steps. While
all three approaches produce the same charging profile, the
extended flatness-based approach proposed in this paper can
reduce the computational time by abut a factor of 5 compared
to online pseudospectral optimization alone.

The proposed NMPC framework is computationally effi-
cient mainly for two reasons. First, by using the differential
flatness property, it automatically satisfies system dynamic
constraints. Therefore the resulting NLP problem does not
have any explicit dynamic constraints. This holds for both
methods using differential flatness. Second, the proposed ex-
tended flatness-based method reduces the number of optimiza-
tion variables significantly. Specifically, the proposed extended
flatness-based method only requires N optimization variables,
since the differential flatness for the full SPM is recovered.

VII. CONCLUSIONS

This article proposes a computationally efficient nonlinear
model predictive control (NMPC) framework to solve battery
trajectory optimization problem online. This framework ex-
tends the differential flatness approach to recover the flatness
of the single particle battery model, which makes it possible to
represent the dynamics of the entire battery using only one flat
output. The trajectory of the resulting flat output is optimized
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Fig. 3: Average simulation time for each time step. The
proposed extended flatness approach is more efficient than the
flatness-based GPM with two flat outputs proposed in [1].

using pseudospectral methods. This article demonstrates the
proposed NMPC framework by applying it to solve an online
health-conscious battery optimal charging problem with a
physics-based side reaction constraint. The optimal charging
strategy is shown to follow the pattern of constant current
constant side reaction overpotential (CCCη). The robustness
of the NMPC framework is demonstrated for specific SOH
parameter uncertainties. The proposed framework improves
computational efficiency by a factor of 5 compared to pseu-
dospectral optimization alone.
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