
Liposomal clodronate inhibition of osteoclastogenesis and osteoinduction

by submicrostructured beta-tricalcium phosphate.
Davison, NL; Gamblin, A-L; Layrolle, P; Yuan, H; de Bruijn, JD; Barrère-de Groot, F

 

 

 

 

 

 

 

For additional information about this publication click this link.

http://qmro.qmul.ac.uk/xmlui/handle/123456789/18246

 

 

 

Information about this research object was correct at the time of download; we occasionally

make corrections to records, please therefore check the published record when citing. For

more information contact scholarlycommunications@qmul.ac.uk

CORE Metadata, citation and similar papers at core.ac.uk

Provided by Queen Mary Research Online

https://core.ac.uk/display/77043024?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://qmro.qmul.ac.uk/xmlui/handle/123456789/18246


                             Elsevier Editorial System(tm) for Biomaterials 
                                  Manuscript Draft 
 
 
Manuscript Number:  
 
Title: The immune response regulates osteoclastogenesis and osteoinduction by submicrostructured 
beta-tricalcium phosphate.  
 
Article Type: FLA Original Research 
 
Section/Category: Biomaterials and Regenerative Medicine (BRM) 
 
Keywords: Osteoinduction, Calcium Phosphate, Osteoclasts, Foreign Body Response, 
Osteoimmunology, Surface microstructure 
 
Corresponding Author: Mr. Noel Davison, M.S.E. 
 
Corresponding Author's Institution: Xpand Biotechnology BV 
 
First Author: Noel Davison, M.S.E. 
 
Order of Authors: Noel Davison, M.S.E.; Anne Laure Gamblin; Pierre Layrolle; Huipin Yuan; Joost D de 
Bruijn; Florence Barrere-de Groot 
 
Abstract: Bone graft substitutes such as calcium phosphates interact with the immune system through 
the foreign body response, which may bear important consequences for bone regeneration. We 
speculate that the unique surface microarchitecture of osteoinductive beta-tricalcium phosphate (TCP) 
stimulates the differentiation of invading monocyte/macrophages into osteoclasts, and that these cells 
may be essential to ectopic bone formation. To test this, porous TCP cubes with either submicron-scale 
surface architecture known to induce ectopic bone formation (TCPs, positive control) or micron-scale 
surface architecture (TCPb, non-osteoinductive negative control) were subcutaneously implanted on 
the backs of FVB strain mice for 12 weeks. Additional TCPs samples received local, weekly injections of 
liposome-encapsulated clodronate (TCPs+LipClod) to deplete invading phagocytes. TCPs induced 
osteoclast formation, evident by positive tartrate resistant acid phosphatase (TRAP) cytochemical 
staining and negative macrophage membrane marker F4/80 immunostaining. No TRAP positive cells 
were found in TCPb or TCPs+LipClod, only F4/80 positive macrophages and foreign body giant cells. 
TCPs stimulated subcutaneous bone formation in all implants, while no bone could be found in TCPb or 
TCPs+LipClod. In agreement, expression of bone and osteoclast gene markers was up-regulated in 
TCPs versus either TCPb or TCPs+LipClod, which were equivalent. In summary, submicron-scale 
surface structure of TCP induced osteoclastogenesis and ectopic bone formation in a process 
dependent on an unhindered immune response. 
 
 
 
 



Mandatory Author Declaration
Click here to download Mandatory Author Declaration: Author Declaration Letter_Biomaterials.pdf

http://ees.elsevier.com/biomat/download.aspx?id=1512072&guid=548c1526-549e-4656-91cf-e9b1714537a7&scheme=1


 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 

The immune response regulates osteoclastogenesis and osteoinduction by submicrostructured beta-

tricalcium phosphate.  

Davison NL* 
1,2

, Gamblin AL
3
, Layrolle P 

3
, Yuan H 

1,2
, de Bruijn JD 

1,2,4
, Barrere-de Groot F 

2 

 

1 MIRA Institute, University of Twente, The Netherlands; 2 Xpand Biotechnology, The Netherlands; 3 

INSERM UMR 957, University of Nantes, France; 4 Queen Mary University of London, United Kingdom 

*Corresponding author: N.L.Davison@utwente.nl  

 

*Title Page
Click here to download Title Page: Title Page.docx

http://ees.elsevier.com/biomat/download.aspx?id=1509121&guid=98134c0d-474e-401d-85e3-12e32b6de14a&scheme=1


 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 

Abstract: Bone graft substitutes such as calcium phosphates interact with the immune system through the 

foreign body response, which may bear important consequences for bone regeneration. We speculate that 

the unique surface microarchitecture of osteoinductive beta-tricalcium phosphate (TCP) stimulates the 

differentiation of invading monocyte/macrophages into osteoclasts, and that these cells may be essential to 

ectopic bone formation. To test this, porous TCP cubes with either submicron-scale surface architecture 

known to induce ectopic bone formation (TCPs, positive control) or micron-scale surface architecture 

(TCPb, non-osteoinductive negative control) were subcutaneously implanted on the backs of FVB strain 

mice for 12 weeks. Additional TCPs samples received local, weekly injections of liposome-encapsulated 

clodronate (TCPs+LipClod) to deplete invading phagocytes. TCPs induced osteoclast formation, evident by 

positive tartrate resistant acid phosphatase (TRAP) cytochemical staining and negative macrophage 

membrane marker F4/80 immunostaining. No TRAP positive cells were found in TCPb or TCPs+LipClod, 

only F4/80 positive macrophages and foreign body giant cells. TCPs stimulated subcutaneous bone 

formation in all implants, while no bone could be found in TCPb or TCPs+LipClod. In agreement, 

expression of bone and osteoclast gene markers was up-regulated in TCPs versus either TCPb or 

TCPs+LipClod, which were equivalent. In summary, submicron-scale surface structure of TCP induced 

osteoclastogenesis and ectopic bone formation in a process dependent on an unhindered immune response. 
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1. Introduction 

The capacity of the immune system to regulate bone homeostasis, ranging from 

pathological disorders such as bone metastases to normal fracture healing, forms the 

focus of osteoimmunology, a term that was coined only in 2000 [1].  The immune system 

is also the key player in orchestrating the host reaction to implanted biomaterials, i.e. the 

foreign body response [2]. At a nexus between the two fields, it is intriguing to consider 

that specific interactions with the immune system may be essential for the functional 

performance of bone graft substitutes to even further stimulate bone tissue regeneration in 

bony defects.  

Following the evolving insight into biomaterial design [3], particular emphasis 

has been devoted to understanding how physical properties of CaP may influence their 

bone forming performance. For instance, implant geometry [4], 3D surface concavities 

[5,6], and interconnected porous structure [7] have all been shown to promote bone 

formation. Most recently, material surface architecture on the submicron and micron 

scale has been shown to be particularly important to the osteoinductivity of a small, 

unique subset of CaP through an unknown biological mechanism [8,9]. It is at this CaP-

tissue interface where proteins and ions are absorbed and exchanged, as a function of the 

material surface reactivity and physico-chemistry [10]. On a cellular level, it is at this 

interface where invading leukocytes interact with the material surface, mediating 

inflammation and tissue repair during the host response [11].  

It has been speculated that in the case of osteoinductive CaP, invading tissue 

macrophages triggered by the host response may play a role in osteogenesis because of 
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the dense and persistent presence of mononuclear cells surrounding an osteoinductive 

implant without fibrous tissue formation [12,13]. On the other hand, an adverse host 

response can also obstruct bone formation: in our previous work, chronic inflammation 

due to the addition of a polymeric carrier completely abrogated ectopic bone formation 

by osteoinductive beta-tricalcium phosphate (TCP) although the carrier dissolved 

relatively quickly [14].  Indeed, macrophages, the principal cell responsible for clearing a 

foreign body by phagocytosis, have been shown to express a distinct family of cytokines 

depending on their activation state in response to material properties such as surface 

chemistry, topography, and bioactivity [15,16].  

Invading macrophages and other leukocytes secrete cytokines that can also spur 

the fusion and specialization of bone-resorbing osteoclasts from their 

monocyte/macrophage precursors. Pro-inflammatory cytokines such as TNF-α, IL-1, IL-

6, IFN-gamma, and PGE2 activate T-cell expression of soluble RANKL (receptor 

activator of NF-κB ligand) the essential osteoclast differentiation factor, as well as up-

regulate its membrane-bound receptor RANK on the surface of osteoclast precursors, 

thus inducing osteoclastogenesis [17–20]. On the other hand, other secreted cytokines 

such as IL-4 and IL-13 stimulate stromal cell expression of OPG (osteoprotegerin), the 

natural decoy receptor to RANKL, thus antagonizing osteoclast differentiation [21]. In 

this way, inflammation and osteoclastogenesis may be linked and dependent on the 

precise cytokine cascade and a biomaterial substrate supporting pre-osteoclast fusion and 

differentiation. Osteoclasts have also been implicated with the functionality of 

osteoinductive CaP with reports that osteoclasts form prior to ectopic bone formation [22] 

and that their inhibition may stunt osteoinduction [23,24].  
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Interestingly, macrophage-mediated inflammation has been associated with 

pathological heterotopic ossification (HO) that results in marrow-containing bone 

neogenesis in the muscle tissue triggered by injury. However, when liposome-

encapsulated bisphosphonate was locally administered to selectively deplete tissue 

macrophages in a transgenic mouse model of HO, osteogenesis was significantly 

blocked. This effect was attributed to the elimination of macrophage-secreted BMP4 at 

the injury site [25].  In an experimental mouse model of osteoarthritis, macrophage 

depletion, again by liposomal bisphosphonate, resulted in the reduction of osteophyte 

formation – heterotopic bone nodules in the synovium – attributed to reduced 

macrophage expression of osteogenic TGFβ, BMP2, and BMP4. And as it pertains to the 

natural regenerative capacity of bone, when macrophages were depleted using liposomal 

clodronate in a long bone fracture model, bone formation in the fracture callus was fully 

inhibited [26], shown elsewhere to be likely mediated by macrophage-expressed TNF-α 

and IL-6 [27]. These studies and others like them emphasize the apparent importance of 

macrophages and phagocyte relatives to both aberrant and reparative bone formation.  

Importantly, both bone and immune cells have been shown to be highly sensitive 

to surface microstructure of CaP. In our previous research investigating two TCP 

ceramics with different sized surface features, both ectopic bone formation and the 

presence of actively resorbing osteoclast-like multinucleated cells were strongly 

promoted on submicron-scale TCP surface features (submitted article). On the other 

hand, no ectopic bone and scarce non-resorbing multinucleated cells were found on the 

TCP implants with micron-scale surface features. Following on these findings, we asked 

whether these multinucleated cells were differentiated osteoclasts or merely fused 
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macrophages, i.e. foreign body giant cells, and whether they play a role in the resulting 

ectopic bone formation by forming and functioning differently on the two different 

topographies. 

In order to investigate these questions, we implanted the same two TCP ceramics 

with equivalent chemistry but different surface microstructure – serving as positive and 

negative controls – in a recently validated mouse model of subcutaneous osteoinduction 

[28] and analyzed the ectopic bone formation and the phenotype of formed 

multinucleated cells using (immuno-)histological and gene expression analysis. To 

address the role that these multinucleated cells play in osteoinduction, we applied 

liposome-encapsulated clodronate (LipClod) to disrupt the host immune response and 

selectively deplete invading phagocytic mononucleated precursor monocyte/macrophages 

[29] and then evaluated ectopic bone formation.  

2. Materials and Methods 

2.1 Preparation and Characterization of Porous TCP Cubes 

TCP powders were synthesized as previously described [14]. Briefly, calcium 

hydroxide and phosphoric acid (both from Fluka) were mixed at a Ca/P ratio of 1.50. 

TCP powders with small (TCPs) or big grains (TCPb) in the final ceramics were prepared 

by controlling the reaction rates. The powders were foamed with diluted H2O2 (1%) 

(Merck) at 60°C then dried at room temperature to get porous green bodies. The dry 

green bodies were subsequently sintered at 1050°C or 1100°C for 8 hours to achieve 

small and big grains for TCPs and TCPb, all respectively.  
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Porous cubes (4 x 4 x 4 mm) were machined from the ceramic bodies using a wet saw 

and then ultrasonically cleaned in successive baths of acetone, ethanol, and distilled 

water, and dried. Prior to implantation, TCP cubes were heat sterilized at 160°C for 2 

hours.  Crystal chemistry of the materials was analyzed by X-ray diffraction (Rigaku 

Miniflex II) scanning the range 2θ = 25–45° (step size = 0.01°, rate = 1° min
−1

) and 

confirmed to be beta-TCP as previously described [14].  

The TCP ceramics were characterized to confirm that they were composed of 

different microstructure but similar macrostructure as previously reported (article 

submitted). Surface microstructure was characterized by scanning electron microscopy 

(SEM) (JEOL JSM-5600) after sputter coating with gold for 90 s (JEOL JFC 1300) and > 

50 surface grains and micropores were measured in the using Image J image analysis 

software (NIH, USA). To measure the surface profile (i.e., surface roughness), SEM 

stereo-micrographs of the same location taken at two different tilt angles (2500x, ±5°) 

were digitally reconstructed into three-dimensional surfaces for automated profile 

analysis using MeX v5.1 software (Alicona Imaging, Austria). Additionally, porosity and 

total pore area were determined by mercury intrusion testing (Table 1) (Micromeritics, 

USA).  

In summary, the synthesis of TCPs and TCPb resulted in submicron-scale and 

micron-scale surface grains, micropores, and roughness, respectively. The ceramics 

possessed similar total porosity but different total pore area owing to the smaller surface 

features of TCPs. 

2.2 Subcutaneous implantation in FVB mice 
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Ethical approval for animal experimentation was obtained from the local ethical 

committee (CREEA). The animals were housed in certified premises at the Experimental 

Therapeutic Unit at the Faculty of Medicine, University of Nantes, France. Animals were 

stabled in cages with food and water ad libidum with artificial day/night cycle of 12 h and 

regulated temperature of 20 ± 1°C.  

Five-week-old male FVB strain mice (n = 14) were received from Charles River 

Laboratory (France) and allowed to equilibrate to their new surroundings for one week. 

Prior to surgery, the mice were placed under general anesthesia using isoflurane gas (2.5 

% in air, 2.5 l/min, Forene). Analgesic (Buprenorphine 60 µl/kg, Buprécare, MedVet) 

was subcutaneously injected at the time of surgery and 1 day later. Backs of animals were 

shaved and disinfected with iodine solution and sterile gauzes and covered with a surgical 

sheet. Subcutaneous dorsal pockets were created using a scalpel and blunt nosed forceps 

and one TCP cube was inserted per pocket. Skin incisions were tightly closed with 

degradable sutures (Vicryl 4-0, Ethicon). Immediately following surgery, sterile 

liposomal clodronate (100 µl) (Clodronate Liposomes Foundation, The Netherlands) was 

injected into one pocket containing TCPs per animal. The same volume of sterile saline 

was injected into one pocket containing TCPs and one containing TCPb per animal, 

serving as positive and negative controls, respectively. This same injection regiment was 

repeated once a week and then animals were sacrificed after 12 weeks by inhalation of an 

overdose of carbon dioxide gas.  

At this time, one long incision through the skin was made down the back and 

carefully separated from the muscle using a scalpel.  TCP implants were carefully cut 
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away from the soft tissue and skin and placed in vials containing either 4% formaldehyde 

for histological analysis or in RNAse/DNAse free tubes containing 1 mL TRI® Reagent 

(Sigma-Aldrich) for RNA isolation and qPCR. Histological replicates were stored at 4°C 

for and qPCR replicates were frozen at -80°C for further processing.  

2.3 Histological Processing and imaging 

TCP explants from 9 mice were processed for histological analysis. Explants were 

placed in cassettes and then decalcified in 4.13% EDTA/0.2% paraformaldehyde in PBS 

(pH 7.4) at 50°C using an automated microwave decalcifying apparatus (KOS 

Histostation, Milestone Med. Corp. MI, U.S.A). Samples were periodically checked with 

x-ray to ensure complete and consistent decalcification, which required up to 17 days.  

After complete decalcification, samples were then rinsed with tap water and dehydrated 

in ascending series of ethanol baths: 80, 95, 100%, and finally in butanol for 30 min 

(Automated dehydration station, Microm Microtech, France). Samples were then 

impregnated in liquid paraffin at 56°C (Histowax) and embedded at -16°C. Embedded 

explants were completely sectioned at 4-7 locations spaced ~500 μm using a standard 

microtome (Leica RM2250) set at 5 um thickness.  Following the various stains described 

below, coverslips were mounted with Pertex and slides were digitally scanned at up to 

40x magnification (NanoZoomer 2.0RS, Hamamatsu Corp. Japan) and analyzed with 

virtual microscope software (NDP View, Hamamatsu Corp).  

2.4 Masson’s Trichrome Staining for Bone Formation 

http://www.sigmaaldrich.com/life-science/molecular-biology/dna-and-rna-purification/rna-isolation-reagent.html
http://www.sigmaaldrich.com/life-science/molecular-biology/dna-and-rna-purification/rna-isolation-reagent.html
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Sections were stained by Masson’s trichrome technique by using an automated 

coloration station (Microm, Microtech). This staining combined hematoxylin for cell 

nuclei in blue/black, fuchsin for cytoplasm, muscle and erythrocytes in red, and bright 

green for collagen and allowed the visualization general tissue response and new bone 

formation.  Cover slips were mounted with Pertex and digitally scanned as previously 

described. The presence of bone in each histological sample was carefully analyzed by 

multiple researchers in at least 5 different sections taken at different levels throughout the 

explant. 

2.5 Immunohistochemical Staining of Macrophage Marker F4/80 and Osteoblast 

Transcription Factor Osterix 

Immunohistochemical staining of murine macrophage membrane marker F4/80 

and osteoblast transcription factor Osterix served to identify macrophages and osteoblasts 

in serial histological sections.  Sections were first deparrafinized in Ottix histological 

solvent (3 x 5 min), rehydrated in a graded ethanol series (100%, 3 x 5 min; 95%, 1 x 5 

min; 80%, 1 x 5 min), and then rinsed in distilled water (3 x 5 min).  To retrieve antigens, 

sections were incubated in citrate buffer, pH 6, at 95°C for 10 min.  Sections were then 

incubated with 3% H2O2 for 15 min to inactivate endogenous peroxidase, rinsed with 

TBS-Tween 0.05% pH 7.6, blocked with 5% normal goat serum in 1% BSA in TBS-

0.05% Tween pH 7.6 at room temperature for 30 min, then incubated at 4°C overnight 

with primary antibodies (AbCAM) targeting F4/80 (rabbit anti-mouse monoclonal, 

1:100) and sp7/Osterix (rabbit polyclonal, 1:800) diluted in blocking buffer.  Sections 

were again rinsed with TBS-Tween then incubated with secondary goat anti-rabbit 
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antibody (Dako) diluted 1:200 in blocking buffer for 30 min at RT, rinsed with TBS-

tween, incubated with streptavidin-linked HRP (Dako) for 30 min at RT, and finally 

visualized with DAB chromogen (Dako) with Mayer’s hematoxylin counterstain.  Cover 

slips were mounted with Pertex and digitally scanned as previously described. 

2.6 Cytochemical Staining of Osteoclast Enzyme Marker TRAP 

Cytochemical staining of osteoclast enzyme tartrate resistant acid phosphatase 

(TRAP) was used as a marker to identify osteoclasts in histological sections. TRAP 

staining was performed using a commercial staining kit (Acid Phosphatase Leukocyte 

Staining Kit, Sigma) following the manufacturer’s instructions. Briefly, staining solution 

was prepared with Fast Red TR salt (3.9 mM), naphthol AS-TR phosphate disodium salt 

(2.3 mM), N-N dimethylformamide (68 µM), and L(+)-tartaric acid (100 mM) all diluted 

in sodium acetate buffer (0.1 M, pH 5.2). Deparaffinized sections were incubated in the 

solution for 90 min at 37°C and then counterstained with Mayer’s hematoxylin. TRAP 

positive stained cells appeared red.  

2.7 Gene expression by qPCR 

The gene expression of replicate TCP explants from 5 mice was analyzed by 

qPCR. Frozen samples were thawed and thoroughly pulverized in TRI® Reagent (Sigma-

Aldrich) using a motorized pestle homogenizer.  Samples were centrifuged to remove 

TCP particles, and the RNA in the supernatant was precipitated in chloroform following 

the manufacturer’s instructions. Total RNA concentration and purity was measured using 

http://www.sigmaaldrich.com/life-science/molecular-biology/dna-and-rna-purification/rna-isolation-reagent.html
http://www.sigmaaldrich.com/life-science/molecular-biology/dna-and-rna-purification/rna-isolation-reagent.html
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a Nanodrop machine. Reverse transcription of cDNA was performed using a 

ThermoScript First-Strand kit (Invitrogen).   

Quantitative PCR (qPCR) was performed on a BioRad CFX 96 System. The PCR 

reactions were performed with 20 ng cDNA in a total volume of 10 µL containing iQ 

SYBR Green Supermix (Biorad) and forward and reverse primers (300 nM). After an 

initial activation step for 30 seconds at 98°C, 40 cycles were run of a two-step PCR 

consisting of a denaturation step at 95°C for 15 seconds and annealing and extension step 

at 60C for 30 seconds. Subsequently the PCR products were subjected to melting curve 

analysis to test if any unspecific PCR products were generated. 

qPCR primers were designed using Primer-BLAST (www.ncbi.nim.nih.gov) 

spanning at least 1 intron to avoid amplification of genomic DNA (Table 3). Expression 

of housekeeping genes HPRT and cyc1 was not affected by the experimental conditions 

and were thus used for endogenous normalization of the gene targets. Relative fold 

expression of the normalized gene targets was calculated versus expression levels in the 

negative control, TCPb. 

2.8 Statistics 

Statistical comparisons of gene target expression were performed using One-way 

ANOVA and Tukey’s post hoc tests in GraphPad Prism 6.0 software. P values < 0.05 

were considered significant.  

3 Results 



 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 

3.1 Ectopic bone formation and tissue response 

TCPs and TCPb porous cubes were implanted in subcutaneous pockets on the 

backs of mice and resulting ectopic bone formation was evaluated both by histological 

and whole-sample gene expression analysis. During implantation some replicates 

intended for histological analysis were lost due to incomplete wound healing, particularly 

for TCPs receiving LipClod treatment. After careful scrutiny of multiple random levels of 

each harvested sample, ectopic bone tissue could be identified in all of the TCPs explants 

(7 out of 7) and in none of the TCPb explants (0 out of 8), thus validating these materials 

as positive and negative controls in this model of osteoinduction. Importantly, no bone 

was found in TCPs implants treated locally with LipClod (0 out of 5) to deplete the 

invading phagocytes (Table 4).  

In TCPs, bone formation was little in amount compared to the total implant area; 

however, cuboidal osteoblasts, osteocytes in characteristic lacunae, and multinucleated 

osteoclast-like cells could all be identified. Moreover, a difference in the tissue response 

was observed in that the pore structure of TCPs was generally occupied by darkly stained 

highly condensed collagen fibrils whereas that of TCPb appeared to be lighter stained 

loose connective tissue. In TCPs samples treated with LipClod, sparse connective tissue 

in the pore structure appeared disorganized and did not stain the same dark, vivid green 

as the dense collagen observed in TCPs control (Figure 1).   

Expression of mature bone markers BSP and OCL was significantly up-regulated 

in TCPs versus the negative control TCPb (~220 fold, P = 0.039; 3 fold, P = 0.0002; 

respectively); however, expression levels in TCPs treated with LipClod were unchanged 
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versus TCPb (P = 0.930 and 0.999, respectively), substantiating the histological analysis 

that LipClod treatment blocked bone formation by TCPs (Figure 1). 

3.2 Identification of TRAP positive, F4/80 negative osteoclasts on TCP 

Enzymatic staining for osteoclast marker TRAP served to identify osteoclasts in the 

implants.  Because mature osteoclasts are F4/80 negative [30–32], we compared TRAP 

and F4/80 staining of the same multinucleated cells in serial sections in order to 

unambiguously differentiate between multinucleated osteoclasts and fused macrophage 

foreign body giant cells. 

In TCPs, TRAP
 
positive giant cells were located primarily between stretches of 

ectopic bone attached to the material surface. In serial sections, these same cells were 

confirmed to be F4/80
 
negative, establishing their identity as differentiated osteoclasts 

rather than fused macrophages.  Not all TRAP positive osteoclasts were located next to 

bone suggesting that the presence of bone may not be necessary for their formation.  

Moreover, not all multinucleated cells in TCPs were TRAP positive indicating the 

heterogeneity of multinucleated cells throughout the explant. In contrast, TRAP positive 

cells – either mononucleated or multinucleated – could not be found in neither TCPb nor 

in TCPs treated with LipClod.  The multinucleated cells colonizing these implants were 

uniformly F4/80 positive. 

In support of the finding that TCPs promoted osteoclastogenesis while TCPb did 

not, osteoclast gene markers TRAP, calcitonin receptor, and osteoclast transcription 

factor NFATc1 were analyzed and indeed, these markers were significantly up-regulated 
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in TCPs (fold differences = 2, 234, and 1; P = 0.011, 0.021, and 0.046, all respectively). 

In contrast, LipClod treatment left them unchanged versus TCPb (P = 0.564, 0.999, and 

0.351, respectively). In an effort to explain these results, expression of the critical 

osteoclast-signaling axis RANK-RANKL-OPG was analyzed, showing that RANK 

expression was sharply down-regulated in TCPs + LipClod versus TCPs control (1.6 

fold, P = 0.009), probably due to the selective eradication of phagocytic 

monocyte/macrophage osteoclast precursors. The expression of RANKL and OPG were 

also lower in TCPs after treatment with LipClod than without (0.9 and 1.1 fold 

difference, respectively), although these differences were not significant (P = 0.152 and 

0.105, respectively). Thus, the reason for osteoclast depletion may have been more due to 

loss of RANK-expressing monocyte/macrophage osteoclast precursors rather than 

alteration of the balance between RANKL and its decoy antagonist OPG. 

3.3 Macrophage colonization and depletion 

Macrophage-specific membrane marker F4/80 was visualized using 

immunohistochemistry in order to evaluate the efficacy of LipClod treatment in depleting 

phagocytic macrophages and foreign body giant cells characteristic of the foreign body 

reaction. Indeed, LipClod treatment effectively depleted F4/80 positive cells particularly 

at the outer surfaces of the implant accompanied by large numbers of negatively stained 

mononuclear cells and cell fragments indicative of LipClod-initiated apoptosis.  In 

contrast, the outer edge of TCPs control was prominently lined with a dense layer of 

F4/80 positive macrophages.  
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Despite the clear efficacy of macrophage depletion at the edge of the TCPs 

implants, positively stained macrophages were still present in the inner pore structure, 

similar to the untreated TCPs control. There in particular, F4/80 positive multinucleated 

cells colonized the surface of TCPs regardless of LipClod treatment. 

Positively stained macrophages were also present in TCPb, but appeared 

substantially less organized than TCPs control.  In particular, F4/80 positive macrophages 

did not densely line the outer edge of TCPb as on TCPs control. In the pore structure, 

however, F4/80 positive multinucleated cells were observed similar to TCPs with and 

without LipClod treatment. 

In support of these histological results, F4/80 gene expression was lower with 

LipClod treatment versus TCPs control (0.7 fold difference), though not significantly 

different (P = 0.144) confirming that F4/80 positive macrophage depletion was 

incomplete.   F4/80 expression was equivalent between TCPs and TCPb controls (0.2 

fold difference), despite differences in staining intensity and organization. 

3.4 Osteoblast differentiation inhibited by phagocyte depletion 

To evaluate if LipClod treatment affected osteoblast differentiation associated 

with osteoinduction by TCPs, immunohistochemical staining of Osterix confirmed the 

presence of osteoblast-like cells in TCPs treated with LipClod, though less frequent than 

in TCPs without treatment. Moreover, whereas Osterix positive cuboidal osteoblasts were 

mainly located on or next to ectopic bone in the TCPs control, they were located in loose 

connective tissue contained in the pore structure of TCPs + LipClod. No Osterix positive 
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cells were evident in TCPb (not shown). These histological results were substantiated by 

significantly lower expression of osteoblast transcription factor Runx2 versus TCPs (2 

fold, P = 0.028) and equivalent expression to TCPb (P = 0.726). Versus TCPb, Runx2 

expression in the TCPs control was also higher, trending on statistical significance (1.5 

fold, P = 0.062). 

4 DISCUSSION 

By identifying multinucleated cells that were positively stained for osteoclastic 

enzyme TRAP but negatively stained for macrophage membrane marker F4/80 and vice 

versa, the distinct presence of both OCl and FBGC were found on the surface of 

osteoinductive submicrostructured TCPs in subcutaneous implants. Although FBGC 

widely populated the surface of non-osteoinductive microstructured TCPb, no such 

TRAP positive multinucleated cells could be found. Osteoclast markers were 

significantly down-regulated on TCPb, suggesting that osteoclastogenesis is not common 

to all CaP but is preferentially directed by osteoinductive surface microstructure. This 

finding could provide an explanation for the widely varied and conflicting reports on the 

identity of multinucleated cells surrounding different CaP in various implantation models 

[33–36]: all CaP are not created equal; one material with a particular surface architecture 

may promote osteoclastogenesis while another composed of the same chemistry and 

macrostructure may not.  In support of this finding, our previous work (article submitted) 

demonstrated that TCPs promotes the formation and resorptive activity of OCl in vitro, 

emphasizing the directive role of surface submicron surface structure on 

osteoclastogenesis. It is interesting to consider that while biomaterials comprising a wide 
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range of material chemistries and structures trigger FBGC formation during the foreign 

body response [2], an osteoinductive CaP material directs the formation of the three 

major bone cells in a heterotopic location: OCl (multinucleated, F4/80 negative, TRAP 

positive, residing on the material surface; Figure 2), osteoblasts (cuboidal, strongly 

Osterix positive, residing on the bone surface; Figure 4), and osteocytes (weakly Osterix 

positive, residing in bone lacunae; Figure 4).  

In addition to this result, LipClod treatment impeded both bone formation and 

osteoclastogenesis, substantiated by equivalent bone and osteoclast markers to the 

negative non-osteoinductive control. Our hypothesis that the host response to 

osteoinductive TCP may determine ectopic bone formation is therefore confirmed. 

LipClod treatment was shown to potently deplete F4/80 positive macrophages around the 

perimeter of the implants as intended; however, F4/80 positive mono- and multinucleated 

cells could still be found in the internal pore structure of the implants. Moreover, F4/80 

gene expression was not significantly down-regulated compared to non-treated controls. 

Together, these results suggest that although LipClod treatment successfully depleted 

invading macrophages at the implants’ outer surface, the liposomes were unable to 

substantially penetrate the inner pore structure thereby allowing macrophages migrating 

from the internal vasculature to survive and proliferate.  Nonetheless, LipClod treatment 

evidently disrupted the normal phagocyte response enough to prevent bone and OCl 

formation.  

LipClod is extensively used in the literature to study the role of macrophages in 

various disorders where inflammation and wound healing play a key role. The function 
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and efficacy of LipClod depletion of phagocytes, particularly macrophages, has been 

thoroughly researched for over 20 years and is a strategy that has been used in more than 

800 peer reviewed citations, attesting to its wide breadth of applications as a research tool 

[37]. Mechanistically, when a clodronate-encapsulated liposome is phagocytosed, the 

liposome is opened by intracellular lysozyme and the drug is released in the cytoplasm 

where it is metabolized into a toxic ATP analog resulting in both apoptosis and necrosis 

[38,39]. The specificity of LipClod in its ability to deplete only “professional” 

phagocytes arises from the liposomes’ fast clearance time, the short half-life, non-toxicity 

of free clodronate, and the inability of the liposomes to passively infiltrate the cell 

membrane [29].  

Expounding on the hypothesis that the host response to an osteoinductive implant 

determines its osteogenic capacity, we speculated that the lack of multinucleated cells 

such as OCl and FBGC would impede ectopic bone formation. This was further 

supported by our previous observations in which the presence and resorptive activity of 

these cells on implanted TCP was correlated with osteoinductivity. LipClod treatment 

was selected to deplete these cells because it targets their mutual monocyte/macrophage 

phagocyte precursors as well as OCl themselves. Although FBGC were still present in the 

internal pore structure of the treated implants, no TRAP positive multinucleated cells 

could be found in the treatment samples and OCl gene markers were significantly down-

regulated, suggesting that osteoclastogenesis or osteoclast survival was reduced. It is 

unclear if OCl simply were unable to differentiate due to depleted levels monocyte-

macrophage precursors or whether OCl formed but then were directly depleted in the 

same mechanism as macrophages – through phagocytosis of LipClod – as reported in the 



 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 

literature [40,41]. A time course study might be useful in illuminating this question. In 

either case, ectopic bone formation was impeded in the absence of depleted TRAP 

positive OCl, although F4/80 positive mononuclear and multinucleated MP were still 

present. 

The question remains how phagocytes such as OCl or MP mediate ectopic bone 

formation. Previous results from our group showed that when OCl and to a lesser extent 

MP are cultured on osteoinductive TCP, they secrete soluble factors that potently induce 

alkaline phosphatase enzyme activity in human mesenchymal stem cells without 

osteogenic additives (article submitted). Other groups have described the secretion of 

anabolic bone factors by both OCl and MP extensively as well. Most recently, osteoclast-

specific deletion of CTHRC1, a much sought after soluble bone coupling factor, was 

shown to result in osteopenia in mice emphasizing the importance of osteoclast-secreted 

anabolic factors on normal bone homeostasis [42]. Additionally, OCl have been reported 

to secrete various other osteoblast differentiating factors such as bone morphogenetic 

proteins (BMPs), sphingosine 1-phosphate (S1P), and Wnt10b [43–45]. Inflammatory 

macrophages have also been demonstrated to secrete osteogenic factors such as 

oncostatin M (OSM) [46,47] and may also express BMPs [48–50]. 

It has been suggested that macrophage-mediated inflammation may play a role in 

osteoinduction by CaP though until now no experiments were conducted to specifically 

target this cell type, nor have they shown a clear link between CaP-incited inflammation 

and osteoinduction [12,13]. Omar et al. (2011) did, however, show that a titanium screw 

coated with lipopolysaccharide (LPS) to stimulate classical activation of MP resulted in 
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higher bone contact when in orthotopic sites [51]. On the other hand, inflammation of this 

sort has also been linked with osteolysis and poor osseointegration, which was 

ameliorated with macrophage depletion [52], suggesting long-term catabolic effects on 

bone rather than anabolic effects. Less clear yet is if inflammatory M1 and wound-

healing M2-polarized MP may influence the bone forming capacity of biomaterials such 

as TCP differently. In sum, the results here substantiate the importance of MP in 

osteoinduction, although it is unclear if they act directly on the differentiation and bone 

secretion of osteoblasts or whether they mediate other cellular processes necessary for 

osteoinduction such as differentiating into bone-promotive OCl or secreting vasculogenic 

factors to increase blood flow and a supply of stem cells necessary for osteogenesis [27]. 

Interestingly, LipClod treatment also affected the expression of early osteoblast 

markers Osterix and Runx2 in TCP compared to the control, in conjunction with no bone 

formation and equivalent bone marker levels to non-inductive TCPb. One possible 

explanation for this is that macrophages and osteoclasts secrete chemotactic signals such 

as TNF-α, OSM, PDGF [45], and S1P that attract pre-osteoblasts. Another explanation 

follows the potency of macrophage- and osteoclast-secreted anabolic factors to 

differentiate stem cells directly. Thus, the role of these cells in osteoinduction may be to 

first home mesenchymal stem cells to the implant site and then differentiate them into 

osteoblasts by secreting anabolic trophic factors. It has been reported that osteoblast 

markers are up-regulated in mesenchymal stem cells cultured on similarly osteoinductive 

TCP [9], so the direct interaction of stem cells with an osteoinductive material may also 

aid osteoblast formation. However, Osterix positive cells were observed without bone 

formation suggesting that the activation of early osteoblast transcription factors may not 
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guarantee bone matrix secretion of mature osteoblasts without a normally functioning 

phagocyte population.  

Although the precise material parameters necessary for material-directed 

osteoinduction remain unknown, the results presented here reinforce the importance of 

surface microstructure and add to the growing understanding that the physical form of a 

biomaterial surface can invoke profoundly different tissue responses [53–56]. Here, the 

important role of surface microstructure was again emphasized in the disparate nature of 

bone formation and bone marker expression between two TCP that differ in the scale of 

their surface microarchitecture. By recapitulating the same bone incidence rate of these 

TCP as previously described in a canine intramuscular model, the FVB mouse model of 

subcutaneous osteoinduction recently reported by Barradas et al. (2012) was further 

validated. Moreover, the application of weekly LipClod injections to locally deplete 

invading MP at an implant surface also presents a useful strategy to evaluate the 

importance of the host response to different material surfaces. Indeed, the sensitivity of 

monocyte/macrophage-lineage cells to substrate topography alludes to an intriguing way 

of controlling the foreign body response by modulating the scale of surface 

microarchitecture.   

5 Conclusion  

TCP with submicron-scale surface architecture was found to generate TRAP 

positive, F4/80 negative OCl along with consistent ectopic bone formation in 

subcutaneous pockets of mice but TCP with micron-scale surface architecture did not. 

Liposomal Clodronate treatment, resulting in the complete depletion of TRAP positive, 
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F4/80 negative OCl but not MP or FBGC, was found to block ectopic bone formation. 

Thus, the scale of TCP surface architecture may be essential to ectopic bone formation by 

directing the host response and subsequent osteoclastogenesis.  
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Figure 1. Ectopic bone formation by TCPs and blockade by phagocyte depletion. 
(Top) Representative sections stained with Masson’s Trichrome from decalcified TCP 

(black stars) cubes subcutaneously implanted in mice for 12 weeks.  Ectopic bone 

formation (white stars) was only found in TCPs (A, B), shown by dark green collagen 

staining. Osteocytes in lacunae (A, open arrows) and cuboidal osteoblasts (B, black 

arrows) can be seen in and on the mature bone matrix. Local liposomal clodronate 

injections blocked bone formation in TCPs  (TCPs + LipClod) (C, D). Connective tissue 

in the pore space was generally less condensed (C, light green) though blood vessels were 

still formed (D, orange stained erythrocytes). TCPb (E, F) formed no bone although the 

pore structure was vascularized (E, orange erythrocytes) and cells had colonized the 

material surface (F, grey staining). 10x scale bar = 4 mm; 40x scale bar = 100 μm. 

(Bottom) Gene expression of mature bone markers osteocalcin and bone sialoprotein 

were up-regulated in TCPs versus TCPs + LipClod and TCPb, while expression levels 

between TCPs + LipClod and non-inductive TCPb were equivalent. * P < 0.05, ** P < 

0.01, *** P < 0.001. 

 

Figure 2. Osteoclastogenesis by TCPs and depletion by Liposomal Clodronate. (Top) 

Representative overview images (10x) stained with Masson’s Trichrome show ectopic 

bone formation in TCPs (dark green) and not in TCPs treated with Liposomal Clodronate 

(LipClod) or non-inductive TCPb. (A, B) 40x insets of serial sections stained for 

osteoclast marker tartrate resistant acid phosphatase (TRAP) and macrophage membrane 

marker F4/80 show TRAP positive (red) F4/80 negative osteoclasts colonizing the 

material (black stars) between stretches of ectopic bone (white stars). No TRAP positive 

cells could be found in TCPs treated with Liposomal Clodronate  (LipClod) (C, D) or the 

non-inductive TCPb (E, F).  Multinucleated cells (black arrows) in these explants were 

uniformly F4/80 positive (brown) fused macrophages. 10x scale bar = 200 μm; 40x scale 

bar = 100 μm. (Bottom) Gene expression of osteoclast markers TRAP, CTR, and 

NFATc1 were significantly upregulated in TCPs versus TCPs + LipClod or TCPb. 

Expression of RANK was down-regulated in TCPs + LipClod versus TCPs, indicative of 

pre-osteoclast depletion. Expression levels of RANKL and its decoy receptor OPG varied 

between groups but were statistically equivalent. * P < 0.05, ** P < 0.01. 

 

Figure 3. Macrophage colonization of TCP and depletion by Liposomal Clodronate.  

(Top) Representative sections of TCP (black stars) immunohistochemically stained for 

macrophage membrane marker F4/80. F4/80 positive macrophages (brown) densely lined 

the (A) outer surface and (B) inner pore structure of TCPs, resembling osteal 

macrophages.  Weekly liposomal Clodronate injections (TCPs + LipClod) effectively 

depleted F4/80 positivity at the (C) outer surface of TCPs with evident cell fragments 

indicative of apoptosis due to the treatment; however F4/80 positive macrophages still 

colonized the (D) inner pore structure. Positively stained macrophages less densely 

colonized the (E) outer surface and (F) inner pore structure of TCPb (TCP marked by 

black stars). 5x scale bar = 1 mm; 20x scale bar = 300 μm. (Bottom) Gene expression of 

F4/80 was equivalent between all groups. 

  

Figure 4. Osteoblast differentiation by TCPs is inhibited by phagocyte depletion. 
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(Top) Immunohistochemical staining of osteoblast marker Osterix in (left) Osterix 

positive cells (black arrows) were found colonizing the surface of TCPs (black stars) as 

well as bone tissue (white stars) containing osteocytes in lacunae (open arrows). (Right) 

Positively stained cells were also found in TCPs treated with Liposomal Clodronate 

(TCPs + LipClod) but to a lesser extent, both in the (top) inter-pore space and (bottom) in 

contact with the TCP surface, despite no bone formation. (Bottom) Gene expression of 

Runx2 was up-regulated in TCPs versus TCPs + LipClod, which was at an equivalent 

level as non-inductive TCPb. * P < 0.05. 

 

 

 

 

 

 



Table 1. Physical characterization of TCP  

Physical parameters TCPs TCPb 

Average grain diameter  0.95 ± 0.27 3.66 ± 1.05 

Average pore diameter  0.63 ± 0.33 1.78 ± 0.85 

Average peak-to-valley roughness, Ra  0.126 ± 0.003 1.287 ± 0.011 

Root-mean-square peak-to-valley roughness, RRMS  0.158 ± 0.003 1.597 ± 0.011 

Porosity (%) 69.6 72.0 

Total pore area (m
2
/g) 1.477 0.769 

 

Table 2. qPCR primer sequences 

Gene Target Sequence (5' -> 3') Product size (bp) Accession ID 

HPRT 
tcctcctcagaccgctttt 

90 NM_013556.2 
cctggttcatcatcgctaatc 

Cyc1 
tgtgctacacggaggaagaa 

72 NM_025567.1 
catcatcattagggccatcc 

RANKL 
tcctgtactttcgagcgcag 

337 NM_011613.3  
ttatgggaacccgatgggatg 

CTK 
ggaggcggctatatgacca 

111 NM_007802.4 
ggcgttatacatacaactttcatcc 

TRAP 
cgtctctgcacagattgcat 

75 NM_001102405.1 
aagcgcaaacggtagtaagg   

CTR 
ccttccagaggagaagaaacc 

95 NM_007588.2 
ggagattccgccttttcac 

OC 
agactccggcgctacctt 

86 NM_001032298.2 
caagcagggttaagctcaca 

RANK 
tgcagctcttccatgacactg 

103 NM_009399.3 
cagccactactaccacagagatg 

OPG 
atgaacaagtggctgtgctg 

106 NM_008764.3 
cagtttctgggtcataatgcaa 

Runx2 
ccacaaggacagagtcagattaca 

92 NM_001145920.2 
tggctcagataggaggggta 

F4/80 
tcctccttgcctggacact 

100 NM_010130.4 
gccttgaaggtcagcaacc 

NFATc1 
catgcgagccatcatcga 

130 NM_001164112.1 
tgggatgtgaactcggaagac 
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Table 3. Incidence rate of ectopic bone formation by histological analysis. 

TCPs TCPs + LipClod TCPb 

7/7 0/5 0/8 
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