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In recent years, the study of generating and detecting 
localized surface plasmons (LSPs) has been expanded 
from the optical regime to microwave regime. In this 
work, the compact spoof LSPs are introduced through 
both numerical simulations and near-field 
measurements. It is observed that the compact LSP 
structure could effectively reduce the resonant frequency 
with stronger resonance strength (Gdbsm) and higher Q 
factor. Both electric near-field and surface-current 
distributions are monitored to examine the resonance 
processes of the LSP particle. © 2016 Optical Society of 
America 
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Surface plasmons are electron oscillations along the interface between 
dielectrics and metals at optical frequencies. With the possibility of 
deep subwavelength confinement and field enhancement, surface 
plasmons are of intensive interest [1-3] with potential applications in 
bio-sensing and spectroscopic detection. However, at microwave and 
terahertz regions, metals behave similarly to perfect electric 
conductors, and therefore surface plasmons can no longer be excited 
naturally. Fortunately, it has been recognized that periodically 
structured metals support surface waves which mimic the surface 
plasmons at these lower frequencies [4]. Following this theory, 
designer or spoof surface plasmon polaritons (SPPs) and electric and 
magnetic localized surface plasmons (LSPs) have been introduced and 
experimentally measured [5-10]. Recently, several modified LSP 
structures have been proposed for further insight into this field. For 
example, LSPs in closed textured cavities were designed and studied 
numerically in two dimensions [11]. Recently, a metal-insulator-metal 
(MIM) ring resonator [12] and the complementary corrugated ring 
structure [13] were designed and fed with microstrip line. The 
properties of the complementary metallic spiral structure was 

examined by the Babinet’s principle, where the measured electric field 
distributions of the complementary metallic spiral structure could be 
applied to map the magnetic field distributions of a corresponding 
mode in the original metallic spiral structure [14,15]. 

In this letter, we design and experimentally demonstrate a compact 
spoof LSP structure which has smaller electric dimensions, stronger 
resonance and higher quality (Q) factor. The conformation of the 
proposed structure is the complementary geometry of the ultrathin 
spoof LSP [9]. Instead of analysing with the Babinet’s principle, we still 
study the electric resonance, and the structure revealed much lower 
resonant frequency than both the original structure [9] and the 
corrugated ring structure [13]. Meanwhile, the electric LSP resonance 
Q factor is much higher than that in previous designs. Both electric field 
distributions and surface current distributions are monitored to 
analyse the resonant properties. 
 

 
Fig. 1. (a) The schematic configuration of the compact LSP structure. (b) 
The photo of the compact LSP. 

The schematic configuration of the proposed compact spoof LSP 
structure and its photo are shown in Figures 1(a) and 1(b), 
respectively. The original structure, to which it is complementary, is 
shown in Fig. 2(a).  The thin copper structure with thickness 0.018 mm 
is etched on an ultrathin layer of polyimide with the thickness of 0.1 
mm and dielectric constant of 3.5. The variables in Fig. 1(a) are chosen 
as r0=3.39 mm, r1=12 mm, r2=11.3 mm, d=0.4 mm, and p=1.1833 mm. 
In this new design, the electric current path is longer due to the greater 
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circumference as compared to the original structure; thus a lower 
working frequency band is expected. The sample of the original LSP 
structure in Fig. 2(a) is complementary to the metal structure in Fig. 
1(a), and for better comparison, a corrugated ring structure [13] is also 
fabricated as shown in Fig. 2(b), where a metallic ring with inner radius 
of 7.345 mm and width of 0.4 mm is placed in the middle of the 
structure to connect all the rods. The rods have the same dimensions 
as those in Fig. 2(a). 
 

 

Fig. 2. The photo of the fabrication sample of (a) the original spoof LSP 
structure, and (b) the corrugated ring structure.  

To verify the performance of the designed compact LSP structure, 
full wave numerical simulations were first performed using the 
commercial software package, CST Microwave Studio. In the 
simulation, a TEM polarized plane-wave is launched from the left with 
magnetic wave perpendicular to the surface of the sample as shown in 
Fig. 1(a). Both radar cross section (RCS) and absorption cross section 
(ACS) spectra could be obtained by numerical simulations in CST. In 
order to quantitatively evaluate the coupling strength of the 
electromagnetic waves with the sample under test, the parameter 
GdBsm is employed, which is defined as: 
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where 𝐸𝐸𝐸𝐸𝐸𝐸 = 𝑅𝑅𝐸𝐸𝐸𝐸 + 𝐴𝐴𝐸𝐸𝐸𝐸  is the extinction cross section. The 
calculated spectra of GdBsm for the proposed compact LSP structure is 
plotted in Fig. 3 along with those of the original LSP and the corrugated 
ring LSP structures. Q factor, which could be used to evaluate the 
underdamping property of the resonator, can now be calculated based 
on the GdBsm spectra from the following equation: 
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Where f0 is the center frequency, f1 and f2 are the half-power 
frequencies. 
     For better comparison, the detailed data in the GdBsm spectra and Q 
factors are listed in Table 1. It could be observed that the resonance 
frequency of the basic mode, dipole mode, in the compact unit is 
significantly reduced from 4.43 GHz to 3.2 GHz, with the corresponding 
wavelength increased from 67.67 mm to 93.69 mm by 38.45%. 
Meanwhile, the dipole mode resonant strength, GdBsm, of the compact 
particle is -56.76 dBsm, which is higher than the original structure by 
5.13 dBsm. The Q factor of the compact LSP structure is 17.81, while 
the Q value of the original one is only 4.9. Thus, the complementary 
structure proposed here has smaller electrical size and higher basic 
mode resonance strength than the original design. 

The frequencies of quadrupole and hexapole mode are also 
reduced from 6.03 and 6.96 GHz in the original structure to 5.28 and 
6.34 GHz in the compact structure, while increased to 6.71 and 8.88 
GHz in the corrugated ring structure. The resonance strengthes of the 
quadruple mode are both around -60 dBsm, but the Q factor increased 
from 23.3 into 146.5. The resonance strength of the quadruple mode is 
decreased 18.22 dBsm into -78.61 dBsm. However, the hexapole mode 

Q factor of the compact structure is 634, while the original one is 
198.84, which is also the highest Q factor in all the three modes of the 
three structures. 
The simulated and measured near field distributions are plotted in 
Figs. 4(a-f), where all the dipole, quadruple and hexapole modes could 
be clearly observed in both simulations and experiments, and agreed 
quite well with the calculated peaks in GdBsm spectra. 
 

 

Fig. 3. The calculated GdBsm spectra based on ECS of the localized LSP 
structures. 

 
Table 1 Comparison of the three structures 
 Original 

structure 

Corrugated ring 

structure 

Compact 

structure 

f of M1 / GHz 4.43 3.89 3.2 

GdBsm of M1 / dBsm -61.89 -59.62 -56.76 

Q of M1 4.90 9.13 17.81 

f of M2 / GHz 6.03 6.71 5.28 

GdBsm of M2 / dBsm -59.54 -65.05 -60.23 

Q of M2 23.30 22.17 146.5 

f of M3 / GHz 6.96 8.88 6.34 

GdBsm of M3/ dBsm -60.39 -67.74 -78.61 

Q of M3 198.84 67.81 634 

*M1 is the first-order mode (dipole), M2 is the second-order mode 

(quadruple), and M3 is the third-order mode (hexapole). f is the resonant 

frequency. 

 

The resonance LSP modes are standing waves in the ring, and 
these phenomena could be compared with microwave ring resonators 
[16] which have been adopted to analyze the resonance processes in 
split-ring resonators (SRRs) [17]. As shown in Fig. 4(g), the surface 
currents of the dipole modes in the compact LSP structure are excited 
by the penetrated magnetic waves in full-wavelength resonance, and 
the currents mainly resonances as a pair of in-phase surface current 
along the periphery annular path in the two sides of the metallic 
structure. In this case, the circumference of the surface current path 
equals to the integral multiple of the guided wavelength, 𝜆𝜆𝑔𝑔. This 
relation could be expressed as: 

2 g gr nπ λ= ,       for n = 1, 2, 3…    (3) 



where rg is the guide radius of the surface current, and n is the mode 
number. In the dipole mode of Figs. 4(a) and (g), the structure has 
positive charges on the left side and negative charges on the right. Thus 
the electric fields are oscillated in opposite phase in the left and right 
halves, as demonstrated in simulation in Fig. 4(a) and experiment is 
Fig. 4(d). 

 

Fig. 4. The simulated (a-c) and measured (d-f) near field distributions, and 
surface current distributions (g-i) of the compact LSP structure of (a,d,g) 
dipole, (b,e,h) quadruple, and (c,f,i) hexapole mode. 

The surface current of the quadruple mode and hexapole mode of 
the compact LSP structure are also monitored and plotted in Figs. 4(h) 
and (i), respectively. It could be observed that there are two pairs of 
surface currents in the quadruple mode and three pairs of surface 
currents in the hexapole mode. Accordingly, there should be two pairs 
and three pairs of electric fields oscillated in opposite phase, as shown 
in simulation results in Figs. 4(b) and (c), and measured results in Figs. 
4(e) and (f). It is worth noting that in this compact LSP structure, the 
width of the outermost ring is 0.7 mm. Due to its narrow profile the 
path of the surface current is determined by the ring. When r2 is much 
larger than r1, the ring with noticeable width will lead the surface 
current to be distributed throughout the ring, with the main current 
travelling along the inner edges. In this case, the equivalent surface 
current path radius will be between r1 and r2, and hence the M1 
frequency is reduced slightly to 2.99 GHz. However, such a design has 
much larger electric dimension and weaker resonances compared to 
the compact LSP structure. So in the design of this compact LSP 
particle, the inner radius of the ring, r2, is the most important 
parameter for determining the location of the surface current. 
 

 

Fig. 5. The surface current distribution of the dipole modes in the LSP 
structures. (a) The original structure. (b) The corrugated ring structure. 

The surface currents of the original LSP structure and corrugated 
ring structure are monitored and plotted in Fig. 5 to study the 
resonance property. As shown in Fig. 4(g), for the compact LSP 
structure, the resonance path is located at the periphery of the metallic 
structure, with the radius of 12 mm, while in the original structure, the 
resonance path lies at the middle of the pattern with the radius of 3.7 
mm, as shown in Fig. 5(a). The resonance path of the corrugated ring 
structure lies between the compact LSP and original LSP structure, as 
shown in Fig. 5(b). With the increase of the resonance path, the 
frequency is decreased accordingly. However, due to the scattered 
surface current on the metallic rods, the resonant frequency is not 
directly inversely proportional to the radius of the surface current path. 

Here in this letter, a compact metamaterial particle is designed 
which could support spoof localized SPP waves with smaller electrical 
dimension. Both numerical simulations and experiments are carried 
out to verify the performance of the structure. The resonance 
processes are investigated based on the near field and surface current 
distributions, and compared with the original LSP structure and the 
corrugated ring structure. The designed compact LSP structure 
possesses stronger resonant strength and higher Q factor, which has 
potential application in bio-sensing and ultrathin material 
measurement. The compact LSP structure is akin to dielectric inclusion 
in metals with void plasmons, while the original structure is similar to 
metallic nanoparticles with localized surface plasmons. So a combined 
structure with the compact LSP structure and the original LSP might 
lead to plasmon hybridization, as with that in metallic nanoshells [18]. 
More comprehensive research on hybridization structures is under 
study. 
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