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This paper presents a new methodology for university exam timetabling problems, 

which draws upon earlier work on the Great Deluge metaheuristic. The new method 

introduces a “flexible” acceptance condition. Even a simple variant of this technique 

(with fixed flexibility) outperforms the original Great Deluge algorithm. Moreover, it 

enables a run-time adaptation of an acceptance condition for each particular move. 

We investigate the adaptive mechanism where the algorithm accepts the movement of 

exams in a way that is dependent upon the difficulty of assigning that exam. The 

overall motivation is to encourage the exploration of a wider region of the search 

space. We present an analysis of the results of our tests of this technique on two 

international collections of benchmark exam timetabling problems. We show that 9 

out of 16 solutions in the first collection and 11 out of 12 solutions in the second 

collection produced by our technique have a higher level of quality than previously 

published methodologies. 

Keywords: metaheuristics, optimisation, analysis of algorithms, education systems: 

timetabling. 

1. Introduction 

The overall goal in university exam timetabling is to assign all given exams into a 

limited number of timeslots (and often into available rooms) so that no one student 

has to sit two (or more) exams at the same time in addition to satisfying a number of 

other constraints. For example, if room assignment is required, then the number of 

students seating in a room should not exceed its capacity. The constraints, which have 

to be satisfied under any circumstances are called hard. Constraints, which are 

desirable but not essential are called soft. Timetables which satisfy all the hard 

constraints are called feasible. In most situations it is not possible to satisfy all soft 

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Queen Mary Research Online

https://core.ac.uk/display/77042969?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


 

 

constraints. Therefore, the goal is to minimise the amount of violation penalty. The 

soft constraints can be quite varied across different universities (Burke et al, 1996). 

The most common soft requirement is that students should have an appropriate 

amount of time between exams. However, university administrators will usually 

express additional preferences, such as “larger exams should be scheduled earlier” or 

“avoid exams with different durations in the same room”. 

Examination timetabling has been very widely studied over the last decades and a 

broad range of techniques from across Operations Research and Artificial Intelligence 

have been investigated and adapted for the problem.  A selection of the methods 

which have been explored for this important problem includes: Tabu Search (Di 

Gaspero and Schaerf, 2001), (White and Xie, 2001), Greedy Randomised Adaptive 

Search Procedure (Casey & Thomson, 2003), Simulated Annealing (Thompson and 

Dowsland, 1996a), (Thompson and Dowsland, 1996b), Ahuja-Orlin’s large 

neighbourhood search (Abdullah et al, 2007), (Meyers & Orlin, 2007), Adaptive 

ordering (Burke and Newall, 2004), (Abdul Rahman et al, 2014), Case Base 

Reasoning (Burke et al, 2006), (Perovic et al, 2007), Cell biology developmental 

approach (Pillay, 2009), Evolutionary methods (Erben, 2001), (Ulker et al, 2007), 

(Al-Betar et al, 2014), Multi-criteria methods (Paquete and Fonseca, 2001), (Petrovic 

and Bykov, 2003), (Bykov, 2003), (Cheong et al, 2009), Constraint Based Methods 

(David, 1998), Fuzzy methods (Petrovic et al, 2005), (Asmuni et al, 2009) and multi-

processor (grid) computing (Gogos et al, 2010). In addition, there have been different 

variants of hybrid techniques (Merlot et al, 2003), (Caramia et al, 2008), (Burke et al, 

2010), (Abdullah and Alzaqebah, 2014) and hyper-heuristic methods (Burke et al, 

2007), (Pillay, 2016) and Late Acceptance Hill Climbing (Ozcan et al, 2009). 

Early examination timetabling methods were reviewed in (Carter, 1986) and a 

follow up paper was published by (Carter and Laporte, 1996). A more recent survey 

of examination timetabling techniques is presented in (Qu et al, 2009). Other papers, 

which review and overview the timetabling literature include (de Werra, 1985), 

(Bardadym, 1996), (Burke et al, 1997), (Schaerf, 1999), (Burke and Petrovic, 2002), 

(Petrovic and Burke, 2004), (McCollum, 2007) and (Lewis, 2008). 

In the last decade, a particular interest in exam timetabling has focused on the 

Great Deluge algorithm (GDA), introduced by Dueck (1993). The method operates 

with a control parameter, called a “level”, which represents the upper bound of an 



 

 

acceptable cost function. At the beginning of the search, the level is equal to an initial 

cost function and with every step it is lowered by some chosen decay rate. At each 

iteration, a candidate solution is accepted, if its cost function is lower than the level or 

lower than the current cost. The process is continued until no further improvement is 

detected for an appropriate amount of time.  

The Great Deluge algorithm was investigated and adapted for exam timetabling 

problems in (Bykov, 2003) and (Burke et al, 2004a). Several multiobjective 

formulations of the original method have also been explored in (Petrovic and Bykov, 

2003) and (Bykov, 2003). The method produced some of the best results in the 

literature (at the time of publication) on a range of exam timetabling benchmark 

instances (Burke et al, 2004a). It was also applied to course timetabling in (Burke et 

al, 2003). In the same year, this algorithm won 3
rd

 place in the first International 

Timetabling Competition (ITC2002), which had an additional impact on the growth of 

its popularity. Since that time, a number of modifications and adaptations of the GDA 

have been proposed for timetabling problems. For example, (Burke and Newall 2003) 

considered starting the algorithm by hybridizing with an adaptive approach. Obit et al 

(2009) and Jaddi and Abdullah (2014) investigated non-linear level lowering. An 

adaptive reheating-like mechanism was suggested by (McMullan 2007). In addition, 

the GDA was hybridized with other methods (Turabeih and Abdullah 2011), (Fong et 

al, 2014) and widely used in hyper-heuristic studies (Ozcan et al 2010), (Sin and 

Kham 2012). The high practical effectiveness of the GDA was confirmed in the 

second International Timetabling Competition (ITC2007) where the GDA-based entry 

methods won the 1
st
 place prizes simultaneously in two (over three) tracks: in the 

examination timetabling track and in the curriculum based course timetabling track. 

The properties of GDA, which provide its high level of practical effectiveness 

were highlighted in (Burke et al 2004a). In addition to the simplicity in 

implementation, this algorithm represents one of the most transparent techniques in 

respect of parameter setting. Its single parameter (decay rate) is problem-independent 

and has a clear physical meaning (dimensionality): it expresses the amount of cost 

reduction per iteration. Thus, the decay rate could be thought of as a "search speed". 

Correspondingly, knowing the initial and the final costs, the search speed can be 

easily calculated in order to pass the given cost interval in a required number of 

iterations. Taking into account that GDA has a very clear convergence and proposing 



 

 

an approximate final cost, the complete search procedure can easily fit into a required 

amount of computing time. The simplicity of the search time management is 

important for practical applications (including competition entries) where the 

available computing time is limited and should be utilized effectively. It is known that 

for many problems (especially for larger-sized ones) the prolongation of the search 

procedure can lead to better results (see Burke et al 2004a). However, such a 

prolongation should be controllable in order to avoid situations where the available 

time is elapsed before the search achieves the best possible result. In practical exam 

timetabling (which is often not a time critical problem) proper time management 

could provide a significant improvement in the quality of solution by employing more 

computational time where appropriate. Here it is perfectly feasible to leave an 

algorithm running for an extended period of time (say, overnight or even for a 

weekend). 

The above reasoning suggests that a major practical advantage of GDA is its high 

reliability in respect of parameterization, i.e. its performance is robust in terms of 

incorrect parameter setting. Correspondingly, when proposing further modifications 

and adaptations of GDA, it is important to keep its practical effectiveness, i.e. not to 

weaken the discussed advantages. 

2. A Flex-Deluge Algorithm 

2.1. The flexible acceptance condition in GDA 

The significance of preserving the distinct GDA advantages (overviewed in the 

previous section) has motivated us into developing an alternative conception of the 

improvement of this technique. Its essence is that the original GDA shape of the level 

lowering is kept intact, while the increase in the search efficiency is achieved by 

employing a more advanced acceptance condition. This idea was first introduced in 

an abstract at the PATAT conference in (Burke and Bykov 2006). In the current 

study, we expand this idea and present its detailed analysis. 

The research development of the addressed acceptance condition is based on the 

following assumptions: Great Deluge algorithm (as with many other types of search 

method) accepts all downhill (penalty improving in the context of minimization) 

moves and a limited number of uphill (penalty worsening) ones. The search without 



 

 

uphill moves (greedy Hill-Climbing) has a very weak level of performance. So, the 

mechanism for accepting uphill moves underpins the algorithm’s strength. Also, the 

quality of the results can be improved by the slowing of the downhill motion of a 

prospective search. Combining these two observations, it can be proposed that the 

algorithm’s performance might be increased when the uphill motion of a prospective 

search is also slowed. 

In order to explore the above idea, we introduce a “flexibility” coefficient kf  

(0  kf  1). Now, at every iteration, the algorithm accepts a new candidate solution 

with penalty C’ if it satisfies Inequality (1): 

  CBkCC f /  when C < B 
(1) 

 CC /  when C  B 

where C and B are the current penalty and the current value of the level of the Great 

Deluge algorithm, respectively. According to this formula, the increase in the penalty 

of the accepted candidate should not be greater than the difference between C and B 

multiplied by kf . 

This mechanism works in the following way. Although B is the absolute upper 

limit for the penalty value of all solutions, the upper limit for the current candidate is 

always lower than B. When this uphill move is accepted, the current upper limit 

becomes higher (closer to B) and so on. Thus, the penalty for a current solution cannot 

exceed B and can approach it only by several uphill moves. We now introduce the 

idea that the lowering of B forces the lowering of the current penalty using some kind 

of “flexible bumper” and kf denotes the degree of its flexibility. Following this 

reasoning, we have called this method the Flex-Deluge algorithm (FDA). 

When kf = 0 (the inflexible case), the algorithm degenerates into the greedy Hill 

Climbing (HC) method. “Infinite flexibility” (kf = 1) corresponds to the original Great 

Deluge. With the flexibility defined in the middle of this interval we have an 

algorithm with moderate characteristics, which lies inbetween the extremes. It is not 

so “greedy” as HC but not so “generous” as GDA. This property of FDA is 

reminiscent of the Peckish strategy proposed by Corne and Ross (1996). Their 

technique is the intermediate between greedy Hill-Climbing and Random Ordering. 

Although the purpose, implementation and performance of our method and the 

Peckish approach is different, both of them employ a parameter, which provides a 



 

 

smooth transformation of one heuristic into another and enables the setting up of a 

preferable level of “greediness” for the algorithm. 

It could be argued that, on the one hand, HC does not enable escape from local 

minima. In contrast, the original GDA supports the ability to escape from anywhere, 

irrespective of whether it is a local minimum or a promising region of the search 

space. The Flex-Deluge method enables the escaping, but it forces a prospective 

solution to stay, for some time, near the achieved minimum to explore its 

surroundings in the search space. In his paper (Dueck 1993), Dueck associated the 

Great Deluge algorithm with walking on the water’s edge during a deluge in order to 

finally find the top of the highest hill. Using the flexible variant, one tries to "walk" a 

little higher than the edge. As a result, when reaching the top of the hill, there is still 

the chance to walk down and check whether there is a higher top nearby. 

Note, that when introducing the flexibility, we keep all the properties of the 

original Great Deluge, i.e. in the proposed technique, the decay rate, B, also 

corresponds to the search speed and the computational time of the search procedure 

can be predefined in the same way. All other details (initialisation, termination) are 

the same as in the original version (Burke et al, 2004a). The pseudo-code for the Flex-

Deluge approach can be outlined in Figure 1. 

 

 

 

 

 

 

Figure 1: Pseudo code for FDA, the Flex-Deluge Algorithm 

Obviously, the introduction of a new parameter (kf) in FDA requires some additional 

effort on its tuning. However, we expect that the benefit from the employment of this 

parameter could prevail over the nuisance of extra parameterisation. First of all, the 

Produce an initial solution s 

Calculate initial cost function C(s) and initial level B:=C(s) 

Specify decay rate B:=? 

Specify the flexibility kf:=? 

While further improvement is impossible 

   Construct a candidate solution s* 

   Calculate C(s*) 

   If C(s)B 

   Then If C(s*)C(s) 

        Then accept the candidate s:= s* 

   Else If C(s*)C(s)+kf(B-C(s)) 
        Then accept the candidate s:= s* 

   Lower the level B:= B–B 



 

 

specification of a proper value for kf could be relatively straightforward. Factually, the 

flexibility coefficient can have any value from the specified interval with just one 

restriction: it should not be assigned extremely close to 0 (in this case the greedy 

behaviour could dominate over the performance of FDA). Our experiments below 

demonstrate that starting from some reasonable point (for example, from 0.005) any 

arbitrary value of kf for FDA provides a better performance when compared to the 

original Great Deluge. Of course, the best (optimal) setting of the new parameter is 

problem-dependent but, even a non-optimal setting still improves the performance of 

the initial algorithm. Moreover, some extra effort spent on adjusting the best value of 

kf can yield a relatively significant increase in the overall effectiveness of the search. 

It should be noted that the additional time expense (if it leads to better results) is 

tolerable for tasks such as practical exam timetabling, where the quality of results is a 

primary goal and the computing time is not so critical. 

2.2. The integration of a self-adaptive technique into FDA 

In the previous section, we have proposed that the overall performance of a search 

procedure can be improved by fixing kf at some particular value (between two 

extremes). However, we see a further advantage behind the introduction of the 

flexibility coefficient which is that this coefficient can be varied during the search. I.e. 

instead of selecting the best fixed value of kf we should develop the best variation rule 

for the flexibility. For example, it might be beneficial to perform the first phase of the 

search close to Hill Climbing, but the second phase close to Great Deluge (or vice 

versa). The number (gradation) of the phases can be much higher, up to the case 

where each iteration is performed with its own value of flexibility. It is important to 

note that, in all cases, a variation of kf  does not affect (similar to the fixed-flexibility 

version) the major properties of the Great Deluge algorithm, and correspondingly, 

there are no formal restrictions on a suitable variation method. Now, any idea of the 

automatic variation of kf can be thought of as the implementation of an additional 

heuristic integrated into an adaptive metaheuristic search. With this in mind, the 

proposed technique emerges as an Adaptive Flex-Deluge Algorithm (AFDA), which 

can play the role of a universal engine for testing and employing various self-adaptive 

heuristics. 



 

 

Of course, the development of a variation rule, which provides further 

improvement on the performance of the search (compared to the fixed flexibility 

variant) represents a greater challenge than just setting up the fixed value of a 

parameter. This requires a particular expertise in the algorithmic behaviour in 

conjunction with the properties of specific problems. In addition, some helpful ideas 

here can be borrowed from the area of self-adaptive methods, which represent a 

subject of significant study across different optimization problems. In the examination 

timetabling literature there are several methodologies, which automatically adjust an 

algorithm to the properties of a particular instance. Examples of such studies can be 

found in (White & Xie, 2001), (Casey & Thomson, 2003), (Burke and Newall, 2004), 

(Burke et al, 2007). By drawing upon this body of work, we suggest to use the 

variation of kf to adapt the search procedure to instance-specific properties.  

In this paper, we present an example of the self-adaptive heuristic for exam 

timetabling, which can be integrated into the Flex-Deluge algorithm. This heuristic 

can be thought of as an “activity-based” method by drawing upon the idea of White 

and Xie (2001), who ranked the exams as being “light” and “heavy”, based upon their 

activity. It was suggested that the movement of overactive exams could be suspended 

in order to give more consideration to less active exams.  

The above idea is reasonable in situations where a search procedure demonstrates 

different behaviours in respect of different moves. In most real-world timetabling 

problems, the moving of some (heavy) exams more frequently yields infeasibility 

and/or induces a higher average increase in the cost function than it does when other 

(light) exams are moved. Therefore, the light moves are more frequently accepted 

(with the same acceptance condition for all moves). In this case, the search can be 

thought of as being biased towards seeking an improved solution in respect of a 

limited number of variables (exams) but that it might miss the opportunity to explore 

significant parts of the search space thereby never finding even better solutions. 

This situation is illustrated in Figure 2, where a vertical axis represents the cost 

function and the current cost is shown by the dotted line. Possible moves are shown 

by double vertical arrows. Of course, the current cost function can be either increased 

or decreased by the current move. We can see that for heavy moves the 

increase/decrease can be much higher than for light ones. 



 

 

 

 

Figure 2: Heavy and light moves accepted with the same (a) and different (b) 

acceptance conditions. 

If we have the same level of acceptance B for both heavy and light moves (Figure 

2(a)), we impose the restriction (represented by the unshaded part of the double 

arrow) to heavy moves only while accepting all light moves. This can cause a biasing 

tendency, i.e. a complete set of exams is divided into two subsets where intelligent 

computational search is carried out with the first subset only, while the second subset 

is just randomly perturbed. It is proposed that the procedure can be improved by 

adding a mechanism, which limits this tendency. 

To build this mechanism into the flexible algorithm introduced here, we suggest 

the use of different values of kf when moving exams with a different activity. It may 

be beneficial to accept the most active exams with less flexibility and vice versa. 

Thus, in Figure 2(b), the acceptance level for heavy exams B1 is higher than for light 

exams B2. Now, the restriction affects all moves (heavy and light ones) and the search 

process involves the complete set of exams. 

Of course, it could be expected that the performance of the activity-based AFDA 

heuristic outlined here is dependent on the properties of a particular type of move, 

which is a matter of implementation and is dependent on the particular formulation of 

the exam timetabling problem. Therefore, to demonstrate the universality of the 
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proposed approach, this paper presents two examples of its application to exam 

timetabling problems of different types. 

3. The application of FDA to exam timetabling 

To evaluate the methodologies presented in this paper we use the university exam 

timetabling benchmark datasets from two collections where this problem is 

formulated in different ways. The first one is the university of Toronto collection. 

This is available publicly on the web at http://www.cs.nott.ac.uk/~rxq/data.htm. These 

problems were studied in a number of papers, starting with (Carter et al, 1996) who 

originated these datasets and published the first results (produced by different graph 

colouring heuristics with backtracking). The second collection was launched at the 

Examination Timetabling Track of the 2
nd

 International Timetabling Competition 

(ITC2007) and is available at http://www.cs.qub.ac.uk/itc2007/. Two papers that have 

addressed these problems were published by the methods that came in 1
st
 and 2

nd
 

place (Muller, 2008), (Gogos et al, 2008). A further study of these datasets was 

presented in (McCollum et al, 2009) and (Gogos et al 2010). We compare our results 

against the other methods in the literature which tackle these instances later on in the 

paper. 

3.1 Application to Toronto benchmark problems 

The university of Toronto collection contains real-world exam timetabling datasets. It 

has recently been adapted and corrected (see (Qu et al, 2009)). Different problem 

instances had circulated (under the same name) over the years and this had generated 

some confusion in the academic literature. The different versions have now been re-

named and the situation is discussed and clarified in (Qu et al, 2009). Five of the 

problems had two different versions. Both versions were given distinct names in (Qu 

et al, 2009) and the suggested notation is also employed here. A more detailed 

discussion of this situation and a more detailed description of the problem can be seen 

in (Qu et al, 2009). The new collection contains 18 real-world university exam 

timetabling problems. Their identifiers and characteristics are given in Table 1. 



 

 

Table 1: Benchmark problems from the university of Toronto collection 

Dataset Exams  Students  Student’s exams Density Timeslots 

Car-f-92 543 18419 55522 0.14 32 

Car-s-91 682 16925 56877 0.13 35 

Ear-f-83I 190 1125 8109 0.27 24 

Ear-f-83IIc 189 1108 8092 0.27 24 

Hec-s-92I 81 2823 10632 0.42 18 

Hec-s-92II 80 2823 10625 0.42 18 

Kfu-s-93 461 5349 25113 0.06 20 

Lse-f-91 381 2726 10918 0.06 18 

Pur-s-93 2419 30032 120681 0.03 42 

Rye-f-92 486 11483 45051 0.07 23 

Sta-f-83I 139 611 5751 0.14 13 

Sta-f-83IIc 138 549 5689 0.14 35 

Tre-s-92 261 4360 14901 0.06 23 

Uta-s-92I 622 21266 58979 0.13 35 

Uta-s-92II 638 21329 59144 0.13 35 

Ute-s-92 184 2749 11793 0.09 10 

Yor-f-83I 181 941 6034 0.29 21 

Yor-f-83IIc 180 919 6012 0.29 21 

The specification of the hard and soft constraints that are employed in this 

scenario can be presented as follows. The solution is feasible when no conflicting 

exams (having common students) are assigned to the same timeslot (a room allocation 

is not required here). The goal is to minimize the “proximity cost” C (penalty). For a 

problem with N exams and S students the penalty C is calculated as a double sum of 

all pairs of exams expressed by Formula (2): 

S

ps

C

N

i

N

ij

ijij


 


1

1 1
 

(2) 

where N is the total number of exams, sij is the number of students having both exam i 

and exam j and pij is the proximity coefficient of the pair of exams (i, j), which 

depends on their assignment to timeslots. If two exams are allocated into 

neighbouring timeslots, then the proximity coefficient is equal to 16. When they are 

separated by one timeslot, the proximity coefficient has value 8. If there are two 

timeslots between them then pij = 4, for three timeslots the value is 2 and for a gap of 

four timeslots pij = 1. In all other cases pij = 0. Finally, the sum is divided by the total 

number of students S. 

The experiments with the University of Toronto datasets were run using our exam 

timetabling search algorithm described in (Burke et al, 2004a). Here all algorithmic 



 

 

details (initialisation, stopping criteria, etc.) are not altered except for the following 

two additions. 

 The algorithm of Burke et al. (2004a) performed only one type of move: the 

replacement of a random exam into a new randomly chosen timeslot. If this move 

caused an infeasible solution then it was rejected. The new algorithm does not 

reject such a move immediately but uses the Kempe chain procedure (as suggested 

for exam timetabling problems by Thompson and Dowsland (1996)), to replace 

the exam’s neighbours in order to obtain a feasible solution. 

 Our algorithm also performs the swapping of two randomly chosen timeslots 

(together with all their exams) by drawing upon the work of Di Gaspero (2002). 

At each iteration, the type of move is chosen randomly. However, the algorithm 

tries to keep the average timeslot swapping to 20% of all the moves.  

The activity-based AFDA heuristic proposed in this paper is applied to the first 

type of moves: the placement of an exam into a different timeslot. It could be 

observed that here the activity of an exam is highly dependent on the number of 

exams having common students (i.e. the degree of exam in terms of graph colouring 

(see Burke et al, 2004b)). Obviously, the exams with the largest degree (LD) are often 

the most difficult to move (the heaviest) ones and vice versa, the lightest exams are 

often those, which have the lowest degree. 

To implement the above idea (AFDA/LD adaptive heuristic), we define an 

appropriate interval of the variation of kf, where the upper bound corresponds to 

exam(s) with the largest degree and the lower bound to exam(s) with the smallest 

degree. The remaining flexibilities are distributed inside this interval. The maximum 

possible interval is (0,1). However, we have found (see experiments below) that a 

smaller interval can provide a better overall performance of the search. We suggest 

the assignment of a lower bound very close to 0 in order to guarantee the absence of 

biasing tendencies. Thus, only the upper bound is considered as the input parameter of 

this algorithm. In our approach, the flexibility coefficients for all exams kfi (i = 1… N) 

are calculated by formula (3) 

 
max

max

d

d
kk i

fif    (3) 



 

 

where kf
max

 is an upper bound of the variation, di is the degree of i
th

 exam and dmax is 

the maximum degree. In this mechanism, the acceptance condition for the lightest 

exams is very close to that for the Hill Climbing rule. However, kf cannot be equal to 

0 as the placement of exams without common students does not represent a key step 

and they are excluded from the search.  

Note that the AFDA/LD heuristic described above is not applicable to the 

“timeslot swapping” moves because we cannot associate a notion of degree with a 

timeslot. Therefore, the adaptation is not used here and these moves are accepted with 

the fixed flexibility equal to kf
max

. The pseudo code for the final Self-Adaptive Flex-

Deluge Algorithm is presented as follows: 

 

 

 

 

 

 

 

 

 

 

Figure 3: Pseudo code of AFDA/LD for exam timetabling problem 

3.2 Application to the ITC2007 benchmark problems 

One of the purposes of the alternative ITC2007 (McCollum et al, 2010) collection was 

to “create better understanding between researchers and practitioners by allowing 

emerging techniques to be developed and tested on real-world models of timetabling 

problems”. This was provided by EventMAP Ltd. and contains twelve datasets taken 

Produce an initial solution s  

Calculate initial cost function C(s) and initial level B:=C(s) 

Calculate degree of all exams Di and their maximum Dmax 

Specify decay rate B:=? 
Specify the upper bound of flexibility interval kf

max:=? 

While further improvement is impossible 

   Select randomly a type of move 

{exam replacing move} 

   Select randomly exam i and new timeslot j 

   Construct a candidate solution s* 

   If s* is infeasible 

   Then If Kempe chain does not provide feasibility 

        Then reject s* and return 

   Set kf:= kf
max *Di/Dmax 

{timeslot swapping move} 

   Select randomly two timeslots j1 and j2 

   Construct a candidate solution s* 

   Set kf= kf
max 

{for all types of moves} 

   Calculate C(s*) 

   If C(s)B 

   Then If C(s*)C(s) 
        Then accept the candidate s:= s* 

   Else If C(s*)C(s)+kf(B-C(s)) 

        Then accept the candidate s:= s* 

   Lower the level B:= B–B 



 

 

from their client Institutions. The problem instance characteristics are given in Table 

2. 

Table 2: Benchmark problems from the ITC2007 collection 

Dataset Exams  Students  Student’s exams Density Timeslots Rooms 

Exam_1 607 7891 32380 0.05 54 7 

Exam_2 870 12743 37379 0.012 40 49 

Exam_3 934 16439 61150 0.026 36 48 

Exam_4 273 5045 21740 0.15 21 1 

Exam_5 1018 9253 34196 0.0087 42 3 

Exam_6 242 7909 18466 0.062 16 8 

Exam_7 1096 14676 45493 0.019 80 15 

Exam_8 598 7718 31374 0.046 80 8 

Exam_9 169 655 2532 0.078 25 3 

Exam_10 214 1577 7853 0.05 32 48 

Exam_11 934 16439 61150 0.026 26 40 

Exam_12 78 1653 3685 0.18 12 50 

These instances have a more complex specification than those of the Toronto 

collection. Firstly, in addition to the assignment of exams to timeslots, they require 

the allocation of exams into available rooms. Secondly, the timeslots are associated 

with particular dates and time intervals. Correspondingly, these problems impose a 

wider variety of hard constraints, such as: 

 An exam can be placed only in those timeslots where the duration is not less than 

the duration of the exam. 

 The total number of students taking all exams scheduled in a room should not 

exceed the capacity of the room. 

 Some exams can require an exclusive room usage. 

 Some pairs of exams can be coincident (must be allocated to the same timeslot) or 

exclusive (must not be allocated into the same timeslot) or consecutive (one exam 

should be scheduled before/after another). 

In addition to this, the cost function is composed of a higher number of soft 

constraints (including room-related components). The following situations can be 

penalized: 

 A student sits two exams in a row in one day or just two exams in the same day or 

two exams within a given time interval. 



 

 

 The largest exams (i.e. those having the most number of students) are scheduled in 

later periods. 

 Exams of different durations are allocated into the same room. 

 The scheduling of exams into particular periods or rooms can be inappropriate in 

some situations. 

The complete specification of different hard and soft constraints for such a problem 

can be found in (McCollum et al, 2010) or on the original ITC2007 web site. 

To show the wider applicability and generality of the proposed approach we have also 

applied it to 12 datasets from the ITC2007 collection. For this purpose, our 

examination timetabling algorithm was somewhat adapted and extended. 

When adapting our software for these problems we tried to make minimum 

alterations. However, the modification of some parts was unavoidable. Firstly, the 

procedures which check feasibility and evaluate a cost function were revised and 

enhanced in order to take into account the new constraints. Secondly, the initialisation 

procedure was also adapted. Similar to (Burke et al, 2004b), it employs the 

“Saturation Degree” sequencing heuristic, but the “degree” here is calculated as the 

number of available rooms in all available timeslots. In addition to this, special 

preferences are given to pairs of coincident exams, which are considered as a single 

exam and to pairs of consecutive exams, which are allocated in the required order. 

Thirdly, considerable modification was undertaken in respect of moves. 

 A move which places an exam into a new timeslot is still in use but now we 

additionally randomly select its new room. 

 When applying a Kempe chain procedure, we also have to select new rooms for 

all replaced exams. However, it was found that the random choice of a set of new 

rooms quite often leads to infeasibility. Therefore, we select new rooms 

deterministically using a simple bin packing heuristic. Namely, before replacing 

an exam we compare the number of remaining empty seats in all rooms. 

Correspondingly, the available room with the minimum number of empty seats is 

chosen for this exam. 



 

 

In addition, two new types of moves were added. 

 When a selected exam is coincident with another one, we have to move two 

coincident exams together into the same timeslot. New rooms for both exams are 

chosen randomly. We can assume that coincident exams share their conflicts (if 

one of them cannot be moved into some timeslot, then another one also cannot be 

moved there). Therefore, as coincident exams have the same degree, they have the 

same flexibility coefficient, which is used for the acceptance of this move. 

 To reduce room-related penalties, our algorithm employs a simple “room move”. 

Here a randomly chosen exam is reallocated into a different (randomly chosen) 

room without changing the timeslot. Being implemented in our software, these 

moves have appeared to be computationally inexpensive (the penalty evaluation is 

very fast). Correspondingly, we can add a relatively high number of the room 

moves into the search procedure without trade-off with other types of moves. 

However, this addition affects the ratios between different types of moves. Our 

new algorithm still selects a type of move randomly (as was the case with the 

previous variant), but now approximately 50% of all moves are assigned to be the 

room moves (this ratio was chosen after a series of preliminary tests). The 

remaining half of the moves are distributed with the ratio of 1/5 (similar to the 

process described in the previous section variant) between the swapping of two 

timeslots and the replacing of an exam into a different timeslot. 

The introduction of the room moves can also arise a question about the 

effectiveness of the previously described Largest Degree based adaptation mechanism 

(AFDA/LD) in respect of these new moves. Obviously, when an exam’s timeslot is 

invariable, the difficulty of a move is hardly dependent on the number of conflicting 

exams placed in other timeslots. Here, the exams which are most difficult to move are 

those that have the highest number of students. With this in mind, an alternative 

adaptive mechanism could be proposed. We suggest to use again Formula (3) for the 

calculation of the flexibility coefficient for each exam, but consider di as the number 

of students taking this exam and dmax as the maximum number of students among all 

exams. To distinguish this mechanism, we call it the Largest Number of Students 

(LNS) heuristic. In our experiments, we investigated both variants: (a) AFDA/LD for 

all (replacement and room) moves and (b) the combined approach (AFDA/LD+LNS), 



 

 

where kf for room moves is based on the LNS while the replacement moves are still 

accepted using the LD mechanism. 

Note, that all the amendments described in this section (i.e. room-related issues) 

are actually only used when the number of rooms is more than one. Therefore, they 

are omitted for dataset Exam_4 as it has only one room. 

4. An Experimental Analysis of FDA 

4.1 Experiments with Toronto benchmark datasets 

In a first phase, we have carried out experiments with benchmark problems from the 

Toronto collection. Our experimental software was developed in Delphi 7 and run on 

a PC Pentium 4 3.2 GHz with 2GB RAM under Windows XP SP3. We are presenting, 

in this section, four series of experiments. 

To clearly understand the influence of the flexibility on the overall algorithm’s 

performance, in the first series of experiments we have plotted cost progress 

diagrams. They were drawn by the same method as described in (Burke et al, 2004a). 

During the search procedure after every 1000 moves we mark a point, which indicates 

the current time and cost at the corresponding coordinates. To illustrate the situation, 

the consecutive points are connected with each other. Figure 4 presents an example 

(for the problem Kfu-s-93) of the comparison of two diagrams: the original Great 

Deluge with kf = 1 and its flexible variant with kf = 0.05. All other search parameters 

(including the initial solution and the shape of the lowering of B) were identical in 

both runs. 



 

 

 

Figure 4: Cost progress diagrams for FDA with kf = 0.05 and Great Deluge (kf = 1) 

This example reveals an evident difference in the behaviour of these two 

algorithms and confirms the general properties of the FDA approach proposed in 

Section 2.1. During the original Great Deluge (kf = 1), the current cost quite strictly 

follows the lowering of the level (its shape appears as an imaginary straight line, 

which bounds the upper part of the diagram). In contrast, the flexible search (kf = 

0.05) demonstrates an intermediate (between Great Deluge and Hill-Climbing) 

behaviour: its cost falls down rapidly at the beginning and, most of the time, it keeps 

some distance from the level. It can be seen that FDA decreases the cost more freely, 

where the uneven shape of the diagram might show that the algorithm somehow 

responds to the properties of an operation landscape. It could be proposed that this 

might be one of the reasons for the superior performance of FDA. 

In addition, the above diagrams illustrate that at the final steps of the search, GDA 

and FDA perform in very similar ways. Both algorithms strictly follow the level and 

both converge exactly at the points where the level reaches the final cost. This 

observation confirms that the major practical advantages of the GDA are retained in 

FDA: both algorithms can operate with the same stopping condition and their time-

predefinition can be carried out in the same way. 

In the second series of experiments, we investigate the performance of the Flex-

Deluge algorithm with fixed flexibility. Our goal was to illustrate the effectiveness of 

the entire idea of flexible acceptance (described in Section 2.1). In addition to this, we 

aimed to examine the influence of kf on the overall performance of the search and, 



 

 

hopefully, to reveal a recommended value of the flexibility coefficient. For this 

purpose, we have collected average results over a number of runs with different kf 

(fixed for all types of moves during a whole run), whilst keeping all other algorithmic 

parameters invariable for all runs. The following values of the flexibility coefficient 

were evaluated: 0 (equivalent to Hill-Climbing), 0.005, 0.01, 0.05, 0.1, 0.5 and 1 

(equivalent to the Great Deluge). The algorithm was run 50 times with each value of 

kf for each benchmark instance. Each run lasted 300 seconds. The average results are 

presented in Table 3, where the lowest values for each of the datasets are highlighted 

in bold. Note, that these are just the minimum average values. The actual best results 

achieved by our method are presented later (in Table 7). 

Table 3: Average results for FDA (fixed flexibility) for 5 minute runs. 

Dataset 
   kf     

0 (HC) 0.005 0.01 0.05 0.1 0.5 1 (GD) 

Car-f-92 4.52 4.21 4.22 4.25 4.26 4.29 4.28 

Car-s-91 5.49 5.19 5.16 5.19 5.23 5.21 5.25 

Ear-f-83I 37.7 34.62 33.94 33.82 33.96 34.24 34.35 

Ear-f-83IIc 39.92 36.83 36.36 36.11 36.28 36.52 36.75 

Hec-s-92I 11.56 10.55 10.41 10.47 10.51 10.58 10.65 

Hec-s-92II 11.49 10.53 10.35 10.38 10.42 10.51 10.44 

Kfu-s-93 14.66 13.56 13.44 13.54 13.55 13.63 13.64 

Lse-f-91 11.93 10.65 10.47 10.50 10.58 10.62 10.64 

Pur-s-93 5.09 4.84 4.87 4.86 4.86 4.83 4.88 

Rye-f-92 9.18 8.44 8.49 8.53 8.56 8.58 8.59 

Sta-f-83I 157.37 157.05 157.06 157.06 157.07 157.10 157.11 

Sta-f-83IIc 32.14 30.72 30.77 30.82 30.86 30.89 30.93 

Tre-s-92 9.03 8.26 8.17 8.21 8.27 8.30 8.31 

Uta-s-92I 3.69 3.50 3.50 3.54 3.53 3.54 3.56 

Uta-s-92II 3.70 3.48 3.49 3.53 3.53 3.53 3.55 

Ute-s-92 26.60 25.00 24.96 24.93 24.93 24.95 25.01 

Yor-f-83I 39.14 37.15 36.77 36.91 37.12 37.33 37.57 

Yor-f-83IIc 43.87 42.31 41.43 41.43 41.60 41.79 41.93 

The presented results clearly show that the introduction of the flexibility 

coefficient really improves the performance of the search procedure. For all 

benchmark instances, the Flex-Deluge method with medium values of kf was able to 

achieve better average results than both its extremes (hill-climbing and Great Deluge). 

As might be expected, the best particular value of kf is different for different 

problems. However, it appears, from these experiments, that the best value of kf is 

around 0.01. 



 

 

The third series of experiments was undertaken to determine whether there is any 

benefit in varying kf during the search. Here we evaluate the adaptive algorithm 

(AFDA/LD) presented in Section 3.1. To provide a clear comparison, all experimental 

conditions (algorithmic parameters, number of runs, execution time) were the same as 

in the previous experiments. However, now we have varied the upper bound of the 

flexibility interval kf
max

 (through the same values as we used for kf in the first set of 

experiments). We have excluded the case where kf
max

 = 0 because there can be no 

variation here and, therefore, it is equivalent to the fixed flexibility case (already 

studied above). The results are presented in Table 4, where we have highlighted those 

results which are the best across the AFDA/LD and FDA experiments. 

Table 4: Average results for AFDA/LD for 5 minute runs. 

Dataset 
  kf 

max
    

0.005  0.01 0.05 0.1 0.5 1 

Car-f-92 4.37 4.25 4.23 4.25 4.27 4.27 

Car-s-91 5.36 5.27 5.19 5.22 5.23 5.24 

Ear-f-83I 36.26 34.97 33.69 33.84 34.09 34.23 

Ear-f-83IIc 38.37 37.25 35.82 36.13 36.46 36.58 

Hec-s-92I 10.98 10.52 10.36 10.43 10.54 10.56 

Hec-s-92II 10.94 10.44 10.29 10.37 10.46 10.51 

Kfu-s-93 14.15 13.79 13.43 13.48 13.58 13.61 

Lse-f-91 11.38 11.01 10.41 10.48 10.52 10.56 

Pur-s-93 5.04 4.92 4.82 4.87 4.90 4.87 

Rye-f-92 8.70 8.51 8.45 8.50 8.55 8.56 

Sta-f-83I 157.09 157.05 157.07 157.08 157.09 157.09 

Sta-f-83IIc 30.78 30.78 30.87 30.88 30.96 30.98 

Tre-s-92 8.64 8.43 8.16 8.22 8.27 8.30 

Uta-s-92I 3.62 3.50 3.52 3.57 3.54 3.54 

Uta-s-92II 3.58 3.51 3.49 3.51 3.53 3.53 

Ute-s-92 25.41 25.12 24.90 24.88 24.97 25.02 

Yor-f-83I 38.01 37.31 36.65 36.94 37.24 37.35 

Yor-f-83IIc 43.18 42.30 41.33 41.43 41.66 41.72 

The results in this table reveal the following properties: 

 The dependence of the performance of the self-adaptive technique on the 

value of kf
max

 is similar to that of the fixed flexibility method on kf. Namely, 

the best value of kf
max

 is placed somewhere between two extremes. Also, the 

best value is different for different problems. 



 

 

 The algorithm is definitely ineffective with very small kf
max

. This property is 

predictable, because the algorithm should have sufficient room to vary the 

flexibility. 

 With relatively larger values of kf
max

 AFDA/LD generally provides better 

results than the fixed flexibility FDA with the same value of kf. The exception 

is the Sta-f-83IIc problem. Here, the results of the self-adaptive method are 

steadily worse. It could be that the biasing tendencies in this problem instance 

have a somewhat positive effect. For example, they might bias the search 

towards a promising region of the search space. 

 The overall effectiveness of the self-adaptive method (versus the fixed 

flexibility case) is highly instance-dependent. In our experiments, AFDA/LD 

produced the best overall results for 13 problems whilst FDA had the best 

results for 7 problems. However, a more attentive observation reveals that for 

9 problems the difference in the best results is very small (or absent) and could 

be taken to be insignificant. Thus, we can say that for 8 problems the 

adaptation provides a sensible improvement; for 9 problems it has little effect 

and for one problem the performance is definitely worse. For these 

benchmarks, this justifies the general benefit of the proposed self-adaptive 

mechanism: in most cases it either provides an improvement or is neutral. 

In summary, it can be argued that the majority of the best results in both 

experiments (10 out of 18) were produced by the AFDA/LD method with kf
max

=0.05. 

Therefore, we can conclude this as the most effective variant and have chosen it for 

our fourth series of experiments. 

The fourth series of experiments was aimed at imitating a real-world examination 

timetabling process in order to determine how the proposed AFDA/LD method might 

be employed in practice. Here, we did not employ a high number of short runs 

because this has been shown to be an ineffective strategy for the Great Deluge 

algorithm (Burke et al, 2004a). Instead, we ran the algorithm for quite a long time 

(several hours) and produced just five runs for each benchmark instance. Note, as 

mentioned earlier, that it is perfectly acceptable in most real world situations to run an 

examination timetabling process for a few hours. This could represent an overnight 

(or even a weekend) run. The exam timetable, in most situations, is generated several 



 

 

months before it is required and the length of the time needed to build it is not at all 

critical. The execution times (in hours) and the final penalties from our experiments 

are given in Table 5. In this table, the runs are formally sorted from the “first” to the 

“fifth” by their penalty. All algorithmic parameters (except the execution time) were 

the same as in our second experiment. The execution time was assigned to 5 hours for 

all five runs for all problems. As the run time predefinition is imprecise in the Great 

Deluge algorithm (see Burke et al, 2004a), the real run times deviated slightly from 

this. 

Table 5: Execution times and penalties for “Long Time” experiments on AFDA/LD 

with kf
max

=0.05 

Dataset 

First run Second run Third run Fourth run Fifth run 

Time 

(h) 
Penalty 

Time 

(h) 
Penalty 

Time 

(h) 
Penalty 

Time 

(h) 
Penalty 

Time 

(h) 
Penalty 

Car-f-92 5.1 3.67 4.8 3.69 5.4 3.70 5.2 3.72 5.3 3.73 

Car-s-91 5.2 4.32 5.5 4.34 5.2 4.34 5.4 4.35 5.2 4.37 

Ear-f-83I 5.4 32.62 5.0 32.64 4.9 32.65 4.7 32.68 5.3 32.73 

Ear-f-83IIc 5.6 34.59 5.7 34.60 5.1 34.80 5.4 34.87 5.7 34.91 

Hec-s-92I 5.3 10.06 5.1 10.08 5.0 10.11 4.9 10.14 4.9 10.23 

Hec-s-92II 5.0 10.03 4.8 10.06 4.7 10.06 5.2 10.09 5.1 10.11 

Kfu-s-93 5.1 12.80 5.6 12.81 5.3 12.82 5.1 12.91 5.1 12.93 

Lse-f-91 4.9 9.78 5.1 9.80 5.2 9.81 5.6 9.87 5.3 9.94 

Pur-s-93 5.7 3.88 5.2 3.90 5.6 3.92 5.7 3.93 5.5 3.93 

Rye-f-92 5.2 7.91 5.7 7.92 5.2 7.94 5.1 7.96 5.4 7.96 

Sta-f-83I 4.6 157.03 4.8 157.03 5.1 157.03 4.9 157.06 5.0 157.06 

Sta-f-83IIc 4.7 30.59 5.0 30.61 4.9 30.62 4.8 30.62 4.8 30.65 

Tre-s-92 5.6 7.64 5.2 7.68 5.0 7.69 5.9 7.69 5.9 7.71 

Uta-s-92I 5.3 2.98 5.5 3.01 5.4 3.01 5.3 3.02 5.1 3.03 

Uta-s-92II 7.2 2.92 7.1 2.94 7.1 2.96 7.1 3.00 7.0 3.02 

Ute-s-92 4.9 24.78 4.9 24.80 5.1 24.83 5.3 24.84 4.7 24.85 

Yor-f-83I 4.7 34.71 5.4 34.72 5.5 34.76 5.0 34.81 5.1 34.93 

Yor-f-83IIc 5.2 40.06 4.8 40.10 5.1 40.13 5.5 40.18 5.2 40.26 

Although, the computational cost is expensive (but appropriate for this problem), 

we have carried out 5 separate runs to demonstrate that the difference in cost function 

values between our five runs is relatively small (a few percent) and this demonstrates 

a certain level of stability (at least on these instances). 

4.2 Experiments with the ITC2007 datasets 

In the second experimental phase, we have conducted a series of tests with different 

adaptive (AFDA/LD and AFDA/LD+LNS) and fixed-flexibility variants on the 

twelve ITC2007 datasets. The number of runs in each test and the processing time of 



 

 

each run were changed in order to comply with the competition rules. Now, we collect 

our average and best results during 10 runs of each variant. The maximum processing 

time was calculated using a special benchmarking utility provided by the ITC2007 

organisers. For our computer, the limit on running time was set to be 481 seconds. 

When running our algorithm for this time (or less) we are confident that we do not run 

it for longer than any competitor’s technique. 

During the tests with these alternative datasets, all our algorithms showed a similar 

behaviour to that illustrated for the Toronto collection. All variants of FDA 

outperformed the original GDA (and of course the HC). The best value of kf was 

again quite problem dependent, but generally, the adaptive versions were able to 

achieve better results than the fixed-flexibility ones. In addition, it was found that 

AFDA/LD+LNS more frequently outperforms AFDA/LD than vice versa. The 

approximate best value of kf
max

 (where the adaptive variants achieved the average best 

performance) was around 0.002. In Table 6, we present an example of average results 

produced by the fixed and adaptive variants with this value of the flexibility and the 

results of the original GDA. The best average results are shown in bold. For 

comparison, the best results produced by AFDA/LD+LNS in 10 runs and its average 

run time are also given in this table. 

Table 6: The results of GDA, FDA with kf =0.002 and AFDA with kf
max 

= 0.002 

Dataset 
GDA 

(average) 

FDA 

(average) 

AFDA/LD 

(average) 

AFDA/LD+LNS Average 

time (s) Average best 

Exam_1 4162.6 3927.8 3819.8 3792.5 3691 449 

Exam_2 458.2 397.6 395.5 393.1 385 476 

Exam_3 8240.5 7690.7 7670.6 7611.8 7359 458 

Exam_4 13848.7 12368.7 12062.9 12100.4 11329 462 

Exam_5 2681.5 2529.3 2545.7 2512.9 2482 461 

Exam_6 25607.5 25432.5 25380.5 25491.5 25265 432 

Exam_7 4143.3 3935.5 3827.4 3755.1 3608 464 

Exam_8 7463.8 7048.4 6989.7 6949.9 6818 455 

Exam_9 993.4 936.0 944.5 930.0 902 419 

Exam_10 13430.8 12987.4 12950.8 12975.7 12900 423 

Exam_11 25307.8 23809.6 23447.7 23931.7 22875 438 

Exam_12 5371.4 5211.9 5214.9 5176.3 5107 437 

The example in this table illustrates the typical (and expected) performances of our 

algorithms. The best performance is shown by the adaptive variants (AFDA/LD+LNS 

is slightly better than AFDA/LD); the results of the fixed variant are generally slightly 

worse and the original GDA performs significantly worse. 



 

 

4.3 Comparison with published results 

The comparison of our results with the published ones is presented in Table 7 

(Toronto collection) and Table 8 (ITC2007 collection). Our AFDA/LD results are 

compared in Table 7 using the terminology and naming conversions presented in (Qu 

et al, 2009). Note that we have excluded from the comparison the result of Casey & 

Thomson (2003) for Sta-f-83IIc because they have reported this result as scheduled 

into 13 timeslots which is definitely impossible as the chromatic number of its graph 

is 35. Indeed they use a version of the dataset which is incorrect (called Sta-f-83II in 

Qu et al, 2009). There is a converted version of this dataset called Sta-f-83IIc and we 

have presented the first results on that dataset. Also, note that our entry for Uta-s-92II 

is the only one because it appears that our result (see Table 7) is the first to be 

published on this particular instance (see Qu et al, 2009). 

Table 7: Comparison of AFDA/LD results with published ones for Toronto datasets 

 
Car-f- 

92 

Car-s- 

91 

Ear-f- 

83I 

Ear-f- 

83IIc 

Hec-s- 

92I 

Hec-s- 

92II 

Kfu-s- 

93 

Lse-f- 

91 

Pur-s- 

93 

Abdullah et al (2014) 4.00 4.62 33.14 - 10.43 - 13.59 10.75 - 

Asmuni et al (2009) 4.54 5.29 37.02 - 11.78 - 15.80 12.09 - 

Burke et al (2004a) 4.2 4.8 35.4 - 10.8 - 13.7 10.4 4.8 

Burke et al (2010) 3.9 4.6 32.8 - 10.0  13.0 10.0 - 

Caramia et al (2008) 6.0 6.6 29.3 - 9.2 - 13.8 9.6  

Carter et al (1996) 6.2 7.1 36.4 - 10.8 - 14.0 10.5 3.9 

Casey & Thompson 

(2003) 
4.4 5.4 - 34.8 - 10.8 14.1 14.7 - 

Di Gaspero & 

Schaerf (2001) 
5.2 6.2 45.7 - 12.4 - 18.0 15.5 - 

Merlot et al (2003) 4.3 5.1 35.1 - 10.6 - 13.5 10.5 - 

Petrovic et al (2007) 3.93 4.50 33.75 - 10.83 - 13.82 10.63 - 

Pillay (2009) 4.1 4.8 34.97 - 10.99 - 13.89 10.6 - 

AFDA/LD 
Best 3.67 4.32 32.62 34.59 10.06 10.03 12.80 9.78 3.88 

Average 3.70 4.34 32.66 34.75 10.12 10.07 12.85 9.84 3.91 



 

 

Table 7: (continued) 

 
Rye-f- 

92 

Sta-f-

83I 

Sta-f-

83IIc 

Tre-s- 

92 

Uta-s- 

92I 

Uta-s-

92II 

Ute-s- 

92 

Yor-f- 

83I 

Yor-f- 

83IIc 

Abdullah et al (2014) 9.17 157.06 - 8.00 3.27 - 25.16 35.58 - 

Asmuni et al (2009) 10.38 160.42 - 8.67 3.57 - 28.07 39.80 - 

Burke et al (2004a) 8.9 159.1 - 8.3 3.4 - 25.7 36.7 - 

Burke et al (2010) - 156.9 - 7.9 3.2 - 24.8 34.9 - 

Caramia et al (2008) 6.8 158.2 - 9.4 3.5 - 24.3 36.2 - 

Carter et al (1996) 7.3 161.5 - 9.6 3.5 - 25.8 41.7 - 

Casey and Thompson 

(2003) 
- - - 8.7 - - 25.4 - 37.5 

Di Gaspero and 

Schaerf (2001) 
- 160.8 - 10.0 4.2 - 29.0 41.0 - 

Merlot et al (2003) 8.4 157.3 - 8.4 3.5 - 25.1 37.4 - 

Petrovic et al (2007) 8.53 165.27 - 7.92 3.14 - 25.33 36.35 - 

Pillay (2009) 9.08 157.22 - 8.26 3.24 - 26.23 38.38 - 

AFDA/LD 
Best 7.91 157.03 30.59 7.64 2.98 2.92 24.78 34.71 40.06 

Average 7.94 157.04 30.62 7.68 3.01 2.97 24.82 34.79 40.15 

Table 7 shows that for 9 out of 16 problems, our best results (highlighted in bold) 

have a penalty that improves upon the previously published ones. As the variation in 

the resulting penalty is relatively small across our different runs, our average results 

for 8 problems are also better than the previously published ones. This provides 

evidence that this method is especially effective for relatively large problems (which 

was also highlighted in (Burke et al, 2004a)) for the original exam timetabling Great 

Deluge algorithm). However, for small and very small problems it is probably 

advisable to employ other methods. 

Finally, in Table 8 we compare the best results, produced by AFDA/LD+LNS (given 

in the last column) with the ones available in the literature and on the web. The 

second column of Table 8 represents the best results, achieved during ITC2007 and 

presented on its web site. For 10 datasets, the best results were provided by the 1
st
 

place method (Muller, 2008); for Exam_10 dataset - by the 4
th

 place method and for 

Exam_12 dataset – by the 3
rd

 place method. In the third column of Table 8, we give 

eight pre-competition results of the 1
st
 place approach (Muller, 2008), which were 

achieved during 100 runs. The results, presented in the fourth and the fifth columns 

were published in (McCollum et al, 2009). There, the authors presented the results of 



 

 

50 runs of Muller’s algorithm (the fourth column) and the results of their own 

technique (the fifth column). We have also included in the comparison (the sixth 

column) the results of (Gogos et al 2010), most of which are the best up to date 

results. However, they were produced using multi-processor computing without 

compliance with the ITC2007 rules. These results are generated without a hardware or 

time limit. The overall best results for each dataset in Table 8 are highlighted in bold. 

Table 8: Best AFDA/LD+LNS and published results for ITC2007 datasets 

Dataset 
ITC2007 

 web best  

Muller 

 (2008) 

Muller 

 51 runs 

McColum 

 et al (2009) 

Gogos et al 

(2010) 

AFDA/ 

LD+LNS 

Exam_1 4370 4356 4370 4633 4128 3691 

Exam_2 400 390 385 405 380 385 

Exam_3 10049 9568 9378 9064 7769 7359 

Exam_4 18141 16591 15368 15663 13103 11329 

Exam_5 2988 2941 2988 3042 2513 2482 

Exam_6 26585 25775 26365 25880 25330 25265 

Exam_7 4213 4088 4138 4037 3537 3608 

Exam_8 7742 7565 7516 7461 7087 6818 

Exam_9 1030 - 1014 1071 913 902 

Exam_10 14778 - 14555 14374 13053 12900 

Exam_11 34129 - 31425 29180 24369 22875 

Exam_12 5264 - 5357 5693 5095 5107 

The presented comparison once again confirms the strong performance and the 

generality of the proposed method: 9 of the best AFDA/LD+LNS results are better 

than the previous best ones. To further highlight this, it is possible to compare the 

published results with our average ones (from Table 6). It can be seen that, for many 

instances, the average results produced by different versions of the flexible approach 

are still better than the best results of the previous methods (AFDA/LD is better for 7 

instances, AFDA/LD+LNS and FDA - for 6 instances). Meanwhile, the performance 

of our original GDA is not so strong (it has no average results better than the best 

published ones). Taking into account the high level of popularity of GDA among the 

exam timetabling research community (most of the results in Table 8 were produced 

by GDA-based techniques), this observation suggests the high practical benefit of our 

study. GDA-practitioners might improve their results with minimum effort, simply by 

employing the flexibility coefficient introduced in this paper. 

Note that when presenting our best results for all instances (in both collections), 

special care has been taken with respect to their correctness. These solutions are 



 

 

available at http://www.yuribykov.com/flex-deluge/ to enable the scientific 

community to examine them. 

5. Future Research Directions 

The strong performance of the presented algorithm on the international benchmarks 

shows how effective it is as an automated examination timetabling procedure. 

However, we see the major contribution of this paper in a more general context. 

Indeed, the demonstration of the general effectiveness of the suggested method 

motivates a wider range of different experiments on different problems as the subject 

of future research. A programme of experiments of this order is beyond the scope of 

this paper but we will briefly discuss some of the key issues. 

Although the Flex-Deluge algorithm was initially developed as an extension of the 

Great Deluge method, it could be formally positioned as a more general algorithm, 

where both Great Deluge and Hill-Climbing are just two extreme cases of the general 

technique. Our experiments with two collections of exam timetabling problems have 

shown that the flexibility coefficient can significantly affect the performance of the 

Flex-Deluge method. For all our problem instances, the algorithm with middling 

levels of flexibility performed better than both its extremes. A similar kind of 

behaviour could be seen in other problems, i.e. the tuning of fixed flexibility could 

help to achieve better final results. Note, that the Flex-Deluge algorithm can be 

applied to any problem, which is solvable by either of its extremes. Thus, this paper 

could be seen as a certain template for the investigation of the suggested technique for 

a wide range of search problems. 

The presented activity-based self-adaptive heuristic is aimed at reducing negative 

biasing tendencies during a search, i.e. to smooth the difference in activity between 

different variables. We believe that a significant number of search and optimisation 

problems have variables with different levels of activity. Therefore, we propose that it 

is well worth exploring whether this heuristic would also be effective for other 

problems. Of course, it depends on the particular problem being studied. Furthermore, 

it could be beneficial to explore further possible adaptation strategies. 

In this study, we have suggested two adaptive mechanisms (AFDA/LD and 

AFDA/LD+LNS), which can be viewed as examples of how well-known sequencing 



 

 

heuristics (Largest Degree First and Largest Number of Students First) can be 

incorporated into a metaheuristic search procedure. It could be beneficial to also 

investigate the performance of other heuristic-based self-adaptive strategies, for 

example: Largest Weighted Degree First or Smallest Degree Last or even to 

investigate a dynamic recalculation of the flexibility by some analogue of the 

Saturation Degree heuristic.  

It was observed that during a typical Flex-Deluge search process, the properties of 

different moves were particularly varied across quite a high range. The ranking of 

such moves could be the focus of a research programme to investigate adaptive 

acceptance. The adaptation could be based on any of the aspects, that could influence 

the search procedure, including the properties of a target problem such as variables, 

their domains, constraints, neighbourhoods, operational landscapes, the particular 

properties of current and/or candidate solutions, a list of previous solutions and any 

information collected during the search. Such information might be acceptance ratios, 

best achieved solutions and search trajectories. The development of such heuristics 

could be viewed as a highly promising direction for future studies. In this context, the 

proposed Flex-Deluge algorithm has the potential to be thought of as a general-

purpose tool (which provides the opportunity for heuristic regulation within the search 

procedure). 

6. Conclusions 

This paper presents an extension of the Great Deluge algorithm, where the acceptance 

condition is flexible. It explores two ideas for improving the overall performance of 

the search technique. The first one is to make uphill moves more slow and the second 

one is to adjust the algorithm in response to the properties of a particular problem. 

Moreover, the proposed algorithm retains all the advantages of the original Great 

Deluge method, i.e. a low number of input parameters and the ability to predefine the 

amount of required computational time. 

Two variants were introduced: a fixed Flex-Deluge approach and an adaptive 

methodology. Both proposed variants were applied to the university exam timetabling 

problem and both were able to outperform the original Great Deluge algorithm. The 

fixed-flexibility variant is very simple for implementation and enables the 

improvement of the performance of the Great Deluge technique with minimum effort. 



 

 

In contrast, the adaptive variant requires more attention to the properties of a problem 

(and that of a search procedure) and can be implemented in different ways (we have 

presented two examples of possible adaptive mechanisms). However, it was shown 

that the employment of an appropriate self-adaptation technique can further improve 

the performance of the Flex-Deluge algorithm over its fixed variant. 

We compared the performance of the presented method to that of previous 

techniques (published in the literature and on the web) using two collections of exam 

timetabling instances. The results produced by our algorithm are better than the best 

previously published ones for 9 out of 16 instances in the first collection and for 11 

out of 12 instances in the second collection. The corresponding average results for 19 

problems (over both collections) are also better than any of the published results, 

which demonstrates the robustness of the methodology.  
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