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Abstract –Recently it has been recognized that many complex social, technological and biological
networks have a multilayer nature and can be described by multiplex networks. Multiplex networks
are formed by a set of nodes connected by links having different connotations forming the different
layers of the multiplex. Characterizing the centrality of the nodes in a multiplex network is a
challenging task since the centrality of the node naturally depends on the importance associated
to links of a certain type. Here we propose to assign to each node of a multiplex network a centrality
called Functional Multiplex PageRank that is a function of the weights given to every different
pattern of connections (multilinks) existent in the multiplex network between any two nodes. Since
multilinks distinguish all the possible ways in which the links in different layers can overlap, the
Functional Multiplex PageRank can describe important non-linear effects when large relevance or
small relevance is assigned to multilinks with overlap. Here we apply the Functional Page Rank to
the multiplex airport networks, to the neuronal network of the nematode C. elegans, and to social
collaboration and citation networks between scientists. This analysis reveals important differences
existing between the most central nodes of these networks, and the correlations between their so
called pattern to success.

Introduction. – Many complex interacting systems
are formed by nodes related by different types of interac-
tions forming multiplex networks [1–4]. Examples of mul-
tiplex networks are ubiquitous, from social [5–8] to trans-
portation [9–11] and biological networks [9,12]. For exam-
ple scientific authors form at the same time collaboration
networks and citation networks in which they cite each
other [7,8], the airport network is formed by airports con-
nected by flights operated by different airline companies
[10], in the brain neurons are simultaneously connected by
chemical and electrical types of connections [9, 13, 14]. A
multiplex network is therefore constituted by a set of N
nodes interacting through M layers which are networks
formed by links having the same connotation. In recent
years we have gained a significant understanding of the
interplay between the structure and the dynamics of mul-
tiplex networks [15–21] and relevant insights regarding the
level of information encoded in their correlated structure
[5, 7–9, 22–24]. In this context, given the increasing num-
ber of multiplex network datasets, establishing the cen-
trality of the nodes in multiplex networks has become a

problem of major interest. Until now, several multiplex
centrality measures have been proposed [8, 25–30] which
aim at going beyond the definition of centrality in single
networks [31–33]. Examples of multiplex centrality mea-
sure include the Versatility of the nodes [25], the Multiplex
PageRank [8, 26], and the Eigenvector multiplex central-
ity [27]. The Versatility [25] emphasizes the relevance of
nodes connected in many different layers and it applies to
multiplex networks where corresponding nodes in different
layers are connected by interlinks. The Multiplex PageR-
ank [8, 26] exploits the correlations existing between the
degree of the nodes in different layers through the use of a
biased random walk. The Eigenvector multiplex central-
ity [27] instead assumes that the centrality of a node with
respect to one layer is influenced by its centrality in other
layers weighted by a matrix of influences that one layer
has on the other layer. Both the Multiplex PageRank and
the Eigenvector multiplex centrality do not make explicit
use of the interlinks. The main challenge when defining
a centrality of the nodes in a multiplex network without
interlinks is that the centrality depends on the relevance

p-1



J. Iacovacci, C. Rahmede, A. Arenas and G. Bianconi

associated to the different types of possible interactions
that can exist between the nodes. Recently, the complete
set of possible interactions existing between any two nodes
of a multiplex network has been fully characterized using
the multilinks [7, 22]. The multilinks specify all the layers
in which any pair of two nodes is connected. Here we pro-
pose a new centrality measure called Functional Multiplex
PageRank which assigns to each node a centrality depend-
ing on the influence assigned to each type of multilink. In
this way it is possible to go beyond the modelling of the
influence of each single layer because the influence of mul-
tilinks can capture important non-linear effects due to the
overlap links. For example in a duplex network it allows
us to weight a connection existing in both layers much
more or much less than the sum of the weights attributed
to connections which are exclusively present in one of the
layers. The Functional Multiplex PageRank associated to
each node is a function also called the pattern to success
of the node. The Functional Multiplex PageRank allows
the comparison of the pattern to success corresponding of
different nodes and important insights can be gained by
studying their correlations. Finally starting from the cal-
culation of the Functional Mutliplex PageRank it is pos-
sible to extract an Absolute Multiplex PageRank which is
able to provide a unique ranking for all the nodes of the
multiplex network.

Multiplex networks and multilinks. – A multi-
plex network ~G = (G1, G2, . . . , GM ) is formed by a set of
N nodes V and M layers (networks) Gα = (V,Eα) with
α = 1, 2, . . . ,M and Eα indicating the set of links in layer
α. It is to be noted here that in this definition of a mul-
tiplex network we do not include explicitly the interlinks
and therefore the multiplex networks we are considering
are equivalent to colored networks where links of different
colors form the different layers.

The multiplex network that we consider in this paper
can be fully represented using M adjacency matrices a[α]

with α = 1, 2, . . .M indicating the interactions occurring
in each layer α. We assume that the networks forming the
different layers are directed and unweighted and we adopt

the convention that the adjacency matrix element a
[α]
ij = 1

if and only if node j points to node i in layer α, otherwise

a
[α]
ij = 0.
In multiplex networks two generic nodes can be con-

nected in more than two layers. In this case we say that
there is a link overlap in the multiplex network. The sig-
nificance of the overlap of the links between any two lay-
ers α, β can be evaluated by means of the total overlap
between any two layers [22]. The total overlap O[α,β] be-
tween layer α and layer β is given by the total number of
pairs of nodes connected both in layer α and layer β, i.e.

O[α,β] =
∑
i,j

a
[α]
ij a

[β]
ij . (1)

For a general multiplex network with M > 2 there are
multiple ways in which the links can overlap across dif-

ferent layers. A way to fully characterize multiplex net-
works with link overlap is to use the recently introduced
concept of multilinks [7, 22]. In fact, in a multiplex net-
work it is convenient to specify for each pair of nodes i
and j all the layers in which they are connected. This is
simply achieved by indicating which type of multilink ~m
connects the two generic nodes. We first define the vec-
tor ~m = (m1,m2, . . . ,mM ) of generic elements mα = 0, 1
with α = 1, 2, . . .M . We say that a generic pair of nodes
(i, j) is connected by a multilink ~m = ~mij if and only if

~mij = (a
[1]
ij , a

[2]
ij , . . . , a

[M ]
ij ). In particular, two nodes that

are not connected in any layer are connected by the trivial
multilink ~m = ~0.

The multi-adjacency matrices A~m define the neighbors
of a node that are connected with a multilink of type ~m.
Specifically the multi-adjacency matrix elements take the
value one (A~m

ij = 1) if the pair of nodes (i, j) is connected

by a multilink ~m, while otherwise A~m
ij = 0. Therefore the

multi-adjacency matrix elements A~m
ij can be expressed in

terms of the adjacency matrices a[α] as

A~m
ij =

M∏
α=1

[
mαa

[α]
ij + (1−mα)(1− a[α]ij )

]
. (2)

Since every pair of nodes (i, j) can be connected by a
unique multilink, the multiadjacency matrices satisfy∑

~m

A~m
ij = 1. (3)

Moreover we have A~m
ij = 1 for the unique type of multilink

~m = ~mij , i.e. A~mij

ij = 1.
Take for example the case of a duplex network formed

by two layers α = 1, 2. The multiadjacency matrices cor-
responding to non trivial multilinks ~m 6= ~0 are given by

A
(1,0)
ij = a

[1]
ij (1− a[2]ij )

A
(0,1)
ij = (1− a[1]ij )a

[2]
ij

A
(1,1)
ij = a

[1]
ij a

[2]
ij . (4)

Assume that we consider the airport duplex networks
formed by two layers corresponding to the flight con-
nections of two different airline companies. In this case

A
(1,0)
ij = 1 if the airport i can be reached from airport

j by a direct flight connection of the first company but
not by a direct flight connection of the second company,

A
(0,1)
ij = 1 if the airport i can be reached from airport j

by a direct flight connection of the second company but
not by a direct flight connection of the first company, and

finally A
(1,1)
ij = 1 if airport i can be reached from airport

j by direct flight connections of both airline companies.
In general the multilinks can characterize all the differ-

ent ways in which a pair of nodes of the multiplex network
can be connected across the M layers. Nevertheless the
number of different types of multilinks increases exponen-
tially with the number of layers M , as it is 2M , and for
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large number of layers the distinction between different
multilinks can be problematic. A way to go around this
problem is to classify all the multilinks according to the
multiplicity of link overlap ν given by

ν(~m) =

M∑
α=1

mα. (5)

Therefore if node i and node j are linked by a multilink
~m, the multiplicity of the overlap ν(~m) indicates in how
many layers there is a connection between the two nodes.
If we only distinguish between multilinks with different
multiplicity of the overlap, we can drastically reduce the
complexity of the analysis because the range of variability
of ν(~m) is given only by the set {1, 2, . . . ,M}.

Functional Multiplex PageRank. – In this section
we will define a Functional Multiplex PageRankXi of node
i. This centrality measure depends functionally on a set
of parameters z and as a function of the parameters z can
be reduced to:

• PageRank on each separate layer;

• PageRank on the aggregated network;

• PageRank on the network formed by the links (i, j)
present at the same time in every layer α =
1, 2, . . .M .

The Functional Multiplex PageRank Xi of node i depends
on the tensor z with elements z ~m ≥ 0 defined for every
type of multilink ~m. It describes the steady state of a
random walker that hops from a node j to a neighbor
node i with probability α̃ if this is possible, and otherwise
performs random jumps to a random connected node of
the multiplex network. When the random walker hops
to a random neighbor it follows each multilink ~m 6= ~0
with a probability proportional to z ~m. Therefore we have
that the Functional Multiplex PageRank Xi(z) of node i
is given by

Xi(z) = α̃

N∑
j=1

A~mij

ij z ~m
ij 1

κj
Xj + βvi, (6)

where z
~0 = 0 and where

κj =

N∑
i=1

A~mij

ij z ~m
ij

+ δ
0,
∑N
i=1 A

~mij
ij z ~m

ij
,

β =
1

N

N∑
j=1

[
(1− α̃)(1− δ

0,
∑N
i=1 A

~mij
ij z ~m

ij ),

+ δ
0,
∑N
i=1 A

~mij
ij z ~m

ij

]
Xj ,

vi = θ

 N∑
j=1

A~mij

ij z ~m
ij

+

N∑
j=1

A~mji

ji z ~m
ij

 . (7)

Here δx,y indicates the Kronecker delta and θ(x) indicates
the Heaviside step function. Using the definition of the
Functional Multiplex PageRank given by Eq. (6), by mak-
ing an opportune choice of the influences z we can recover
the desired limiting cases:

• for z ~m = z? > 0 for every ~m with mα = 1, and z ~m = 0
for every ~m with mα = 0, the Functional Multiplex
PageRank reduces to the PageRank in the layer α;

• for z ~m = z? > 0 for every ~m 6= ~0, the Functional
Multiplex PageRank reduces to the PageRank in the
aggregated network;

• for z ~m = 0 for every ~m 6= ~1, and z
~1 = z? > 0,

the Functional Multiplex PageRank reduces to the
PageRank in the network where each link (i, j) is
present in every layer, i.e. (i, j) are connected by
a multilink ~1.

For every node i the Functional Multiplex CentralityXi(z)
is a function depending on the values of the influences
z associated to its multilinks. We call this function the
pattern to success of node i.

In general the Functional Multiplex PageRank allows
the association of different influence z ~m to each type of
multilink and can therefore be used to capture the specific
role of overlapping links. Consider for example the case
of a duplex network. The Functional Multiplex PageRank
can describe non-linear effects due to the overlap between
the links when the weight associated to a multilink (1, 1)
is not equal to the sum of the weights associated to the
multilinks (1, 0) or (0, 1), i.e. when

z(1,1) 6= z(1,0) + z(0,1). (8)

From the definition of the Functional Multiplex PageR-
ank one observes that the ranking X(z) is invariant under
the transformation

z = γz (9)

for γ > 0. Therefore by considering z as a vector in a
2M − 1 dimensional space, with elements z ~m for every
~m 6= ~0, the Functional Multiplex PageRank only depends
on the direction of this vector and not on its normaliza-
tion. Therefore the general definition of the Functional
Multiplex PageRank depends on 2M − 2 independent pa-
rameters.

We make here a general remark: although the above
definition is very general, the definition of the Functional
Multiplex PageRank for more than two layers might yield
a centrality depending on too many parameters (2M − 2)
and can be difficult to handle. Therefore in the following
we will describe first the case of a duplex network that
can be treated in full generality using two parameters,
and subsequently we will cover the case of a general mul-
tiplex network M where the parameters z ~m are taken to
be dependent on a single external parameter q and on the
multiplicity of the overlap ν(~m).
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Note that here and in the following we have considered
unweighted multiplex networks. Consequently the mul-
tiadjacency matrices have elements A~m

ij = 0, 1. However
it is possible to consider a weighted version of the Func-
tional Multiplex PageRank just by using in Eq. (6) a set
of weighted multiadjacency matrices. The weighted mul-
tiadjacency matrices associate a weight to each multilink.
This weight could be equal, for instance, to the average
weight of the links forming the multilink, or, alternatively
to their maximum or minimum weight.

Absolute Functional Multiplex PageRank. – It
is often the case that one desires a global ranking of the
nodes. Here we propose to take as the ranking of node i
the maximum of the Functional Multiplex PageRank over
all the space in which the vector z varies. To this end
we define the Absolute Multiplex PageRank X?

i of node i
given by

X?
i = max

z
Xi(z). (10)

This constitutes only a possible choice of establishing an
Absolute Rank from the Functional Multiplex PageRank.
Another interesting possibility is to consider the absolute
ranking induced by the average of the Functional Multi-
plex PageRank, i.e.

X̂i = 〈Xi(z)〉z . (11)

In the following we will refer exclusively to the Absolute
Multiplex PageRank X?

i .

Understanding Functional Multiplex Pagerank,
a geometric interpretation. – In this section we will
study Functional Multiplex PageRank on different duplex
networks showing the rich information that can be gained
about its nodes. In all the cases discussed below we will
span all the region of variability of z = (z(1,0), z(0,1), z(1,1))
and we will always take α̃ = 0.85 which is the usual value
that is considered for the PageRank on single layers. As
has been discussed in the previous section, the Functional
Multiplex PageRank only depends on the direction of z in-
terpreted as a 3-dimensional vector in R3. Therefore in a
duplex network, changing only the direction of the vector
z within the 3-dimensional region where all the compo-
nents of z are either positive or null, is sufficient to span
all cases. Therefore the different directions of z can be
parametrized just by using two parameters. Here we ex-
press z = (z(1,0), z(0,1), z(1,1)) in spherical coordinates as

z(1,0) = sin θ cosφ,

z(0,1) = sin θ sinφ,

z(1,1) = cos θ, (12)

with θ, φ ∈ [0, π/2].
As a first duplex network on which to apply the func-

tional PageRank we consider the airport duplex network
formed by the flight connections of Lufthansa (layer 1) and

Table 1: Top ranked airports according to the Absolute Mul-
tiplex PageRank, in a duplex airport network formed by
Lufthansa and British Airways airlines. Here in order to find
the absolute Functional Multiplex PageRank we evaluated the
Functional Multiplex PageRank for angles (θ, φ) chosen on a
grid with spacing δθ = δφ = π/80.

Rank Airport
1 Heathrow Airport (LHR)
2 Munich Airport (MUC)
3 Frankfurt Airport (FRA)
4 Gatwick Airport (LGW)

British Airways (layer 2) constructed by using the data of
Ref. [10].

The angle φ modulates the influence of the multilinks
(1, 0) (exclusively Lufthansa flight connections) with re-
spect to multilinks (0, 1) (exclusively British Airways flight
connections). For φ = 0, θ = π/2 or (φ = 0o, θ = 90o)
the influence of exclusively Lufthansa connections is max-
imized, for φ = π/2, θ = π/2 (or φ = 90o, θ = 90o) the in-
fluence of exclusively British Airways is maximized. The
angle θ measures the influence of multilinks (1, 1) cor-
responding to flight connections existing in both airline
companies with respect to the other two types of multi-
links corresponding to flight connections existing in a sin-
gle airline company. For θ = 0 or (0o) the influence of
multilinks (1, 1) is maximized, while for θ = π/2 (or 90o)
it is minimized.

The Absolute Multiplex PageRank of this duplex net-
work ranks its four top central airports according to the
rank shown in Table 1.

We observe that the major airports display a very differ-
ent Functional Multiplex PageRank revealed by their dis-
tinct pattern to success. In Figure 1 we display the pattern
of success of four exemplar hub airports. The Frankfurt
airport (FRA) shows a pattern of success that establishes
the airport as a central hub for Lufthansa. In fact its
Functional Multiplex PageRank displays a maximum for
smaller values of φ and decreases as θ decreases toward
zero showing that the Frankfurt airport takes most of its
centrality from flight connections operated exclusively by
Lufthansa. On the contrary, the Düsseldorf airport (DUS)
acquires significant centrality also by including connec-
tions existing in both layers although it constitutes an im-
portant Lufthansa hub. Therefore it has a Functional Mul-
tiplex PageRank that is increasing as φ decreases, and also
increasing as θ approaches zero. By calculating the Func-
tional Multiplex PageRank of Heathrow Airport (LHR)
and Gatwick Airport (LGW) one can see that they are
both British Airways hub airports but Heathrow acquires
important centrality also by including connections existing
in both layers.

Therefore this result shows that the links that deter-
mine the centrality of the nodes can be of different types
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Table 2: Correlation ρ between the Functional Multiplex
PageRank of the airports Heathrow (LHR), Frankfurt (FRA),
Gatwick (LGW) and Düsseldorf (DUS). The Pearson corre-
lation is calculated starting form the Functional Multiplex
PageRanks Xi = Xi(φ, θ) calculated on a grid of δφ = δθ =
π/80.

ρ LHR FRA LGW DUS
LHR 1 -0.797 0.484 0.351
FRA -0.797 1 -0.983 0.275
LGW 0.484 -0.983 1 -0.729
DUS 0.351 0.2758 -0.729 1

for two different nodes of the multiplex network. It is
therefore interesting to measure the correlation between
the Functional Multiplex PageRank (pattern to success) of
two different nodes. This can be measured by considering
the Functional Multiplex PageRank as a function of the
angles φ, θ, i.e. Xi = Xi(φ, θ). By evaluating the Func-
tional Multiplex PageRank on a given grid with points
(φs, θr), with r = 1, 2, . . . Nφ and s = 1, 2 . . . Nθ we can
calculate the Pearson correlation ρ between the Functional
Multiplex PageRank of the generic nodes i and j as

ρ =
XiXj −Xi Xj

σ(Xi)σ(Xj)
, (13)

where Y (φ, θ) is given by

Y (φ, θ) =
1

NφNθ

Nφ∑
r=1

Nθ∑
s=1

Y (φs, θr), (14)

and σ(Y ) =

√
Y 2 − Y 2

. Note that ρ ∈ [−1, 1],
where negative values ρ < 0 indicate anticorrela-
tions, while ρ > 0 indicates positive correlations.
In Table 2 we report the correlations ρ existing be-
tween the Functional Multiplex PageRanks shown in
Figure 1 showing both positive (Heathrow/Gatwick,
Frankfurt/Düsseldorf but also Heathrow/Düsseldorf) and
negative values (Heathrow/Frankfurt,Gatwick/Frankfurt,
Gatwick/Düsseldorf).

As a second example we analyzed the multiplex con-
nectome (brain network) of the neumatode C. elegans
[9, 13, 14]. This dataset includes all the connections ex-
isting between the 279 neurons of the animal. These con-
nections can be chemical (synaptic connections forming
the layer 1) or electrical (gap junctions forming the layer
2) [9]. Both layers are undirected and unweighted.

According to the Absolute Multiplex PageRank the top
ten central neurons are the ones displayed in Table 3. In
the top four positions of the rank list we found the AVA
interneurons and the AVB interneurons.

The Pearson correlation coefficient analysis performed
on the top ten ranked node (Figure 2) shows, as expected,
that neurons of the same type (AVA,AVB,PVC,AVE) have

Fig. 1: (Color online) Functional Multiplex PageRank for im-
portant airports such as Frankfurt Airport (FRA), Heathrow
Airport (LHR), Düsseldorf Airport (DUS) and Gatwick Air-
port (LGW).

similar interaction channels, which is due to their charac-
teristic role and functions in the nervous system. Also the
AVDR and the DVA are much more correlated between
each other and with the AVE neurons than with the other
neuron types (AVA,AVB,PVC).

In Figure 3 we show the Functional Multiplex PageR-
ank (pattern to success) of different types of neurons
in the parameter space (φ, θ). Given this duplex struc-
ture, the Functional Multiplex PageRank calculated ex-
clusively using electric junctions corresponds to the value
at φ = 0(0o), θ = π/2(90o) the one calculated using ex-
clusively synaptic connections corresponds to the value at
φ = π/2(90o), θ = π/2(90o). Finally, for θ = 0(0o), only
connections involving both electric and chemical interac-
tions are affecting the value of the Functional Multiplex
PageRank. The patterns to success shown in Figure 3 re-
veal the very different functional roles of the corresponding
neurons in the brain network.

As a third example of duplex network we consider the
dataset studied in [7] formed by the authors of PRE un-
til the year 2009. The first layer is the (directed) cita-
tion network between the authors in the journal PRE, the
second layer is the (undirected) collaboration network be-
tween the authors in the same journal. Both layers are
here unweighted. The analysis of the functional PageR-
anks of PRE authors reveals different patterns to success,
which eventually combine the centrality in the citation
and the collaboration network. Here the angle φ will tune
the influence of the citation with respect to the collabo-
ration network, while the angle θ tunes the relevance of
the multilinks (1, 1) formed by authors that collaborate
and cite other authors. In Figure 4 we display the Func-
tional Multiplex PageRank of three major authors, M. E.
J. Newman, H.E. Stanley and S. Strogatz showing differ-
ent patterns to success.

Modelling the dependence on the multiplicity of
the overlap and applications to real datasets. – In
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Fig. 2: (Color online) Correlation ρ between the Functional
Multiplex PageRank of the top ranked neurons in the duplex
brain network of the nematode C. elegans.

Fig. 3: (Color online) Functional Multiplex PageRank of the
neurons AVAL, AVBL, PVCL and AVEL in the duplex brain
network of the nematode C. elegans.

Fig. 4: (Color online) Functional Multiplex PageRank of the
three important authors of PRE, M.E. J. Newman, H. E. Stan-
ley and S. Strogatz. The correlation ρ between their Functional
Multiplex PageRank is ρ = 0.504 (Newman/Stanley), ρ =
0.780 (Newman/Strogatz) and ρ = 0.003 (Stanley/Strogatz).
This calculation is performed on a grid with δθ = δφ = π/20.

Table 3: Top 10 ranked neurons according to the Absolute Mul-
tiplex PageRank of the neuronal network of C. elegans where
the first layer is formed by electric junctions and the second
layer is formed by chemical synapses. The Absolute Multiplex
PageRank was performed using a grid δφ = δθ = π/40.

Rank Neuron Rank Neuron
1 AVAR 6 PVCR
2 AVAL 7 AVDR
3 AVBL 8 AVER
4 AVBR 9 AVEL
5 PVCL 10 DVA

this section we will study the application of the Functional
Multiplex PageRank to multiplex networks with arbitrary
number of layers. Due to the exponential growth of the
number of multilinks with the number of layers M , we
consider the case in which the value of the influence pa-
rameter z ~m only depends on the multiplicity of the overlap
ν(~m). Specifically we take

z ~m = qν(~m)−1, (15)

with q > 0. For example for three layers we will have

z(1,0,0) = z(0,1,0) = z(0,0,1) = 1,

z(1,1,0) = z(0,1,1) = z(1,0,1) = q,

z(1,1,1) = q2. (16)

Therefore if q > 1 the multinks with high multiplicity of
overlap will have higher influence, while for q < 1 their
influence will be suppressed.

With this convention the Functional Multiplex PageR-
ank will be a function of q ∈ R+. Here we consider as an
example of an application the airport multiplex network
of Ref. [10], including all airline companies operating in
Europe. This multiplex network is formed by N = 450
airports connected by N = 85 airlines. The Absolute Mul-
tiplex PageRank rewards the major tourist destinations
(see Table 4) that have all Functional Multiplex PageR-
ank with a maximum for large q, i.e. they are central
when the influence of multilinks with large multiplicity of
overlap is significant. Nevertheless other important air-
ports can have significantly different pattern to success
(see Figure 5). Interestingly Heathrow and Frankfurt dis-
play a correlated pattern to success while Stansted and
Gatwick airport have an anticorrelated pattern to success.
By proceeding similarly to the case of the duplex networks
we can calculate the Pearson correlation which is given by
ρ = 0.7641 between Heathrow and Frankfurt airports and
by ρ = −0.9750 between Stansted and Gatwick airports
(calculated on a logarithmically spaced one dimensional
grid with qr = e(r−20)/5 and r = {1, 2, . . . , 40}).

Conclusions. – In conclusion we have proposed here
to study the Functional Multiplex PageRank for character-
izing the centrality of nodes in multiplex networks. This
measure associates to a node a function called its pattern
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Table 4: Top ranked airports according to the Absolute Func-
tional Multiplex PageRank, in the multiplex airport network
formed by all N = 85 airlines companies operating in Europe.

Rank Airport
1 Madrid-Barajas Airport (MAD)
2 Roma Fiumicino Airport (FCO)
3 Palma de Mallorca Airport (PMI)
4 Paris Charles de Gaulle Airport (CDG)

to success that is able to capture the role of the differ-
ent type of connections in determining the node central-
ity. Two generic nodes of a multiplex network can have
distinct patterns leading to their success, and here we pro-
pose a way to characterize their correlations. From this
measure we can extract an Absolute Multiplex PageRank
which provides an absolute rank between the node of the
multiplex. We have applied this measure to airport multi-
plex networks, to the multiplex connectome of the neuma-
tode C. elegans, and to the citation/collaboration network
of PRE authors. The Functional Multiplex PageRank can
be efficiently measured on duplex multiplex networks, and
when suitably simplified, it can be applied to multiplex
networks with arbitrary number of layers M . Interest-
ingly this algorithm can be easily generalized to weighted
multiplex networks.
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