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1 Introduction

The microphysics of black holes has been one of the most important subjects in string

theory which purports to be a consistent theory of quantum gravity. Since the pioneering

work of Strominger and Vafa [3] on the supersymmetric D1-D5-P black hole, much has

been learned about the structures of black hole microstates.

The fuzzball conjecture [4–9] is about the gravitational description of the black hole mi-

crostates. The conjecture claims that black hole microstates are made of stringy/quantum

gravity fuzz that extends over the horizon scale. The example for which this conjecture

is actually true is the supersymmetric D1-D5 system (2-charge system). For this system,

fuzzball microstates were explicitly constructed as smooth solutions in classical supergrav-

ity, known as microstate geometries [10, 11], which were shown [12] to correctly reproduce

the asymptotic scaling of the entropy expected from microscopic computation. However,

the 2-charge system is not really a black hole, the horizon area vanishing classically.

The supersymmetric D1-D5-P system (3-charge black hole) has a finite horizon and

provides an ideal system in which to examine the fuzzball conjecture. The D1-D5-P system
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is obtained by compactifying type IIB string theory on S1×M4 withM4 = T 4 or K3, wrap-

pingN1 D1-branes on S1 and N5 D5-branes on S1×M4, and putting Np units of momentum

along S1. Even if the fuzzball conjecture is true, there is no a priori reason to expect that

the black hole microstates are describable in classical supergravity as smooth solutions;

they can be intrinsically stringy and have no supergravity description at all. Nonetheless,

much effort has been made for constructing microstate geometries for this system within

supergravity and, quite remarkably, many smooth solutions have been discovered.

In particular, a large family of smooth microstate geometries has been explicitly con-

structed within supergravity in [13, 14] (see also [15–17] for earlier work). This family can

be characterized by the fact that they are independent of the compact S1 coordinate which

we call v. Actually, however, there is growing evidence that this family is far from the

most generic microstates, even within supergravity. As we mentioned above, the D1-D5-P

system has momentum charge along v, which can be naturally carried by traveling waves

of the D1-D5 worldvolume depending on v and, therefore, the corresponding solution must

be v-dependent. So, the family of v-independent solutions in [13, 14] must not be the most

generic solutions. Also, in [18, 19], it was argued that placing supertubes in the throat re-

gion of v-independent solutions can enhance entropy. This also suggests that v-dependence

is important for getting more generic solutions, because entropy of supertubes comes from

v-dependent fluctuations of the worldvolume which, upon backreaction, turn v-independent

background geometry into v-independent ones. Furthermore, it has been shown that the

v-independent solutions are insufficient to account for the entropy of the D1-D5-P black

hole [20].1 For these reasons, it is worthwhile to look for v-dependent microstate solutions

in supergravity in order to figure out whether the fuzzball conjecture applies to the D1-D5-

P system or not. Considering non-trivial dependence on the S1 coordinate v means that

we must consider six-dimensional solutions.

Some v-dependent solutions of supergravity have already been constructed previously

in the literature [1, 21–27] and were shown to represent smooth microstates of the D1-D5-

P system. However, a systematic way to solve the relevant field equations in general has

not been found yet. In this paper, we try to make a modest progress in this direction,

by studying v-dependent solutions in the context of six-dimensional supergravity. The

supersymmetric solutions of this theory have been classified in [2, 28] and, more recently,

in ref. [29], the field equations that solutions should satisfy have been recast into a form

in which a linear structure is manifest.2,3 The solutions are constructed based on a four-

dimensional almost hyperkähler base B which can generally depend on v. If the base B is

given and the source distribution of branes is given, all one has to do in principle to obtain

the backreacted solution is to solve the linear system of differential equations. However,

the problem is that the base B must satisfy certain non-linear differential equations and

we do not know how to solve them in general. Namely, we lack a systematic method to

construct the base B.
1Of course, it is fair to say that this might instead be evidence that generic microstates are not describable

in supergravity.
2For recent applications of the linear structure for constructing supergravity solutions, see [30–33].
3Ref. [27] discusses embedding of supersymmetric solutions in a general class of 6D theory into 10D

supergravity.
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Most of the v-dependent solutions constructed thus far [1, 21, 23–25, 27] have v-

independent base B (note however the exceptions [22, 26] which we comment on below).

So, it is important to work out more explicit examples of v-dependent base B in detail,

and that is what we will do in this paper.

One may think that v-dependence of B may not be crucial for reproducing the cor-

rect scaling of the black hole entropy, just as for the D1-D5 system where fluctuations in

the R4 directions were sufficient for the purpose of reproducing the entropy scaling and

fluctuations in the T 4 directions [34] were not needed. However, for the D1-D5-P system,

there is an argument based on the possibility of “double bubbling” that the v-dependence

is essential for getting the right entropy scaling. This is a possibility that the D1-D5-P

system undergoes supertube transition multiple times [35, 36] and its generic microstates

are represented by a brane configuration with v-dependent worldvolume, dubbed the su-

perstratum. This double bubbling picture is supported by a supersymmetry analysis [37].

If this is true, we will generically have a fluctuating distribution of KK monopoles [29, 37]

which is described by a v-dependent base B, and we need to take them into account to

reproduce the entropy scaling.

In more detail, what we do in the current paper is to use the solution generating tech-

nique [1] to construct a solution with v-dependent base. In [1], they took the pure AdS3×S3

geometry which corresponds in boundary CFT to the NSNS ground state. Around that

background, they considered small fluctuation of fields that corresponds to a chiral primary

in CFT. On the fluctuation fields, they acted by a transformation which corresponds in

the bulk to a rotation in S3 and which corresponds on the boundary to an R-symmetry ro-

tation. This transformation changes the linear and angular momenta carried by the fields.

Being just a rotation, this transformation leaves smooth geometries smooth. After spectral

flow to the RR sector, this procedure gives a solution that carries non-vanishing momentum

charge. Although they obtained a v-dependent solution by this technique, their base was

not v-dependent. In this paper, we consider more general fluctuations around AdS3 × S3

and apply their solution generating technique to obtain a v-dependent base.4

It is appropriate here to mention the difference between our solution and the solutions

constructed in [22, 26] which also have v-dependent base. Ref. [22] discussed geometries

obtained by the spectral flow of the Lunin-Mathur geometries [10, 11] and correspond to

CFT states on the unitarity bound. On the other hand, our solution is above the unitarity

bound and represent a different class of v-dependent solutions. Ref. [26] constructed su-

pergravity solutions by computing perturbative open string amplitudes for certain brane

bound states of the D1-D5 system as the boundary states. This worldsheet-based method

has the advantage of being applicable to general boundary states but the regularity of

resulting solutions is difficult to study. On the other hand, in our approach, the regularity

of the solution is easier to analyze, although it is special to fluctuations around AdS3×S3.

4Note that all we do is an S3 rotation which is merely a coordinate transformation. So, in this sense,

whether the base is v-dependent or not is just a matter of the coordinate system one uses. However, what is

important is that this coordinate transformation does not vanish at the boundary of AdS3. This means that

this coordinate transformation generates genuinely new states in the CFT, and that is what is important

for microstate counting.
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Some comments on the relevance of smooth geometries for black hole microstates are

in order. First, it is possible that a solution which looks supersymmetric at the super-

gravity level may not be supersymmetric in full string theory [38, 39] (see also [40]). So, a

given supergravity solution might not actually represent a microstate of the black hole in

question. Second, the analysis of quiver quantum mechanics [41] representing multi-center

black holes in 4D suggests that the black hole microstates may correspond to “pure Higgs”

states with vanishing angular momentum, which is rather unnatural from the viewpoint of

microstate geometries. Note that these two facts are not necessarily pointing toward the ir-

relevance of microstate geometries for the fuzzball conjecture; it may instead be completely

opposite. Namely, it seems natural to interpret them as saying that microstate geometries

are generally lifted by an amount invisible in supergravity except for ones with vanishing

angular momentum. This would nicely explain the fact that the angular momentum of su-

pergravity microstates is not restricted to zero whereas quiver quantum mechanics suggests

that the truly supersymmetric states have vanishing angular momentum. Further inves-

tigations are needed to clarify the relevance of microstate geometries, including the ones

constructed in the current paper, as the true microstates of the supersymmetric D1-D5-P

black hole. In particular, v-dependent solutions are expected to play an important role.

The organization of the rest of the paper is as follows. In section 2, we review the

supersymmetric solutions in the six-dimensional supergravity theory of our interest, and

how they can be embedded in 10D supergravity. After reviewing the solution generating

technique of [1] in section 3, we present the construction of the solution in section 4. We will

only describe the outline and the result, referring to the appendix for details. In section 5,

we discuss possible future directions.

2 Review of supersymmetric solutions in 6D

Here we review the supersymmetric solutions in 6D supergravity as presented in [29]. We

will be brief here; for more details the reader is referred to [2, 28, 29].

The classification of supersymmetric solutions in 6D N = 1 supergravity was first done

by Gutowski, Martelli, and Reall (GMR) [2] for minimal supergravity and later generalized

in [28] to include vector multiplets. The supergravity theory we consider here is N = 1

theory with an anti-self-dual tensor multiplet [29], and its bosonic field content consists of

the metric gµν , an unconstrained 2-form B2 with field strength G = dB2, and a dilaton φ.

The most general supersymmetric solutions for this theory have a null Killing direction u, of

which all fields are independent. However, the fields can in general depend on the remaining

five coordinates. Because null Killing vector introduces a 2 + 4 split in the geometry, it

is natural to introduce a second retarded time coordinate v and a four-dimensional, and

generically v-dependent, spatial base B with coordinates xm, m = 1, . . . , 4.

The six-dimensional metric is given by

ds26 = 2H−1(dv + β)
[
du+ ω +

1

2
F(dv + β)

]
− ds24, (2.1)
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where H,F are functions and β, ω are 1-forms in B. H,F , β, ω in general depend on v, xm.

The base B has the metric

ds24 = hmndx
mdxn (2.2)

and equipped with almost hyperkähler structure 2-forms J (A), A = 1, 2, 3, which are anti-

self-dual,

∗4J (A) = −J (A), (2.3)

and satisfy the quaternionic relation

J (A)m
nJ

(B)n
l = −δABδml + ǫABCJ (C)m

l, J (A)m
n ≡ gmlJ

(A)
ln . (2.4)

Here, ∗4 is the Hodge star with respect to the four-dimensional metric (2.2). For our

convention of differential forms and Hodge star, see appendix A. The 2-forms J (A) are not

closed but its non-closure is related to β as

d̃J (A) = ∂v(β ∧ J (A)), (2.5)

with d̃ being the exterior derivative restricted to the base, d̃ = dxm∂m. The 1-form β must

satisfy the condition

Dβ = ∗4Dβ (2.6)

where

D ≡ d̃− β ∧ ∂v . (2.7)

We also introduce the 2-form

ψ̂ ≡ 1

16
ǫABCJ (A)ij J̇

(B)
ij J (C), (2.8)

which measures the rotation of J (A) as v varies. Here, we defined ˙ ≡ ∂v.

Given the base B and the 1-form β satisfying the above equations, we can determine

H,ω in the metric, the dilaton φ, and the flux G = dB2 by solving a linear system as

follows. We introduce functions Z1, Z2 by

Z1 = He
√
2φ, Z2 = He−

√
2φ, (2.9)

and 2-forms Θ1,Θ2. Then they satisfy the following linear equations:

D ∗4 (DZ1 + β̇Z1) = −2Θ2 ∧Dβ, d̃Θ2 = ∂v

[
1

2
∗4 (DZ1 + β̇Z1) + β ∧Θ2

]
,

D ∗4 (DZ2 + β̇Z2) = −2Θ1 ∧Dβ, d̃Θ1 = ∂v

[
1

2
∗4 (DZ2 + β̇Z2) + β ∧Θ1

] (2.10)

The Θ1,2 are not quite self-dual but the failure is related to ψ̂ as

∗4Θ1 = Θ1 − 2Z2ψ̂, ∗4Θ2 = Θ2 − 2Z1ψ̂. (2.11)
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Once Z,Θ are known, the field strength G = dB2 is given by

G = d

[
−1

2
Z−1
1 (du+ ω) ∧ (dv + β)

]
+ Ĝ1, (2.12)

e2
√
2φ ∗6 G = d

[
−1

2
Z−1
2 (du+ ω) ∧ (dv + β)

]
+ Ĝ2, (2.13)

where

Ĝ1 ≡
1

2
∗4 (D + β̇)Z2 + (dv + β) ∧Θ1, (2.14)

Ĝ2 ≡
1

2
∗4 (D + β̇)Z1 + (dv + β) ∧Θ2. (2.15)

The 1-form ω is found by solving the equation

(1 + ∗4)Dω = 2(Z1Θ1 + Z2Θ2)−FDβ − 4Z1Z2ψ̂. (2.16)

Finally, F is determined by

∗4D ∗4 L =
1

2
Hhij∂2v(Hhij) +

1

4
∂v(Hh

ij)∂v(Hhij)

− 2β̇iL
i + 2H2φ̇2 − 2 ∗4 [Θ1 ∧Θ2 − ψ̂ ∧Dω], (2.17)

where

L ≡ ω̇ +
1

2
F β̇ − 1

2
DF . (2.18)

We embed the above 6D theory into 10D type IIB supergravity as follows [34, 42] (note

that embedding is not unique). We identify the 2-form B2 with the RR 2-form potential

C2 and the 6D dilaton φ with the 10D dilaton Φ as

B2 =
1

2
C2, φ =

1√
2
Φ. (2.19)

Then the relation of G = dB2 to the RR 3-form flux F3 = dC2 and the dual F7 = ∗10F3 is

G =
1

2
F3 =

1

2
dC2, e2

√
2φ ∗6G =

1

2
F7|6. (2.20)

Here, [. . . ]|6 means to strip off theM4 part of the differential form. Because F3 ∝ G couples

electrically to D1 and magnetically to D5, the first term d[. . .] of G in (2.12) corresponds

to D1(u, v) and the function Z1 is the potential for it. The first term of Ĝ1 in (2.14)

corresponds to D5(u, v,M4) and the second term in Ĝ1 to D5(u, ψ,M4) where ψ is some

curve in B. Inside B, D5(u, ψ,M4) is a 1-brane along ψ and we can measure its charge by

integrating Θ1 over a 2-surface going around it. From e2
√
2φ∗6G ∝ F7, we can similarly read

off charges, setting D1↔D5. Also, βm, ωm correspond to linear combinations of momentum

charge along xm and KK monopole charge along xm ×M4 with special circle v.

– 6 –
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3 Solution generating technique

In this section, we review the solution generating technique by Mathur, Saxena, and Sri-

vastava (MSS) [1], which allows one to construct a solution carrying momentum charge

starting with a seed solution carrying no momentum charge.

The Lunin-Mathur (LM) geometry [10, 11] is a family of smooth geometries in 6D

describing microstates of the D1-D5 system. They are parametrized by continuous func-

tions Fm(w) called the profile function which parametrizes the closed curve in R4 along

which the D1-D5 worldvolume is extending.5 They represent the ground states in the RR

sector of the D1-D5 CFT and the dictionary between the geometries and CFT states is

well established [42]. Expressed in the GMR form of section 2, the LM geometry is given

by the following v-independent functions and forms [22]:

Z1 =
Q5

L

∫ L

0

| ~̇F (w)|2dw
|~x− ~F (w)|2

, Z2 =
Q5

L

∫ L

0

dw

|~x− ~F (w)|2
,

ds24 = δmndx
mdxn, F = 0, β = −A+B√

2
, ω = −A−B√

2
,

Am = −Q5

L

∫ L

0

Ḟm(w)dw

|~x− ~F (w)|2
, dB = ∗4dA, Θ1 = Θ2 = ψ̂ = 0. (3.1)

where L is a constant defined in (B.1), Q5 is the D5 charge proportional to N5 (see (B.3))

and the D1 charge Q1 is given in (B.2). The profile function satisfies the periodicity

condition Fm(w + L) = Fm(w). The RR 2-form C2, which is related to the 2-form B2

by (2.19), is given by

C2 = −Z−1
1 (du+ ω) ∧ (dv + β) + C2, dC2 = ∗4dZ2, (3.2)

which is nothing but (2.12), (2.14). Note that we dropped “1” in the harmonic functions

Z1,2 so that the above solution describes asymptotically AdS space. Extending our com-

putation to asymptotically flat space would be interesting but we will not attempt to do

it in this paper. See appendix B for more about the LM geometry.

In [1], MSS constructed a v-dependent 3-charge configurations by considering small

fluctuations around maximally rotating LM geometry [43, 44]. This geometry is given by

a circular profile function,

F1 + iF2 = aeiωw, F3 = F4 = 0, ω =
2π

L
, a =

√
Q1Q5

R
, (3.3)

with R being the radius of S1, and represents a particular RR ground state of the D1-D5

CFT with maximal possible R-charge. In this case, the GMR data (3.1) and (3.2) are

5We do not discuss the generalization for the profile function to describe fluctuations in the T 4 direc-

tions [34].
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computed to be

Z1 =
Q1

h
, Z2 =

Q5

h
, h ≡ r2 + a2 cos2 θ,

A = −
√
Q1Q5 a sin2 θ

h
dφ, B =

√
Q1Q5 a cos2 θ

h
dψ,

C2 = −Q5(r
2 + a2) cos2 θ

h
dφ ∧ dψ.

(3.4)

Here, we introduced the coordinates r, θ, φ, ψ by [11]

x1 + ix2 = seiφ, x3 + ix4 = weiψ,

s =
√
r2 + a2 sin θ, w = r cos θ,

s, w, r ∈ [0,∞), φ, ψ ∈ [0, 2π), θ ∈
[
0,
π

2

]
,

(3.5)

in terms of which the metric for the flat 4D base becomes

ds24 = h

(
dr2

r2 + a2
+ dθ2

)
+ (r2 + a2) sin2 θ dφ2 + r2 cos2 θ dψ2. (3.6)

By the spectral flow transformation of the CFT, this state can be mapped into the

ground state in the NS-NS sector. In the bulk, the spectral flow corresponds to a simple

coordinate transformation

φ̃ = φ− t

R
, ψ̃ = ψ +

y

R
, (3.7)

where

t =
u+ v√

2
, y =

u− v√
2
. (3.8)

One can show that this brings the 6D metric (2.1) into AdS3 × S3:

ds26 = −ds2AdS3 −
√
Q1Q5 ds

2
S3 , (3.9a)

ds2AdS3 =
1√
Q1Q5

[
−(r2 + a2)dt2 + r2dy2 +

Q1Q5

r2 + a2
dr2
]
, (3.9b)

ds2S3 = dθ2 + sin2 θ dφ̃2 + cos2 θ dψ̃2, (3.9c)

C2 =
r2 + a2

Q1
dt ∧ dy +

√
Q5

Q1
a dφ̃ ∧ dy −Q5 cos

2 θ dφ̃ ∧ dψ̃. (3.9d)

Around this AdS3 × S3 background, MSS considered a fluctuation of the fields that cor-

responds to a chiral primary with

(hNS, jNS) = (k, k), (h̄NS, ̄NS) = (k, k), (3.10)

where h, h̄ are the eigenvalues of the Virasoro generators L0, L̄0 while j, ̄ are the eigenvalues

of the SU(2) × S̃U(2) R-symmetry generators J3
0 , J̄

3
0 . The subscript NS denotes the NS

sector. The corresponding bulk fields can be worked out using the field equations of 6D

– 8 –
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supergravity. If one did the inverse spectral flow transformation to this state, the one

would obtain an RR ground state which has less than maximal R-charge and no momentum

charge. In order to generate a new solution, they instead acted by (J−
0 )NS on the state (3.10)

to get an NSNS state with

(hNS, jNS) = (k, k − 1), (h̄NS, ̄NS) = (k, k), (3.11)

and then did the inverse spectral flow. In the bulk, (J−
0 )NS corresponds to one of the

generators of the SO(4) = SU(2) × S̃U(2) rotation group of S3 and is represented by a

simple differential operator. So, it is easy to work out the fields corresponding to (3.11).

After inverse spectral flow transformation6

hR = hNS − jNS, jR = jNS, (3.12)

we end up with an RR state with

(hR, jR) = (1, k − 1), (h̄R, ̄R) = (0, k), (3.13)

which has non-vanishing momentum charge

Np = hR − h̄R = 1. (3.14)

Being a simple SU(2) rotation of the original solution, this solution is guaranteed to be

smooth and represents a microstate of the D1-D5-P system.

MSS studied particular chiral primaries which are represented in 6D supergravity [45]7

by fluctuations only of 6D dilaton and gauge fields but does not change the background

metric from AdS3 × S3.8 The latter fact greatly simplified their analysis but at the same

time implies that, when recast in the GMR form, the solution has a v-independent base.

4 Construction of the v-dependent solution

In this section, we use the solution generating technique reviewed above to construct a

3-charge solution with v-dependent base B. Here we will outline the main computations,

followed by a summary of the results, relegating some details to appendix C.

4.1 The seed solution and spectral flow

We would like to use the solution generating technique of MSS reviewed above in order

to obtain a solution with a v-dependent base. For that we need fluctuations more general

6Note that this is for the weight and R-charge of the perturbation, not including that of the background.
7There are different ways to embed the 6D fields into 10D fields, and they correspond to different

chiral primaries. For particular ways to embed solutions in 6D supergravity into 10D supergravity, see

e.g. [27, 34, 42].
8This is true only at the first order in the fluctuation. At higher order, the fields backreact on the metric

and the background will change.
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than was considered by MSS. Specifically, as the “seed”, we take the following fluctuation

of the LM profile,

δF1 + i δF2 = bei(k+1)ωw+iα, δF3 = δF4 = 0, (4.1)

around the circular profile (3.3). Here, b is a small number and we will work only at the

linear order in expansions in b. α is an arbitrary constant phase while

k ∈ Z, k ≤ −2 or 1 ≤ k. (4.2)

k = −1 is excluded because it would correspond to translating the entire profile, while

k = 0 is excluded because it would correspond to changing the background radius a and

change the D1 charge Q1. The change in the GMR data, such as δZ1, can be computed

readily by plugging F+δF into (3.1) and expanding it in the small parameter b (see (C.1)).

Actually, it is more convenient to take a suitable linear combination of fluctuations with

different phase α, which we are permitted to do in the linear approximation. Specifically,

taking the linear combination (α = 0)+ i(α = −π/2), we find that the change in the GMR

data is

δZ1 = 2Q5ab ω
2 [a(sI2(k + 1)− aI2(k)) + (k + 1)I1(k)] e

ikφ,

δZ2 = 2Q5b (sI2(k + 1)− aI2(k))e
ikφ,

δA = Q5bω (−iX− ds− sX+ dφ)e
ikφ, δB = 2Q5abωw

2eikφI2(k)dψ,

(4.3)

where In(k), X± are defined in (C.3), (C.6). Θ1,2,F , ψ̂ still vanish, because we are dealing

with the LM geometry anyway.9

The GMR data (4.3) represent a small fluctuation around the maximally rotating LM

geometry. This solution still belongs to the LM geometries (3.1) and therefore corresponds

to a certain RR ground state of the D1-D5 CFT. To use the solution generating technique

of MSS, let us do a spectral flow transformation to the NS sector, so that we have fluc-

tuating fields around AdS3 × S3. To the zeroth order, the spectral flow transformation is

implemented by the coordinate transformation (3.7) but, in the presence of the fluctuation

on top, we have the freedom to do a further coordinate transformation at the same order

in b. Let us use this freedom to bring the fluctuation of the metric into the canonical form

of Deger et al. [45]. Concretely, we apply the following coordinate transformation10

ξµ = (ξt, ξy, ξr, ξθ, ξφ̃, ξψ̃)

=
ba|k|eik(t/R+φ̃) sin|k| θ

(r2 + a2)|k|/2

(
∓i

√
Q1Q5

r2 + a2
, 0,

ar sin2 θ

h
,
a sin θ cos θ

h
, 0, 0

)
,

gµν → gµν +∇µξν +∇νξµ,

(4.4)

9We can identify the fluctuation studied in MSS [1], which does not change the 6D metric, with a linear

combination of the fluctuation (4.3). Specifically, if we denote the fields in (4.3) depending on k collectively

by F (k), then the fluctuation in [1] corresponds to 1

2
(F (k)−F (−k)∗). In terms of the profile function Fm(w),

this is a “longitudinal” fluctuation that does not change the shape but only the parametrization. More

precisely, one can show that it corresponds to (F1 + iF2) + (δF1 + iδF2) = a exp[iω(w + (b/aω) sin(kωw))].
10Part of this coordinate transformation has been written down in [46]. This is a generalization so that

the full 6D metric is in the form given in [45], not just the S3 part.
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where the ∓ signs correspond to k ≷ 0, respectively. Then the change in the 6D metric,

relative to the AdS3 × S3 metric (3.9), takes a rather simple form as follows:

δ(ds26) = (|k|+ 1) a|k|−1b B̂ Ŷ

[
r2 − a2√
Q1Q5

dt2 − r2dy2√
Q1Q5

+

√
Q1Q5(r

2 − a2)dr2

(r2 + a2)2

∓ 4iar

r2 + a2
dtdr +

√
Q1Q5(dθ

2 + sin2 θdφ̃2 + cos2 θdψ̃2)

]
, (4.5)

where

B̂ ≡ eikt/R

(r2 + a2)|k|/2
, Ŷ ≡ eikφ̃ sin|k| θ. (4.6)

We can also find the change in dilaton to be

δΦ =
√
2 δφ = (k + 1)a|k|−1bB̂Ŷ . (4.7)

Also, the change in the RR 2-form relative to (3.9) can be written in the canonical form

of [45] as

δC2 =





−2(k + 1)ak−1b

Q1ω
B̂Ŷ

[
r2ω dt ∧ dy + iQ1

r dy ∧ dr
r2 + a2

]
(k > 0),

−2al−1b

Q1ω
B̂Ŷ

[
r2ω dt ∧ dy − iQ1

r dy ∧ dr
r2 + a2

−ilQ1Q5ω cot θ(dθ − i sin θ cos θdφ̃) ∧ dψ̃
]

(k = −l < 0).

(4.8)

See appendix C.2 for details.

4.2 SU(2) rotation

Now we would like to do a transformation to the fluctuation (4.5), (4.7), (4.8) to generate

a new solution. The S3 is parametrized by θ, ψ̃, φ̃, and its isometry group SO(4) = SU(2)×
S̃U(2) is generated by11

J± =
i

2
e±i(φ̃+ψ̃)(∓i∂θ + cot θ ∂

φ̃
− tan θ ∂

ψ̃
), J3 = − i

2
(∂
φ̃
+ ∂

ψ̃
),

J̄± =
i

2
e±i(φ̃−ψ̃)(∓i∂θ + cot θ ∂

φ̃
+ tan θ ∂

ψ̃
), J̄3 = − i

2
(∂
φ̃
− ∂

ψ̃
).

(4.9)

For k > 0, all the fluctuation fields (4.5), (4.7), (4.8) are proportional to the scalar spherical

harmonic with the highest weight (k, k; k, k) of SU(2)× S̃U(2),

Ŷ = eikφ̃ sink θ, k > 0, (4.10)

which is killed by J+, J̄+. This means that the fluctuation fields have

(hNS, jNS) = (k, k), (h̄NS, ̄NS) = (k, k). (4.11)

11 The SO(4) generators Jmn = −i(xm∂n − xn∂m), m,n = 1, 2, 3, 4 can be split into SU(2) × S̃U(2)

generators as Ja = Ja4
+ , J̄a = Ja4

− , a = 1, 2, 3, where Jmn
± = 1

2
(J̃mn

± Jmn), J̃mn = 1

2
ǫmnpqJ

pq.
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Since the background preserves the SU(2) × S̃U(2) symmetry, the above solution remains

a solution even if we replace Ŷ with the (k, k −m; k, k) state,

(J−)mŶ ∝ ei(k−m)φ̃−imψ̃ sink−m θ cosm θ ≡ Ỹ , (4.12)

which has

(hNS, jNS) = (k, k −m), (h̄NS, ̄NS) = (k, k). (4.13)

After this replacement Ŷ → Ỹ , we go back to the RR sector by the spectral flow transfor-

mation (3.7). (Note that we do not do a coordinate transformation similar to (4.4) before

spectral flowing back.) The resulting configuration has

(hR, jR) = (m, k −m), (h̄R, ̄R) = (0, k) (4.14)

and therefore the momentum charge

Np = hR − h̄R = m. (4.15)

The resulting fields can be rewritten in the GMR form, as summarized in the next subsec-

tion.

For k = −l < 0, on the other hand, the fields are proportional to

Ŷ = e−ilφ̃ sinl θ, l > 0, (4.16)

which is the lowest state (l,−l; l,−l). The corresponding CFT charges are

(hNS, jNS) = (l,−l), (h̄NS, ̄NS) = (l,−l). (4.17)

Acting on the state by (J+)n, n > 0, we obtain the (l,−(l − n); l,−l) state

Ỹ ∝ (J+)nŶ ∝ ei(−l+n)φ̃+inψ̃ sinl−n θ cosn θ. (4.18)

After inverse spectral flow, we end up with an RR state with

(hR, jR) = (2l − n,−l + n), (h̄R, ̄R) = (2l,−l), (4.19)

Np = hR − h̄R = −n. (4.20)

The expression for Ỹ that works for both k > 0, k < 0 is

Ỹ = ei(k−m)φ̃−imψ̃ sin|k|−|m| θ cos|m| θ, (4.21)

where for k < 0 we take m = −n < 0. The value of m is restricted to 0 ≤ |m| ≤ |k|.
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4.3 The v-dependent solution

As the result of the procedure outlined above, we obtain the following GMR fields repre-

senting a microstate of the D1-D5-P system:

δH =
c
√
Q1Q5(r

2 − a2 cos2 θ)

h2
F,

√
2 δφ = δΦ = (k + 1)a|k|−1bF (4.22a)

δZ1 =
a|k|−1bQ1

h2
[
r2(k + |k|+ 2) + a2(k − |k|) cos2 θ

]
F, (4.22b)

δZ2 = −a
|k|−1bQ5

h2
[
r2(k − |k|) + a2(k + |k|+ 2) cos2 θ

]
F, (4.22c)

δβ =
ac
√
2Q1Q5

h
F

[
± ir dr

r2 + a2
+
r2

h
(sin2 θdφ− cos2 θdψ)

]
, (4.22d)

δω =
ac
√
2Q1Q5

h
F

[
± ir dr

r2 + a2
+
r2

h
(sin2 θdφ+ cos2 θdψ)

]
, (4.22e)

F = 0, (4.22f)

δ(ds24) = 2a2cF

[
sin2 θ

(
dφ± ir dr

r2 + a2

)2

+ cos2 θ dθ2

]
, (4.22g)

where

c ≡ (|k|+ 1)a|k|−1b, F ≡ ei
√
2mv/R+i(k−m)φ−imψ sin|k|−|m| θ cos|m| θ

(r2 + a2)|k|/2
. (4.23)

Here k ∈ Z (k 6= −1, 0) and |m| ≤ |k|. The sign of m is also correlated to that of k, namely,

sign(m) = sign(k). The ± signs above correspond to k ≷ 0. We can see that the base

metric is v-dependent as we wanted. This solution carries non-vanishing momentum

Np = m. (4.24)

Note that, in our approximation at first order in perturbation, we have F = 0 and

we cannot read off the momentum charge from the asymptotic behavior of guv. This

is because the metric starts to feel momentum only at the quadratic order, because the

energy-momentum tensor Tµν is quadratic in fields.
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The Θ fields can be read off from (2.12) and (2.13) as

δΘ1 =





(k + 1)mak+2b
√

2Q5

Q1

F
h2

cos2 θ
(

rh
r2+a2

dr − ir2 sin2 θ dφ
)
∧ dψ (k > 0)

|m|a|k|b
√

2Q5

Q1
F

[
|k| tan θ

(
− ir dr
r2+a2

+ dφ
)
∧ dθ

+ (−|k|r2+a2 cos2 θ)r
h

(
dr

r2+a2
+ ir

h sin2 θdφ
)
∧ dψ

]
, (k < 0).

(4.25)

δΘ2 =





(k + 1)makb
√

2Q5

Q1
F

[
tan θ

(
ir dr
r2+a2

+ dφ
)
∧ dθ

+ r3

h

(
− dr
r2+a2

+ ir
h sin2 θdφ

)
∧ dψ

]
(k > 0).

|m|a|k|b
√

2Q5

Q1
F

[
tan θ

(
− ir dr
r2+a2

+ dφ
)
∧ dθ

+ (a2|k| cos2 θ−r2)r
h

(
dr

r2+a2
+ ir

h sin2 θdφ
)
∧ dψ

]
(k < 0).

(4.26)

It is a good consistency check that these vanish for m = 0, because ΘI vanishes for the

original LM geometries. Using (2.11), we can compute ψ̂:

δψ̂ = −(|k|+ 1) |m| a|k|+2 b√
2Q1Q5

F

[
sin θ cos θ

(
∓ irdr

r2 + a2
− dφ

)
∧ dθ

+ cos2 θ

(
− rdr

r2 + a2
± ir2 sin2 θ

h
dφ

)
∧ dψ

]
. (4.27)

Both Θ1 and Θ2 give the same ψ̂, as they should.

Finally, let us turn to the almost hyperkähler structure 2-forms, J (A). To consider

their fluctuation, we must first fix the zeroth order expression. The flat metric (3.6) can

be rewritten in the Gibbons-Hawking form as follows:

ds24 = V −1(dχ+ ξ)2 + V ds23, (4.28)

where

V =
1

ρ
, ds23 = dρ2 + ρ2(dϑ2 + sin2 ϑ dϕ2),

√
r2 + a2 = 2

√
ρ cos

ϑ

2
, r = 2

√
ρ sin

ϑ

2
,

φ =
χ

2
− ϕ, ψ =

χ

2
, ξ = (1 + cosϑ)dϕ.

(4.29)

As the zeroth order basis, let us take

J (A) = e1 ∧ eA+1 − 1

2
ǫABCeB+1 ∧ eC+1, (4.30)
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where A,B,C = 1, 2, 3 and

e1 = V − 1

2 (dχ+ ξ), e2 = V
1

2d(ρ sinϑ cosϕ),

e3 = V
1

2d(ρ sinϑ sinϕ), e4 = V
1

2d(ρ cosϑ).
(4.31)

e2, e3, e4 give the Cartesian coordinate basis of the base R3. We could have instead taken

the four Cartesian coordinate basis forms of B4 = R4 as the zeroth order, but the above

choice is more in line with the circular profile function of the background LM geometry.

With the above choice of J (A), the fluctuation δJ (A) are found to be

δJ (1) =
(1 + |k|) a1+|k| b Fe±i(φ−ψ)

(r2 + a2)3/2

×
[
±i
(
1

2

[
a2 + (a2 + 2r2) cos(2θ)

]
dr ∧ dθ − r(r2 + a2) sin θ cos θ dφ ∧ dψ

)

− cos θ sin θ dr ∧
[
(r2 + a2)dφ− r2dψ

]
+ r(r2 + a2)dθ ∧ (sin2 θ dφ− cos2 θ dψ)

]
,

δJ (2) =
(1 + |k|) a1+|k| b Fe±i(φ−ψ)

(r2 + a2)3/2

×
[(

1

2

[
a2 + (a2 + 2r2) cos(2θ)

]
dr ∧ dθ − r(r2 + a2) sin θ cos θ dφ ∧ dψ

)

± i cos θ sin θ dr ∧
[
(r2 + a2)dφ− r2dψ

]
∓ ir(r2 + a2)dθ ∧ (sin2 θ dφ− cos2 θ dψ)

]
,

δJ (3) = (1 + |k|) a1+|k| b F sin(2θ)

( ±ir
r2 + a2

dr ∧ dθ − dθ ∧ dφ
)
. (4.32)

For details of the computation, see appendix C.3. One can check that the above δJ (A)

correctly give δψ̂ given in (4.27) using the definition (2.8).

5 Future directions

In this paper, we perturbatively constructed supersymmetric configurations of the D1-D5-

P system as solutions of 6D supergravity at the linear order. An important characteristic

of our solutions is that they has v-dependent base space B4. This is a feature expected

of superstratum solutions [29] and we hope that our solutions are useful for constructing

general superstrata.

Our solutions have AdS asymptotics, because we used the solution generating technique

of [1]. It would be interesting if our solutions can be generalized to flat asymptotics. This

is a non-trivial problem, because adding “1” to the harmonic functions Z1,2 affect other

equations in section 2 and finding Θ1,2, ω,F that satisfy them is not an obvious task.

Also, it is interesting to see how our solutions fit in the framework of [33], which discusses

v- and χ-dependent fluctuations on top of v- and χ-independent Gibbons-Hawking base.

Finally, our solutions are constructed as linear perturbations around the maximally rotating

Lunin-Mathur geometry. It would be interesting to see if this perturbative solution can be

non-linearly completed to finite deformations of the LM geometry [27]. This will make it
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easier to see the location of the brane sources in our solutions, which should be useful for

finding general smooth solutions of the 6D system.
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A Convention

We define the following operators

D ≡ d̃− β ∧ ∂v, (A.1)

˙ ≡ ∂v ≡ L ∂
∂v

= ι ∂
∂v

d+ dι ∂
∂v

. (A.2)

The Hodge star is defined by

∗d (dxm1 ∧ · · · ∧ dxmp) =
1

(d− p)!
dxn1 ∧ · · · ∧ dxnd−p ǫn1...nd−p

m1...mp . (A.3)

Our choice for the 6D ǫ tensor is [29]

ǫvu1234 = ǫty1234 = +
1√
|g|
, ǫty1234 = −

√
|g|. (A.4)

B Lunin-Mathur geometry

Here we summarize relations relevant for the Lunin-Mathur solutions presented in (3.1).

The periodicity of the profile functions, L, is related to the radius R of the S1 and the

quantized D5 charge N5 as

L =
2πgsα

′N5

R
. (B.1)

Given the profile function Fm(w), D1 charge is given by

Q1 =
Q5

L

∫ L

0
|Ḟ |2dw. (B.2)

D1 charge Q1 and D5 charge Q5 are related to quantized charges N1, N5 by

Q1 = gsα
′N1, Q5 =

gsα
′3

v4
N5, (B.3)

where the coordinate volume of T 4 is (2π)4v4.

– 16 –



J
H
E
P
1
0
(
2
0
1
3
)
1
6
9

The 1-form B can be found by solving the differential equation dB = ∗4dA in (3.1).

The explicit solution is

B = −Qǫijkl
L

∫ L

0
dw

∫ 1

0
dt
tḞkFl(yidxj − yjdxi)

|~y|4 , yi ≡ xi − tFi(w). (B.4)

This can be derived as follows. Let us rewrite the expression for A in (3.1) by decomposing

the closed curve ~x = ~F (w) into sum of many closed curves, just like one does in Stokes’

theorem.

A = −Q5

L

∫ L

0
dw

∫ 1

0
dt
∂

∂t

[
tḞi(w)dxi

|~x− t ~F (w)|2

]

= −Q5

L

∫ L

0
dw

∫ 1

0
dt

[
Ḟi(w)dxi

|~x− t ~F (w)|2
+

2((~x− t ~F ) · ~F ) tḞi(w)dxi
|~x− t ~F (w)|2

]
(B.5)

This corresponds to decomposing the closed curve ~x = ~F (w) as a sum of many curves

~x = (t+ dt)~F (w) and ~x = −t ~F (w). The curves are along w, but we further want to divide

them by adding segments along t, so that now we have infinitesimal curves along both t,w

directions. This can be done by adding a total derivative in w (which integrates to zero

upon
∫
dw) as follows:

A = −Q5

L

∫ L

0
dw

∫ 1

0
dt

[
Ḟi(w)dxi

|~x− t ~F (w)|2
+
2((~x− t ~F ) · ~F ) tḞi(w)dxi

|~x− t ~F (w)|2
− ∂

∂w

(
Fi(w)dxi

|~x− t ~F (w)|2

)]
.

(B.6)

After some manipulation, this can be written as

A =
2Q

L

∫ L

0
dw

∫ 1

0
dt
tḞiFj(yidxj − yjdxi)

|~y|4 , yi ≡ xi − tFi(w). (B.7)

Now, if we have a 1-form

a = aij
xidxj − xjdxi

|~x|4 , (B.8)

where aij is constant and antisymmetric, then the 1-form b that satisfies

da = ∗4db (B.9)

is given by

b = bij
xidxj − xjdxi

|~x|4 , bij = −1

2
ǫijklakl = −ãij . (B.10)

Therefore, (B.4) is the solution to dB = ∗4dA.

C Details of calculations

Here we describe some details of the computation in section 4.
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C.1 Fluctuation of Lunin-Mathur geometry

We study fluctuations of the LM geometry corresponding to the fluctuation δFm(w) of

the profile function around the background profile Fm(w). The change in the harmonic

functions in (3.1) is given by

δZ1 =
2Q5

L

∫ L

0
dw

[
((~x− ~F ) · δ ~F )Ḟ 2

|~x− ~F |4
+

Ḟ · δ ~̇F
|~x− ~F |2

]
,

δZ2 =
2Q5

L

∫ L

0
dw

(~x− ~F ) · δ ~F
|~x− ~F |4

,

δAi = −Q5

L

∫ L

0
dw

[
2((~x− ~F ) · δ ~F )Ḟi

|~x− ~F |4
+

δḞi

|~x− ~F |2

]
.

(C.1)

Also, from (B.4), The change in D1 charge Q1 defined in (B.2) is

δQ1 =
2Q5

L

∫ L

0
dw ~F · δ ~F . (C.2)

For studying fluctuations around the maximally rotating LM solution (3.3), it is useful

to define

In(k) ≡
1

2π

∫ 2π

0

cos(kγ) dγ

(s2 + a2 + w2 − 2as cos γ)n
= In(−k), (C.3)

for k ∈ Z and n = 1, 2, . . . . Explicitly,

I1(k) =
a|k| sin|k| θ

h (r2 + a2)|k|/2
, (C.4)

I2(k) =

[
(|k|+ 1)r2 + ((|k| − 1) cos2 θ + 2)a2

]
a|k| sin|k| θ

h3 (r2 + a2)|k|/2
. (C.5)

We also define

X± ≡ as[I2(k + 2)± I2(k)] + a2[∓I2(k − 1)− I2(k + 1)] + (k + 1)I1(k + 1). (C.6)

More explicitly,

X+ =





[|k|((1−2 cos2 θ)r2−a2 cos2 θ)h+2(r2+a2)(r2−a2 cos2 θ) sin2 θ]a|k|+1 sin|k|−1 θ

(r2+a2)
|k|+1

2 h3
(k 6= 0),

2
√
r2+a2(r2−a2 cos2 θ)a sin θ

h3
(k = 0).

(C.7)

X− =
ka|k|+1 sin|k|−1 θ

(r2 + a2)
|k|+1

2 h
. (C.8)

C.2 The seed solution and spectral flow

In section 4.1, we considered the fluctuation (4.1) around the maximally rotating LM

geometry and computed the change in the GMR data. The change in Z1, Z2, A,B is
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straightforward to compute using the formulas (C.1) and (B.4). The change in the RR

2-form (3.2), δC2, has contributions δC2,elec and δC2,mag:

δC2,elec = −δZ1

Z2
1

(dt−A) ∧ (dy +B) + Z−1
1 [−δA ∧ (dy +B) + (dt−A) ∧ δB], (C.9)

δC2,mag = δC2, dδC2 = ∗4dZ1. (C.10)

If we carry out the spectral flow (3.7) followed by the coordinate transformation (4.4), we

have an additional contribution:

(δC2,diff)µν = (LξC2)µν = ξρ∂ρCµν + ∂µξ
ρCρν + ∂νξ

ρCµρ, (C.11)

where Lξ is the Lie derivative. The total change in C2 is given by

δC2 = δC2,elec + δC2,mag + δC2,diff . (C.12)

In order to find δC2 in the canonical form of [45], it is easier to first compute δF3 = dδC2,

because then we do not have to know δC2,mag but only its exterior derivative dδC2,mag =

∗4dZ1. After some tedious computation, we find, for k > 0,

δF3 =
2(k + 1)ak−1beik(t/R+φ̃) sink θ

Q1(r2 + a2)k/2

[
−(k − 2)r dt ∧ dr

+ kr2
(
dt− ia

√
Q1Q5

r(r2 + a2)
dr

)
∧ (cot θdθ + idφ̃)

]
∧ dy (C.13)

while, for k = −l < 0,

δF3 =
2al−1be−il(t/R+φ̃) sinl θ

Q1(r2 + a2)l/2

[
(l − 2)r dt ∧ dy ∧ dr + l(l + 2)Q1Q5 sin θ cos θ dθ ∧ dφ̃ ∧ dψ̃

− lr2
(
dt+

i
√
Q1Q5 a

r(r2 + a2)
dr

)
∧ dy ∧ (cot θ dθ − idφ̃)

− l2a
√
Q1Q5

(
dt− i

√
Q1Q5 r

a (r2 + a2)
dr

)
∧
(
cot θ dθ − i cos2 θ dφ̃

)
∧ dψ̃

]
. (C.14)

Note that the expression for k = −l < 0 is not simply obtained from the one for k > 0 by

replacing k → l.

The 2-form potential δC2 that gives the above δF3 is obtained as follows. First,

from [45], the AdS3 part of the 2-form can be written as

Cµν = (ǫAdS3)µν
λXλ Ŷ , (C.15)

where µ, ν, λ are AdS3 indices and ǫ
AdS3 is the volume form for AdS3 with the metric (3.9b).

Xλ are functions in AdS3 while Ŷ is a harmonic function in S3. On the other hand, the

S3 part can be written as

Cab = (ǫS
3

)ab
c U ∂cŶ , (C.16)

– 19 –



J
H
E
P
1
0
(
2
0
1
3
)
1
6
9

where a, b, c are S3 indices, ǫS
3

is the volume form for unit S3 with the metric (3.9c), and U

is a function in AdS3. In general, there can be also mixing terms, Cµa, but that turns out

unnecessary in the present case. So, after a bit of redefinitions, our ansatz for the 2-form is

δC2 = B̂

[
Xt

r

r2 + a2
dy ∧ dr +Xy

dr ∧ dt
r

+Xr
r(r2 + a2)

Q1Q5
dt ∧ dy

]
Ŷ

+ B̂U

[
sin θ cos θ(∂θŶ )dφ̃ ∧ dψ̃ +

cos θ

sin θ
(∂
φ̃
Ŷ )dψ̃ ∧ dθ + sin θ

cos θ
(∂ψŶ )dθ ∧ dφ̃

]
,

(C.17)

where B̂, Ŷ are defined in (4.6). By requiring that this reproduce the 3-form δF3 in (C.13)

and (C.14), we get the following simple result:

k > 0 : Xt = −2i(k + 1)ak−1b

ω
, Xy = 0, Xr = −2(k + 1)ak−1bQ5r

r2 + a2
, U = 0,

k = −l < 0 : Xt =
2ial−1b

ω
, Xy = 0, Xr = −2al−1bQ5r

r2 + a2
, U = −2al−1bQ5. (C.18)

Or, more explicitly,

δC2 =





−2(k + 1)ak−1b

Q1ω
B̂Ŷ

[
r2ω dt ∧ dy + iQ1

r dy ∧ dr
r2 + a2

]
(k > 0),

−2al−1b

Q1ω
B̂Ŷ

[
r2ω dt ∧ dy − iQ1

r dy ∧ dr
r2 + a2

−ilQ1Q5ω cot θ(dθ − i sin θ cos θdφ̃) ∧ dψ̃
]

(k = −l < 0).

(C.19)

This is what we used in (4.8).

C.3 Computing δJ (A)

As explained in the main text, as the zeroth order solution, we used the hyperkähler

structure 2-forms J (A) defined through the vierbein eI = eI idx
i, I = 1, 2, 3, 4, as (4.30).

Note that J (A) are genuinely hyperkähler, not almost hyperkähler, and therefore closed.

Also, note that eI are orthonormal in the sense

gij4 e
I
ie
J
j = δIJ , (C.20)

where gij4 is the inverse of the base metric g4 ij defined in (4.28).

Let us assume that the corrected 2-forms J (A) + δJ (A) are still constructed from the

corrected vierbein eI + δeI by (4.30). Namely,

δJ (A) = δe1 ∧ eA+1 + e1 ∧ δeA+1 − 1

2
ǫABC(δeB ∧ eC + eB ∧ δeC). (C.21)

Let us expand δeI as δeI = δeI idx
i and raise and lower indices using the zeroth order

quantities eI j , g4 ij , and g
ij
4 . If we require that e

I + δeI be orthonormal with respect to the

corrected metric g4 + δg4, then (C.20) implies that

δeij + δeji = δg4 ij . (C.22)

– 20 –
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Therefore, we can write δeI in terms of the 6 independent variables δei<j as

δeI =
4∑

i=1


1
2
eIiδg4 ii +

∑

1≤j<i
eIjδeji +

∑

i<j≤4

eIj(δg4 ij − δeij)


 dxi. (C.23)

With this construction, the conditions (2.3) and (2.4) on J (A) + δJ (A) are automatically

satisfied. However, they will not be closed any more.

In the present case, all fields (4.22), (4.25), and (4.26) depend on v through F defined

in (4.23). So, let us assume that δe, δJ (A) are also proportional to F and therefore

δJ̇ (A) = i

√
2

Q1Q5
amδJ (A). (C.24)

In this case, ψ̂ in (2.8) is given by

ψ̂ = i

√
2

Q1Q5
am · 1

16
ǫABJJ (A)ijδJ

(B)
ij J (C)

=
i√

8Q1Q5am
(1− ∗4)M, M = eI ∧ δeI . (C.25)

If we plug the explicit expression (C.23) into (C.25) and require that it be equal to (4.27),

it turns out that we can eliminate 3 out of 6 independent parameters δei<j . For example,

we can take δe12, δe13, δe14 as independent variables.

One can show that the differential condition (2.5), which reads

d̃δJ = ∂v(β ∧ δJ + δB ∧ J) (C.26)

= i

√
2

Q1Q5
ma(β ∧ δJ + δB ∧ J), (C.27)

is identically satisfied, whatever the values of δe12, δe13, δe14 are. If we compute δJ (A)

using (C.21), we obtain (4.32), independent of δe12, δe13, δe14.
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