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Spatio-temporal dynamics of bumblebees foraging under predation risk
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We analyze 3D flight paths of bumblebees searching for nectarin a laboratory experiment with and without
predation risk from artificial spiders. For the flight velocities we find mixed probability distributions reflecting
the access to the food sources while the threat posed by the spiders shows up only in the velocity correlations.
The bumblebees thus adjust their flight patterns spatially to the environment and temporally to predation risk.
Key information on response to environmental changes is contained in temporal correlation functions, as we
explain by a simple emergent model.

PACS numbers: 87.10.-e, 87.19.lv, 05.40.Fb

Quantifying foraging behavior of organisms by statistical
analysis has raised the question whether biologically relevant
search strategies can be identified by mathematical model-
ing [1–7]. For sparsely, randomly distributed, replenishing
food sources, the Lévy flight hypothesis predicts that a ran-
dom search with jump lengths following a power law mini-
mizes the search time [7–9]. Experimental evidence [10–13]
and further theoretical analyses [14, 15] supporting this hy-
pothesis were challenged by refined statistical data analyses
[16–19] and more detailed theoretical modeling [6, 20, 21].A
crucial problem is how dispositions of a forager like memory
[22] or sensory perception [23], as well as properties of the
environment [12, 13, 24–27], can be tested in a statistical for-
aging analysis [1–3, 5, 7]. Especially for data obtained from
foraging experiments in the wild, it is typically not clear to
which extent extracted search patterns are determined by for-
ager dispositions, or reflect an adjustment of the dynamics of
organisms to the distribution of food sources and the presence
of predators [5, 12, 13]. This problem can be addressed by
statistically quantifying search behavior in laboratory exper-
iments where foraging conditions are varied in a fully con-
trolled manner [13, 24]. Such an experiment has been per-
formed by Ings and Chittka [28, 29], who studied the foraging
behavior of bumblebees with and without different types of
artificial spiders mimicking predators.

Here we ask the question whether changes of environmental
conditions as performed in the experiment by Ings and Chittka
lead to changes in the foraging process. We answer this ques-
tion by a statistical analysis of the bumblebee flights recorded
in this experiment on both spatial and temporal scales. For
this purpose, we extract both flight velocity probability distri-
butions and temporal velocity autocorrelation functions from
the data. Surprisingly, we find that the crucial quantity to un-
derstand changes in the bumblebee dynamics under predation
risk is not the velocity distribution but the velocity correlation
function, which reveals non-trivial dynamics on differenttime
scales. We reproduce these changes by a simple Langevin
equation modeling a repulsive interaction between insect and
predator. In order to construct mathematical models repro-
ducing the foraging of organisms that interact with the envi-
ronment, our results suggest to shift the focus from scale-free

Figure 1. Diagram of the foraging arena together with part ofthe
flight trajectory of a single bumblebee. The bumblebees forage on
a grid of artificial flowers on one wall of the box. While being on
the landing platforms, the bumblebees have access to food supply.
All flowers can be equipped with spider models and trapping mech-
anisms simulating predation attempts.

approaches [7, 9, 10] to the statistical quantification of spatio-
temporal changes in the foraging dynamics.

In the experiment [28] bumblebees (Bombus terrestris)
were flying in a cubic arena of≈ 75 cm side length by for-
aging on a 4×4 vertical grid of artificial yellow flowers on
one wall. The 3D flight trajectories of 30 bumblebees, tested
sequentially and individually, were tracked by two high frame
rate cameras (∆t = 0.02 s). On the landing platform of each
flower, nectar was given to the bumblebees and replenished
after consumption. The short trajectory in Fig. 1 shows a typ-
ical flight path of a bumblebee foraging in the arena. To an-
alyze differences in the foraging behavior of the bumblebees
under threat of predation, artificial spiders were introduced.
The experiment was staged into three phases: (1) spider-free
foraging, (2) foraging under predation risk and (3) a mem-
ory test one day later. Before and directly after stage (2) the
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Figure 2. Estimated velocity distributions (main part) andQuantile-
Quantile probability plot of a Gaussian mixture as the best fit (in-
set). Semi-logarithmic plot of the normalized histogram ofvelocities
vy parallel to they-axis in Fig. 1 (black crosses) for a single bum-
blebee in the spider-free stage (1) together with a Gaussianmixture
(red line), exponential (blue dotted), power law (green dashed), and
Gaussian distribution (violet dotted), fitted via maximum likelihood
estimation. The inset shows quantiles ofvy (in m/s) of a single bum-
blebee against quantiles of an estimated mixture of two Gaussians.
An ideal match would yield a straight line. The dashed red lines
show 20 surrogate data sets of the same size.

bumblebees were trained to forage in the presence of artificial
spiders, which were randomly placed on 25% of the flowers.
A spider was emulated by a spider model on the flower and
a trapping mechanism which held the bumblebee for two sec-
onds to simulate a predation attempt. In (2) and (3) the spiders
models were present but the traps were inactive in order to an-
alyze the influence of previous experience with predation risk
on the bumblebees’ flight dynamics. To determine whether
the detectability of the spiders is an important factor, half of
the bumblebees were trained on easily visible (white) spider
models and half of them on yellow models, which meant that
spiders were camouflaged on the yellow flowers; see Ings and
Chittka [28] for further details of the experiment.

Figure 2 shows a typical normalized histogram of the hori-
zontal velocities parallel to the flower wall (cf. y-direction in
Fig. 1) for a single bumblebee. The histograms are charac-
terized by a peak at low velocities and vary in the different
spatial directions due to asymmetries induced by physical and
biological constraints as well as the spatial arrangement of the
flowers. Direct fitting of distributions on the histogram anda
visual comparison with some assumed distribution was shown
to be unreliable [17], as is illustrated by Fig. 2: only the power
law and the Gaussian distribution can be ruled out by visual
inspection. However, the Gaussian mixture and an exponen-
tial function appear to be equally likely. Therefore we use
the maximum likelihood method for a number of candidate
distributions to obtain the optimal parameters for each candi-
date and then compare the different distribution types by their
weights using the Akaike information criterion [16]. Our can-
didate distributions are: (a) Exponential:ρλ(v) = ce−λ|v|,
(b) Power law:ρµ(v) = c |v|−µ, (c) Normal distribution with

zero mean:ρσ(v) = Nσ(v), (d) Mixture of two normal dis-
tributions: ρa,σ1,σ2

(v) = aNσ1
(v) + (1 − a)Nσ2

(v), where

Nσi
(v) = 1√

2πσ2

i

e
− v2

2σ2

i , i = 1, 2, and0 ≤ a ≤ 1. Details of

this analysis are described in the Supplemental Material [34].
For the data sets of all bumblebees and in all stages of the

experiment the Akaike weights show that a mixture of two
Gaussians is the preferred distribution of the tested candidates
(see Table I in the Supplemental Material [34]). However,
they do not inform us if the best of the candidates is actually
a good model: if all of the candidates are far off the real dis-
tribution, the Akaike weights could highlight one of them as
the best of the poor fits. As a supplementary qualitative testto
which extent the estimated distribution with the largest Akaike
weight deviates from the data over the whole range variables,
we use Quantile-Quantile (Q-Q) probability plots. The inset
of Fig. 2 shows the Q-Q plot of the mixture of two Gaussians
against the experimental data of a single bumblebee and 20
surrogate data sets. Each of the surrogate data sets consists of
independently identically distributed random numbers drawn
from the estimated Gaussian mixture and has the same number
of data points as the real data for comparison with statistical
fluctuations. The Q-Q plot shows that the deviations of the
experimental data from the mixture of two Gaussians is not
larger than the expected deviations due to the finite quantity
of data.

The Gaussian mixture for the velocities is generated by
different flight behavior near a flower versus in open space,
which bears some resemblance to intermittent dynamics [6, 7,
25]. This has been verified by splitting the data into flights
far from the flower wall vs. flights in the feeding zone. The
latter was defined by a cube of side length 9 cm around each
flower in which the velocities are determined by approach-
ing a flower and hovering behavior. This separation of differ-
ent flight phases is thus adapted to accessing the food sources
and explains the origin of Gaussian distributions with different
variances in both spatial regions. Because of the absence ofa
sparse distribution of food sources, there was no reason to ex-
pect Lévy-type probability distributions [9]. Surprisingly, by
comparing the best fits to these distributions for the different
stages of the experiment, we could not detect any differences
in the velocity distributions between the spider-free stage and
the stages where artificial spider models were present, as is
shown in Table II of the Supplemental Material [34]. The
parameters of the Gaussian mixture vary between individual
bumblebees but there is no systematic change due to the pres-
ence of predators.

Hence, we examined the velocity autocorrelations for com-
plete flights from flower to flower. The autocorrelations
have been computed by averaging over all bumblebees while
weighting with the amount of data available for each time in-
terval; see the Supplemental Material for details [34]. Figure 3
shows the velocity autocorrelations in the x- and y-directions
for different stages of the experiment. In the x-direction per-
pendicular to the wall the velocities are always anti-correlated
for times around0.5 s (Fig. 3(a)), which is due to the tendency
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of the bumblebees to quickly return to the flower wall. How-
ever, the flights with long durations between flower visits be-
come more frequent for stages (2) and (3) where the bumble-
bees were exposed to predation risk compared with stage (1)
(inset of Fig. 3(a)). This is also reflected in a small shift ofthe
global minimum in the correlations for stages (2) and (3) away
from the origin. Thevx-autocorrelations thus display similar
functional forms but with quantitative changes between the
different stages. In contrast, for thevy-autocorrelations the
functional forms change profoundly: Parallel to the flower
wall the velocities are anti-correlated in the presence of spi-
ders for0.7 s < τ < 2.8 s, while for the spider-free stage the
correlations remain positive up to1.7 s (Fig. 3(b)). The verti-
cal z-direction is similar to the y-direction with a weaker de-
pendence on the presence of predators. As the limited amount
of data causes variations in the autocorrelations between in-
dividual bumblebees, we resampled the result by leaving the
data of each single bumblebee out (jackknifing). The resam-
pling (inset of Fig. 3(b)) confirms that the positive autocorre-
lations ofvy are not a numerical artifact.

Our statistical analysis of the experimental data has thus
revealed that differences in the foraging behavior of bumble-
bees, triggered by predation risk, show up in changes of the
velocity autocorrelation functions only, and not in modifica-
tions of the velocity probability distributions. These changes
are consistent with a more careful search: When no threat of
predators is present, the bumblebees forage more systemati-
cally with more or less direct flights from flower to flower,
arching away from the flower wall. Under threat the trajecto-
ries become longer and the bumblebees change their direction
more often in their search for food sources, rejecting flowers
with spiders, as is supported by Fig. 3. Further analysis rules
out that the main features of the correlation functions are in-
duced by the geometry of the experiment: In Fig. 3(a), all
flight time distributions display maxima aroundTf ≈ 0.5 s
suggesting that times below≃ 2 s are primarily related to
flights between flowers. Boundary effects are only evident
for flight times that fall within the tail of the distributions.
The anti-correlations in they- andz-directions parallel to the
flower wall thus cannot be induced by the walls but are gen-
erated by a reversal of directions at flowers under predatory
threat. For thex-direction, the return to the flower wall is re-
sponsible for the anti-correlation at small delay times, not the
opposite wall, which is too far away to have a significant ef-
fect. Another interesting aspect is that Ings and Chittka [28]
report that bumblebees increase the time they spend inspect-
ing flowers bearing camouflaged spiders compared to conspic-
uous ones. However, we did not detect any change in veloc-
ity distributions or autocorrelations in this case, which sug-
gests that the bumblebees perform longer localized inspection
flights without changing their velocities.

In order to understand the changes shown in Fig. 3, we
model the dynamics ofvy by the Langevin equation

dvy
dt

(t) = −ηvy(t)−
∂U

∂y
(y(t)) + ξ(t) ,
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Figure 3. Autocorrelation of the velocities at different experimen-
tal stages: without spiders (red triangles), under threat of predation
(green circles), and under threat a day after the last encounter with
the spiders (blue crosses). (a) In the x-direction perpendicular to the
wall the velocities are anti-correlated for small times (≈ 0.5 s) due
to short flights from one flower to a nearby flower back at the flower
wall. Inset: the distribution of flight timesTf for each stage shows
a corresponding maximum for these short jumps. Under threatof
predation (dotted) long flights become more frequent. (b) The cor-
relation ofvy parallel to the wall shows the effect of the presence of
spiders on the flight behavior of the bumblebees. The inset shows
the resampled autocorrelation for the spider-free stage inthe region
where the correlation differs from the stages with spider models,
which confirms that the positive autocorrelations are not a numeri-
cal artifact.

whereη is a friction coefficient andξ Gaussian white noise.
The potentialU mimics an interaction between bumblebee
and spider. Specific data analysis shows that this force is re-
pulsive and dominates any hovering behavior in the velocity
correlation decay. Computer simulations of the above equa-
tion reproduce a change from positive to anti-correlationsby
increasing the repulsive force. Details are discussed in the
Supplemental Material [34]. Note that the correlation decay
displayed in Fig. 3 rules out a mathematical modeling in terms
of ordinary correlated random walks or Lévy walks, which
predict velocity correlations to decay strictly exponentially
[7, 26] or algebraically [30, 31], respectively.

We emphasize that the experiment analyzed in this Letter
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does not match the conditions of the Lévy flight hypothesis
[9]. Lévy flights and Lévy walks predict scale-free probabil-
ity distributions [7] and generate trivial functional forms for
the velocity correlations [30, 31]. Accordingly, experiments
testing this hypothesis have focused on probability distribu-
tions, not on correlation decay [10–13]. However, our results
demonstrate that velocity autocorrelations can contain crucial
information for understanding foraging dynamics, here in the
form of a highly non-trivial correlation decay emerging from
an interaction between forager and predator. Identifying such
an emergent property in contrast to adaptive behavior, as we
do with our simple model, has been highlighted as a crucial
problem in foraging dynamics [13]. In addition, we observe
a spatial variation of the velocity distributions. These find-
ings illustrate the presence of different flight modes governing
the foraging dynamics on different scales of time and space.
Our results thus indicate that taking scale-free distributions
as a paradigm beyond the conditions of validity of the Lévy
flight hypothesis might be too restrictive an approach in order
to capture complex foraging dynamics. A variety of mech-
anisms may naturally lead to different foraging dynamics on
different length and time scales, e.g., individuality of animals
[19, 32, 33], an intermittent switching between quasi-ballistic
persistent dynamics and localized search modes [6, 18], or
quantities over which one has averaged like time of day [13].
As ignoring these mechanisms can lead to spurious power
laws [16, 17], it is important to look for the reasons of the
occurrence of non-trivial distributions like mixtures, e.g., an-
imals switching between different search modes. These mix-
tures may not always be optimal distributions for a particular
search problem, but they are easy to produce, composable and
flexible enough such that differences to some optimal distri-
bution might not be large enough to give rise to evolutionary
pressure [4].

In summary, the fundamental question ‘What is the math-
ematically most efficient search strategy of foraging organ-
isms?’ has, under specific conditions [21], been answered by
the Lévy flight hypothesis [8, 9]. This question is well-posed
under precise foraging conditions and has the big advantage
that it is amenable to mathematical analysis. However, it does
not capture the full complexity of a biological foraging prob-
lem [7], which incorporates both the dependence of foraging
on ‘internal’ conditions of a forager (sensory perception [23],
memory [22], individuality [19, 32, 33]) as well as ‘exter-
nal’ environmental constraints (distribution of food sources
[12, 13, 27], day-night cycle [13], predators [28, 29]). Asking
about the range of applicability of the Lévy flight hypothe-
sis leads to the over-arching question ‘How can we statisti-
cally quantify changes in foraging dynamics due to interac-
tions with the environment?’, which requires to identify suit-
able measurable quantities characterizing such changes. This
question highlights the need to better understand, and more
carefully analyze, the interplay between forager and environ-
ment, which will yield crucial information for constructing
more general mathematical foraging models.
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SUPPLEMENTAL MATERIAL

1. Statistical data analysis

To capture bumblebee flights only, we exclude any crawling
behavior on the landing platforms by also removing all data
within a 1 cm boundary region of each platform. The size of
this boundary is based on the size of the bumblebees, which
have a height of approximately 1 cm. While smaller cutoffs
would not exclude all crawling behavior, the cutoff can be in-
creased robustly within reasonable bounds. We have checked
that, e.g. a 2 cm cutoff does not have any influence on any of
the analyzed quantities, as the amount of the data which would
be excluded in addition is very small. This leaves from 2000
to 15000 data points (average: 6000) per bumblebee for each
stage. We select the best model for the velocity distributions
by maximum likelihood estimation and Akaike and Bayesian
weights for our candidate distributions [16] for|v| ≥ 2.5 cm/s.
Given a set of measured velocitiesD = {v1, v2, ..., vn} and
a probability density functionρλ(v), whereλ is a vector of k
parameters, thelog-likelihood of the probability density func-
tion for a finite resolution of the data (∆v = 5 cm/s) simplifies
to

lnL(λ|D) =
∑

vj∈D

lnPλ(vj) =
∑

b∈bins

h[b] ln

∫ max(b)

min(b)

ρλ(v)dv

whereh(b) is the observed frequency in binb.
For each candidate distributionρiλi

, i ∈ {1, 2, 3}, we max-
imize the log-likelihoodlnLi w.r.t. λi locally with a Nelder-
Mead algorithm by using a Monte Carlo method to find the
global maximum. To find the preference between the differ-
ent model distributions whose likelihoodsLi are maximized

atλmax
i the information criteria are

ICi = −2 ln(Li(λ
max
i |D)) + s(n)ki

with s(n) = 2 for the Akaike information criterion and
s(n) = ln(n) for the Bayesian information criterion as a
penalty on the number of parameterski. The best model, de-
noted by∗, is the one which minimizes the information cri-
terionIC∗ = min

i
(ICi). The Akaike/Bayesian weights then

give the preference of each model over the others as a proba-
bility

wi = αe−(ICi−IC∗)/2 ,

whereα normalizes the weights to
∑

iwi = 1.
The choice of the information criterion makes no strong dif-

ference for the model selection in this experiment. With the
Akaike information criterion the Gaussian mixture is chosen
with a weight of over 95% for all bumblebees and all experi-
mental stages. The Bayesian information criterion agrees with
the Akaike information criterion on 90% of all data sets. For
the other 10% it prefers a single Gaussian or an exponential
distribution - these data sets turned out to be those with the
least amount of data available.

To compute the autocorrelation functionvac(τ) of the flight
velocities

vac(τ) =
〈(v(t)− µ)(v(t + τ)− µ)〉

σ2

we average over all bumblebees and over time in all flights
that are complete from starting on one flower to landing on
the next. We exclude flights containing gaps and correlation
terms, where in-between timet andt+ τ a flower was visited.

Table I. Model weights and estimated parameters. Akaike andBayesian weights both give preference to the mixture of two Gaussians for
vy for most of the bumblebees. The weights are estimated individually and their mean and standard deviation (in brackets) are shown. The
distribution parameters are also estimated individually for each bumblebee in each stage.

Model: (a) Exponential (b) Power law (c) Gaussian (d) Gaussian Mixture

Akaike weight 0.00 (0.00) 0.00 (0.00) 0.04 (0.19) 0.96 (0.19)

Bayesian weight 0.04 (0.18) 0.00 (0.00) 0.08 (0.26) 0.88 (0.30)

Parameters λ µ σ a σ1 σ2

average (bumblebees) 5.61 1.11 0.25 0.67 0.06 0.29

stddev (bumblebees) 1.07 0.16 0.03 0.13 0.04 0.03

Table II. Weights and estimated parameters of the Gaussian mixture for the different experimental stages. Weights and parameters are estimated
for each bumblebee. Shown are the mean over all individuals and the standard deviation (in brackets). The mixture of two Gaussians is the
best fit in all stages. In the parameters of the distribution we observe no significant effect of the threat of predators on the bumblebees.

Stages Akaike weight Bayesian weight a σ1 σ2

(1) Without spiders 0.97 (0.15) 0.93 (0.23) 0.64 (0.11) 0.06(0.02) 0.29 (0.03)

(2) Under predation risk 0.99 (0.04) 0.90 (0.27) 0.68 (0.13) 0.06 (0.02) 0.29 (0.02)

(3) With risk,1 day later 0.89 (0.29) 0.80 (0.38) 0.72 (0.16) 0.07 (0.07) 0.30 (0.03)

http://arxiv.org/abs/1108.1278v2
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Figure S1. Predator avoidance of bumblebees at flowers, Eq. (1), ex-
tracted from the experimental data. Hovering behavior in front of a
flower is represented by the positive spike directly at the flower cen-
ter, while the negative region behind this spike reflects theavoidance
in the flights towards a flower.

2. Mathematical modeling of bumblebee foraging

The effect of the presence of a spider on the probability
of a bumblebee to fly in front of a flower can be measured
by computing the difference between the position densitiesat
stage (1) and (2) as a function of the positions parallel to and
near(x <5 cm) the flower wall,

∆ρp(yrel, zrel) = ρ(2)p (yrel, zrel)− ρ(1)p (yrel, zrel) , (1)

where the positions(yrel, zrel) are relative to the nearest
flower center. This predator avoidance extracted from the ex-
perimental data is shown in Fig. S1. Two different types of
behavior can be seen: First, there is a small increase in the
amount of hovering, i.e. inspection flights near the flower plat-
form when a spider model is present [1, 2], which is consis-
tent with Ref. [3]. However, more important is the local min-
imum representing the avoidance of flowers infected by spi-
ders. This effect is strongest 3 cm above the dangerous flow-
ers, because the flowers are predominantly approached from
above. The avoidance behavior affects not only flights near
the flower wall but can still be detected further away from it.
Comparing dangerous and safe flowers at stage (2) only con-
firms that avoidance is the dominant effect for search flights.

The avoidance of spider-infected flowers together with the
spatial switching of flight modes discussed in the main part of
our Letter can be modeled by the Langevin Equation

dr

dt
(t) = v(t)

dv

dt
(t) = −ηv(t) −∇U(r(t)) + ξ(r, t) , (2)

whereη is a friction coefficient andξ white Gaussian noise
with standard deviation depending on the flight mode as
a function of the position,ξ(r, t) = χfz(r)ξ1(t) + (1 −
χfz(r))ξ2(t). Herer = (x, y, z)⊤ is the position of the bum-
blebee at timet, χfz(r) is the indicator function of the feeding

zone, which is equal to one whenever the bumblebee is in the
cube around a flower as defined before, andξi , i = 1, 2 is
Gaussian noise with two different variances. The potentialU
models an interaction between bumblebee and spider in form
of a repulsive force exerted by the spider onto the bumblebee,
for which we assume that the potential maxima are located
near infected flowers.

When the mechanism generating the correlation functions
shown in Fig. 3 is not the focus of the investigation, it suf-
fices to consider a reduced version of Eqs. (2) in form of the
effective Langevin equation

dr

dt
= χfz(r)ζ1(t) + (1− χfz(r))ζ2(t) . (3)

This equation describes the spatially varying hovering and
search modes by using noiseζi , i = 1, 2., which models the
impact of the potentialU together with the noiseξ. Further
data analysis shows that excluding hovering has no significant
impact on the velocity autocorrelations, which are dominated
by the search flights. This is in full agreement with Fig. 3,
where the time scale for the predator-induced anti-correlation
(Fig. 3(b)) is larger than the time scale for flights between
neighbouring flowers (Fig. 3(a)). Hence, we modelζ1(t) as a
vector of Gaussian white noise with the smaller varianceσ2

1

given in Table I which describes the hovering. The search
flights from flower to flower are reproduced by the correlated
Gaussian noise vectorζ2(t) with varianceσ2

2 and the autocor-
relationsvaci (τ) , i = x, y shown in Fig. 3. The advantage of
this model is that it is directly based on our data analysis.

We now focus on the different aspect of understanding the
biophysical mechanism that generates the anti-correlations of
the velocities parallel toy shown in Fig. 3(b). Starting from
the full model Eqs. (2), it suffices to select the search mode
only by settingξ(r, t) = ξ2(t) thus neglecting any spatial
variations of the noise. This yields the Langevin equation

dvy
dt

(t) = −ηvy(t)−
∂U

∂y
(y(t)) + ξ(t) , (4)

which was already stated in the main part as the main equa-
tion. A rough approximation for the repulsive force is pro-
vided by a periodic potential with maxima at dangerous flow-
ers,

U(r) = u cos

(

2π
y

y0

)

, (5)

where y0 is the mean distance between spiders andu the
strength of the repulsion.

We integrated this Langevin equation via an Euler-
Maruyama method under variation ofu by computing the au-
tocorrelation functionvacy of the generated data. Figure S2
showsvacy by increasing the repulsion strengthu. The cor-
relation function changes from positive correlations to anti-
correlations in a range of delay timesτ comparable to the
changes in the correlation function of the experimental data of
Fig. 3(b). This qualitatively reproduces our experimentalfind-
ings from first principles. Note that the oscillations for higher
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Figure S2. Autocorrelation function of the velocitiesvy for the
Langevin model Eqs. (4),(5) modeling predation threat by different
strengths of a repulsive potential. Shown are results from computer
simulations without (u = 0; red triangles, upper line) and with pre-
dation threat (u = 0.5m2/s2; green circles, lower line). These re-
sults should be qualitatively compared with the experimental findings
Fig. 3(b).

τ in Fig. S2 would be suppressed in a higher-dimensional
model. The other directions can be treated analogously, e.g.,
by including anx-dependent term in the potential for the at-
traction of the bumblebees to the flower wall. A stochastic

analysis of Langevin equations with periodic potentials can
be found, e.g., in Ref. [4]. The effect of the harmonic poten-
tial on the creation of negative velocity correlations can also
be calculated analytically [5].

We emphasize that our model Eqs. (4),(5) provides only a
qualitative description of the biophysical mechanism generat-
ing the change in the correlations of the bumblebee velocities
under predation threat. For a quantitative comparison to the
experimental data a much more detailed model would be nec-
essary, which needs to include the random positioning of the
spiders and the general attractive force exerted by the flowers
onto the bumblebees. Modeling the three-dimensional nature
of the potential would also be important: Notice, e.g., the lo-
cal maximum ofvacy aroundτ ≃ 2.5 which is an artifact of
the one-dimensional modeling of spider avoidance. However,
as it is difficult to reliably estimate the parameters of the po-
tential, such a quantitative comparison is beyond the scopeof
our Letter.

[1] T. Ings, M. Y. Wang, and L. Chittka, Behavioral Ecology and
Sociobiology, 1 (2011).

[2] T. Yokoi and K. Fujisaki, Naturwissenschaften,96, 195 (2009).
[3] T. C. Ings and L. Chittka, Current Biology,18, 1520 (2008).
[4] H. Risken,The Fokker-Planck Equation : Methods of Solution

and Applications (Springer, Berlin New York, 1989).
[5] F. Lenz, A. V. Chechkin, T. C. Ings, L. Chittka, and R. Klages,

In preparation.

http://dx.doi.org/10.1007/s00265-011-1295-y

	 Supplemental Material
	 References

